SlideShare a Scribd company logo
1 of 20
Download to read offline
Asymptotic Analysis 38 (2004) 339–358
IOS Press

339

Local existence and blow-up criterion
for the Euler equations in the Besov spaces
Dongho Chae
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail: dhchae@math.snu.ac.kr
Abstract. We prove the local in time existence and a blow-up criterion of solutions in the Besov spaces for the Euler equations
of inviscid incompressible fluid flows in Rn , n 2. As a corollary we obtain the persistence of Besov space regularity for the
solutions of the 2-D Euler equations with initial velocity belonging to the Besov spaces. For the proof of the results we establish
a logarithmic inequality of the Beale–Kato–Majda type and a Moser type of inequality in the Besov spaces.

1. Introduction and main results
We are concerned by the Euler equations for homogeneous incompressible fluid flows.
∂v
+ (v · ∇)v = −∇p, (x, t) ∈ Rn × (0, ∞),
∂t
div v = 0, (x, t) ∈ Rn × (0, ∞),
v(x, 0) = v0 (x),

x ∈ Rn ,

(1.1)
(1.2)
(1.3)

where v = (v1 , . . . , vn ), vj = vj (x, t), j = 1, . . . , n, is the velocity of the fluid, p = p(x, t) is the
scalar pressure, and v0 is the given initial velocity satisfying div v0 = 0. Given v0 ∈ H m (Rn ), for
integer m > n + 1, Kato proved the local in time existence and uniqueness of solution in the class
2
C([0, T ]; H m (Rn )), where T = T ( v0 H m ) [13]. Temam extended this result to bounded domains, in
H m (Ω) and in W m,p (Ω) (see [22,23]). Later, Kato and Ponce obtained a local existence result in the
more general Sobolev space, W s,p (Rn ) = (1 − ∆)−s/2 Lp (Rn ) for real number s > n/p + 1 [14]. One of
the most outstanding open problems in the mathematical fluid mechanics is to prove the global in time
continuation of the local solution, or to find an initial data v0 ∈ H m (Rn ) such that the associated local
solution blows up in finite time for n = 3. One of the most significant achievements in this direction is
the Beale–Kato–Majda criterion [3] for the blow-up of solutions, which states that
lim sup v(t)
t

T∗

=∞

(1.4)

ds = ∞,

(1.5)

Hm

if and only if
T∗
0

ω(s)

L∞

0921-7134/04/$17.00  2004 – IOS Press and the authors. All rights reserved
340

D. Chae / Euler equations in the Besov spaces

where ω = curl v is the vorticity of the flow. Recently this criterion has been refined by Kozono and
Taniuch [16], replacing the L∞ norm of the vorticity by the BMO norm. (We note L∞ → BMO. See,
e.g., [21] for a detailed description of the space BMO.) In the Hölder space, Lichtenstein [17], Chemin
[10] proved the local existence of solution. Bahouri and Dehman [2] also obtained the blow-up criterion
for the local solution in the Hölder space. We also mention that there is a geometric type of blow-up
criterion, using the deep structure of the nonlinear term of the Euler equation [11]. For n = 2 it is
well-known that the local solution can be continued for all time, and one of the main questions in this
case is persistence problem of the regularity of initial data. Kato and Ponce proved the persistence of
the Sobolev space regularity for the super critical Sobolev space initial data, i.e., v0 ∈ W s,p (R2 ) with
s > 2/p+1 [15]. All the above results are concerned only in the super-critical cases, namely s > n/p+1.
In the current paper we study the initial value problem for the initial data belonging to the both supers
critical and critical Besov spaces, namely v0 ∈ Bp,q , s > n/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞],
or s = n/p + 1, q = 1, and obtain the blow-up criterion in the Besov space as well as the local
in time existence of solutions. Our criterion is sharper than the Beale–Kato–Majda’s and the Kozono–
˙0
Taniuch’s result, in the sense that the BMO norm of vorticity is replaced by the B∞,∞ norm, which is
0
s
˙
weaker than the BMO norm (remember BMO → B∞,∞ ). We also recall the relation, B2,2 = H s (Rn )
between the Besov space and the fractional order Sobolev space. As a corollary of our criterion we
prove the global in time existence and persistence of Besov space regularity in the 2-dimensional Euler
s
equations for v0 ∈ Bp,q , s > 2/p + 1. We mention that Vishik obtained the global well-posedness of the
2-dimensional Euler equations in the critical Besov space [25,26]. We also mention that in the case of the
Navier–Stokes equations in the Besov spaces there are many studies by Cannone and his collaborators
(see [6,7] and references therein). In order to prove our blow-up criterion we establish the following
logarithmic Besov space inequality with features similar to the logarithmic Sobolev inequality in [3].
Proposition 1.1. Let s > n/p with p ∈ (1, ∞), q ∈ [1, ∞]. There exists a constant C such that for all
s
f ∈ Bp,q the following inequality holds:
f

L∞

C 1+ f

˙0
B∞,∞

log+ f

s
Bp,q

+1 .

(1.6)

The following is our main theorem.
Theorem 1.1 (Main theorem).
(i) Local in time existence: Let s > n/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞], or s = n/p + 1
s
with p ∈ (1, ∞), q = 1. Suppose v0 ∈ Bp,q , satisfying div v0 = 0, is given. Then, their exists
s
s
T = T ( v0 Bp,q ) such that a unique solution v ∈ C([0, T ]; Bp,q ) of the system (1.1)–(1.3) exists.
(ii) Blow-up criterion:
(A) Super-critical case: Let s > n/p + 1, p ∈ (1, ∞), q ∈ [1, ∞]. Then, the local in time solution
s
s
v ∈ C([0, T ]; Bp,q ) blows up at T∗ > T in Bp,q , namely
lim sup v(t)
t

T∗

=∞

(1.7)

dt = ∞.

(1.8)

s
Bp,q

if and only if
T∗
0

ω(t)

˙0
B∞,∞
D. Chae / Euler equations in the Besov spaces

341
n/p+1

(B) Critical case: Let p ∈ (1, ∞). Then, the local in time solution v ∈ C([0, T ]; Bp,1
up at T∗ > T in

n/p+1
Bp,1 ,

lim sup v(t)
t

T∗

) blows

namely

n/p+1

Bp,1

=∞

(1.9)

if and only if
T∗

ω(t)

0

˙0
B∞,1

dt = ∞.

(1.10)

s
˙0
Remark 1.2. Since B2,2 = H s (Rn ), and L∞ → BMO → B∞,∞ , the above theorem improves the
original Beale–Kato–Majda criterion [3], and its refined version by Kozono and Taniuchi [16] for the
s
case of H s (Rn ). On the other hand, since B∞,∞ = C 0,s (Rn ), we find that the result of blow-up criterion
in the Hölder space by Bahouri and Dehman [2] corresponds to the extreme case of Theorem 1.1(ii)(A).

If n = 2 the conservation of vorticity, ω(t) L∞ = ω0 L∞ for all t > 0, combined with the embeds−
˙0
ding Bp,q 1 → L∞ (R2 ) → B∞,∞ for s > 1 (see Remark 2.1 below), implies immediately the following
corollary.
Corollary 1.1 (Persistence of the Besov space regularity). Let s > 2/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞].
s
Suppose v0 ∈ Bp,q , satisfying div v0 = 0, is given. Then there exists a unique solution v ∈ C([0, ∞) :
s ) to the system (1.1)–(1.3) with n = 2.
Bp,q
s
Remark 1.3. In the case p = q = 2, since B2,2 = H s (R2 ), the Lebesgue space, we recover the result
by Kato–Ponce [15].

The results in this paper were announced in [8].

2. Proof of the main results
We first set our notations, and recall definitions on the Besov spaces. We follow [20,24]. Let S be the
ˆ
Schwartz class of rapidly decreasing functions. Given f ∈ S its Fourier transform F (f ) = f is defined
by
ˆ
f (ξ) =

1
(2π)n/2

Rn

e−ix·ξ f (x) dx.

We consider ϕ ∈ S satisfying Supp ϕ ⊂ {ξ ∈ Rn | 1 |ξ| 2}, and ϕ(ξ) > 0 if 2 < |ξ| < 3 . Setting
ˆ
ˆ
2
3
2
−j ξ) (in other words, ϕ (x) = 2jn ϕ(2j x)), we can adjust the normalization constant in front
ϕj = ϕ(2
ˆ
ˆ
j
of ϕ so that (see, e.g., [4, Lemma 6.1.7])
ˆ
ϕj (ξ) = 1
ˆ
j∈Z

∀ξ ∈ Rn  {0}.
342

D. Chae / Euler equations in the Besov spaces

Given k ∈ Z, we define the function Sk ∈ S by its Fourier transform
Sk (ξ) = 1 −

ϕj (ξ).
ˆ
j k+1

ˆ
In particular we set S−1 (ξ) = Φ(ξ).
We observe
Supp ϕj ∩ Supp ϕj = ∅
ˆ
ˆ

if |j − j |

2.

(2.11)

Let s ∈ R, p, q ∈ [0, ∞]. Given f ∈ S , we denote ∆j f = ϕj ∗ f , and then the homogeneous Besov
norm f B˙ is defined by
s
p,q







f

˙s
Bp,q

=

∞

1/q

2jqs ϕj ∗ f

−∞

q
Lp

if q ∈ [1, ∞),


 sup 2js ϕ ∗ f p


j
L

if q = ∞.

j

˙s
The homogeneous Besov space Bp,q is a semi-normed space with the semi-norm given by ·
s
s > 0, p, q ∈ [0, ∞] we define the inhomogeneous Besov space norm f Bp,q of f ∈ S as
f

s
Bp,q

= f

Lp

+ f

·

s
Bp,q

(see, e.g., [4,20,

ˆ
Lemma 2.1 (Bernstein’s lemma). Assume that f ∈ Lp , 1 p ∞, and Supp f ⊂ {2j−2
then there exists a constant Ck such that the following inequality holds
Dkf

Lp

For

˙s
Bp,q .

The inhomogeneous Besov space is a Banach space equipped with the norm,
24]). We now recall the following lemma [10].

−
Ck 1 2jk f

˙s
Bp,q .

Ck 2jk f

Lp

|ξ| < 2j },
(2.12)

Lp .

As an immediate corollary of the above lemma we have the equivalence of norms,
Dkf

˙s
Bp,q

∼ f

(2.13)

˙ s+k
Bp,q .

We are now ready to prove Proposition 1.1.
Proof of Proposition 1.1. We decompose
f (x) = S−N ∗ f (x) +

∆j f (x) +
|j|<N

∆j f (x) = {1} + {2} + {3},

(2.14)

j N

and estimate the first term as
{1}

S−N

Lp/(p−1)

f

Lp

C2−N n/p f

Lp ,

(2.15)
D. Chae / Euler equations in the Besov spaces

343

using simply the Hölder inequality. The estimate of the second term is immediate.
∆j f

{2}

CN f

L∞

|j|<N

(2.16)

˙0
B∞,∞ .

For the third term we have
∆j f

{3}

2nj/p ∆j f

C

L∞

j N

Lp

j N





2sjq ∆j f q p

L


 j N




1/q

−(s−n/p)j

2−(s−n/p)jq/(q−1)

(q−1)/q

if q ∈ (1, ∞),

j N

sup 2−(s−n/p)j

C f

Lp 2

j N

2sj ∆j f

Lp

j N

j N




 sup 2sj ∆ f p

2−(s−n/p)j

j
L

j N

2sj ∆j f

=

if q = 1,
if q = ∞

j N

˙s
Bp,q 2

−(s−n/p)N

(2.17)

.

