SlideShare a Scribd company logo
Графен,-­‐	
  материал	
  будущего	
  или	
  	
  
  поиск	
  ниши	
  для	
  применения	
  	
  	
  



                   Graphene	
  
1.	
  Обзор	
  методов	
  вычислительной	
  физики	
  
	
  	
  	
  	
  	
  Много-­‐масштабное	
  моделирование:	
  от	
  дефектов	
  к	
  	
  
ошибкам	
  в	
  приборах	
  
	
  
2.	
  	
  Локальная	
  структура	
  металлических	
  сплавов:	
  
диффузионное	
  рассеяние	
  и	
  атомные	
  смещения.	
  
	
  
3.	
  Дефекты	
  в	
  полупроводниках	
  и	
  поведение	
  приборов:	
  GaN,	
  
SiC	
  и	
  AlSb.	
  
	
  
4.	
  Проблемы	
  функциональности	
  материалов	
  для	
  
мемристора	
  TiO2	
  и	
  ZnO.	
  	
  
	
  
5.	
  Графен,-­‐	
  материал	
  будущего	
  или	
  поиск	
  ниши	
  для	
  
применения.	
  
	
  
Saito, R., M. lower ͑ Dresselhaus, is M. S. from Eq.
minus sign the Fujita, G. ␲͒ band. Itand clear Dresselhaus, ͑6͒
that Tight	
  bspectrum is Lett. 60, 2204. around zero energy if tЈ
 lectronic propertiespproximaIon	
  
        the inding	
  a of graphene
         1992a, Appl. Phys. symmetric
       Saito,finite values graphite”	
  by	
  Wallace	
  Phys.	
  Rev.	
  LeT.	
  71,	
  622,	
  1947	
  is
= 0. For
             	
  “The	
  band	
  theory	
  of	
  
                    R., M. Fujita, of tЈ, the electron-hole symmetry 	
  
                                                  G. Dresselhaus, and M. S. Dresselhaus,
broken and theRev.and ␲1804.
 ,       1992b, Phys.
                                    ␲ B 46, * bands become 1asymmetric. In
       San-Jose, P., E. Prada, and D. Golubev,k2007,bPhys. Rev. B 76,
-
Fig. 3, we show theAfullBband structure of graphene with            y
         195445.
 ,
both t and S.,. 2007, Phys. Rev.figure, we also show a zoom in
       Saremi, tЈ δ 3 the1 same B 76, 184430.
                             In δ                                                K
 ,
of the band D., E. H. Hwang, and W. K.ofΓ the Dirac points ͑at
       Sarma, S. structure close to one Tse, 2007, Phys. Rev. B
s
the K or KЈ a 1
         75, 121406. pointδ 2in the BZ͒. This dispersion can be                  M          kx
c      Schakel, A. M.2J., 1991, the full band structure, Eq. ͑6͒,
obtained by expanding Phys. Rev. D 43, 1428.
                                  a
                                                                                K’
t
close to the K ͑orGeim, vector, Eq. ͑3͒, as kE. H. + q, P.
       Schedin, F., A. K. KЈ͒ S. V. Morozov, D. Jiang, = K Hill, with
                                                                          b2
a        Blake, and K. S. Novoselov, 2007, Nature Mater. 6, 652.
͉q ͉ Ӷ ͉K͉ ͑Wallace, 1947͒,
n      Schomerus, H., 2007, Phys. Rev. B 76, 045433.
-      Schroeder,͑ColorM. + O͓͑q/K͒2͔, and A. Javan, 1968, Phys. ͑7͒
        FIG. 2.                        online͒ Honeycomb lattice and its Brillouin
       E±͑q͒ Ϸ P. R., ͉q͉ S. Dresselhaus,
                            ± vF
 ;      zone.Lett. 20, 1292.structure of graphene, made out of two in-
         Rev. Left: lattice
       Semenoff, G. momentumRev. ͑a1 53, a2 are
where q is theW.,triangular latticesLett. and 2449. the latticethe
        terpenetrating 1984, Phys. measured relatively to unit
-      Sengupta, and ␦i G. 1 , 2the are the nearest-neighbor by vF
        vectors, and
Dirac pointsK., and, viF=Baskaran, 2008, Phys. Rev. B given vectors͒.
                                                  is , 3 Fermi velocity, 77, 045417.
       Seoanez, C., a value vandf	
  1raphene”	
   The This result are lo-
       “The	
  electronic	
  properIes	
  o A. H. Castro Neto, 2007, Phys.
                                  F. Guinea, Ӎ g ϫ 106 m / s. Dirac cones was
        Right: corresponding Brillouin zone.
= 3ta / 2,.	
  Castro	
  Neto	
  Rev.	
  Mod.	
  Phys.	
  81,	
  109	
  2009	
  
-      A.	
  H with 125427. KЈ F
        catedB 76, K and
         Rev. at the                                 points.
first obtained by Wallace ͑1947͒.
-
form Left: energy spectrum ͑in units of t͒ for finite values of
lattice. ͑Wallace, 1947͒
t and tЈ, with t = 2.7 eV and tЈ = −0.2t. Right: zoom in of the
     E±͑k͒ = ± tͱ3 + f͑k͒ − tЈf͑k͒,
energy bands close to one of the Dirac points.


 1
     f͑k͒ = 2 of tЈ is not 4 cos ͩ ͪ ͩ ͪ
                                   ͱ3
                                     ky cos kxa
                                                  3
   The valuecos͑ͱ3kya͒ + well knownabut ab initio , calcula
                                                          ͑6͒
͑Reich et al., 2002͒ find 0.02t Շ tЈ2 0.2t depending on the t
                                   Շ              2
binding parametrization. These the upperet͑al.:alsoelectronic pro
where the plus sign applies to      calculations␲*Theand the
                                      Castro Neto
                                                    ͒ include
effect of a third-nearest-neighbors hopping, which has a v
minus sign the lower ͑␲͒ band. It is clear from Eq. ͑6͒
of around 0.07 eV. A tight-binding fit to cyclotron reson
that the spectrum is symmetric around zero energy if tЈ
experiments ͑Deacon et al., 2007͒ finds tЈ Ϸ 0.1 eV.
= 0. For finite values of tЈ, the electron-hole symmetry is
broken and the ␲ and ␲* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and tЈ. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points ͑at
the K or KЈ point in the BZ͒. This dispersion can be
anប = 1͒ ͚ e−ik·Rna͑k͒,
      ͑we use units such that = ͱN k
                 ͑15͒
                                    c

           H=−t    ͚is
  by A = 3ͱ3a / 2.͗i,j͘,␴
               2
                   It
                              †
                            ͑a␴,ib␴,j + H.c.͒
                               where Nc is the number of unit cells.
         c
  tates for graphene is        mation, we write the field an as a
  . Dirac fermions
                      ͚         †          †
                               coming+ b␴,ib␴,j + H.c.͒, Fourier s
   of carbon nanotubes ͑a␴,ia␴,j
                 − tЈ                   from expanding the
  er shows 1 / ͱE singu- ␴ K. This produces an Јapproximation
                      ͗͗i,j͘͘,
    We consider the Hamiltonian ͑5͒ withas a sum of two ne
                               tion of the field an t = 0 and the
 their electronic spec- the electron operators,
  ourier transform of ͒ annihilates ͑creates͒ an electron
       where the ͑ai,␴   †
antization of ai,␴ mo-
  ular spin ␴ tube axis. ͒ on site Ӎ i −iK·RsublatticeЈ·Rna ͑an equ
        to the ͑␴ = ↑ , ↓          an e
                                       R on na + e−iK A ,
                                                1,n          2,n
   nanoribbons, whichis used for sublattice B͒, t͑Ϸ2.8 eV͒ i
       lent definition
             1
         =     ͚   e−ik·Rna͑k͒,
      anearest-neighbor hopping energy ͑hopping between
            ͱN c k
   perpendicular to the
       n                                                       ͑16͒
milar ferent sublattices͒, and t is the next −iKЈ·Rn
        to carbon nano-
                                   bn Ӎ e−iK·Rnb1,n + e nearest-neig
                                       Ј                    b2,n ,
      hopping energy1 ͑hopping in the same sublattice͒.
where Nc is the number of unit cells. Using this transfor-
      energy bands derived from this Hamiltonian have
mation, we write the field an as a sum of two terms,
 2009
      form ͑Wallace, 1947͒
͒/4 †
       ͪ ͵ͩ
  ͑ai ,‫ץ‬b†͒
         +
        xi
                                      ͫͩ
                                           0     − ͱ3͒/4
                                          3a͑− i guage, the two-component
                         ͑i = 1 , 2͒. It is clear that ‫ץ‬around K ͱhas the fo
                                                 mentum y ⌿1͑r͒
                                                             ˆ
                                                           the effective Ham
                                                                          ͪ
                         −ˆ3a͑i − ͱ3͒/4 3a͑1 − iͱclose to the K3a͑− i − 3͒/4 obeys
                                                                 point, ˆ
                                                                                  ͩ
                                                                                    ͪͬ                    ͪͬ
                                                                                                 ͩͪ ͬ ͪ
                                     0           0 ‫+ץ‬
                                                 3͒/4      0
 oniant ͑18͒ is madeͱ3͒/4 two copies3a͑i − ͱthe1massless Di
                                    of 0                       of 3͒/4
                                                                          ͬ
                      dxdy⌿†͑r͒


   ͩ                                                       ͪ ͪͩ
    HӍ−                                                                      ‫ ץ‬⌿ ͑r͒
                                                                           0 −i␪k/2
                                                                           e
                            1                                                 x                               y   1
                         − 3a͑1 + i                         −
 ke Hamiltonian, 3a͑1− iͱ3͒/4 ‫␺ + ץ‬forF␴ 3a͑i −ͱ 3͒/4 ‫= ץ‬⌿␪k/2 and
               0
           ˆ ͑r͒  †
                       ͫͩ
                       0          one holding−0iv ͑k͒ ·=ٌ␺͑r͒ iˆE␺͑r͒.
                              3a͑i + ͱ 3͒/4
 ther fori −−ͱaround K0Ј. Note The wave function, in m
         +⌿
    − 3a͑− p 3a͑1 − i
                  2
                    3͒/4  ͱ3͒/4
                                       0
                                                         ˆ ±,K p around K
                                                    y ⌿ ͑r͒
                                                  ‫3 −ץ‬a͑− i2− ͱ3͒/4
                                                            x
                                                                        ͱ
                                                                         2 ±e ͑r͒
                                                       that, in first quantized
                                                                       0
                                                                                                  y   2