Combining (2.15), (2.16), we obtain
f

C 2−aN f

L∞

s
Bp,q

+N f

˙0
B∞,∞

,

(2.18)

where we set
a = min s −

n n 1
.
, ,
p p log 2

Choosing
N=

log+ f

s
Bp,q

a log 2

+1 ,

we finally have (1.6).
Remark 2.1. If we decompose
f (x) = S−1 ∗ f (x) +

∆j f (x) = {I} + {II},
j 0

and using the similar estimates to (2.15), (2.17) for {I} and {II} respectively, we have immediately
f

L∞

C f

s
Bp,q

(2.19)

for s > n/p with p, q ∈ [1, ∞], or s = n/p with p ∈ [1, ∞], q = 1. This corresponds to the Sobolev
embedding in the Besov space version.
344

D. Chae / Euler equations in the Besov spaces

Next, we will prove the following Moser type of inequality for the Besov spaces.
Lemma 2.2. Let s > 0, q ∈ [1, ∞], then there exists a constant C such that the following inequalities
hold
fg

C f

˙s
Bp,q

Lp1

g

˙s
Bp2 ,q

+ g

Lr1

f

Lr1

f

(2.20)

˙s
Br2 ,q

for the homogeneous Besov space, and
fg

C f

s
Bp,q

Lp1

g

s
Bp2 ,q

+ g

(2.21)

s
Br2 ,q

for the inhomogeneous Besov space respectively, where p1 , r1 ∈ [1, ∞] such that 1/p = 1/p1 + 1/p2 =
1/r1 + 1/r2 .
Proof. We use Bony’s formula for paraproduct of two functions
f g = Tf g + Tg f + R(f , g),

(2.22)

where
Sj−2 f ∆j g,

Tf g =

Sj−2 g∆j f ,

Tg f =

j

(2.23)

j

and
∆i f ∆j g.

R(f , g) =

(2.24)

|i−j| 1

From (2.10) we infer that
Supp F (Sj −2 f ∆j g) ⊂ 2j −2
and ∆j (Sj −2 f ∆j g) = 0 if |j − j |
∆j (f g) =

|ξ|

2 j +1 ,

4. Thus we have

∆j (Sj −2 f ∆j g) +
|j−j | 3

∆j (Sj

−2 g∆j

∆j (∆i f ∆j g)

f) +

|j−j | 3

|i −j | 1, max{i ,j } j−3

= I + II + III

(2.25)

Now we observe, thanks to Hölders’ and Young’s inequalities
I

sup Sj −2 f

Lp

Lp1

∆j g

|j−j | 3 j

C f

Lp2

Φ

L1

f

∆j g

Lp1

Lp2

|j−j | 3

∆j g

Lp1
|j−j | 3

Lp2 ,

(2.26)
D. Chae / Euler equations in the Besov spaces

345

and similarly
II

Lp

C g

∆j f

Lr1

Lr2 .

(2.27)

∆j g

Lp2 .

(2.28)

|j−j | 3

On the other hand,
III

C

Lp

f
j

Lp1

j−5

Thus, by the Minkowski inequality
fg

˙s
Bp,q

2qsj ∆j (f g)

=
j∈Z

q
Lp

1/q

1/q

f

2qsj ∆j g

Lp1

q
Lp2

j∈Z |j−j | 3
1/q

+ g

q
Lr2

2qsj ∆j f

Lr1

1/q

+ f

2qsj ∆j g

Lp1

j∈Z |j−j | 3

j∈Z j

q
Lp2

j−5

= {1} + {2} + {3}.

(2.29)

Since, in general,
3

q
Lp2

2qsj ∆j h

2−qks

=

j∈Z |j−j | 3

2qs(j+k) ∆j+k h

q
Lp2

j∈Z

k=−3

2qsj ∆j h

C

q
Lp2 ,

(2.30)

j∈Z

we have
{1} + {2}

C f

Lp1

g

˙s
Bp2 ,q

+C g

Lr1

f

(2.31)

˙s
Br2 ,q .

We estimate the third term as
{3} = f

2qs(j−j ) 2j s ∆j g

Lp1
j∈Z j

= f

−kqs

k −5

= f

k −5

2

∆j+k g

Lp2

2jqs ∆j g

q
Lp2

(j+k )s

q

1/q

j∈Z

2−kqs

Lp1

1/q

q

j−5

2

Lp1

Lp2

1/q

1/q

j∈Z

C f

Lp1

g

˙s
Bp2 ,q .

(2.32)
346

D. Chae / Euler equations in the Besov spaces

We have proved (2.20). The inhomogeneous inequality (2.21), is obtained by adding the obvious estimate
fg

1
2

Lp

f

Lp1

g

Lp2

+ g

f

Lr1

(2.33)

Lr2

to (2.20).
We are now ready to prove our main theorem.
Proof of Theorem 1.1. We first derive a priori estimate for solutions of the system (1.1)–(1.3). Taking
operation, ∆j on the both sides of (1.1), we have
∂t ∆j v + (Sj−2 v · ∇)∆j v = (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v − ∆j ∇p.
Since div Sj−2 v = 0, we deduce
∆j v(t)

t

∆j v0

Lp

Lp

+
0

(Sj−2 v · ∇)∆j v − ∆j (v · ∇)v (s)

Lp

+ ∆j ∇p

Lp

ds. (2.34)

Thus, by the Minkowski inequality we obtain
t

v(t)

s
Bp,q

v0

s
Bp,q

+

t

∇p

s
Bp,q

ds

2jqs (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v (s)

+
0

0

j∈Z

q
Lp

1/q

ds.

(2.35)

We will now prove estimate
2

jqs

(Sj−2 v · ∇)∆j v − ∆j (v · ∇)v

j∈Z

q
Lp

1/q

C ∇v

L∞

v

(2.36)

s
Bp,q .

For this we follow closely the argument in [25] (see also [1,9]). Using Bony’s paraproduct formula [5],
we write
n

(Sj−2 v · ∇)∆j vk − ∆j (v · ∇)vk = −

n

∆j T∂i vk vi +
i=1

n

[Tvi ∂i , ∆j ]vk −
i=1

Tvi −Sj−2 vi ∂i ∆j vk
i=1

n

−

∆j R(vi , ∂i vk ) − R(Sj−2 vi , ∆j ∂i vk )
i=1

= I + II + III + IV.

(2.37)

We estimate term by term of (2.27). From the definition of paraproduct
n

∆j Sj −2 (∂i vk )∆j vi .

I=
i=1 j

(2.38)
D. Chae / Euler equations in the Besov spaces

347

As in the proof of Lemma 2.2 we observe
Supp F (Sj −2 ∂i vk ∆j vi ) ⊂ 2j −3
and ∆j (Sj −2 ∂i vk ∆j ) = 0 if |j − j |

|ξ|

2 j +1 ,

(2.39)

4. Thus, we can reduce the terms in the series

n

∆j Sj −2 (∂i vk )∆j vi .

I=

(2.40)

i=1 |j−j | 3

Thanks to Young’s inequality for convolutions we estimate
n

I

Lp

n

C

Sj −2 ∂i vk

L∞

∆j v

∆j vi

sup Sj −2 ∂i vk

∆j vi

Lp .

∇v

L∞

C

i=1 |j−j | 3 j

i=1 |j−j | 3

C

Lp

L∞

Lp

0

(2.41)

|j−j | 3

For the estimate of the second term of (2.37) we use the integral representation formula for the convolution. By the similar argument as the above we first note
[Sj −2 vi , ∆j ]∂i ∆j vk = 0

if |j − j |

4.

(2.42)

Thus, we have
n

II = −

[Sj

−2 vi , ∆j ]∂i ∆j

vk

i=1 |j−j | 3
n

=−

2jn
i=1 |j−j | 3

Rn

ϕ 2j (x − y) Sj −2 vi (x) − Sj −2 vi (y) ∂i ∆j vk (y) dy

n

=−

2j (n+1)
i=1 |j−j | 3

Rn

∂i ϕ 2j (x − y) Sj −2 vi (x) − Sj −2 vi (y) ∆j vk (y) dy

n

=−

2j (n+1)
i=1 |j−j | 3

Rn

∂i ϕ 2j (x − y)
1

×
n

=−
i=1 |j−j | 3

0
1

Rn

∂i ϕ(z)
0

(x − y) · ∇ (Sj −2 vi ) x + τ (y − x) dτ ∆j vk (y) dy

(z · ∇)(Sj −2 vi ) x − τ 2−j z ∆j vk x − 2−j z dz,

(2.43)
348

D. Chae / Euler equations in the Besov spaces

where we used div Sj −2 v = 0 in the integration by part in the third line from the top. By the Minkowski
inequality we have
n

II

n

C

Lp

Sj −2 ∂m vi

∆j vk

L∞

Lp

∇v

C

i=1 m=1 |j−j | 3

L∞

∆j v

Lp .

(2.44)

|j−j | 3

For the estimate of the third term of (2.37) we first observe
n

j −1

n

Sj −2 (vi − Sj−2vi )∂i ∆j ∆j vk =

III =
i=1 |j−j | 1

∆m vi ∂i ∆j ∆j vk

Sj − 2
i=1 |j−j | 1

m=j−1

n

Sj −2 (∆j−1 vi + ∆j vi )∂i ∆j ∆j vk .

=

(2.45)

i=1 |j−j | 1

Using (2.12), we estimate
n

III

∆j−1 vi

Lp

L∞

+ ∆j vi

∂i ∆j ∆j vk

Lp

+ 2−j ∆j ∇vi

L∞

L∞

i=1 |j−j | 1
n

2−j+1 ∆j−1 ∇vi

C

L∞

· 2j ∆j ∆j vk

Lp

i=1 |j−j | 1

∇v

C

L∞

∆j v

(2.46)

Lp .

|j−j | 1

For the estimate of the fourth term of (2.28) we decompose
n

n

∆j ∂i R(vi − Sj−2 vi , vk ) +

IV =
i=1

∆j R(Sj−2 vi , ∂i vk ) − R(Sj−2 vi , ∆j ∂i vk )
i=1

= IV(1) + IV(2).
Since

n
i=1 ∂i ∆j

(2.47)

(vi − Sj−2 vi ) = 0, we have

n

∂i ∆j

IV(1) =

∆j (vi − Sj−2 vi )∆j vk
|j −j | 1

i=1
n

∆j

=
i=1

(∆j vi − Sj−2 ∆j vi )∆j ∂i vk .
|j −j | 1 j

j−3

(2.48)
D. Chae / Euler equations in the Besov spaces

349

Hence, we estimate
n

IV(1)

∆j vi

C

Lp

+ Sj ∆j vi

Lp

∆j vi

Lp

∆j ∂i vk

C

L∞

C

Lp

j−3 |j −j | 1

j

∆j ∂i vk

L∞

j−3 |j −j | 1

i=1 j

∇v
j

L∞

∆j v

(2.49)

Lp .

j−5

On the other hand, we note
n

∆j (∆j Sj−2 vi )∆j ∂i vk − (∆j Sj−2 vi )(∆j ∆j ∂i vk )

IV(2) =
i=1 |j −j | 1
n

[∆j , ∆j Sj−2 vi ]∆j ∂i vk .

=
i=1 j−1 j

j−3 |j −j | 1

Using the integral representation formula for the convolution as previously, we write
[∆j , ∆j Sj−2 vi ]∆j ∂i vk (x)
= 2jn

Rn

= 2j (n+1)
= 2j (n+1)
=−

∂i ϕ 2j (x − y) ∆j Sj−2 vi (y) − ∆j Sj−2 vi (x) ∆j ∂i vk (y) dy
Rn

Rn

∂i ϕ 2j (x − y) ∆j Sj−2 vi (y) − ∆j Sj−2 vi (x) ∆j vk (y) dy

1
Rn

1

∂i ϕ 2j (x − y)

∂i ϕ(z)
0

0

dτ (y − x) · ∇ (∆j Sj−2 vi ) x + τ (y − x) ∆j vk (y) dy

dτ (z · ∇)(∆j Sj−2 vi ) x − 2−j τ z ∆j vk x − 2−j z dz.

(2.50)

Hence,
n

[∆j , ∆j Sj−2 vi ]∆j ∂i vk

Lp

∆j Sj−2 ∂m vi

C

L∞

∆j vk

Lp

m=1

C ∇v

L∞

∆j v

Lp ,

(2.51)

and
IV(2)

Lp

C ∇v

∆j vk

L∞

(2.52)

Lp .

|j−j | 5

Summing up the estimates (2.41), (2.44), (2.46),(2.49) and (2.52), we obtain
(Sj−2 v · ∇)∆j v − ∆j (v · ∇)v

Lp

C ∇v

∆j v

L∞
|j−j | 5

Lp

∆j v

+
j >j−5

Lp

.

(2.53)
350

D. Chae / Euler equations in the Besov spaces

Thus, by the Minkowski inequality
2

jqs

1/q

q
Lp

(Sj−2 v · ∇)∆j v − ∆j (v · ∇)v

j∈Z

1/q

C ∇v

2jqs ∆j v

L∞

q
Lp

1/q

+ C ∇v

2jqs ∆j v

L∞

j∈Z |j−j | 5

j∈Z j

q
Lp

j−5

= {1} + {2}.

(2.54)

By the same argument as in (2.29)–(2.32) we obtain
{1}

C ∇v

L∞

{2}

C ∇v

L∞

˙s
Bp,q ,

v

(2.55)

and
2(j−j )qs 2j s ∆j v
j∈Z j

Lp

q

1/q

C ∇v

L∞

v

˙s
Bp,q .

(2.56)

j−5

We have finished the proof of (2.36). Next, we estimate the pressure term in (2.35). We recall the wellknown representation of the pressure,
n

p=

(−∆)−1 ∂i vj ∂j vi .

(2.57)

i,j=1

Thus,
n

n

−1

∂i ∂j (−∆) ∂k vl ∂l vk =

∂i ∂j p =

Ri Rj (∂k vl ∂l vk ),

k ,l=1

(2.58)

k ,l=1

where Ri ’s are the n-dimensional Riesz transforms (see, e.g., [21]). Thus, using the norm equivalence
f B s ∼ Df Bp,q in (2.13), and the boundedness property of the singular integral operator from
˙
˙ s−1
p,q
s into itself [12], and (2.20), we have
˙
B
p ,q

n

∇p

˙s
Bp,q

n

C

∂i ∂j p

˙ s−1
Bp,q

i,j=1

C ∇v

n

Ri Rj (∂k vl ∂l vk )

C
i,j ,k ,l=1

L∞

∇v

˙ s−1
Bp,q

C ∇v

˙ s−1
Bp,q

C

∂k vl ∂l vk

˙ s−1
Bp,q

k ,l=1
L∞

v

˙s
Bp,q .

(2.59)

ds.

(2.60)

Substituting (2.59) and (2.36) into (2.35), we have
t

v(t)

˙s
Bp,q

v0

˙s
Bp,q

+C
0

∇v(s)

L∞

v(s)

˙s
Bp,q
D. Chae / Euler equations in the Besov spaces

351

This is our basic estimate in terms of the homogeneous Besov space semi-norm. In order to have similar
estimate in terms of the inhomogeneous Besov norm we derive the Lp estimate of solutions. From (1.1),
we obtain immediately
t

v(t)

v0

Lp

Lp

∇p(s)

+
0

Lp

ds.

(2.61)

On the other hand, by the Calderon–Zygmund inequality
n

∇p

∇∂j (−∆)−1 (v · ∇)vj

Lp

C (v · ∇)v

Lp

Lp

C ∇v

v

L∞

(2.62)

Lp

j=1

for 1 < p < ∞. Substituting (2.62) into (2.61), we find
t

v(t)

v0

Lp

Lp

+C
0

∇v(s)

L∞

v(s)

ds.

Lp

(2.63)

Adding (2.63) to (2.60), we obtain the inhomogeneous Besov space estimate;
t

v(t)

v0

s
Bp,q

s
Bp,q

+C
0

∇v(s)

L∞

v(s)

s
Bp,q

ds.

(2.64)

s−
This, combined with the embedding, Bp,q 1 (Rn ) → L∞ (Rn ), for s > n/p + 1 with p ∈ (1, ∞), q ∈
[1, ∞], or s = n/p + 1 with p ∈ (1, ∞), q = 1 (see Remark 2.1) yields the estimate
t

v(t)

v0

s
Bp,q

s
Bp,q

+C
0

∇v(s)

t
s−1
Bp,q

v(s)

s
Bp,q

ds

v0

s
Bp,q

+C

v(s)
0

2
s
Bp,q

ds. (2.65)

This completes the derivation of a priori estimate for the solutions of the system (1.1)–(1.3). We now set
s
s
XT := C [0, T ]; Bp,q .

Then, (2.65) implies
v

v0

s
XT

s
Bp,q

+ CT v

2

(2.66)

s
XT

In order to establish the local in time existence of solution we construct sequence {v(m) }, defined
recursively by solving the linear transport equations
∂t v(m) + v(m−1) · ∇ v(m) = −∇p(m−1) ,

div v(m) = 0,

v(m) (x, 0) = Sm v0 (x),

(2.67)

for m = 1, 2, . . . , where we set
n

p(m) =

(
(
(−∆)−1 ∂i vjm) ∂j vim) ,

i,j=1

m = 1, 2, . . . ,

(2.68)
352

D. Chae / Euler equations in the Besov spaces

and v(0) = 0, p(0) = 0. Writing
∂t ∆j v(m) + Sj−2 v(m−1) · ∇ ∆j v(m)
= Sj−2 v(m−1) · ∇ ∆j v(m) − ∆j v(m−1) · ∇ v(m) − ∆j ∇p(m) ,
by the same procedure of estimates leading to (2.66), we obtain
v(m)

Sm v0

s
XT

s
Bp,q

+ CT v(m−1)

2

C0 v0

s
XT

s
Bp,q

+ C0 T v(m−1)

2

s
XT ,

(2.69)

where for some constant C0 . Thus, by the standard induction argument we find
v(m)

2C0 v0

s
XT

(2.70)

s
Bp,q

0 if T ∈ [0, T0 ], where we set

for all m
T0 =

1
2
8C0 v0

(2.71)

.
s
Bp,q

Taking differences between the equations for the (m + 1)-step and the (m) step equations of (2.67), we
have
∂t v(m+1) − v(m) + v(m) · ∇ v(m+1) − v(m)
= v(m−1) − v(m) · ∇v(m) − ∇∆j p(m) − p(m−1) ,
div v(m) = 0,

(2.72)

v(m+1) − v(m) (x, 0) = ∆m+1 v0 .

(2.73)

We write
∂t ∆j v(m+1) − v(m) + Sj−2 v(m) · ∇ ∆j v(m+1) − v(m)
= Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) − ∆j
+ ∆j

v(m) · ∇ v(m+1) − v(m)

v(m−1) − v(m) · ∇v(m) − ∆j ∇ p(m) − p(m−1) .

(2.74)

Since div Sj−2 v(m) = 0, we obtain as before
∆j v(m+1) − v(m) (t)
T

+
0

T

+
0

Lp

(
(
∆j v0m+1) − v0m)

Lp

Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) − ∆j
∆j

v(m−1) − v(m) · ∇v(m)

v(m) · ∇ v(m+1) − v(m)
T

Lp

dt +
0

∆j ∇ p(m) − p(m−1)

Lp

Lp

ds

ds
(2.75)
D. Chae / Euler equations in the Besov spaces

353

for all t ∈ [0, T ]. Multiplying 2j (s−1) on both sides of (2.75), and taking lq norm, we obtain by use of
the Minkowski inequality
v(m+1) − v(m) (t)
∆m+1 v0
− ∆j

˙ s−1
Bp,q
T

˙ s−1
Bp,q

2qj (s−1) ∆j Sj−2 v(m) · ∇ ∆j v(m+1) − v(m)

+
0

j∈Z
q

v(m) · ∇ v(m+1) − v(m)
T

+
0

Lp

v(m−1) − v(m) · ∇v(m)

˙ s−1
Bp,q

1/q

ds
T

∇ p(m) − p(m−1)

dt +
0

˙ s−1
Bp,q

ds
(2.76)

= I1 + I2 + I3 + I4 .
By (2.13)
C2−m−1 ∆m+1 v0

I1

C2−m v0

˙s
Bp,q

˙s
Bp,q

C2−m v0

(2.77)

s
Bp,q .

Estimate of I2 is exactly same as before, and we have
T

∇v(m)

I2
0

v(m+1) − v(m)

L∞

T
˙ s−1
Bp,q

ds

C
0

v(m)

s
Bp,q

v(m+1) − v(m)

s−1
Bp,q

ds.

(2.78)

Using (2.20) of Lemma 2.2 we estimate
T

I3

C
0

T

C

v(m−1) − v(m)
v(m)

0

s
Bp,q

L∞

∇v(m)

v(m−1) − v(m)

˙ s−1
Bp,q

s−1
Bp,q

+ v(m−1) − v(m)

˙ s−1
Bp,q

∇v(m)

L∞

ds

ds.

(2.79)

Finally we estimate the pressure term.
Using the fact
n

n
(
∂j vjm−1) =

j=1

(
(
∂i vim) − vim−1) = 0,

i=1

we have
n

∇p(m) − ∇p(m−1) =

(
(
(
(
(
(
(−∆)−1 ∇∂i vjm) − vjm−1) ∂j vim) + vjm−1) ∂j vim) − vim−1)

i,j=1
n

=

(
(
(
(
(
(
(−∆)−1 ∇∂i vjm) − vjm−1) ∂j vim) + ∂j vjm−1) vim) − vim−1)

i,j=1
n

=

(
(
(
(−∆)−1 ∇ ∂i vjm) − vjm−1) ∂j vim) + ∂j

i,j=1

(
(
(
∂i vjm−1) vim) − vim−1)

(2.80)
354

D. Chae / Euler equations in the Besov spaces

Since both of (−∆)−1 ∇∂i and (−∆)−1 ∇∂j are the Calderon–Zygmund SIO’s, we obtain
n

I4

T

(
(
(
vjm) − vjm−1) ∂j vim)

C
i,j=1 0
T

∇v(m)

C
0

T

L∞

∇v(m−1)

+C
0

+ v(m) − v(m−1)
T

C

v(m) − v(m−1)

v(m)

0

s
Bp,q

∇v(m−1)

L∞

+ v(m−1)

+ ∇v(m)

˙ s−1
Bp,q

v(m) − v(m−1)

L∞

˙ s−1
Bp,q

(
(
(
∂i vjm−1) vim) − vim−1)

+

˙ s−1
Bp,q

v(m) − v(m−1)

dτ

L∞

dτ

˙ s−1
Bp,q

dτ

v(m) − v(m−1)

s
Bp,q

˙ s−1
Bp,q

˙ s−1
Bp,q

s−1
Bp,q

dτ.

(2.81)

Summing up (2.76)–(2.81), we have

v(m+1) (t) − v(m) (t)
T

+C

v(m) + v(m−1)

0

T

C2−m v0

˙ s−1
Bp,q

s
Bp,q

+C

s
Bp,q

v(m)

s
Bp,q

0

v(m) − v(m−1)

s−1
Bp,q

v(m+1) − v(m)

s−1
Bp,q

ds

ds
(2.82)

for all t ∈ [0, T ]. In order to have inhomogeneous space estimate we derive Lp estimate for v(m+1) −v(m) .
From (2.72) we have

v(m+1) (t) − v(m) (t)
T
0

C2−m ∇v0
T

+C
0

T

+C

v(m)

C2−m v0
T
0

0

L∞

+ v(m−1)
T

s
Bp,q

+C

v(m) + v(m−1)

s
Bp,q

0

s
Bp,q

v(m) · ∇ v(m+1) − v(m)
∇ p(m) − p(m−1)

∇ v(m+1) − v(m)

L∞

L∞

v(m)

0

dt +

Lp

∇v(m)

Lp

+
0

Lp

v(m)

+C

v(m) − v(m−1)

0

+C

T
Lp

Lp

T

v(m−1) − v(m) · ∇v(m)

+

T

∆m+1 v0

Lp

L∞

Lp

Lp

ds

ds

ds

ds

v(m) − v(m−1)

Lp

v(m+1) − v(m)

v(m) − v(m−1)

s−1
Bp,q

ds,

ds

s−1
Bp,q

ds
(2.83)
D. Chae / Euler equations in the Besov spaces

355

where we estimated the pressure term, using (2.80) and the Calderon–Zygmund inequality,
n

∇ p(m) − p(m−1)

(
(
(
vjm) − vjm−1) ∂j vim)

C

Lp

Lp

+

(
(
(
∂i vjm−1) vim) − vim−1)