      = − i ͵ dxdy͓⌿ ͑r͒␴ · ٌ⌿ ͑r͒ + ⌿ ͑r͒␴ · ٌ⌿ for H =
 uage,v the two-componentmentum vFwave where the ␺
                   ˆ          ˆ   †  ˆ
                                                  electron ␴ · k, function
                                               ˆ ͑r͔͒,
                                                   †
                                                            K around K has the
              F                                1       *        2
                                  1                2

  r͔͒,                                                                               ͑18͒

                                                                                               ͩ ͪ
 lose to the K point, obeyseigenenergies E = ± vF␪k, that
                                                   the 2D Dirac equation,
                                                 respectively, and       1 ␪k −i kgiven
                                                                             e is /2
                                                                ͑k͒ momentum/2arou
                                                        ␺±,Kthe =
       − iv ␴ · ٌ␺͑r͒ = E␺͑r͒. tion for
                    F
 with Pauli matrices ␴ = ͑␴x , ␴y͒, ␴* = ͑␴x , −␴y͒, and            ˆ
                                                                    ⌿†   2 ±e
                                                                                i␪k
                                                                                  ˆ 1
                                                                                        ͑
                                                                                        p    ͱ
                                                                                               ͩ ͪ
                                                                      i           h= ␴· .
 = ͑a† , b†͒ ͑i = 1 , 2͒. It is clear that the effective Hamil-
      i   i                                                                         2  ͉p͉
   The wave function, in momentum ␴ · k, wherethe m
  onian ͑18͒ is made of two copies of the massless Dirac-           space, for/2 the
                                                                        1        e i␪k
                                               for HK =͑k͒ = definition of h that the
  ike Hamiltonian, one holding for p around K and the␺±,KЈ vF the
                                                                                             ͱ
                                                     It is clear from                  ˆ
mentum around K has theeigenenergies E =±evof␪k, tha
 ⌿†ˆ                                      p      form ␺ Ј͑r͒ are also eigenstates−i hk,/2
 other for p around KЈ. Note that, in first quantized lan-
                                                                         2 ± Fˆ
                          ˆ = 1 ␴ · 2D Dirac equation,
                                                     and



                                               ͩ ͪ
 guage, the two-component electron wave function ␺͑r͒,
      i                                                                            K
                          h                  .                                           ͑22͒
   lose to the K point, obeys the
mil-                     2    ͉p͉−i␪k/2        respectively, ␺ ͑r͒, ␪k is given
                                                                      and
    − iv ␴ · ٌ␺͑r͒ = E␺͑r͒. 1  e                for
                                               ͑19͒ H KЈ
                                                          h␺= v= ␴ * · k. Note that t
                                                          ˆ ͑r͒ ±
                                                                  F                K
                                                                                         1
                                                                                             K
                                               tion for the momentum aro
                                                                                         2
 ac- ␺ ͑k͒ =
          F
                                                                                              ͑
                          ͱ2 the definitionTherefore,that the statesЈ a/2positive
 mentum around K has the form ±e
 he
            It is clear from
                                                K and related by time-rever
  The wave function, in momentum space, /2 the mo-Ј arean equivalent equation for ␺ ͑r͒ with in
         ±,K                       i␪k for
                                                              ˆ electrons ͑holes͒ i␪ ␺ ͑r͒
                                                        of hcoordinateshavekmom
                                                                                                          K


an-                  ␪   −i k/2
                                                origin of Equation ͑23͒ impliesein ␴ has its
                                                     helicity.           1          that
                                                                                         K
              1 e
he hopping energies between different sites are m
 ͑5͒,
ed, leading to a new term to the original Hamilto
5͒, H = ͕␦t͑ab͒͑a†b + H.c.͒ + ␦t͑aa͒͑a†a + b†b ͖͒,
      od  ͚ ij i j
               i,j
                                ij    i j   i j

     Hod = ͚            ͑ab͒ †
                     ͕␦tij ͑ai bj   + H.c.͒ +     ͑aa͒ †
                                                ␦tij ͑ai aj    +    †
                                                                   bi bj͖͒,
                                                                        ͑144
              i,j
or in Fourier space,                                                      ͑1

               ͚            ͚
                   †                                ជ
                                   ͑ab͒ i͑k−kЈ͒·Ri−i␦aa·kЈ
r     Hod =
    in Fourier space,
                 a kb kЈ         ␦ti e                       + H.c.
            k,kЈ           ជ
                         i,␦ab

              ͚             ͚
                 †                                ជ
                              ͑ab͒ i͑k−kЈ͒·Ri−i␦aa·kЈ ជ
  Hod =        a†kbkЈ † ␦ti e ͑aa͒ i͑k−kЈ͒·Ri−i␦ab·kЈ   + H.c.
           + ͑akakЈ + ជ kbkЈ͒
          k,kЈ
                        b
                      i,␦ab       ជ
                                      ͚
                                      ␦ti e                   , ͑145
                                i,␦aa

                                       ͚
               † ͑aa͒     †                                ជ
                                          ͑aa͒ i͑k−kЈ͒·Ri−i␦ab·kЈ
        ͑ab͒͑a a k + b b k ͒                                      , ͑
where ␦tij+ ͑␦tij Ј ͒ is k Ј changei ofethe hopping energ
               k           the         ␦t
                                    ជ
real space as


                   ͵
     A͑r͒ = Ax͑r͒ + iAy͑r͒.
                  d2r͕A͑r͒a†͑r͒b ͑r͒ + y	
  d can
            = Dirac Hamiltonian1͑18͒, we isorder	
  
In terms of D
         Two	
  
Eq. ͑146͒ as
                                       1
                                                               ͑149͒
        Hodthe irac	
  cones	
  are	
  not	
  coupled	
  bH.c. rewrite

                   + ␾͑r͓͒a†͑r͒a1͑r͒ + b†͑r͒b1͑r͔͖͒,
          ͵similar expression for cone 2 but with A replace
                           1            1                                ͑14
     Hod =         ˆ        ជ   ˆ           ˆ    ˆ
               d2r͓⌿†͑r͒␴ · A͑r͒⌿1͑r͒ + ␾͑r͒⌿†͑r͒⌿1͑r͔͒,
                     1                        1
    with a
    by A*, where                                               ͑150͒
      ជ
where A = ͑Ax , Ay͒. This result shows that changes in the
                    ͚  ͑ab͒       ជ
                               −i␦ab·K
        A͑r͒ =       ␦t ͑r͒e           ,                 ជ               ͑14
hopping amplitude lead to the appearance of vector A
                 ␦abជ
and scalar ⌽ potentials in the Dirac Hamiltonian. The
presence of a vector potential in the problem indicates

also be present, ជ
                   ͚  ͑aa͒
         ␾͑r͒ = ␦t ͑r͒e       −i ជ B =
                                   ជ
                                       .
                                                  ជ
that an effective magnetic field␦aa·K͑c / evF͒ ٌ ϫ A should
                 naively implying a broken time-reversal
                                                             ͑14
                 ␦aa
symmetry, although the original problem was time-
reversal invariant. This broken time-reversal symmetry
is not real since Eq. ͑150͒ ͑r͒ the *͑r͒, because of the inversio
    Note that whereas ␾ is = ␾ Hamiltonian around
Defects	
  in	
  graphene	
  


	
  
1.  Grain	
  Boundary.	
  


2.  Liquid	
  environment	
  enhancement	
  on	
  mobility	
  in	
  graphene.	
  



3.  X-­‐ray	
  irradiaIon	
  of	
  graphene.	
  
Experimental	
  observaIon	
  of	
  	
  
                                        defects	
  in	
  graphene	
  
 Vacancy	
                                                                 Extended	
  defect	
  =	
  Metallic	
  wire	
  




Meyer,	
  Kisielowski,	
  Erni,	
  Rossell,	
  Crommie,	
  ZeTl,	
  	
  
Nano	
  Le..	
  (2008)	
  




                                                                           J.	
  Lahiri	
  et	
  al.,	
  Nature	
  Nanotech.	
  	
  (2010)	
  
Grain	
  Boundary	
  and	
  	
  Point	
  Defects	
  

What	
  is	
  Ime	
  scale	
  and	
  range	
  of	
  interacIon	
  between	
  defects	
  and	
  GB?	
  


                                                                                     ~1	
  nm	
  
ComputaIonal	
  Method	
  

	
  
•  Quantum	
  Molecular	
  Dynamics	
  	
  

       Ø  Density	
  FuncIonal	
  Theory	
  (DFT)	
  	
  
       Ø  Natoms	
  ~	
  300	
  


•  Classical	
  Molecular	
  Dynamics	
  (CMD)	
  

       Ø  adapIve	
  intermolecular	
  reacIve	
  bond-­‐order	
  (AIREBO)	
  potenIal.	
  