Lp

i,j=1

C ∇v(m)
C v

(m)

v(m) − v(m−1)

L∞

L∞

+ v

(m−1)

L∞

Lp

v

+ ∇v(m−1)

(m)

−v

(m−1)

L∞

v(m) − v(m−1)

Lp

Lp .

for 1 < p < ∞, where used the Calderon–Zygmund inequality. Adding (2.83) to (2.82) we find
v(m+1) (t) − v(m) (t)
T

s−1
Bp,q

C2−m v0

T
s
Bp,q

+C

v(m)

s
Bp,q

0

v(m) − v(m−1)

s−1
Bp,q

C1 2−m + C1 T sup v(m+1) (t) − v(m) (t)

v(m+1) − v(m)

s−1
Bp,q

ds

s−1
Bp,q

+C

v(m) + v(m−1)

0

s
Bp,q

t∈[0,T ]

+ C1 T sup v(m) (t) − v(m−1) (t)
t∈[0,T ]

s−1
Bp,q ,

for T ∈ (0, T0 ], and the constant C1 = C1 ( v0
if C1 T < 1 , then
2
v(m+1) − v(m)

ds

(2.84)
s
Bp,q ),

where we used the uniform estimate (2.70). Thus,

C1 2−m+1 + 2C1 T v(m) − v(m−1)

s−1
XT

s−1
XT ,

(2.85)

and, from which we deduce
v(m+1) − v(m)

s−1
XT

C2−m

(2.86)

s−
1
if C1 T
, and the sequence {v(m) } converges in XT1 1 for T1 min{T0 , 1/(4C1 )}. From Eqs (2.67),
4
s
s
(2.68) for {v(m) } we find the limit v ∈ XT1 is a solution of the Euler system for initial data v0 ∈ Bp,q .
s ). Moreover this local solutions
This completes the proof of local existence of solution in C([0, T1 ]; Bp,q
satisfy the estimate

sup
t∈[0,T1 ]

v(t)

s
Bp,q

2C0 v0

s
Bp,q

(2.87)

for the constant C0 in (2.70). We now prove uniqueness of solutions satisfying (2.62). Let us consider the
s
s
two solutions (u, p1 ), (v, p2 ) with u, v ∈ C([0, T1 ]; Bp,q ) associated with the initial datum u0 , v0 ∈ Bp,q
respectively, and take the difference between the equations satisfied by them, then we find
∂t [u − v] + (v · ∇)[u − v] = [v − u] · ∇ u − ∇(p1 − p2 ),
div(u − v) = 0,

(u − v)(x, 0) = u0 − v0 .

(2.88)
(2.89)
356

D. Chae / Euler equations in the Besov spaces

By exactly same procedure leading to (2.84) we have
u−v

u0 − v0

s−1
XT

s−1
Bp,q

+ C2 T u − v

(2.90)

s−1
XT

s
s
for sufficiently small T ∈ (0, T2 ], and C2 = C2 ( v0 Bp,q , u0 Bp,q ). We note that the estimate (2.62)
s
in XT for solutions u, v is essential in the derivation of (2.90). This proves the uniqueness of the local
s−
solution in XT 1 for T ∈ (0, T3 ] for T3 = min{T1 , T2 , 1/(2C2 )}. Thus we have finished existence and
s
s
uniqueness of solutions in C([0, T3 ]; Bp,q ) to the system (1.1)–(1.3) for v0 ∈ Bp,q .
Finally, we prove the blow-up criterion. We recall the well known fact that the elliptic system, div v =
0 and curl v = ω implies the relation between the gradient of velocity and the vorticity as

∇v = P(ω) + C3 ω,

(2.91)

where P is a singular integral operator of the Calderon–Zygmund type, and C3 is a constant matrix
˙0
(see, e.g., [18,19]). By the boundedness of the singular integral operator from B∞,∞ into itself [24], and
Proposition 1.1 we estimate
∇v

L∞

C 1 + ∇v
C 1+ ω

˙0
B∞,∞

˙0
B∞,∞

log+ ∇v

log+ v

s−1
Bp,q

s
Bp,q

+1

+1

(2.92)

for s > n/p + 1. Then, substituting (2.92) into (2.64), we obtain
t

v(t)

s
Bp,q

v0

s
Bp,q

+C

ω(s)

˙0
B∞,∞

0

+ 1 log+ v(s)

s
Bp,q

+ 1 v(s)

s
Bp,q

ds.

We finally have by Gronwall’s lemma
t

v(t)

s
Bp,q

v0

s
Bp,q

exp C4 exp C5

ω(s)
0

˙0
B∞,∞

+ 1 ds

(2.93)

for some constants C4 and C5 . The inequality (2.93) implies the “only if” part of the blow-up criterion
in Theorem 1.1 in the super-critical case. The “if" part of the super-critical case follows from the easy
estimates
T

ω(s)
0

˙0
B∞,∞

ds

T sup

ω(s)

0 s T

˙0
B∞,∞

CT sup
0 s T

v(s)

s
Bp,q ,

(2.94)

s−
˙0
where we used the embeddings, Bp,q 1 → L∞ → B∞,∞ for s > n/p + 1. On the other hand, in the
critical case we substitute

∇v

L∞

C ∇v

˙0
B∞,1

C ω

˙0
B∞,1

(2.95)
D. Chae / Euler equations in the Besov spaces

357

˙0
into (2.64) to obtain the “only if” part, where we used the embedding B∞,1 → L∞ , and the fact that our
˙0
singular integral operator P(·) in (2.91) is bounded from B∞,1 into itself. The “if” part of Theorem 1.1
follows also from the easy estimates
T

ω(s)
0

˙0
B∞,1

ds

T sup
0 s T

ω(s)

˙0
B1,∞

CT sup
0 s T

v(s)

n/p+1

Bp,1

,

(2.96)

n/p
˙ n/p
˙0
where we used the embeddings, Bp,1 → Bp,1 → B∞,1 for p ∈ (1, ∞). This completes the proof of
Theorem 1.1.

Acknowledgements
The author would like to thank deeply to Professor R. Temam for his careful reading of the manuscript
and corrections. This research is supported partially by the grant no. 2000-2-10200-002-5 from the basic
research program of the KOSEF.
References
[1] H. Bahouri and J.-Y. Chemin, Equations de transport relatives à des champs de vecteurs non-lipshitziens et mé canique
des fluides, Arch. Rational Mech. Anal. 127 (1994), 159–199.
[2] H. Bahouri and B. Dehman, Remarques sur l’apparition de singularités dans les écoulements Eulériens incompressibles à
donnée initiale Höldérienne, J. Math. Pures Appl. 73 (1994), 335–346.
[3] J.T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm.
Math. Phys. 94 (1984), 61–66.
[4] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1970.
[5] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann.
École Norm. Sup. 14 (1981), 209–246.
[6] M. Cannone, Ondelettes, Paraproduits et Navier–Stokes, Diderot, Paris, 1995.
[7] M. Cannone, Nombres de Reynolds, stabilité et Navier–Stokes, Banach Center Publication, 1999.
[8] D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel–Lizorkin spaces, in: Tosio Kato’s Method
and Principle for Evolution Equations in Mathematical Physics, A Proceedings of the workshop held at Hokkaido University, Japan, Yurinsha, June 27–29, 2001, Tokyo 2002, pp. 42–57; See also: Local existence and blow-up criterion for
the Euler equations in the Besov space, RIM-GARC, Seoul National University, Korea, Preprint No. 8, June 2001.
[9] J.-Y. Chemin, Régularité des trajectoires des particules d’un fluide incompressible remplissant l’espace, J. Math. Pures
Appl. 71(5) (1992), 407–417.
[10] J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford, 1998.
[11] P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler
equations, Comm. Partial Differential Equations 21(3–4) (1996), 559–571.
[12] B. Jawerth, Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand. 40 (1977), 94–104.
[13] T. Kato, Nonstationary flows of viscous and ideal fluids in R3 , J. Funct. Anal. 9 (1972), 296–305.
[14] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math. 41
(1988), 891–907.
[15] T. Kato and G. Ponce, Well posedness of the Euler and Navier–Stokes equations in Lebesgue spaces Ls (R2 ), Rev. Mat.
p
Iberoamericana 2 (1986), 73–88.
[16] H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations,
Comm. Math. Phys. 214 (2000), 191–200.
[17] L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik homogener unzusammendrückbarer, reibunglosser
Flüssikeiten und die Helmholtzschen Wirbelsalitze, Math. Z. 23 (1925), 89–154; 26 (1927), 193–323, 387–415; 32 (1930),
608–725.
[18] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), 187–
220.
358

D. Chae / Euler equations in the Besov spaces

[19] A. Majda, Mathematical Theory of Fluid Mechanics, Princeton University Graduate Course Lecture Note, 1986.
[20] J. Peetre, New Thoughts on Besov Spaces, Duke University Press, 1976.
[21] E.M. Stein, Harmonic Analysis; Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical
Series, Vol. 43, Princeton University Press, 1993.
[22] R. Temam, On the Euler equations of incompressible flows, J. Funct. Anal. 20 (1975), 32–43.
[23] R. Temam, Local existence of C ∞ solutions of the Euler equations of incompressible perfect fluids, in: Proc. Conf. on
Turblence and Navier–Stokes Equations, Lecture Notes in Math., Vol. 565, Springer-Verlag, New York, 1976.
[24] H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992.
[25] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197–214.
[26] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm.
Sup. (4) 32 (1999), 769–812.

More Related Content

What's hot

Congruence Lattices of A Finite Uniform Lattices
Congruence Lattices of A Finite Uniform LatticesCongruence Lattices of A Finite Uniform Lattices
Congruence Lattices of A Finite Uniform Latticesinventionjournals
 
Reciprocity Law For Flat Conformal Metrics With Conical Singularities
Reciprocity Law For Flat Conformal Metrics With Conical SingularitiesReciprocity Law For Flat Conformal Metrics With Conical Singularities
Reciprocity Law For Flat Conformal Metrics With Conical SingularitiesLukasz Obara
 
Functionalanalysis ejemplos infinitos
Functionalanalysis ejemplos infinitosFunctionalanalysis ejemplos infinitos
Functionalanalysis ejemplos infinitosSualín Rojas
 
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3SEENET-MTP
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3SEENET-MTP
 
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...SEENET-MTP
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgsfoxtrot jp R
 
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...BRNSS Publication Hub
 
Transport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsTransport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsDaisuke Satow
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Lake Como School of Advanced Studies
 
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3SEENET-MTP
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Probabilistic diameter and its properties.
Probabilistic diameter and its properties.Probabilistic diameter and its properties.
Probabilistic diameter and its properties.inventionjournals
 

What's hot (20)

Congruence Lattices of A Finite Uniform Lattices
Congruence Lattices of A Finite Uniform LatticesCongruence Lattices of A Finite Uniform Lattices
Congruence Lattices of A Finite Uniform Lattices
 
Reciprocity Law For Flat Conformal Metrics With Conical Singularities
Reciprocity Law For Flat Conformal Metrics With Conical SingularitiesReciprocity Law For Flat Conformal Metrics With Conical Singularities
Reciprocity Law For Flat Conformal Metrics With Conical Singularities
 
Functionalanalysis ejemplos infinitos
Functionalanalysis ejemplos infinitosFunctionalanalysis ejemplos infinitos
Functionalanalysis ejemplos infinitos
 
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
 
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
 
Transport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsTransport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fields
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
Stability Study of Stationary Solutions of The Viscous Burgers Equation
Stability Study of Stationary Solutions of The Viscous Burgers EquationStability Study of Stationary Solutions of The Viscous Burgers Equation
Stability Study of Stationary Solutions of The Viscous Burgers Equation
 
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
logGaussianField
logGaussianFieldlogGaussianField
logGaussianField
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Prob2
Prob2Prob2
Prob2
 
Polytopes inside polytopes
Polytopes inside polytopesPolytopes inside polytopes
Polytopes inside polytopes
 
Probabilistic diameter and its properties.
Probabilistic diameter and its properties.Probabilistic diameter and its properties.
Probabilistic diameter and its properties.
 