       Ø  Isothermal-­‐isobaric	
  (NPT)	
  ensemble;	
  Natoms	
  ~1000;	
  	
  
FormaIon	
  Energies	
  of	
  Defects	
  

	
  	

   pris2ne	

   Cl-­‐5577	

               GB-­‐558	

               GB-­‐575	

                  All	
  energies	
  	
  
	
  	

   	
  	

      rim	

         inside	

   rim	

        inside	

   rim	

        inside	

      are	
  in	
  eV	
  
C	

      6.1	

       	
  	

        3.8	

      	
  	

       4.2	

      	
  	

       3.1	

SV	

     7.9	

       5.6	

         3.0	

      7.1	

        6.4	

      6.9	

        4.2	





                                                                             LocaIon	
  of	
  Vacancies	
  with	
  	
  
                                                                              lower	
  formaIon	
  energies	
  
InteracIon	
  of	
  vacancies	
  in	
  graphene	
  
Stability	
  of	
  585	
  and	
  555777	
  defects	
  




Banhart,	
  Kotakoski,	
  Krasheninnikov,	
  ACS	
  Nano	
  2010	
     555777	
  is	
  1.2	
  eV	
  more	
  stable	
  
Cretu,	
  Krasheninnikov	
  et	
  al.	
  PRL	
  2010	
  
Lee	
  et	
  al.	
  PRL,	
  2005;	
  
Dynamical	
  InteracIon	
  of	
  Vacancies	
  

                                       Strain	
  up	
  to	
  4%	
  




                                         T	
  =	
  2000	
  K	
  
                                         	
  
                                         trecombinaIon	
  ~	
  80	
  ps	
  	
  
Vacancy	
  	
  interacIon	
  with	
  grain	
  boundaries	
  
Vacancy-­‐GB	
  interacIon	
  
~1	
  nm	
  

                   Vacancy	
  merges	
  with	
  GB	
  




                                                         Further	
  GB	
  reconstrucIon	
  




                                                           8
160	
  ps	
                                               5	
   5	
  
                                                           8
                                     40	
  ps	
            7
                                                           7
                                                          5	
  5	
  
Defect	
  Dynamics:	
  Vacancy	
  near	
  GB	
  

                                                    1	
  nm	
                         T	
  =	
  3000	
  K	
  




Strain	
  up	
  to	
  8%	
  

               treconstruct	
  ~	
  200	
  ps	
                   Reconstrucoon	
  relieves	
  strain	
  	
  
Vacancy	
  and	
  adatom	
  recombinaIon	
  near	
  GB	
  
Vacancy	
  and	
  adatom	
  recombinaIon	
  near	
  GB	
  

	
  
•  Adatoms	
  are	
  very	
  mobile	
  –	
  low	
  diffusion	
  barrier	
  

•  Stretched	
  C-­‐C	
  at	
  the	
  heptagon	
  accumulate	
  adatoms	
  
                                                                              T	
  =	
  2000	
  K	
  




 treconfiguraoon	
  =	
  0.5	
  ns	
  

                                                      B. Wang, Y. Puzyrev, S. T. Pantelides, Carbon (2011)
Conclusion	
  


•  Vacancies	
  interact	
  and	
  recombine	
  t	
  ~	
  10	
  ns	
  


•  Point	
  defects	
  interact	
  with	
  grain	
  boundaries	
  d	
  ~	
  2	
  nm	
  


•  Grain	
  boundaries	
  act	
  as	
  sinks	
  for	
  vacancies	
  and	
  adatoms	
  


       	
  Enhanced	
  defect	
  reacovity	
  at	
  grain	
  boundaries	
  
	
  
Graphene	
  device	
  degradaIon	
  	
  




•  Graphene	
  fabricated	
  by	
  mechanical	
  
   exfoliaIon	
  from	
  Kish	
  graphite	
  
•  Sweep	
  VG	
  with	
  VDS=5mV	
  
MoIvaIon	
  and	
  Outline	
  

Ø Experiment	
  [1]	
  
     o  Graphene’s	
  resisIvity	
  response	
  to	
  x-­‐ray	
  radiaIon,	
  	
  

     	
  	
  	
  	
  	
  	
  ozone	
  exposure,	
  annealing.	
  	
  

     o  Defect	
  related	
  Raman	
  D-­‐peak	
  appears	
  a…er	
  

             §  x-­‐ray	
  irradiaIon	
  in	
  air	
  

             §  ozone	
  exposure,	
  decreases	
  a…er	
  annealing.	
  


Ø Theory:	
  behavior	
  of	
  impuriIes	
  on	
  graphene	
  
     o  Temperature	
  and	
  concentraIon	
  dependence.	
  

     o  Need	
  to	
  remove	
  oxygen	
  without	
  vacancy	
  formaIon	
  (would	
  H	
  help?)	
  


                                                         [1]	
  E.-­‐X.	
  Zhang	
  et	
  al,	
  IEEE	
  Trans.	
  Nucl.	
  Sci.	
  58,	
  2961	
  (2011)	
  
Graphene	
  device	
  degradaIon	
  	
  

Two-­‐probe	
  resistances	
  measured	
  on	
  
	
  
     •  10	
  keV	
  irradiated	
  graphene	
  
     •  prisIne	
  graphene	
  
     •  ozone	
  exposed	
  graphene	
  (1	
  min)	
  	
  
     •  annealed	
  	
  (300C	
  for	
  2	
  hrs	
  in	
  200	
  sccm	
  Ar)	
  	
  
Graphene	
  device	
  degradaIon	
  	
  
                                                                                                                                                     Ozone	
  exposure	
  




                                                                                  	
  

a)	
                                                                                                            80


                                           8000

                                                         G -­‐P e a k                                           60
 Inte g ra te d	
  inte ns ity	
  A re a




                                           6000
                                                                                                                       	
  I D /I G 	
  (1 0 0 % )




                                                                                                                40                                         Defect	
  related	
  D-­‐peak	
  
                                                                                                                                                           	
  	
  
                                                                                                                	
  




                                           4000


                                                                                                                20                                                  •  increases	
  x-­‐ray	
  exposure	
  	
  
                                           2000
                                                                  D -­‐P e a k                                                                                      •  decreases	
  a…er	
  temperature	
  anneal	
  
                                              0                                                                 0
                                                  P re     8	
  Mra d(S iO 2 ) 15	
  Mra d(S iO 2 ) A nne a l
                                                               1 0 -­‐ke V 	
  X -­‐ra y	
  D os e
      b)	
  
TheoreIcal	
  Approach	
  


O	
                                     O	
  desorpIon	
     Density	
  Func2onal	
  Theory	
  
               O	
  migraIon	
                                             DFT	
  
                                                              •     Defect	
  formaoon	
  energies	
  	
  
                                                              •     Migraoon/desorpoon	
  barriers	
  


        O	
  dimer	
  
                                                                   Kine2c	
  Monte-­‐Carlo	
  
                                                                             KMC	
  
                                                                   Defect	
  dynamics	
  
                                                                   •  Temperature	
  
                                                                   •  Inioal	
  concentraoon	
  	
  
Oxygen	
  Removal	
  and	
  Vacancy	
  GeneraIon	
  

                             1.3	
  eV	
                Oxygen:	
  clustering	
  behavior	
  
                0.5	
  eV	
                             	
  
                          0.8	
  eV	
                   Removal	
  of	
  oxygen	
  	
  
                      	
  
           Bridge 1.3	
  eV	
                           •  Pairs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  O2	
  
                                                        •  Triplets	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CO,	
  CO2,	
  VC	
  
                         Top	
                          	
  
                                                        Device	
  degradaoon	
  

1.1	
  eV	
                        CO,	
  CO2	
     1.1	
  eV	
                                      O2	
  	
  
High-­‐temperature	
  Annealing	
  




     Vacancy	
  
                                  Concentraoon	
  of	
  vacancies	
  exceeds	
  	
  
Residual	
  oxygen	
  atom	
      concentraoon	
  of	
  residual	
  O	
  
High	
  vs	
  Low	
  Temperature	
  Anneal	
  




                   T,	
  oC	
  

                    T	
  
                    	
  
                    	
  
Temperature	
  Anneal	
  	
  
                              IniIal	
  Defect	
  ConcentraIon	
  Dependence	
  
                                                                        High	
  O	
  concentraoon	
  
                                                                                            Lo	
  


                                                  vacancy	
  
surface	
  coverage	
  	
  




                                                                        Low	
  O,	
  High	
  V	
  concentraoon	
  

                                                oxygen	
  
	
  




                                            T	
  
                     	
  iniIal	
  O	
  surface	
  coverage	
  	
  
                                            	
  
                     	
                     	
  
     High	
  T:	
  Removal	
  of	
  oxygen	
  >	
  0.05	
  iniIal	
  surface	
  coverage	
  leads	
  to	
  vacancy	
  formaIon	
  
     Low	
  T:	
  Oxygen	
  stays	
  on	
  the	
  surface	
  and	
  forms	
  clusters	
  
        	
  Decrease	
  of	
  D-­‐peak,	
  Increase	
  in	
  resisovity	
  

         Method	
  to	
  prevent	
  defect	
  forma2on	
  during	
  irradia2on/annealing?	
  	
  
Oxygen	
  and	
  Hydrogen	
  on	
  Graphene:	
  
Binding	
  energies,	
  MigraIon	
  and	
  ReacIon	
  Barriers	
  	
  

                                          O-­‐H	
  is	
  most	
  likely	
  to	
  desorb	
  	
  
                 O	
                          from	
  graphene	
  surface	
  
                         H	
                                      	
  
                                         Leaves	
  carbon	
  network	
  intact	
  
Effect	
  of	
  Hydrogen	
  On	
  	
  
                                   Oxygen	
  Annealing	
  
     Oxygen/           Low	
                                     High	
  
    Hydrogen	
  	
  
  Concentra2ons	
  
Low	
                                                            2%	
  O,	
  10%	
  H	
  
                                   @	
  T	
  =	
  300	
  C	
                                  	
  
                                              	
  
                                   Final	
  defect	
  	
  
                                 concentraIons?	
  


High	
                                15%	
  O,	
  1%	
  H	
                       15%	
  O,	
  10%	
  H	
  
                       	
                                        	
  
Effect	
  of	
  Hydrogen	
  On	
  Oxygen	
  Annealing	
  

Higher	
  Oxygen	
  concentraoon	
                                       Higher	
  Hydrogen	
  concentraoon	
  
Hydrogen	
  is	
  removed	
   t	
  ~	
  0.001	
  s	
  	
                  Oxygen	
  is	
  removed	
           t	
  ~	
  0.0001	
  s	
  	
  




                                              t	
  ~	
  1	
  s	
  	
                                                   t	
  ~	
  1	
  s	
  	
  




     	
  Removal	
  of	
  residual	
  Oxygen	
  	
  	
                          	
  Residual	
  Hydrogen	
  	
  	
  
          Causes	
  formaoon	
  of	
  large	
                                Forms	
  clusters	
  	
  L	
  ~	
  0.5	
  nm	
  
            amount	
  of	
  Vacancies	
                                      No	
  Vacancies	
  are	
  formed	
  
High	
  O,	
  High	
  H	
  concentraIons	
  

                     Hydrogen	
  is	
  removed	
  first,	
  	
  
                     Removal	
  of	
  residual	
  Oxygen	
  	
  	
  
                     Causes	
  formaoon	
  of	
  Vacancies	
  




                     Effect	
  of	
  Hydrogen	
  On	
  Oxygen	
  Annealing	
  
ScaTering	
  mechanisms	
  in	
  graphene	
  
	
  
	
  
	
  
•  Suspended	
  graphene	
  at	
  4K	
  μ	
  ~200,000	
  	
  cm2/V	
  	
  [1]	
  
	
  
	
  
•  Suspended	
  graphene	
  at	
  300K	
  	
  μ	
  ~10,000	
  	
  cm2/V	
  s	
  
     ü  Out-­‐of-­‐plane	
  flexural	
  phonons	
  limit	
  [2]	
  
	
  
•  Suspended	
  graphene	
  in	
  non-­‐polar	
  liquid	
  	
  	
  
       μ	
  ~60,000	
  	
  cm2/V	
  s	
  
	
  
•  Effect	
  of	
  liquids	
  on	
  the	
  flexural	
  phonons	
                                                  Image	
  from	
  Meyer,	
  J.	
  C	
  .	
  
     ü  Vacuum	
  

       ü  Hexane	
  C6H14	
  

       ü  Toluene	
  C6H5CH3	
                                            	
  
                                                                           1.     BoloIn,	
  K.	
  I.	
  et	
  al.	
  Solid	
  State	
  Comm.	
  	
  2008	
  
                                                                           2.     Castro,	
  E.	
  V.	
  et	
  al.	
  Phys	
  Rev	
  LeT.	
  2010	
  
Electron	
  scaTering	
  due	
  to	
  flexural	
  ripples	
  

                                                       ​ 𝐸↓𝑞 = 𝜅​ 𝑞↑4 ​⟨​|​ℎ↓𝑞 |↑2 ⟩/2 =​ 𝑘↓𝐵 𝑇  /2 	
  
Harmonic	
  approximaIon	
  


  Fourier	
  components	
  of	
  	
                                             2         T
                                                                           hq
                                                                                      ~
bending	
  correlaIon	
  funcIon	
                                                       κ q4

                                                h	
   at	
  300K	
  	
  
Deformaoon	
  tensor	
  	
  



​ 𝑢 ↓𝑖𝑗 =​1/2 (​ 𝜕​ 𝑢↓𝑖 /𝜕​ 𝑥↓𝑗  +​ 𝜕​ 𝑢↓𝑗 /𝜕​ 𝑥↓𝑖  +​ 𝜕ℎ/𝜕​ 𝑥↓𝑖  ​ 𝜕ℎ/𝜕​ 𝑥↓𝑗  )	
  
Electron	
  scaTering	
  due	
  to	
  flexural	
  phonons	
  

    Hopping	
  integrals	
  γ	
  are	
  modified	
  	
  
                                                                                                         2	
  
       γ=	
  ​γ↓0 +(​ 𝜕γ/𝜕​ 𝑢↓𝑖𝑗  ) ​ 𝑢↓𝑖𝑗 	
  
                                        0
                                                                                                                         1	
  

PotenIal	
  perturbaIon	
  due	
  to	
  ripples	
  	
  -­‐	
  	
  
random	
  sign-­‐changing	
  ‘magneIc	
  field’	
                                                           3	
  


 ​1/𝜏 ≈​2 𝜋/ℎ 𝑁(​ 𝐸↓𝐹 )​〈​ 𝑉↓𝑞 ​ 𝑉↓− 𝑞 〉↓𝑞≈​ 𝑘↓𝐹  
  ~​⟨​|​ℎ↓𝑞 |↑2 ⟩↑2 	
                                                                       ​ 𝑉↑( 𝑥) =​1/2 (2​γ↓1 −​γ↓2 −​γ↓3 )    
                                                                                                ​ 𝑉↑( 𝑦) =​1/2 (​γ↓2 −​γ↓3 )  	
  
 ​ 𝜌↓𝑟𝑖𝑝𝑝𝑙𝑒 ~​1/𝜏 ~​⟨​|​ℎ↓𝑞 |↑2 ⟩
  ↑2 	
  


 Effect	
  of	
  liquids	
  
     ü  Hexane	
  C6H14	
                                  Morozov	
  S.	
  V.	
  et.	
  al,	
  Phys.	
  Rev.	
  LeT	
  2006	
  
     ü  Toluene	
  C6H5CH3	
                               M.	
  I.	
  Katsnelson	
  and	
  A.	
  K.	
  Geim,	
  Phil.	
  Trans.	
  R.	
  Soc.	
  A,	
  	
  2008	
  
                                                            Castro,	
  E.	
  V.	
  et.	
  al	
  Phys	
  Rev	
  LeT	
  (2010)	
  
Molecular	
  dynamics	
  with	
  classical	
  potenIals	
  

•  Large	
  system	
  10,000-­‐50,000	
  atoms	
  L	
  ~10nm	
  

•  Large	
  Ime	
  scale	
  ~ns	
  

•  Bond-­‐order	
  potenIals	
  	
  for	
  C-­‐H	
  

•  Boundary	
  condiIons	
  
    ü  NPT	
  –	
  constant	
  pressure	
  
    ü  NVT	
  –	
  constant	
  volume,	
  corresponding	
  to	
  P~0	
  

     	
  	
  
Strain-­‐free	
  suspended	
  graphene	
  

 T	
  =	
  300	
  K	
  
                                          h	
  




                                 h2               = 0.89 Å2	
  	
  
                                      vacuum




                          	
  
                          	
  
                          	
  
Suspended	
  graphene	
  in	
  hexane	
  
                   Hexane	
  molecules	
  envelopes	
  graphene	
  sheet	
  




C	
  chain	
  aligned	
  parallel	
  to	
  the	
  plane	
               Mean	
  square	
  displacement	
  

                                                                      h2            = 0.39 Å2	
  	
  
                                                                           hexane
Suspended	
  graphene	
  in	
  toluene	
  


    Toluene	
  molecules	
  envelopes	
  graphene	
  sheet	
  

C	
  ring	
  aligned	
  parallel	
  to	
  the	
  plane	
         Mean	
  square	
  displacement	
  

                                                                    h2           = 0.42 Å2	
  	
  
                                                                         toluene
Preferred	
  molecule	
  posiIon:	
  DFT	
  calculaIon	
  



              ΔE	
  =	
  0.21	
  eV	
                             ΔE	
  =	
  0.37	
  eV	
  

                                                                                3	
  Å	
  

3	
  Å	
                  Van	
  der	
  Waals	
  interacIon	
  
Ripple	
  height	
  analysis	
  

                                               h	
  




h2             = 0.89 Å2	
  	
  
     vacuum



h2           = 0.42 Å2	
  	
  
     toluene

h2            = 0.39 Å2	
  	
  
     hexane
Bending	
  sIffness	
  of	
  graphene	
  in	
  liquid	
  

                                2        TN              ​ 𝜌↓𝑟𝑖𝑝𝑝𝑙𝑒 ≈​ℏ/4​ 𝑒↑2  ​(​ 𝑘↓𝐵 𝑇/
                           hq
                            r         =                    𝜅𝑎 )↑2 ​ 𝛬/𝑛 	
  
                                        κ A0 q 4


    Liquid	
  suppresses	
  	
                                               Bending	
  S2ffness	
  
    flexural	
  phonons	
  


 Out-­‐of-­‐plane	
  flexural	
  	
  
phonons	
  limit	
  at	
  room	
  T	
  

 ü  Vacuum	
  μ	
  ~10,000	
  	
  cm2/V	
  s	
  

 ü  Liquid	
  μ	
  ~	
  200,000	
  	
  cm2/V	
  s	
  
Conclusion	
  
	
  
•  Liquid	
  dielectric	
  environment	
  suppresses	
  flexural	
  phonons	
  


•  Phonon	
  suppression	
  affects	
  mobility	
  through	
  bending	
  sIffness	
  
Электронная	
  плотность	
  	
  
                                                	
  
                            Разложение	
  по	
  функциям	
  Гаусса	
  

                                                        " q %
                                                                            
                                
ρ r =()
                N atoms

                ∑                (
                            ρn r − Rn    )            (      ) $ Q '
                                                               #   A&
                                                                          (
                                                   ρn r − Rn = $1− n ' ρ0A r − Rn   )
                 n=1
                 	
  	
  




        Перенос	
  заряда	
   	
  	
  
          M gauss
                   −γ m r 2
        ()
         2
ρn r = ηr ∑ cme
                             m=1

             
 ∫
Ωcell
            (                )
        ρn r − Rn d 3r = QA − qn
                               *
Полная	
  энергия 	
  	
  


                                                                    
                             !             $
 Etotal =        ∫             () ()
                         W r #ρ r          & ρ r d 3r + ∫ W q !ρ q $ ρ q d 3q + Eion−ion
                                                              #    & () ()
            Ω
                             "             %           Ω
                                                              "    %
                volume                                 volume




                                                     
      !              $     !                 $      !    $
  W r #ρ r
      "     ()       &
                     %
                       = T #ρ r
                           "           ()    &
                                             %      "  ()
                                               +Vex #ρ r &
                                                         %
                                	
  	
  


                            
     !    $
            ()                ()
 W q #ρ q & =V ps q +Vhartree q
     "    %                                         ()          Vps ( q ) = S ( q ) w pseudo ( q )
Кинетическая энергия
                                                             corr   corr
                                        T = TWang −Teter + TLDA + Tatom

                                                 5 
             "     % 45          2       5
              ()
 TWang−Teter $ρ r ' =
             #     & 128 ( )
                          3π 2     3
                                     ∫∫   () ( ) ( )
                                        ρ 6 r w1 r − r ' ρ 6 r ' d 3rd 3r '−

                     21      2        5        1       1        1   
                  −
                    250
                       ( )
                        3π 2   3
                                  ∫    ()       () ()
                                     ρ 3 r d r − ∫ ρ 2 r ∇ ρ 2 r d 3r
                                            3