Viewers also liked

Disaster UTTARAKHAND
Disaster UTTARAKHANDDisaster UTTARAKHAND
Disaster UTTARAKHANDAnshul Mittal
 
Disaster UTTARAKHAND
Disaster UTTARAKHANDDisaster UTTARAKHAND
Disaster UTTARAKHANDAnshul Mittal
 
Разработка кросплатформенных приложений
Разработка кросплатформенных приложенийРазработка кросплатформенных приложений
Разработка кросплатформенных приложенийbarbariska89
 
Customer Support Executive
Customer Support ExecutiveCustomer Support Executive
Customer Support Executivekrisshnac86
 
Time management assignment
Time management assignmentTime management assignment
Time management assignmentyoungjunem
 
Invokers studios game_prez_v3
Invokers studios game_prez_v3Invokers studios game_prez_v3
Invokers studios game_prez_v3Alexey Surkov
 
Time management assignment
Time management assignmentTime management assignment
Time management assignmentyoungjunem
 
Kitartas az mlm ben
Kitartas az mlm benKitartas az mlm ben
Kitartas az mlm benGyozo Fodor
 
Word cloud maarten bokhoven
Word cloud maarten bokhovenWord cloud maarten bokhoven
Word cloud maarten bokhovenMaarten Bokhoven
 
Torta al cioccolato
Torta al cioccolato Torta al cioccolato
Torta al cioccolato walter_1998
 
Pasta al pesto con zucchine
 Pasta al pesto con zucchine Pasta al pesto con zucchine
Pasta al pesto con zucchinemanuelnicoletti
 
Using IBM Domino Data in IBM Connections – a real life story
Using IBM Domino Data in IBM Connections – a real life storyUsing IBM Domino Data in IBM Connections – a real life story
Using IBM Domino Data in IBM Connections – a real life storyLetsConnect
 

Viewers also liked (18)

Disaster UTTARAKHAND
Disaster UTTARAKHANDDisaster UTTARAKHAND
Disaster UTTARAKHAND
 
Disaster UTTARAKHAND
Disaster UTTARAKHANDDisaster UTTARAKHAND
Disaster UTTARAKHAND
 
Разработка кросплатформенных приложений
Разработка кросплатформенных приложенийРазработка кросплатформенных приложений
Разработка кросплатформенных приложений
 
Pengecoran
PengecoranPengecoran
Pengecoran
 
Customer Support Executive
Customer Support ExecutiveCustomer Support Executive
Customer Support Executive
 
Time management assignment
Time management assignmentTime management assignment
Time management assignment
 
Invokers studios game_prez_v3
Invokers studios game_prez_v3Invokers studios game_prez_v3
Invokers studios game_prez_v3
 
Time management assignment
Time management assignmentTime management assignment
Time management assignment
 
Business services
Business servicesBusiness services
Business services
 
Kitartas az mlm ben
Kitartas az mlm benKitartas az mlm ben
Kitartas az mlm ben
 
Word cloud maarten bokhoven
Word cloud maarten bokhovenWord cloud maarten bokhoven
Word cloud maarten bokhoven
 
Torta al cioccolato
Torta al cioccolato Torta al cioccolato
Torta al cioccolato
 
Seminario storytelling
Seminario storytellingSeminario storytelling
Seminario storytelling
 
Pasta al pesto con zucchine
 Pasta al pesto con zucchine Pasta al pesto con zucchine
Pasta al pesto con zucchine
 
Ricetta curà
Ricetta curàRicetta curà
Ricetta curà
 
Бие даалт-2
Бие даалт-2Бие даалт-2
Бие даалт-2
 
Abc test file
Abc test fileAbc test file
Abc test file
 
Using IBM Domino Data in IBM Connections – a real life story
Using IBM Domino Data in IBM Connections – a real life storyUsing IBM Domino Data in IBM Connections – a real life story
Using IBM Domino Data in IBM Connections – a real life story
 

Similar to 36b1995264955a41dc1897b7a4dce260

590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 
Imc2020 day1&amp;2 problems&amp;solutions
Imc2020 day1&amp;2 problems&amp;solutionsImc2020 day1&amp;2 problems&amp;solutions
Imc2020 day1&amp;2 problems&amp;solutionsChristos Loizos
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Alberto Maspero
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms IiSri Prasanna
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Mit2 092 f09_lec07
Mit2 092 f09_lec07Mit2 092 f09_lec07
Mit2 092 f09_lec07Rahman Hakim
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionLilyana Vankova
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsijtsrd
 
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIALEXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIALJournal For Research
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2eSpringer
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanicsSpringer
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdfTriPham86
 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Baasilroy
 
Omiros' talk on the Bernoulli factory problem
Omiros' talk on the  Bernoulli factory problemOmiros' talk on the  Bernoulli factory problem
Omiros' talk on the Bernoulli factory problemBigMC
 

Similar to 36b1995264955a41dc1897b7a4dce260 (20)

590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
Imc2020 day1&amp;2 problems&amp;solutions
Imc2020 day1&amp;2 problems&amp;solutionsImc2020 day1&amp;2 problems&amp;solutions
Imc2020 day1&amp;2 problems&amp;solutions
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
 
Timoteo carletti stefano marmi
Timoteo carletti stefano marmiTimoteo carletti stefano marmi
Timoteo carletti stefano marmi
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
C1061417
C1061417C1061417
C1061417
 
Mit2 092 f09_lec07
Mit2 092 f09_lec07Mit2 092 f09_lec07
Mit2 092 f09_lec07
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last version
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
 
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIALEXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM TRIGONOMETRIC POLYNOMIAL
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdf
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
 
Omiros' talk on the Bernoulli factory problem
Omiros' talk on the  Bernoulli factory problemOmiros' talk on the  Bernoulli factory problem
Omiros' talk on the Bernoulli factory problem
 

Recently uploaded

BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Recently uploaded (20)

BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

36b1995264955a41dc1897b7a4dce260

  • 1. Asymptotic Analysis 38 (2004) 339–358 IOS Press 339 Local existence and blow-up criterion for the Euler equations in the Besov spaces Dongho Chae Department of Mathematics, Seoul National University, Seoul 151-742, Korea E-mail: dhchae@math.snu.ac.kr Abstract. We prove the local in time existence and a blow-up criterion of solutions in the Besov spaces for the Euler equations of inviscid incompressible fluid flows in Rn , n 2. As a corollary we obtain the persistence of Besov space regularity for the solutions of the 2-D Euler equations with initial velocity belonging to the Besov spaces. For the proof of the results we establish a logarithmic inequality of the Beale–Kato–Majda type and a Moser type of inequality in the Besov spaces. 1. Introduction and main results We are concerned by the Euler equations for homogeneous incompressible fluid flows. ∂v + (v · ∇)v = −∇p, (x, t) ∈ Rn × (0, ∞), ∂t div v = 0, (x, t) ∈ Rn × (0, ∞), v(x, 0) = v0 (x), x ∈ Rn , (1.1) (1.2) (1.3) where v = (v1 , . . . , vn ), vj = vj (x, t), j = 1, . . . , n, is the velocity of the fluid, p = p(x, t) is the scalar pressure, and v0 is the given initial velocity satisfying div v0 = 0. Given v0 ∈ H m (Rn ), for integer m > n + 1, Kato proved the local in time existence and uniqueness of solution in the class 2 C([0, T ]; H m (Rn )), where T = T ( v0 H m ) [13]. Temam extended this result to bounded domains, in H m (Ω) and in W m,p (Ω) (see [22,23]). Later, Kato and Ponce obtained a local existence result in the more general Sobolev space, W s,p (Rn ) = (1 − ∆)−s/2 Lp (Rn ) for real number s > n/p + 1 [14]. One of the most outstanding open problems in the mathematical fluid mechanics is to prove the global in time continuation of the local solution, or to find an initial data v0 ∈ H m (Rn ) such that the associated local solution blows up in finite time for n = 3. One of the most significant achievements in this direction is the Beale–Kato–Majda criterion [3] for the blow-up of solutions, which states that lim sup v(t) t T∗ =∞ (1.4) ds = ∞, (1.5) Hm if and only if T∗ 0 ω(s) L∞ 0921-7134/04/$17.00  2004 – IOS Press and the authors. All rights reserved
  • 2. 340 D. Chae / Euler equations in the Besov spaces where ω = curl v is the vorticity of the flow. Recently this criterion has been refined by Kozono and Taniuch [16], replacing the L∞ norm of the vorticity by the BMO norm. (We note L∞ → BMO. See, e.g., [21] for a detailed description of the space BMO.) In the Hölder space, Lichtenstein [17], Chemin [10] proved the local existence of solution. Bahouri and Dehman [2] also obtained the blow-up criterion for the local solution in the Hölder space. We also mention that there is a geometric type of blow-up criterion, using the deep structure of the nonlinear term of the Euler equation [11]. For n = 2 it is well-known that the local solution can be continued for all time, and one of the main questions in this case is persistence problem of the regularity of initial data. Kato and Ponce proved the persistence of the Sobolev space regularity for the super critical Sobolev space initial data, i.e., v0 ∈ W s,p (R2 ) with s > 2/p+1 [15]. All the above results are concerned only in the super-critical cases, namely s > n/p+1. In the current paper we study the initial value problem for the initial data belonging to the both supers critical and critical Besov spaces, namely v0 ∈ Bp,q , s > n/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞], or s = n/p + 1, q = 1, and obtain the blow-up criterion in the Besov space as well as the local in time existence of solutions. Our criterion is sharper than the Beale–Kato–Majda’s and the Kozono– ˙0 Taniuch’s result, in the sense that the BMO norm of vorticity is replaced by the B∞,∞ norm, which is 0 s ˙ weaker than the BMO norm (remember BMO → B∞,∞ ). We also recall the relation, B2,2 = H s (Rn ) between the Besov space and the fractional order Sobolev space. As a corollary of our criterion we prove the global in time existence and persistence of Besov space regularity in the 2-dimensional Euler s equations for v0 ∈ Bp,q , s > 2/p + 1. We mention that Vishik obtained the global well-posedness of the 2-dimensional Euler equations in the critical Besov space [25,26]. We also mention that in the case of the Navier–Stokes equations in the Besov spaces there are many studies by Cannone and his collaborators (see [6,7] and references therein). In order to prove our blow-up criterion we establish the following logarithmic Besov space inequality with features similar to the logarithmic Sobolev inequality in [3]. Proposition 1.1. Let s > n/p with p ∈ (1, ∞), q ∈ [1, ∞]. There exists a constant C such that for all s f ∈ Bp,q the following inequality holds: f L∞ C 1+ f ˙0 B∞,∞ log+ f s Bp,q +1 . (1.6) The following is our main theorem. Theorem 1.1 (Main theorem). (i) Local in time existence: Let s > n/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞], or s = n/p + 1 s with p ∈ (1, ∞), q = 1. Suppose v0 ∈ Bp,q , satisfying div v0 = 0, is given. Then, their exists s s T = T ( v0 Bp,q ) such that a unique solution v ∈ C([0, T ]; Bp,q ) of the system (1.1)–(1.3) exists. (ii) Blow-up criterion: (A) Super-critical case: Let s > n/p + 1, p ∈ (1, ∞), q ∈ [1, ∞]. Then, the local in time solution s s v ∈ C([0, T ]; Bp,q ) blows up at T∗ > T in Bp,q , namely lim sup v(t) t T∗ =∞ (1.7) dt = ∞. (1.8) s Bp,q if and only if T∗ 0 ω(t) ˙0 B∞,∞
  • 3. D. Chae / Euler equations in the Besov spaces 341 n/p+1 (B) Critical case: Let p ∈ (1, ∞). Then, the local in time solution v ∈ C([0, T ]; Bp,1 up at T∗ > T in n/p+1 Bp,1 , lim sup v(t) t T∗ ) blows namely n/p+1 Bp,1 =∞ (1.9) if and only if T∗ ω(t) 0 ˙0 B∞,1 dt = ∞. (1.10) s ˙0 Remark 1.2. Since B2,2 = H s (Rn ), and L∞ → BMO → B∞,∞ , the above theorem improves the original Beale–Kato–Majda criterion [3], and its refined version by Kozono and Taniuchi [16] for the s case of H s (Rn ). On the other hand, since B∞,∞ = C 0,s (Rn ), we find that the result of blow-up criterion in the Hölder space by Bahouri and Dehman [2] corresponds to the extreme case of Theorem 1.1(ii)(A). If n = 2 the conservation of vorticity, ω(t) L∞ = ω0 L∞ for all t > 0, combined with the embeds− ˙0 ding Bp,q 1 → L∞ (R2 ) → B∞,∞ for s > 1 (see Remark 2.1 below), implies immediately the following corollary. Corollary 1.1 (Persistence of the Besov space regularity). Let s > 2/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞]. s Suppose v0 ∈ Bp,q , satisfying div v0 = 0, is given. Then there exists a unique solution v ∈ C([0, ∞) : s ) to the system (1.1)–(1.3) with n = 2. Bp,q s Remark 1.3. In the case p = q = 2, since B2,2 = H s (R2 ), the Lebesgue space, we recover the result by Kato–Ponce [15]. The results in this paper were announced in [8]. 2. Proof of the main results We first set our notations, and recall definitions on the Besov spaces. We follow [20,24]. Let S be the ˆ Schwartz class of rapidly decreasing functions. Given f ∈ S its Fourier transform F (f ) = f is defined by ˆ f (ξ) = 1 (2π)n/2 Rn e−ix·ξ f (x) dx. We consider ϕ ∈ S satisfying Supp ϕ ⊂ {ξ ∈ Rn | 1 |ξ| 2}, and ϕ(ξ) > 0 if 2 < |ξ| < 3 . Setting ˆ ˆ 2 3 2 −j ξ) (in other words, ϕ (x) = 2jn ϕ(2j x)), we can adjust the normalization constant in front ϕj = ϕ(2 ˆ ˆ j of ϕ so that (see, e.g., [4, Lemma 6.1.7]) ˆ ϕj (ξ) = 1 ˆ j∈Z ∀ξ ∈ Rn {0}.
  • 4. 342 D. Chae / Euler equations in the Besov spaces Given k ∈ Z, we define the function Sk ∈ S by its Fourier transform Sk (ξ) = 1 − ϕj (ξ). ˆ j k+1 ˆ In particular we set S−1 (ξ) = Φ(ξ). We observe Supp ϕj ∩ Supp ϕj = ∅ ˆ ˆ if |j − j | 2. (2.11) Let s ∈ R, p, q ∈ [0, ∞]. Given f ∈ S , we denote ∆j f = ϕj ∗ f , and then the homogeneous Besov norm f B˙ is defined by s p,q      f ˙s Bp,q = ∞ 1/q 2jqs ϕj ∗ f −∞ q Lp if q ∈ [1, ∞),   sup 2js ϕ ∗ f p   j L if q = ∞. j ˙s The homogeneous Besov space Bp,q is a semi-normed space with the semi-norm given by · s s > 0, p, q ∈ [0, ∞] we define the inhomogeneous Besov space norm f Bp,q of f ∈ S as f s Bp,q = f Lp + f · s Bp,q (see, e.g., [4,20, ˆ Lemma 2.1 (Bernstein’s lemma). Assume that f ∈ Lp , 1 p ∞, and Supp f ⊂ {2j−2 then there exists a constant Ck such that the following inequality holds Dkf Lp For ˙s Bp,q . The inhomogeneous Besov space is a Banach space equipped with the norm, 24]). We now recall the following lemma [10]. − Ck 1 2jk f ˙s Bp,q . Ck 2jk f Lp |ξ| < 2j }, (2.12) Lp . As an immediate corollary of the above lemma we have the equivalence of norms, Dkf ˙s Bp,q ∼ f (2.13) ˙ s+k Bp,q . We are now ready to prove Proposition 1.1. Proof of Proposition 1.1. We decompose f (x) = S−N ∗ f (x) + ∆j f (x) + |j|<N ∆j f (x) = {1} + {2} + {3}, (2.14) j N and estimate the first term as {1} S−N Lp/(p−1) f Lp C2−N n/p f Lp , (2.15)
  • 5. D. Chae / Euler equations in the Besov spaces 343 using simply the Hölder inequality. The estimate of the second term is immediate. ∆j f {2} CN f L∞ |j|<N (2.16) ˙0 B∞,∞ . For the third term we have ∆j f {3} 2nj/p ∆j f C L∞ j N Lp j N     2sjq ∆j f q p  L    j N    1/q −(s−n/p)j 2−(s−n/p)jq/(q−1) (q−1)/q if q ∈ (1, ∞), j N sup 2−(s−n/p)j C f Lp 2 j N 2sj ∆j f Lp j N  j N      sup 2sj ∆ f p  2−(s−n/p)j  j L  j N 2sj ∆j f = if q = 1, if q = ∞ j N ˙s Bp,q 2 −(s−n/p)N (2.17) . Combining (2.15), (2.16), we obtain f C 2−aN f L∞ s Bp,q +N f ˙0 B∞,∞ , (2.18) where we set a = min s − n n 1 . , , p p log 2 Choosing N= log+ f s Bp,q a log 2 +1 , we finally have (1.6). Remark 2.1. If we decompose f (x) = S−1 ∗ f (x) + ∆j f (x) = {I} + {II}, j 0 and using the similar estimates to (2.15), (2.17) for {I} and {II} respectively, we have immediately f L∞ C f s Bp,q (2.19) for s > n/p with p, q ∈ [1, ∞], or s = n/p with p ∈ [1, ∞], q = 1. This corresponds to the Sobolev embedding in the Besov space version.