                                                2
                                                              2




Теория линейного отклика


                                      1 (q               − 4)
                                                     2
     5 ⎛ −1      3 2       3 ⎞                                   2−q
 w1 = ⎜ w ( q ) − q       + , and w = +
                                ⎟                              ln
     8 ⎝         4           5 ⎠           2       8q            2+q
        N grid
                      )6
                      +     n    -
                                  +
  corr !     $
       "()
TLDA #ρ r    &=
             %    ∑ *∑ cnΔρ ri .
                  i=1 + n=1
                      ,
                              2
                                  +
                                  /
                                   ()
                           3
  corr
              6 "π % 2 " k2 %
     ()
Tatom k = ∑ cn $ ' exp $ −
                $ξ '
                # n&
                       $ 4ξ '
                       #
                               '
            n=1              n&
                 
                  
            " k %       
                           
   ()
S A ki = ∑ $1− α ' exp −ikα iRα
              $ N '
         α ∈A #    α &
                               (        )
λ=1   upper limit von Weizsäcker
λ=1/9 gradient expansion second order
λ=1/5 computational Hartree-Fock
1. Phase Diagram

2. Elastic Properties

3. Defect Formation Energies
Ширина	
  запрещенной	
  зоны	
  
G0W0	
                                         GaN	
  

More Related Content

What's hot

NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
University of California, San Diego
 
6.progressions
6.progressions6.progressions
6.progressions
Krishna Gali
 
IIT JEE - 2008 ii - chemistry
IIT JEE  - 2008  ii - chemistryIIT JEE  - 2008  ii - chemistry
IIT JEE - 2008 ii - chemistry
Vasista Vinuthan
 
Quantum
QuantumQuantum
AP Chemistry Chapter 9 Sample Exercise
AP Chemistry Chapter 9 Sample ExerciseAP Chemistry Chapter 9 Sample Exercise
AP Chemistry Chapter 9 Sample Exercise
Jane Hamze
 
transplantation-isospectral-poster
transplantation-isospectral-postertransplantation-isospectral-poster
transplantation-isospectral-poster
Feynman Liang
 
Traps and kites updated2014
Traps and kites updated2014Traps and kites updated2014
Traps and kites updated2014
jbianco9910
 
36b1995264955a41dc1897b7a4dce260
36b1995264955a41dc1897b7a4dce26036b1995264955a41dc1897b7a4dce260
36b1995264955a41dc1897b7a4dce260
Ouäfa AL Rabaani
 
Sol81
Sol81Sol81
Geometry Section 5-6 1112
Geometry Section 5-6 1112Geometry Section 5-6 1112
Geometry Section 5-6 1112
Jimbo Lamb
 
Semiconductor Assignment Help
Semiconductor Assignment HelpSemiconductor Assignment Help
Semiconductor Assignment Help
Edu Assignment Help
 
F0523740
F0523740F0523740
F0523740
IOSR Journals
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
Faysal Khan
 
Probabilistic diameter and its properties.
Probabilistic diameter and its properties.Probabilistic diameter and its properties.
Probabilistic diameter and its properties.
inventionjournals
 
5.1 midsegment theorem and coordinate proof
5.1 midsegment theorem and coordinate proof5.1 midsegment theorem and coordinate proof
5.1 midsegment theorem and coordinate proof
detwilerr
 

What's hot (15)

NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
6.progressions
6.progressions6.progressions
6.progressions
 
IIT JEE - 2008 ii - chemistry
IIT JEE  - 2008  ii - chemistryIIT JEE  - 2008  ii - chemistry
IIT JEE - 2008 ii - chemistry
 
Quantum
QuantumQuantum
Quantum
 
AP Chemistry Chapter 9 Sample Exercise
AP Chemistry Chapter 9 Sample ExerciseAP Chemistry Chapter 9 Sample Exercise
AP Chemistry Chapter 9 Sample Exercise
 
transplantation-isospectral-poster
transplantation-isospectral-postertransplantation-isospectral-poster
transplantation-isospectral-poster
 
Traps and kites updated2014
Traps and kites updated2014Traps and kites updated2014
Traps and kites updated2014
 
36b1995264955a41dc1897b7a4dce260
36b1995264955a41dc1897b7a4dce26036b1995264955a41dc1897b7a4dce260
36b1995264955a41dc1897b7a4dce260
 
Sol81
Sol81Sol81
Sol81
 
Geometry Section 5-6 1112
Geometry Section 5-6 1112Geometry Section 5-6 1112
Geometry Section 5-6 1112
 
Semiconductor Assignment Help
Semiconductor Assignment HelpSemiconductor Assignment Help
Semiconductor Assignment Help
 
F0523740
F0523740F0523740
F0523740
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 
Probabilistic diameter and its properties.
Probabilistic diameter and its properties.Probabilistic diameter and its properties.
Probabilistic diameter and its properties.
 
5.1 midsegment theorem and coordinate proof
5.1 midsegment theorem and coordinate proof5.1 midsegment theorem and coordinate proof
5.1 midsegment theorem and coordinate proof
 

Similar to лекция 5 graphen

лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristor
Sergey Sozykin
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1
FISICO2012
 
Physical Chemistry Homework Help
Physical Chemistry Homework HelpPhysical Chemistry Homework Help
Physical Chemistry Homework Help
Edu Assignment Help
 
FINAL 2014 Summer QuarkNet Research – LHCb Paper
FINAL 2014 Summer QuarkNet Research – LHCb PaperFINAL 2014 Summer QuarkNet Research – LHCb Paper
FINAL 2014 Summer QuarkNet Research – LHCb Paper
Theodore Baker
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
Faysal Khan
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
Sc Pattar
 
Manifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical SystemsManifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical Systems
BRNSSPublicationHubI
 
DL_FinalProposal
DL_FinalProposalDL_FinalProposal
DL_FinalProposal
Daniel Lavanant
 
nuclear physics of physics university of ctg.pptx
nuclear physics of physics university of ctg.pptxnuclear physics of physics university of ctg.pptx
nuclear physics of physics university of ctg.pptx
mmuzbackup6
 
A theoretical Investigation of hyperpolarizability for small GanAsm clusters
A theoretical Investigation of hyperpolarizability for small GanAsm clustersA theoretical Investigation of hyperpolarizability for small GanAsm clusters
A theoretical Investigation of hyperpolarizability for small GanAsm clusters
Luan Feitoza
 
George Green's Contribution to MRI, Roger Bowley, 21 October 2014
George Green's Contribution to MRI, Roger Bowley, 21 October 2014George Green's Contribution to MRI, Roger Bowley, 21 October 2014
George Green's Contribution to MRI, Roger Bowley, 21 October 2014
uazkjs
 
E27
E27E27
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
SubhamChakraborty28
 
Wave mechanics, 8(4)
Wave mechanics,  8(4) Wave mechanics,  8(4)
Wave mechanics, 8(4)
K. Shahzad Baig
 
Lab exercise02
Lab exercise02Lab exercise02
Lab exercise02
robjmnz717
 
Renormalization group and critical phenomena
Renormalization group and critical phenomenaRenormalization group and critical phenomena
Renormalization group and critical phenomena
Corneliu Sochichiu
 
Slow light
Slow lightSlow light
Thermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit ChainThermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit Chain
ijrap
 
G0364250
G0364250G0364250
G0364250
IOSR Journals
 
1309.0130v1
1309.0130v11309.0130v1
1309.0130v1
William Long
 

Similar to лекция 5 graphen (20)

лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristor
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1
 
Physical Chemistry Homework Help
Physical Chemistry Homework HelpPhysical Chemistry Homework Help
Physical Chemistry Homework Help
 
FINAL 2014 Summer QuarkNet Research – LHCb Paper
FINAL 2014 Summer QuarkNet Research – LHCb PaperFINAL 2014 Summer QuarkNet Research – LHCb Paper
FINAL 2014 Summer QuarkNet Research – LHCb Paper
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
 
Manifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical SystemsManifolds and Catastrophes for Physical Systems
Manifolds and Catastrophes for Physical Systems
 
DL_FinalProposal
DL_FinalProposalDL_FinalProposal
DL_FinalProposal
 
nuclear physics of physics university of ctg.pptx
nuclear physics of physics university of ctg.pptxnuclear physics of physics university of ctg.pptx
nuclear physics of physics university of ctg.pptx
 
A theoretical Investigation of hyperpolarizability for small GanAsm clusters
A theoretical Investigation of hyperpolarizability for small GanAsm clustersA theoretical Investigation of hyperpolarizability for small GanAsm clusters
A theoretical Investigation of hyperpolarizability for small GanAsm clusters
 
George Green's Contribution to MRI, Roger Bowley, 21 October 2014
George Green's Contribution to MRI, Roger Bowley, 21 October 2014George Green's Contribution to MRI, Roger Bowley, 21 October 2014
George Green's Contribution to MRI, Roger Bowley, 21 October 2014
 
E27
E27E27
E27
 
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
 
Wave mechanics, 8(4)
Wave mechanics,  8(4) Wave mechanics,  8(4)
Wave mechanics, 8(4)
 
Lab exercise02
Lab exercise02Lab exercise02
Lab exercise02
 
Renormalization group and critical phenomena
Renormalization group and critical phenomenaRenormalization group and critical phenomena
Renormalization group and critical phenomena
 
Slow light
Slow lightSlow light
Slow light
 
Thermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit ChainThermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit Chain
 
G0364250
G0364250G0364250
G0364250
 
1309.0130v1
1309.0130v11309.0130v1
1309.0130v1
 

More from Sergey Sozykin

Materials informatics
Materials informaticsMaterials informatics
Materials informatics
Sergey Sozykin
 
Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloys
Sergey Sozykin
 
Binary sigma phases
Binary sigma phasesBinary sigma phases
Binary sigma phases
Sergey Sozykin
 
Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theory
Sergey Sozykin
 
Misfit layered compounds PbTa2
Misfit layered compounds PbTa2Misfit layered compounds PbTa2
Misfit layered compounds PbTa2
Sergey Sozykin
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defects
Sergey Sozykin
 
Vaulin pohang 2010
Vaulin pohang 2010Vaulin pohang 2010
Vaulin pohang 2010
Sergey Sozykin
 
Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012Sergey Sozykin
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
Sergey Sozykin
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
Sergey Sozykin
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
Sergey Sozykin
 

More from Sergey Sozykin (11)

Materials informatics
Materials informaticsMaterials informatics
Materials informatics
 
Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloys
 
Binary sigma phases
Binary sigma phasesBinary sigma phases
Binary sigma phases
 
Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theory
 
Misfit layered compounds PbTa2
Misfit layered compounds PbTa2Misfit layered compounds PbTa2
Misfit layered compounds PbTa2
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defects
 
Vaulin pohang 2010
Vaulin pohang 2010Vaulin pohang 2010
Vaulin pohang 2010
 
Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 

лекция 5 graphen

  • 1. Графен,-­‐  материал  будущего  или     поиск  ниши  для  применения       Graphene  
  • 2. 1.  Обзор  методов  вычислительной  физики            Много-­‐масштабное  моделирование:  от  дефектов  к     ошибкам  в  приборах     2.    Локальная  структура  металлических  сплавов:   диффузионное  рассеяние  и  атомные  смещения.     3.  Дефекты  в  полупроводниках  и  поведение  приборов:  GaN,   SiC  и  AlSb.     4.  Проблемы  функциональности  материалов  для   мемристора  TiO2  и  ZnO.       5.  Графен,-­‐  материал  будущего  или  поиск  ниши  для   применения.    
  • 3. Saito, R., M. lower ͑ Dresselhaus, is M. S. from Eq. minus sign the Fujita, G. ␲͒ band. Itand clear Dresselhaus, ͑6͒ that Tight  bspectrum is Lett. 60, 2204. around zero energy if tЈ lectronic propertiespproximaIon   the inding  a of graphene 1992a, Appl. Phys. symmetric Saito,finite values graphite”  by  Wallace  Phys.  Rev.  LeT.  71,  622,  1947  is = 0. For  “The  band  theory  of   R., M. Fujita, of tЈ, the electron-hole symmetry   G. Dresselhaus, and M. S. Dresselhaus, broken and theRev.and ␲1804. , 1992b, Phys. ␲ B 46, * bands become 1asymmetric. In San-Jose, P., E. Prada, and D. Golubev,k2007,bPhys. Rev. B 76, - Fig. 3, we show theAfullBband structure of graphene with y 195445. , both t and S.,. 2007, Phys. Rev.figure, we also show a zoom in Saremi, tЈ δ 3 the1 same B 76, 184430. In δ K , of the band D., E. H. Hwang, and W. K.ofΓ the Dirac points ͑at Sarma, S. structure close to one Tse, 2007, Phys. Rev. B s the K or KЈ a 1 75, 121406. pointδ 2in the BZ͒. This dispersion can be M kx c Schakel, A. M.2J., 1991, the full band structure, Eq. ͑6͒, obtained by expanding Phys. Rev. D 43, 1428. a K’ t close to the K ͑orGeim, vector, Eq. ͑3͒, as kE. H. + q, P. Schedin, F., A. K. KЈ͒ S. V. Morozov, D. Jiang, = K Hill, with b2 a Blake, and K. S. Novoselov, 2007, Nature Mater. 6, 652. ͉q ͉ Ӷ ͉K͉ ͑Wallace, 1947͒, n Schomerus, H., 2007, Phys. Rev. B 76, 045433. - Schroeder,͑ColorM. + O͓͑q/K͒2͔, and A. Javan, 1968, Phys. ͑7͒ FIG. 2. online͒ Honeycomb lattice and its Brillouin E±͑q͒ Ϸ P. R., ͉q͉ S. Dresselhaus, ± vF ; zone.Lett. 20, 1292.structure of graphene, made out of two in- Rev. Left: lattice Semenoff, G. momentumRev. ͑a1 53, a2 are where q is theW.,triangular latticesLett. and 2449. the latticethe terpenetrating 1984, Phys. measured relatively to unit - Sengupta, and ␦i G. 1 , 2the are the nearest-neighbor by vF vectors, and Dirac pointsK., and, viF=Baskaran, 2008, Phys. Rev. B given vectors͒. is , 3 Fermi velocity, 77, 045417. Seoanez, C., a value vandf  1raphene”   The This result are lo- “The  electronic  properIes  o A. H. Castro Neto, 2007, Phys. F. Guinea, Ӎ g ϫ 106 m / s. Dirac cones was Right: corresponding Brillouin zone. = 3ta / 2,.  Castro  Neto  Rev.  Mod.  Phys.  81,  109  2009   - A.  H with 125427. KЈ F catedB 76, K and Rev. at the points. first obtained by Wallace ͑1947͒. -
  • 4. form Left: energy spectrum ͑in units of t͒ for finite values of lattice. ͑Wallace, 1947͒ t and tЈ, with t = 2.7 eV and tЈ = −0.2t. Right: zoom in of the E±͑k͒ = ± tͱ3 + f͑k͒ − tЈf͑k͒, energy bands close to one of the Dirac points. 1 f͑k͒ = 2 of tЈ is not 4 cos ͩ ͪ ͩ ͪ ͱ3 ky cos kxa 3 The valuecos͑ͱ3kya͒ + well knownabut ab initio , calcula ͑6͒ ͑Reich et al., 2002͒ find 0.02t Շ tЈ2 0.2t depending on the t Շ 2 binding parametrization. These the upperet͑al.:alsoelectronic pro where the plus sign applies to calculations␲*Theand the Castro Neto ͒ include effect of a third-nearest-neighbors hopping, which has a v minus sign the lower ͑␲͒ band. It is clear from Eq. ͑6͒ of around 0.07 eV. A tight-binding fit to cyclotron reson that the spectrum is symmetric around zero energy if tЈ experiments ͑Deacon et al., 2007͒ finds tЈ Ϸ 0.1 eV. = 0. For finite values of tЈ, the electron-hole symmetry is broken and the ␲ and ␲* bands become asymmetric. In Fig. 3, we show the full band structure of graphene with both t and tЈ. In the same figure, we also show a zoom in of the band structure close to one of the Dirac points ͑at the K or KЈ point in the BZ͒. This dispersion can be
  • 5. anប = 1͒ ͚ e−ik·Rna͑k͒, ͑we use units such that = ͱN k ͑15͒ c H=−t ͚is by A = 3ͱ3a / 2.͗i,j͘,␴ 2 It † ͑a␴,ib␴,j + H.c.͒ where Nc is the number of unit cells. c tates for graphene is mation, we write the field an as a . Dirac fermions ͚ † † coming+ b␴,ib␴,j + H.c.͒, Fourier s of carbon nanotubes ͑a␴,ia␴,j − tЈ from expanding the er shows 1 / ͱE singu- ␴ K. This produces an Јapproximation ͗͗i,j͘͘, We consider the Hamiltonian ͑5͒ withas a sum of two ne tion of the field an t = 0 and the their electronic spec- the electron operators, ourier transform of ͒ annihilates ͑creates͒ an electron where the ͑ai,␴ † antization of ai,␴ mo- ular spin ␴ tube axis. ͒ on site Ӎ i −iK·RsublatticeЈ·Rna ͑an equ to the ͑␴ = ↑ , ↓ an e R on na + e−iK A , 1,n 2,n nanoribbons, whichis used for sublattice B͒, t͑Ϸ2.8 eV͒ i lent definition 1 = ͚ e−ik·Rna͑k͒, anearest-neighbor hopping energy ͑hopping between ͱN c k perpendicular to the n ͑16͒ milar ferent sublattices͒, and t is the next −iKЈ·Rn to carbon nano- bn Ӎ e−iK·Rnb1,n + e nearest-neig Ј b2,n , hopping energy1 ͑hopping in the same sublattice͒. where Nc is the number of unit cells. Using this transfor- energy bands derived from this Hamiltonian have mation, we write the field an as a sum of two terms, 2009 form ͑Wallace, 1947͒