  • 6. 344 D. Chae / Euler equations in the Besov spaces Next, we will prove the following Moser type of inequality for the Besov spaces. Lemma 2.2. Let s > 0, q ∈ [1, ∞], then there exists a constant C such that the following inequalities hold fg C f ˙s Bp,q Lp1 g ˙s Bp2 ,q + g Lr1 f Lr1 f (2.20) ˙s Br2 ,q for the homogeneous Besov space, and fg C f s Bp,q Lp1 g s Bp2 ,q + g (2.21) s Br2 ,q for the inhomogeneous Besov space respectively, where p1 , r1 ∈ [1, ∞] such that 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2 . Proof. We use Bony’s formula for paraproduct of two functions f g = Tf g + Tg f + R(f , g), (2.22) where Sj−2 f ∆j g, Tf g = Sj−2 g∆j f , Tg f = j (2.23) j and ∆i f ∆j g. R(f , g) = (2.24) |i−j| 1 From (2.10) we infer that Supp F (Sj −2 f ∆j g) ⊂ 2j −2 and ∆j (Sj −2 f ∆j g) = 0 if |j − j | ∆j (f g) = |ξ| 2 j +1 , 4. Thus we have ∆j (Sj −2 f ∆j g) + |j−j | 3 ∆j (Sj −2 g∆j ∆j (∆i f ∆j g) f) + |j−j | 3 |i −j | 1, max{i ,j } j−3 = I + II + III (2.25) Now we observe, thanks to Hölders’ and Young’s inequalities I sup Sj −2 f Lp Lp1 ∆j g |j−j | 3 j C f Lp2 Φ L1 f ∆j g Lp1 Lp2 |j−j | 3 ∆j g Lp1 |j−j | 3 Lp2 , (2.26)
  • 7. D. Chae / Euler equations in the Besov spaces 345 and similarly II Lp C g ∆j f Lr1 Lr2 . (2.27) ∆j g Lp2 . (2.28) |j−j | 3 On the other hand, III C Lp f j Lp1 j−5 Thus, by the Minkowski inequality fg ˙s Bp,q 2qsj ∆j (f g) = j∈Z q Lp 1/q 1/q f 2qsj ∆j g Lp1 q Lp2 j∈Z |j−j | 3 1/q + g q Lr2 2qsj ∆j f Lr1 1/q + f 2qsj ∆j g Lp1 j∈Z |j−j | 3 j∈Z j q Lp2 j−5 = {1} + {2} + {3}. (2.29) Since, in general, 3 q Lp2 2qsj ∆j h 2−qks = j∈Z |j−j | 3 2qs(j+k) ∆j+k h q Lp2 j∈Z k=−3 2qsj ∆j h C q Lp2 , (2.30) j∈Z we have {1} + {2} C f Lp1 g ˙s Bp2 ,q +C g Lr1 f (2.31) ˙s Br2 ,q . We estimate the third term as {3} = f 2qs(j−j ) 2j s ∆j g Lp1 j∈Z j = f −kqs k −5 = f k −5 2 ∆j+k g Lp2 2jqs ∆j g q Lp2 (j+k )s q 1/q j∈Z 2−kqs Lp1 1/q q j−5 2 Lp1 Lp2 1/q 1/q j∈Z C f Lp1 g ˙s Bp2 ,q . (2.32)
  • 8. 346 D. Chae / Euler equations in the Besov spaces We have proved (2.20). The inhomogeneous inequality (2.21), is obtained by adding the obvious estimate fg 1 2 Lp f Lp1 g Lp2 + g f Lr1 (2.33) Lr2 to (2.20). We are now ready to prove our main theorem. Proof of Theorem 1.1. We first derive a priori estimate for solutions of the system (1.1)–(1.3). Taking operation, ∆j on the both sides of (1.1), we have ∂t ∆j v + (Sj−2 v · ∇)∆j v = (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v − ∆j ∇p. Since div Sj−2 v = 0, we deduce ∆j v(t) t ∆j v0 Lp Lp + 0 (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v (s) Lp + ∆j ∇p Lp ds. (2.34) Thus, by the Minkowski inequality we obtain t v(t) s Bp,q v0 s Bp,q + t ∇p s Bp,q ds 2jqs (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v (s) + 0 0 j∈Z q Lp 1/q ds. (2.35) We will now prove estimate 2 jqs (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v j∈Z q Lp 1/q C ∇v L∞ v (2.36) s Bp,q . For this we follow closely the argument in [25] (see also [1,9]). Using Bony’s paraproduct formula [5], we write n (Sj−2 v · ∇)∆j vk − ∆j (v · ∇)vk = − n ∆j T∂i vk vi + i=1 n [Tvi ∂i , ∆j ]vk − i=1 Tvi −Sj−2 vi ∂i ∆j vk i=1 n − ∆j R(vi , ∂i vk ) − R(Sj−2 vi , ∆j ∂i vk ) i=1 = I + II + III + IV. (2.37) We estimate term by term of (2.27). From the definition of paraproduct n ∆j Sj −2 (∂i vk )∆j vi . I= i=1 j (2.38)
  • 9. D. Chae / Euler equations in the Besov spaces 347 As in the proof of Lemma 2.2 we observe Supp F (Sj −2 ∂i vk ∆j vi ) ⊂ 2j −3 and ∆j (Sj −2 ∂i vk ∆j ) = 0 if |j − j | |ξ| 2 j +1 , (2.39) 4. Thus, we can reduce the terms in the series n ∆j Sj −2 (∂i vk )∆j vi . I= (2.40) i=1 |j−j | 3 Thanks to Young’s inequality for convolutions we estimate n I Lp n C Sj −2 ∂i vk L∞ ∆j v ∆j vi sup Sj −2 ∂i vk ∆j vi Lp . ∇v L∞ C i=1 |j−j | 3 j i=1 |j−j | 3 C Lp L∞ Lp 0 (2.41) |j−j | 3 For the estimate of the second term of (2.37) we use the integral representation formula for the convolution. By the similar argument as the above we first note [Sj −2 vi , ∆j ]∂i ∆j vk = 0 if |j − j | 4. (2.42) Thus, we have n II = − [Sj −2 vi , ∆j ]∂i ∆j vk i=1 |j−j | 3 n =− 2jn i=1 |j−j | 3 Rn ϕ 2j (x − y) Sj −2 vi (x) − Sj −2 vi (y) ∂i ∆j vk (y) dy n =− 2j (n+1) i=1 |j−j | 3 Rn ∂i ϕ 2j (x − y) Sj −2 vi (x) − Sj −2 vi (y) ∆j vk (y) dy n =− 2j (n+1) i=1 |j−j | 3 Rn ∂i ϕ 2j (x − y) 1 × n =− i=1 |j−j | 3 0 1 Rn ∂i ϕ(z) 0 (x − y) · ∇ (Sj −2 vi ) x + τ (y − x) dτ ∆j vk (y) dy (z · ∇)(Sj −2 vi ) x − τ 2−j z ∆j vk x − 2−j z dz, (2.43)
  • 10. 348 D. Chae / Euler equations in the Besov spaces where we used div Sj −2 v = 0 in the integration by part in the third line from the top. By the Minkowski inequality we have n II n C Lp Sj −2 ∂m vi ∆j vk L∞ Lp ∇v C i=1 m=1 |j−j | 3 L∞ ∆j v Lp . (2.44) |j−j | 3 For the estimate of the third term of (2.37) we first observe n j −1 n Sj −2 (vi − Sj−2vi )∂i ∆j ∆j vk = III = i=1 |j−j | 1 ∆m vi ∂i ∆j ∆j vk Sj − 2 i=1 |j−j | 1 m=j−1 n Sj −2 (∆j−1 vi + ∆j vi )∂i ∆j ∆j vk . = (2.45) i=1 |j−j | 1 Using (2.12), we estimate n III ∆j−1 vi Lp L∞ + ∆j vi ∂i ∆j ∆j vk Lp + 2−j ∆j ∇vi L∞ L∞ i=1 |j−j | 1 n 2−j+1 ∆j−1 ∇vi C L∞ · 2j ∆j ∆j vk Lp i=1 |j−j | 1 ∇v C L∞ ∆j v (2.46) Lp . |j−j | 1 For the estimate of the fourth term of (2.28) we decompose n n ∆j ∂i R(vi − Sj−2 vi , vk ) + IV = i=1 ∆j R(Sj−2 vi , ∂i vk ) − R(Sj−2 vi , ∆j ∂i vk ) i=1 = IV(1) + IV(2). Since n i=1 ∂i ∆j (2.47) (vi − Sj−2 vi ) = 0, we have n ∂i ∆j IV(1) = ∆j (vi − Sj−2 vi )∆j vk |j −j | 1 i=1 n ∆j = i=1 (∆j vi − Sj−2 ∆j vi )∆j ∂i vk . |j −j | 1 j j−3 (2.48)
  • 11. D. Chae / Euler equations in the Besov spaces 349 Hence, we estimate n IV(1) ∆j vi C Lp + Sj ∆j vi Lp ∆j vi Lp ∆j ∂i vk C L∞ C Lp j−3 |j −j | 1 j ∆j ∂i vk L∞ j−3 |j −j | 1 i=1 j ∇v j L∞ ∆j v (2.49) Lp . j−5 On the other hand, we note n ∆j (∆j Sj−2 vi )∆j ∂i vk − (∆j Sj−2 vi )(∆j ∆j ∂i vk ) IV(2) = i=1 |j −j | 1 n [∆j , ∆j Sj−2 vi ]∆j ∂i vk . = i=1 j−1 j j−3 |j −j | 1 Using the integral representation formula for the convolution as previously, we write [∆j , ∆j Sj−2 vi ]∆j ∂i vk (x) = 2jn Rn = 2j (n+1) = 2j (n+1) =− ∂i ϕ 2j (x − y) ∆j Sj−2 vi (y) − ∆j Sj−2 vi (x) ∆j ∂i vk (y) dy Rn Rn ∂i ϕ 2j (x − y) ∆j Sj−2 vi (y) − ∆j Sj−2 vi (x) ∆j vk (y) dy 1 Rn 1 ∂i ϕ 2j (x − y) ∂i ϕ(z) 0 0 dτ (y − x) · ∇ (∆j Sj−2 vi ) x + τ (y − x) ∆j vk (y) dy dτ (z · ∇)(∆j Sj−2 vi ) x − 2−j τ z ∆j vk x − 2−j z dz. (2.50) Hence, n [∆j , ∆j Sj−2 vi ]∆j ∂i vk Lp ∆j Sj−2 ∂m vi C L∞ ∆j vk Lp m=1 C ∇v L∞ ∆j v Lp , (2.51) and IV(2) Lp C ∇v ∆j vk L∞ (2.52) Lp . |j−j | 5 Summing up the estimates (2.41), (2.44), (2.46),(2.49) and (2.52), we obtain (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v Lp C ∇v ∆j v L∞ |j−j | 5 Lp ∆j v + j >j−5 Lp . (2.53)
  • 12. 350 D. Chae / Euler equations in the Besov spaces Thus, by the Minkowski inequality 2 jqs 1/q q Lp (Sj−2 v · ∇)∆j v − ∆j (v · ∇)v j∈Z 1/q C ∇v 2jqs ∆j v L∞ q Lp 1/q + C ∇v 2jqs ∆j v L∞ j∈Z |j−j | 5 j∈Z j q Lp j−5 = {1} + {2}. (2.54) By the same argument as in (2.29)–(2.32) we obtain {1} C ∇v L∞ {2} C ∇v L∞ ˙s Bp,q , v (2.55) and 2(j−j )qs 2j s ∆j v j∈Z j Lp q 1/q C ∇v L∞ v ˙s Bp,q . (2.56) j−5 We have finished the proof of (2.36). Next, we estimate the pressure term in (2.35). We recall the wellknown representation of the pressure, n p= (−∆)−1 ∂i vj ∂j vi . (2.57) i,j=1 Thus, n n −1 ∂i ∂j (−∆) ∂k vl ∂l vk = ∂i ∂j p = Ri Rj (∂k vl ∂l vk ), k ,l=1 (2.58) k ,l=1 where Ri ’s are the n-dimensional Riesz transforms (see, e.g., [21]). Thus, using the norm equivalence f B s ∼ Df Bp,q in (2.13), and the boundedness property of the singular integral operator from ˙ ˙ s−1 p,q s into itself [12], and (2.20), we have ˙ B p ,q n ∇p ˙s Bp,q n C ∂i ∂j p ˙ s−1 Bp,q i,j=1 C ∇v n Ri Rj (∂k vl ∂l vk ) C i,j ,k ,l=1 L∞ ∇v ˙ s−1 Bp,q C ∇v ˙ s−1 Bp,q C ∂k vl ∂l vk ˙ s−1 Bp,q k ,l=1 L∞ v ˙s Bp,q . (2.59) ds. (2.60) Substituting (2.59) and (2.36) into (2.35), we have t v(t) ˙s Bp,q v0 ˙s Bp,q +C 0 ∇v(s) L∞ v(s) ˙s Bp,q
  • 13. D. Chae / Euler equations in the Besov spaces 351 This is our basic estimate in terms of the homogeneous Besov space semi-norm. In order to have similar estimate in terms of the inhomogeneous Besov norm we derive the Lp estimate of solutions. From (1.1), we obtain immediately t v(t) v0 Lp Lp ∇p(s) + 0 Lp ds. (2.61) On the other hand, by the Calderon–Zygmund inequality n ∇p ∇∂j (−∆)−1 (v · ∇)vj Lp C (v · ∇)v Lp Lp C ∇v v L∞ (2.62) Lp j=1 for 1 < p < ∞. Substituting (2.62) into (2.61), we find t v(t) v0 Lp Lp +C 0 ∇v(s) L∞ v(s) ds. Lp (2.63) Adding (2.63) to (2.60), we obtain the inhomogeneous Besov space estimate; t v(t) v0 s Bp,q s Bp,q +C 0 ∇v(s) L∞ v(s) s Bp,q ds. (2.64) s− This, combined with the embedding, Bp,q 1 (Rn ) → L∞ (Rn ), for s > n/p + 1 with p ∈ (1, ∞), q ∈ [1, ∞], or s = n/p + 1 with p ∈ (1, ∞), q = 1 (see Remark 2.1) yields the estimate t v(t) v0 s Bp,q s Bp,q +C 0 ∇v(s) t s−1 Bp,q v(s) s Bp,q ds v0 s Bp,q +C v(s) 0 2 s Bp,q ds. (2.65) This completes the derivation of a priori estimate for the solutions of the system (1.1)–(1.3). We now set s s XT := C [0, T ]; Bp,q . Then, (2.65) implies v v0 s XT s Bp,q + CT v 2 (2.66) s XT In order to establish the local in time existence of solution we construct sequence {v(m) }, defined recursively by solving the linear transport equations ∂t v(m) + v(m−1) · ∇ v(m) = −∇p(m−1) , div v(m) = 0, v(m) (x, 0) = Sm v0 (x), (2.67) for m = 1, 2, . . . , where we set n p(m) = ( ( (−∆)−1 ∂i vjm) ∂j vim) , i,j=1 m = 1, 2, . . . , (2.68)
  • 14. 352 D. Chae / Euler equations in the Besov spaces and v(0) = 0, p(0) = 0. Writing ∂t ∆j v(m) + Sj−2 v(m−1) · ∇ ∆j v(m) = Sj−2 v(m−1) · ∇ ∆j v(m) − ∆j v(m−1) · ∇ v(m) − ∆j ∇p(m) , by the same procedure of estimates leading to (2.66), we obtain v(m) Sm v0 s XT s Bp,q + CT v(m−1) 2 C0 v0 s XT s Bp,q + C0 T v(m−1) 2 s XT , (2.69) where for some constant C0 . Thus, by the standard induction argument we find v(m) 2C0 v0 s XT (2.70) s Bp,q 0 if T ∈ [0, T0 ], where we set for all m T0 = 1 2 8C0 v0 (2.71) . s Bp,q Taking differences between the equations for the (m + 1)-step and the (m) step equations of (2.67), we have ∂t v(m+1) − v(m) + v(m) · ∇ v(m+1) − v(m) = v(m−1) − v(m) · ∇v(m) − ∇∆j p(m) − p(m−1) , div v(m) = 0, (2.72) v(m+1) − v(m) (x, 0) = ∆m+1 v0 . (2.73) We write ∂t ∆j v(m+1) − v(m) + Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) = Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) − ∆j + ∆j v(m) · ∇ v(m+1) − v(m) v(m−1) − v(m) · ∇v(m) − ∆j ∇ p(m) − p(m−1) . (2.74) Since div Sj−2 v(m) = 0, we obtain as before ∆j v(m+1) − v(m) (t) T + 0 T + 0 Lp ( ( ∆j v0m+1) − v0m) Lp Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) − ∆j ∆j v(m−1) − v(m) · ∇v(m) v(m) · ∇ v(m+1) − v(m) T Lp dt + 0 ∆j ∇ p(m) − p(m−1) Lp Lp ds ds (2.75)