  • 6. ͒/4 † ͪ ͵ͩ ͑ai ,‫ץ‬b†͒ + xi ͫͩ 0 − ͱ3͒/4 3a͑− i guage, the two-component ͑i = 1 , 2͒. It is clear that ‫ץ‬around K ͱhas the fo mentum y ⌿1͑r͒ ˆ the effective Ham ͪ −ˆ3a͑i − ͱ3͒/4 3a͑1 − iͱclose to the K3a͑− i − 3͒/4 obeys point, ˆ ͩ ͪͬ ͪͬ ͩͪ ͬ ͪ 0 0 ‫+ץ‬ 3͒/4 0 oniant ͑18͒ is madeͱ3͒/4 two copies3a͑i − ͱthe1massless Di of 0 of 3͒/4 ͬ dxdy⌿†͑r͒ ͩ ͪ ͪͩ HӍ− ‫ ץ‬⌿ ͑r͒ 0 −i␪k/2 e 1 x y 1 − 3a͑1 + i − ke Hamiltonian, 3a͑1− iͱ3͒/4 ‫␺ + ץ‬forF␴ 3a͑i −ͱ 3͒/4 ‫= ץ‬⌿␪k/2 and 0 ˆ ͑r͒ † ͫͩ 0 one holding−0iv ͑k͒ ·=ٌ␺͑r͒ iˆE␺͑r͒. 3a͑i + ͱ 3͒/4 ther fori −−ͱaround K0Ј. Note The wave function, in m +⌿ − 3a͑− p 3a͑1 − i 2 3͒/4 ͱ3͒/4 0 ˆ ±,K p around K y ⌿ ͑r͒ ‫3 −ץ‬a͑− i2− ͱ3͒/4 x ͱ 2 ±e ͑r͒ that, in first quantized 0 y 2 = − i ͵ dxdy͓⌿ ͑r͒␴ · ٌ⌿ ͑r͒ + ⌿ ͑r͒␴ · ٌ⌿ for H = uage,v the two-componentmentum vFwave where the ␺ ˆ ˆ † ˆ electron ␴ · k, function ˆ ͑r͔͒, † K around K has the F 1 * 2 1 2 r͔͒, ͑18͒ ͩ ͪ lose to the K point, obeyseigenenergies E = ± vF␪k, that the 2D Dirac equation, respectively, and 1 ␪k −i kgiven e is /2 ͑k͒ momentum/2arou ␺±,Kthe = − iv ␴ · ٌ␺͑r͒ = E␺͑r͒. tion for F with Pauli matrices ␴ = ͑␴x , ␴y͒, ␴* = ͑␴x , −␴y͒, and ˆ ⌿† 2 ±e i␪k ˆ 1 ͑ p ͱ ͩ ͪ i h= ␴· . = ͑a† , b†͒ ͑i = 1 , 2͒. It is clear that the effective Hamil- i i 2 ͉p͉ The wave function, in momentum ␴ · k, wherethe m onian ͑18͒ is made of two copies of the massless Dirac- space, for/2 the 1 e i␪k for HK =͑k͒ = definition of h that the ike Hamiltonian, one holding for p around K and the␺±,KЈ vF the ͱ It is clear from ˆ mentum around K has theeigenenergies E =±evof␪k, tha ⌿†ˆ p form ␺ Ј͑r͒ are also eigenstates−i hk,/2 other for p around KЈ. Note that, in first quantized lan- 2 ± Fˆ ˆ = 1 ␴ · 2D Dirac equation, and ͩ ͪ guage, the two-component electron wave function ␺͑r͒, i K h . ͑22͒ lose to the K point, obeys the mil- 2 ͉p͉−i␪k/2 respectively, ␺ ͑r͒, ␪k is given and − iv ␴ · ٌ␺͑r͒ = E␺͑r͒. 1 e for ͑19͒ H KЈ h␺= v= ␴ * · k. Note that t ˆ ͑r͒ ± F K 1 K tion for the momentum aro 2 ac- ␺ ͑k͒ = F ͑ ͱ2 the definitionTherefore,that the statesЈ a/2positive mentum around K has the form ±e he It is clear from K and related by time-rever The wave function, in momentum space, /2 the mo-Ј arean equivalent equation for ␺ ͑r͒ with in ±,K i␪k for ˆ electrons ͑holes͒ i␪ ␺ ͑r͒ of hcoordinateshavekmom K an- ␪ −i k/2 origin of Equation ͑23͒ impliesein ␴ has its helicity. 1 that K 1 e
  • 7. he hopping energies between different sites are m ͑5͒, ed, leading to a new term to the original Hamilto 5͒, H = ͕␦t͑ab͒͑a†b + H.c.͒ + ␦t͑aa͒͑a†a + b†b ͖͒, od ͚ ij i j i,j ij i j i j Hod = ͚ ͑ab͒ † ͕␦tij ͑ai bj + H.c.͒ + ͑aa͒ † ␦tij ͑ai aj + † bi bj͖͒, ͑144 i,j or in Fourier space, ͑1 ͚ ͚ † ជ ͑ab͒ i͑k−kЈ͒·Ri−i␦aa·kЈ r Hod = in Fourier space, a kb kЈ ␦ti e + H.c. k,kЈ ជ i,␦ab ͚ ͚ † ជ ͑ab͒ i͑k−kЈ͒·Ri−i␦aa·kЈ ជ Hod = a†kbkЈ † ␦ti e ͑aa͒ i͑k−kЈ͒·Ri−i␦ab·kЈ + H.c. + ͑akakЈ + ជ kbkЈ͒ k,kЈ b i,␦ab ជ ͚ ␦ti e , ͑145 i,␦aa ͚ † ͑aa͒ † ជ ͑aa͒ i͑k−kЈ͒·Ri−i␦ab·kЈ ͑ab͒͑a a k + b b k ͒ , ͑ where ␦tij+ ͑␦tij Ј ͒ is k Ј changei ofethe hopping energ k the ␦t ជ
  • 8. real space as ͵ A͑r͒ = Ax͑r͒ + iAy͑r͒. d2r͕A͑r͒a†͑r͒b ͑r͒ + y  d can = Dirac Hamiltonian1͑18͒, we isorder   In terms of D Two   Eq. ͑146͒ as 1 ͑149͒ Hodthe irac  cones  are  not  coupled  bH.c. rewrite + ␾͑r͓͒a†͑r͒a1͑r͒ + b†͑r͒b1͑r͔͖͒, ͵similar expression for cone 2 but with A replace 1 1 ͑14 Hod = ˆ ជ ˆ ˆ ˆ d2r͓⌿†͑r͒␴ · A͑r͒⌿1͑r͒ + ␾͑r͒⌿†͑r͒⌿1͑r͔͒, 1 1 with a by A*, where ͑150͒ ជ where A = ͑Ax , Ay͒. This result shows that changes in the ͚ ͑ab͒ ជ −i␦ab·K A͑r͒ = ␦t ͑r͒e , ជ ͑14 hopping amplitude lead to the appearance of vector A ␦abជ and scalar ⌽ potentials in the Dirac Hamiltonian. The presence of a vector potential in the problem indicates also be present, ជ ͚ ͑aa͒ ␾͑r͒ = ␦t ͑r͒e −i ជ B = ជ . ជ that an effective magnetic field␦aa·K͑c / evF͒ ٌ ϫ A should naively implying a broken time-reversal ͑14 ␦aa symmetry, although the original problem was time- reversal invariant. This broken time-reversal symmetry is not real since Eq. ͑150͒ ͑r͒ the *͑r͒, because of the inversio Note that whereas ␾ is = ␾ Hamiltonian around
  • 9. Defects  in  graphene     1.  Grain  Boundary.   2.  Liquid  environment  enhancement  on  mobility  in  graphene.   3.  X-­‐ray  irradiaIon  of  graphene.  
  • 10. Experimental  observaIon  of     defects  in  graphene   Vacancy   Extended  defect  =  Metallic  wire   Meyer,  Kisielowski,  Erni,  Rossell,  Crommie,  ZeTl,     Nano  Le..  (2008)   J.  Lahiri  et  al.,  Nature  Nanotech.    (2010)  
  • 11. Grain  Boundary  and    Point  Defects   What  is  Ime  scale  and  range  of  interacIon  between  defects  and  GB?   ~1  nm  
  • 12. ComputaIonal  Method     •  Quantum  Molecular  Dynamics     Ø  Density  FuncIonal  Theory  (DFT)     Ø  Natoms  ~  300   •  Classical  Molecular  Dynamics  (CMD)   Ø  adapIve  intermolecular  reacIve  bond-­‐order  (AIREBO)  potenIal.   Ø  Isothermal-­‐isobaric  (NPT)  ensemble;  Natoms  ~1000;    
  • 13. FormaIon  Energies  of  Defects     pris2ne Cl-­‐5577 GB-­‐558 GB-­‐575 All  energies         rim inside rim inside rim inside are  in  eV   C 6.1   3.8   4.2   3.1 SV 7.9 5.6 3.0 7.1 6.4 6.9 4.2 LocaIon  of  Vacancies  with     lower  formaIon  energies  
  • 14. InteracIon  of  vacancies  in  graphene  
  • 15. Stability  of  585  and  555777  defects   Banhart,  Kotakoski,  Krasheninnikov,  ACS  Nano  2010   555777  is  1.2  eV  more  stable   Cretu,  Krasheninnikov  et  al.  PRL  2010   Lee  et  al.  PRL,  2005;  
  • 16. Dynamical  InteracIon  of  Vacancies   Strain  up  to  4%   T  =  2000  K     trecombinaIon  ~  80  ps    
  • 17. Vacancy    interacIon  with  grain  boundaries  
  • 18. Vacancy-­‐GB  interacIon   ~1  nm   Vacancy  merges  with  GB   Further  GB  reconstrucIon   8 160  ps   5   5   8 40  ps   7 7 5  5  
  • 19. Defect  Dynamics:  Vacancy  near  GB   1  nm   T  =  3000  K   Strain  up  to  8%   treconstruct  ~  200  ps   Reconstrucoon  relieves  strain    
  • 20. Vacancy  and  adatom  recombinaIon  near  GB  
  • 21. Vacancy  and  adatom  recombinaIon  near  GB     •  Adatoms  are  very  mobile  –  low  diffusion  barrier   •  Stretched  C-­‐C  at  the  heptagon  accumulate  adatoms   T  =  2000  K   treconfiguraoon  =  0.5  ns   B. Wang, Y. Puzyrev, S. T. Pantelides, Carbon (2011)
  • 22. Conclusion   •  Vacancies  interact  and  recombine  t  ~  10  ns   •  Point  defects  interact  with  grain  boundaries  d  ~  2  nm   •  Grain  boundaries  act  as  sinks  for  vacancies  and  adatoms    Enhanced  defect  reacovity  at  grain  boundaries    
  • 23. Graphene  device  degradaIon     •  Graphene  fabricated  by  mechanical   exfoliaIon  from  Kish  graphite   •  Sweep  VG  with  VDS=5mV  
  • 24. MoIvaIon  and  Outline   Ø Experiment  [1]   o  Graphene’s  resisIvity  response  to  x-­‐ray  radiaIon,                ozone  exposure,  annealing.     o  Defect  related  Raman  D-­‐peak  appears  a…er   §  x-­‐ray  irradiaIon  in  air   §  ozone  exposure,  decreases  a…er  annealing.   Ø Theory:  behavior  of  impuriIes  on  graphene   o  Temperature  and  concentraIon  dependence.   o  Need  to  remove  oxygen  without  vacancy  formaIon  (would  H  help?)   [1]  E.-­‐X.  Zhang  et  al,  IEEE  Trans.  Nucl.  Sci.  58,  2961  (2011)  
  • 25. Graphene  device  degradaIon     Two-­‐probe  resistances  measured  on     •  10  keV  irradiated  graphene   •  prisIne  graphene   •  ozone  exposed  graphene  (1  min)     •  annealed    (300C  for  2  hrs  in  200  sccm  Ar)    
  • 26. Graphene  device  degradaIon     Ozone  exposure     a)   80 8000 G -­‐P e a k 60 Inte g ra te d  inte ns ity  A re a 6000  I D /I G  (1 0 0 % ) 40 Defect  related  D-­‐peak         4000 20 •  increases  x-­‐ray  exposure     2000 D -­‐P e a k •  decreases  a…er  temperature  anneal   0 0 P re 8  Mra d(S iO 2 ) 15  Mra d(S iO 2 ) A nne a l 1 0 -­‐ke V  X -­‐ra y  D os e b)  
  • 27. TheoreIcal  Approach   O   O  desorpIon   Density  Func2onal  Theory   O  migraIon   DFT   •  Defect  formaoon  energies     •  Migraoon/desorpoon  barriers   O  dimer   Kine2c  Monte-­‐Carlo   KMC   Defect  dynamics   •  Temperature   •  Inioal  concentraoon    
  • 28. Oxygen  Removal  and  Vacancy  GeneraIon   1.3  eV   Oxygen:  clustering  behavior   0.5  eV     0.8  eV   Removal  of  oxygen       Bridge 1.3  eV   •  Pairs                    O2   •  Triplets                    CO,  CO2,  VC   Top     Device  degradaoon   1.1  eV   CO,  CO2   1.1  eV   O2    
  • 29. High-­‐temperature  Annealing   Vacancy   Concentraoon  of  vacancies  exceeds     Residual  oxygen  atom   concentraoon  of  residual  O  
  • 30. High  vs  Low  Temperature  Anneal   T,  oC   T      
  • 31. Temperature  Anneal     IniIal  Defect  ConcentraIon  Dependence   High  O  concentraoon   Lo   vacancy   surface  coverage     Low  O,  High  V  concentraoon   oxygen     T    iniIal  O  surface  coverage           High  T:  Removal  of  oxygen  >  0.05  iniIal  surface  coverage  leads  to  vacancy  formaIon   Low  T:  Oxygen  stays  on  the  surface  and  forms  clusters    Decrease  of  D-­‐peak,  Increase  in  resisovity   Method  to  prevent  defect  forma2on  during  irradia2on/annealing?    
  • 32. Oxygen  and  Hydrogen  on  Graphene:   Binding  energies,  MigraIon  and  ReacIon  Barriers     O-­‐H  is  most  likely  to  desorb     O   from  graphene  surface   H     Leaves  carbon  network  intact  
  • 33. Effect  of  Hydrogen  On     Oxygen  Annealing   Oxygen/ Low   High   Hydrogen     Concentra2ons   Low   2%  O,  10%  H   @  T  =  300  C       Final  defect     concentraIons?   High   15%  O,  1%  H   15%  O,  10%  H      
  • 34. Effect  of  Hydrogen  On  Oxygen  Annealing   Higher  Oxygen  concentraoon   Higher  Hydrogen  concentraoon   Hydrogen  is  removed   t  ~  0.001  s     Oxygen  is  removed   t  ~  0.0001  s     t  ~  1  s     t  ~  1  s      Removal  of  residual  Oxygen        Residual  Hydrogen       Causes  formaoon  of  large   Forms  clusters    L  ~  0.5  nm   amount  of  Vacancies   No  Vacancies  are  formed  
  • 35. High  O,  High  H  concentraIons   Hydrogen  is  removed  first,     Removal  of  residual  Oxygen       Causes  formaoon  of  Vacancies   Effect  of  Hydrogen  On  Oxygen  Annealing  
  • 36. ScaTering  mechanisms  in  graphene         •  Suspended  graphene  at  4K  μ  ~200,000    cm2/V    [1]       •  Suspended  graphene  at  300K    μ  ~10,000    cm2/V  s   ü  Out-­‐of-­‐plane  flexural  phonons  limit  [2]     •  Suspended  graphene  in  non-­‐polar  liquid       μ  ~60,000    cm2/V  s     •  Effect  of  liquids  on  the  flexural  phonons   Image  from  Meyer,  J.  C  .   ü  Vacuum   ü  Hexane  C6H14   ü  Toluene  C6H5CH3     1.  BoloIn,  K.  I.  et  al.  Solid  State  Comm.    2008   2.  Castro,  E.  V.  et  al.  Phys  Rev  LeT.  2010  
  • 37. Electron  scaTering  due  to  flexural  ripples   ​ 𝐸↓𝑞 = 𝜅​ 𝑞↑4 ​⟨​|​ℎ↓𝑞 |↑2 ⟩/2 =​ 𝑘↓𝐵 𝑇  /2    Harmonic  approximaIon   Fourier  components  of     2 T hq  ~ bending  correlaIon  funcIon   κ q4 h   at  300K     Deformaoon  tensor     ​ 𝑢 ↓𝑖𝑗 =​1/2 (​ 𝜕​ 𝑢↓𝑖 /𝜕​ 𝑥↓𝑗  +​ 𝜕​ 𝑢↓𝑗 /𝜕​ 𝑥↓𝑖  +​ 𝜕ℎ/𝜕​ 𝑥↓𝑖  ​ 𝜕ℎ/𝜕​ 𝑥↓𝑗  )  
  • 38. Electron  scaTering  due  to  flexural  phonons   Hopping  integrals  γ  are  modified     2   γ=  ​γ↓0 +(​ 𝜕γ/𝜕​ 𝑢↓𝑖𝑗  ) ​ 𝑢↓𝑖𝑗    0 1   PotenIal  perturbaIon  due  to  ripples    -­‐     random  sign-­‐changing  ‘magneIc  field’   3   ​1/𝜏 ≈​2 𝜋/ℎ 𝑁(​ 𝐸↓𝐹 )​〈​ 𝑉↓𝑞 ​ 𝑉↓− 𝑞 〉↓𝑞≈​ 𝑘↓𝐹   ~​⟨​|​ℎ↓𝑞 |↑2 ⟩↑2    ​ 𝑉↑( 𝑥) =​1/2 (2​γ↓1 −​γ↓2 −​γ↓3 )      ​ 𝑉↑( 𝑦) =​1/2 (​γ↓2 −​γ↓3 )     ​ 𝜌↓𝑟𝑖𝑝𝑝𝑙𝑒 ~​1/𝜏 ~​⟨​|​ℎ↓𝑞 |↑2 ⟩ ↑2    Effect  of  liquids   ü  Hexane  C6H14   Morozov  S.  V.  et.  al,  Phys.  Rev.  LeT  2006   ü  Toluene  C6H5CH3   M.  I.  Katsnelson  and  A.  K.  Geim,  Phil.  Trans.  R.  Soc.  A,    2008   Castro,  E.  V.  et.  al  Phys  Rev  LeT  (2010)  
  • 39. Molecular  dynamics  with  classical  potenIals   •  Large  system  10,000-­‐50,000  atoms  L  ~10nm   •  Large  Ime  scale  ~ns   •  Bond-­‐order  potenIals    for  C-­‐H   •  Boundary  condiIons   ü  NPT  –  constant  pressure   ü  NVT  –  constant  volume,  corresponding  to  P~0      
  • 40. Strain-­‐free  suspended  graphene   T  =  300  K   h   h2 = 0.89 Å2     vacuum      
  • 41. Suspended  graphene  in  hexane   Hexane  molecules  envelopes  graphene  sheet   C  chain  aligned  parallel  to  the  plane   Mean  square  displacement   h2 = 0.39 Å2     hexane
  • 42. Suspended  graphene  in  toluene   Toluene  molecules  envelopes  graphene  sheet   C  ring  aligned  parallel  to  the  plane   Mean  square  displacement   h2 = 0.42 Å2     toluene
  • 43. Preferred  molecule  posiIon:  DFT  calculaIon   ΔE  =  0.21  eV   ΔE  =  0.37  eV   3  Å   3  Å   Van  der  Waals  interacIon  
  • 44. Ripple  height  analysis   h   h2 = 0.89 Å2     vacuum h2 = 0.42 Å2     toluene h2 = 0.39 Å2     hexane
  • 45. Bending  sIffness  of  graphene  in  liquid   2 TN ​ 𝜌↓𝑟𝑖𝑝𝑝𝑙𝑒 ≈​ℏ/4​ 𝑒↑2  ​(​ 𝑘↓𝐵 𝑇/ hq r = 𝜅𝑎 )↑2 ​ 𝛬/𝑛    κ A0 q 4 Liquid  suppresses     Bending  S2ffness   flexural  phonons   Out-­‐of-­‐plane  flexural     phonons  limit  at  room  T   ü  Vacuum  μ  ~10,000    cm2/V  s   ü  Liquid  μ  ~  200,000    cm2/V  s  
  • 46. Conclusion     •  Liquid  dielectric  environment  suppresses  flexural  phonons   •  Phonon  suppression  affects  mobility  through  bending  sIffness  
  • 47. Электронная  плотность       Разложение  по  функциям  Гаусса     " q %         ρ r =() N atoms ∑ ( ρn r − Rn ) ( ) $ Q ' # A& ( ρn r − Rn = $1− n ' ρ0A r − Rn ) n=1     Перенос  заряда        M gauss −γ m r 2 () 2 ρn r = ηr ∑ cme m=1    ∫ Ωcell ( ) ρn r − Rn d 3r = QA − qn *
  • 48. Полная  энергия         ! $ Etotal = ∫ () () W r #ρ r & ρ r d 3r + ∫ W q !ρ q $ ρ q d 3q + Eion−ion # & () () Ω " % Ω " % volume volume    ! $ ! $ ! $ W r #ρ r " () & % = T #ρ r " () & % " () +Vex #ρ r & %        ! $ () () W q #ρ q & =V ps q +Vhartree q " % () Vps ( q ) = S ( q ) w pseudo ( q )
  • 49. Кинетическая энергия corr corr T = TWang −Teter + TLDA + Tatom     5  " % 45 2 5 () TWang−Teter $ρ r ' = # & 128 ( ) 3π 2 3 ∫∫ () ( ) ( ) ρ 6 r w1 r − r ' ρ 6 r ' d 3rd 3r '− 21 2 5  1 1  1  − 250 ( ) 3π 2 3 ∫ () () () ρ 3 r d r − ∫ ρ 2 r ∇ ρ 2 r d 3r 3 2 2 Теория линейного отклика 1 (q − 4) 2 5 ⎛ −1 3 2 3 ⎞ 2−q w1 = ⎜ w ( q ) − q + , and w = + ⎟ ln 8 ⎝ 4 5 ⎠ 2 8q 2+q
  • 50. N grid )6 + n  - + corr ! $ "() TLDA #ρ r &= % ∑ *∑ cnΔρ ri . i=1 + n=1 , 2 + / () 3 corr 6 "π % 2 " k2 % () Tatom k = ∑ cn $ ' exp $ − $ξ ' # n& $ 4ξ ' # ' n=1 n&    " k %    () S A ki = ∑ $1− α ' exp −ikα iRα $ N ' α ∈A # α & ( )
  • 51. λ=1 upper limit von Weizsäcker λ=1/9 gradient expansion second order λ=1/5 computational Hartree-Fock
  • 52. 1. Phase Diagram 2. Elastic Properties 3. Defect Formation Energies