  • 15. D. Chae / Euler equations in the Besov spaces 353 for all t ∈ [0, T ]. Multiplying 2j (s−1) on both sides of (2.75), and taking lq norm, we obtain by use of the Minkowski inequality v(m+1) − v(m) (t) ∆m+1 v0 − ∆j ˙ s−1 Bp,q T ˙ s−1 Bp,q 2qj (s−1) ∆j Sj−2 v(m) · ∇ ∆j v(m+1) − v(m) + 0 j∈Z q v(m) · ∇ v(m+1) − v(m) T + 0 Lp v(m−1) − v(m) · ∇v(m) ˙ s−1 Bp,q 1/q ds T ∇ p(m) − p(m−1) dt + 0 ˙ s−1 Bp,q ds (2.76) = I1 + I2 + I3 + I4 . By (2.13) C2−m−1 ∆m+1 v0 I1 C2−m v0 ˙s Bp,q ˙s Bp,q C2−m v0 (2.77) s Bp,q . Estimate of I2 is exactly same as before, and we have T ∇v(m) I2 0 v(m+1) − v(m) L∞ T ˙ s−1 Bp,q ds C 0 v(m) s Bp,q v(m+1) − v(m) s−1 Bp,q ds. (2.78) Using (2.20) of Lemma 2.2 we estimate T I3 C 0 T C v(m−1) − v(m) v(m) 0 s Bp,q L∞ ∇v(m) v(m−1) − v(m) ˙ s−1 Bp,q s−1 Bp,q + v(m−1) − v(m) ˙ s−1 Bp,q ∇v(m) L∞ ds ds. (2.79) Finally we estimate the pressure term. Using the fact n n ( ∂j vjm−1) = j=1 ( ( ∂i vim) − vim−1) = 0, i=1 we have n ∇p(m) − ∇p(m−1) = ( ( ( ( ( ( (−∆)−1 ∇∂i vjm) − vjm−1) ∂j vim) + vjm−1) ∂j vim) − vim−1) i,j=1 n = ( ( ( ( ( ( (−∆)−1 ∇∂i vjm) − vjm−1) ∂j vim) + ∂j vjm−1) vim) − vim−1) i,j=1 n = ( ( ( (−∆)−1 ∇ ∂i vjm) − vjm−1) ∂j vim) + ∂j i,j=1 ( ( ( ∂i vjm−1) vim) − vim−1) (2.80)
  • 16. 354 D. Chae / Euler equations in the Besov spaces Since both of (−∆)−1 ∇∂i and (−∆)−1 ∇∂j are the Calderon–Zygmund SIO’s, we obtain n I4 T ( ( ( vjm) − vjm−1) ∂j vim) C i,j=1 0 T ∇v(m) C 0 T L∞ ∇v(m−1) +C 0 + v(m) − v(m−1) T C v(m) − v(m−1) v(m) 0 s Bp,q ∇v(m−1) L∞ + v(m−1) + ∇v(m) ˙ s−1 Bp,q v(m) − v(m−1) L∞ ˙ s−1 Bp,q ( ( ( ∂i vjm−1) vim) − vim−1) + ˙ s−1 Bp,q v(m) − v(m−1) dτ L∞ dτ ˙ s−1 Bp,q dτ v(m) − v(m−1) s Bp,q ˙ s−1 Bp,q ˙ s−1 Bp,q s−1 Bp,q dτ. (2.81) Summing up (2.76)–(2.81), we have v(m+1) (t) − v(m) (t) T +C v(m) + v(m−1) 0 T C2−m v0 ˙ s−1 Bp,q s Bp,q +C s Bp,q v(m) s Bp,q 0 v(m) − v(m−1) s−1 Bp,q v(m+1) − v(m) s−1 Bp,q ds ds (2.82) for all t ∈ [0, T ]. In order to have inhomogeneous space estimate we derive Lp estimate for v(m+1) −v(m) . From (2.72) we have v(m+1) (t) − v(m) (t) T 0 C2−m ∇v0 T +C 0 T +C v(m) C2−m v0 T 0 0 L∞ + v(m−1) T s Bp,q +C v(m) + v(m−1) s Bp,q 0 s Bp,q v(m) · ∇ v(m+1) − v(m) ∇ p(m) − p(m−1) ∇ v(m+1) − v(m) L∞ L∞ v(m) 0 dt + Lp ∇v(m) Lp + 0 Lp v(m) +C v(m) − v(m−1) 0 +C T Lp Lp T v(m−1) − v(m) · ∇v(m) + T ∆m+1 v0 Lp L∞ Lp Lp ds ds ds ds v(m) − v(m−1) Lp v(m+1) − v(m) v(m) − v(m−1) s−1 Bp,q ds, ds s−1 Bp,q ds (2.83)
  • 17. D. Chae / Euler equations in the Besov spaces 355 where we estimated the pressure term, using (2.80) and the Calderon–Zygmund inequality, n ∇ p(m) − p(m−1) ( ( ( vjm) − vjm−1) ∂j vim) C Lp Lp + ( ( ( ∂i vjm−1) vim) − vim−1) Lp i,j=1 C ∇v(m) C v (m) v(m) − v(m−1) L∞ L∞ + v (m−1) L∞ Lp v + ∇v(m−1) (m) −v (m−1) L∞ v(m) − v(m−1) Lp Lp . for 1 < p < ∞, where used the Calderon–Zygmund inequality. Adding (2.83) to (2.82) we find v(m+1) (t) − v(m) (t) T s−1 Bp,q C2−m v0 T s Bp,q +C v(m) s Bp,q 0 v(m) − v(m−1) s−1 Bp,q C1 2−m + C1 T sup v(m+1) (t) − v(m) (t) v(m+1) − v(m) s−1 Bp,q ds s−1 Bp,q +C v(m) + v(m−1) 0 s Bp,q t∈[0,T ] + C1 T sup v(m) (t) − v(m−1) (t) t∈[0,T ] s−1 Bp,q , for T ∈ (0, T0 ], and the constant C1 = C1 ( v0 if C1 T < 1 , then 2 v(m+1) − v(m) ds (2.84) s Bp,q ), where we used the uniform estimate (2.70). Thus, C1 2−m+1 + 2C1 T v(m) − v(m−1) s−1 XT s−1 XT , (2.85) and, from which we deduce v(m+1) − v(m) s−1 XT C2−m (2.86) s− 1 if C1 T , and the sequence {v(m) } converges in XT1 1 for T1 min{T0 , 1/(4C1 )}. From Eqs (2.67), 4 s s (2.68) for {v(m) } we find the limit v ∈ XT1 is a solution of the Euler system for initial data v0 ∈ Bp,q . s ). Moreover this local solutions This completes the proof of local existence of solution in C([0, T1 ]; Bp,q satisfy the estimate sup t∈[0,T1 ] v(t) s Bp,q 2C0 v0 s Bp,q (2.87) for the constant C0 in (2.70). We now prove uniqueness of solutions satisfying (2.62). Let us consider the s s two solutions (u, p1 ), (v, p2 ) with u, v ∈ C([0, T1 ]; Bp,q ) associated with the initial datum u0 , v0 ∈ Bp,q respectively, and take the difference between the equations satisfied by them, then we find ∂t [u − v] + (v · ∇)[u − v] = [v − u] · ∇ u − ∇(p1 − p2 ), div(u − v) = 0, (u − v)(x, 0) = u0 − v0 . (2.88) (2.89)
  • 18. 356 D. Chae / Euler equations in the Besov spaces By exactly same procedure leading to (2.84) we have u−v u0 − v0 s−1 XT s−1 Bp,q + C2 T u − v (2.90) s−1 XT s s for sufficiently small T ∈ (0, T2 ], and C2 = C2 ( v0 Bp,q , u0 Bp,q ). We note that the estimate (2.62) s in XT for solutions u, v is essential in the derivation of (2.90). This proves the uniqueness of the local s− solution in XT 1 for T ∈ (0, T3 ] for T3 = min{T1 , T2 , 1/(2C2 )}. Thus we have finished existence and s s uniqueness of solutions in C([0, T3 ]; Bp,q ) to the system (1.1)–(1.3) for v0 ∈ Bp,q . Finally, we prove the blow-up criterion. We recall the well known fact that the elliptic system, div v = 0 and curl v = ω implies the relation between the gradient of velocity and the vorticity as ∇v = P(ω) + C3 ω, (2.91) where P is a singular integral operator of the Calderon–Zygmund type, and C3 is a constant matrix ˙0 (see, e.g., [18,19]). By the boundedness of the singular integral operator from B∞,∞ into itself [24], and Proposition 1.1 we estimate ∇v L∞ C 1 + ∇v C 1+ ω ˙0 B∞,∞ ˙0 B∞,∞ log+ ∇v log+ v s−1 Bp,q s Bp,q +1 +1 (2.92) for s > n/p + 1. Then, substituting (2.92) into (2.64), we obtain t v(t) s Bp,q v0 s Bp,q +C ω(s) ˙0 B∞,∞ 0 + 1 log+ v(s) s Bp,q + 1 v(s) s Bp,q ds. We finally have by Gronwall’s lemma t v(t) s Bp,q v0 s Bp,q exp C4 exp C5 ω(s) 0 ˙0 B∞,∞ + 1 ds (2.93) for some constants C4 and C5 . The inequality (2.93) implies the “only if” part of the blow-up criterion in Theorem 1.1 in the super-critical case. The “if" part of the super-critical case follows from the easy estimates T ω(s) 0 ˙0 B∞,∞ ds T sup ω(s) 0 s T ˙0 B∞,∞ CT sup 0 s T v(s) s Bp,q , (2.94) s− ˙0 where we used the embeddings, Bp,q 1 → L∞ → B∞,∞ for s > n/p + 1. On the other hand, in the critical case we substitute ∇v L∞ C ∇v ˙0 B∞,1 C ω ˙0 B∞,1 (2.95)
  • 19. D. Chae / Euler equations in the Besov spaces 357 ˙0 into (2.64) to obtain the “only if” part, where we used the embedding B∞,1 → L∞ , and the fact that our ˙0 singular integral operator P(·) in (2.91) is bounded from B∞,1 into itself. The “if” part of Theorem 1.1 follows also from the easy estimates T ω(s) 0 ˙0 B∞,1 ds T sup 0 s T ω(s) ˙0 B1,∞ CT sup 0 s T v(s) n/p+1 Bp,1 , (2.96) n/p ˙ n/p ˙0 where we used the embeddings, Bp,1 → Bp,1 → B∞,1 for p ∈ (1, ∞). This completes the proof of Theorem 1.1. Acknowledgements The author would like to thank deeply to Professor R. Temam for his careful reading of the manuscript and corrections. This research is supported partially by the grant no. 2000-2-10200-002-5 from the basic research program of the KOSEF. References [1] H. Bahouri and J.-Y. Chemin, Equations de transport relatives à des champs de vecteurs non-lipshitziens et mé canique des fluides, Arch. Rational Mech. Anal. 127 (1994), 159–199. [2] H. Bahouri and B. Dehman, Remarques sur l’apparition de singularités dans les écoulements Eulériens incompressibles à donnée initiale Höldérienne, J. Math. Pures Appl. 73 (1994), 335–346. [3] J.T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61–66. [4] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1970. [5] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. École Norm. Sup. 14 (1981), 209–246. [6] M. Cannone, Ondelettes, Paraproduits et Navier–Stokes, Diderot, Paris, 1995. [7] M. Cannone, Nombres de Reynolds, stabilité et Navier–Stokes, Banach Center Publication, 1999. [8] D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel–Lizorkin spaces, in: Tosio Kato’s Method and Principle for Evolution Equations in Mathematical Physics, A Proceedings of the workshop held at Hokkaido University, Japan, Yurinsha, June 27–29, 2001, Tokyo 2002, pp. 42–57; See also: Local existence and blow-up criterion for the Euler equations in the Besov space, RIM-GARC, Seoul National University, Korea, Preprint No. 8, June 2001. [9] J.-Y. Chemin, Régularité des trajectoires des particules d’un fluide incompressible remplissant l’espace, J. Math. Pures Appl. 71(5) (1992), 407–417. [10] J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford, 1998. [11] P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Comm. Partial Differential Equations 21(3–4) (1996), 559–571. [12] B. Jawerth, Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand. 40 (1977), 94–104. [13] T. Kato, Nonstationary flows of viscous and ideal fluids in R3 , J. Funct. Anal. 9 (1972), 296–305. [14] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891–907. [15] T. Kato and G. Ponce, Well posedness of the Euler and Navier–Stokes equations in Lebesgue spaces Ls (R2 ), Rev. Mat. p Iberoamericana 2 (1986), 73–88. [16] H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations, Comm. Math. Phys. 214 (2000), 191–200. [17] L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik homogener unzusammendrückbarer, reibunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze, Math. Z. 23 (1925), 89–154; 26 (1927), 193–323, 387–415; 32 (1930), 608–725. [18] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), 187– 220.
  • 20. 358 D. Chae / Euler equations in the Besov spaces [19] A. Majda, Mathematical Theory of Fluid Mechanics, Princeton University Graduate Course Lecture Note, 1986. [20] J. Peetre, New Thoughts on Besov Spaces, Duke University Press, 1976. [21] E.M. Stein, Harmonic Analysis; Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, Vol. 43, Princeton University Press, 1993. [22] R. Temam, On the Euler equations of incompressible flows, J. Funct. Anal. 20 (1975), 32–43. [23] R. Temam, Local existence of C ∞ solutions of the Euler equations of incompressible perfect fluids, in: Proc. Conf. on Turblence and Navier–Stokes Equations, Lecture Notes in Math., Vol. 565, Springer-Verlag, New York, 1976. [24] H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992. [25] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197–214. [26] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup. (4) 32 (1999), 769–812.