Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Deep Learning Lab - ディープラーニング 導入の課題と実例

2,046 views

Published on

Deep Learning Lab 第4回

Published in: Engineering
  • Be the first to comment

Deep Learning Lab - ディープラーニング 導入の課題と実例

  1. 1. ディープラーニング 導入の課題と実例 2017/10/24 Deep Learning Lab 第4回
  2. 2. 1©2017 Ridge-i All Rights Reserved. • Ridge-i について • AI導入の課題 • 課題の実例 • さいごに Agenda
  3. 3. 2©2017 Ridge-i All Rights Reserved. Ridge-i について
  4. 4. 3©2017 Ridge-i All Rights Reserved. Ridge-i について ビジネスニーズにあった最適なAI技術を追求・提供します  パートナーシップ Employees 10名 + α 主に機械学習エンジニア、 コンサルタント出身 外国人比率 50% Office 千代田区大手町 1-6-1-442  事業領域 AI コンサルティング AI ソリューション開発 例:モノクロ映像 カラー化AI 特にディープラーニング 機械学習、強化学習  会社概要 Style 裁量労働制
  5. 5. 4©2017 Ridge-i All Rights Reserved. RI 自社開発事例 モノクロ映像自動彩色AI 大相撲 (5/21 NHKで放送) NHKスペシャル「戦後ゼロ年 東京 ブラックホール 1945-1946」 (8/20放送)
  6. 6. 5©2017 Ridge-i All Rights Reserved. Ridge-i 担当について 柳原 尚史 • 小4からプログラマー。大学時代はプレイステーションのゲーム開発 • ブラックロック、HSBC、大和証券でリスク分析、アルゴリズム取引の開発 • 証券アナリスト、ネットワークスペシャリスト、宅建 など資格多数 趣味はトレイルランニング  富士山1日3往復  モンブラン170Kmを45時間寝ずに走破 数式に眠くならない強さ
  7. 7. 6©2017 Ridge-i All Rights Reserved. AI導入の課題
  8. 8. 7©2017 Ridge-i All Rights Reserved. ©2017 Ridge-i All Rights Reserved. 相談 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺開発 実業務に デプロイ 多多 中 中 少 AI導入 プロセス 人的 リソース 人材不足が AI導入を阻む最大のボトルネック AIで何か したい 課題と方向性 省力化・新商品・ 新ビジネス データ戦略 どの技術と データの組合せで 解決 実装・学習・検証 チューニング AI導入 達成 AI導入の流れとボトルネック
  9. 9. 8©2017 Ridge-i All Rights Reserved. ● 本来あるべき姿 「この課題はAIなら解決できるのか?」 「解決する事によるインパクトはなにか?」 「そのために必要なデータは何か?」 活用戦略の課題 導入自体の目的化 ● ありがちな問題 「とにかく AIを入れたい」 「いまあるデータから宝が見つからないか?」 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺 開発
  10. 10. 9©2017 Ridge-i All Rights Reserved. 技術詳細の課題 • AIで 運搬機器を映像で検出し、最適な動線解析を行いたい • AIで 白黒映像の彩色作業の手間を削減したい • AIで 炉の制御を自動化したい • AIで 電力マネージメントを最適化したい • AIで 製造装置の異常の兆候を捉えたい • AIで 徘徊老人を探したい AIが意味するところは玉石混合 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺 開発
  11. 11. 10©2017 Ridge-i All Rights Reserved. 「AI」という言葉の曖昧さ 階層ベイズ MCMC GLMM 最尤法 ベイズ理論 主成分分析、GLM 検定 相関、共分散 確率、正規分布、分散 機械学習 統計解析 機械翻訳 トピックモデル 文章生成 ディープラーニング (RNN, Skip-gram) BWT, Wavelet Tree TF-IDF, Word2Vec 検索、N-Gram 形態素解析 自然言語解析 どれでもAI 分散協調 深層強化学習 強化学習 ディープラーニング LSTM, DBM, CNN, RNN 協調フィルタリング SVM, K-Means, 近傍法 探索木 ロジスティック回帰 最小二乗法 + ナップザック問題、動的計画法、最適化問題等も 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺 開発
  12. 12. 11©2017 Ridge-i All Rights Reserved. ディープラーニングのパターン 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺 開発 汎用最強はなくて、課題毎に複数試す必要 アンサンブル、ブースティングみたいに組合せも
  13. 13. 12©2017 Ridge-i All Rights Reserved. ©2017 Ridge-i All Rights Reserved. ● ユーザーがAI活用を企画するための知識・理解の不足 ● あいまいなAIの定義 ● 日々進化するディープラーニング ニーズとシーズのギャップ 相談 検討開始 活用 戦略 技術 詳細検討 開発 実証実験 周辺開発 実業務に デプロイ 一人で向こうまで行けって そんな無茶な。。 (AI推進 担当) 深い谷 AI導入 できた!
  14. 14. 13©2017 Ridge-i All Rights Reserved. Ridge-i の役割 導入支援、カスタマイズ Ridge-iが自社・共同開発 コンサルテーションフェーズ ソリューション開発フェーズ 課題と効果 最適な技術構成 複数のAIと他技術を どう組み合わせるか AIの導入価値の判定 PFN – DIMo、他AIを活用 自社・共同開発 相談 検討開始 活用 戦略 技術 詳細検討 開発 実証実験 周辺開発 実業務に デプロイ 導入 達成 AI導入 プロセス パートナー企業
  15. 15. 14©2017 Ridge-i All Rights Reserved. 課題の実例
  16. 16. 15©2017 Ridge-i All Rights Reserved. ケース1 活用戦略の必要性 「ビッグデータあるある」
  17. 17. 16©2017 Ridge-i All Rights Reserved. ビッグデータ活用あるある ● 車の任意の画像から、査定額を見積りたい ビッグデータを使いたい あるある ● 「いまあるビッグデータを使ってほしい」
  18. 18. 17©2017 Ridge-i All Rights Reserved. ビッグデータあるある その1 ● データが不整形(画像の縦横比率もバラバラ) ● 対象物体が映っているアングルが揃っていない ● 対象物体以外に色々映りすぎ ● 顧客データのマスキング、セキュリティ確保 教師データを抜き出すだけで一つのプロジェクト
  19. 19. 18©2017 Ridge-i All Rights Reserved. ビッグデータあるある その2 ● ラベルに大きな偏り ● 画像だけじゃ わからないケース(内装) ● 同じ画像でも、作業者、画像外要因で結果が違うことも 現状の誤った出力に、モデルをあわせる、 という本末転倒な結果にも。 入力データにモデル構築するのに十分な情報が入っていない
  20. 20. 19©2017 Ridge-i All Rights Reserved. ケース 1 のまとめ 将来の競争優位のために 早めのデータマネージメント戦略が重要 いまあるデータに拘らない柔軟な姿勢 相談 検討開始 活用 戦略 技術 詳細検討 開発 実証実験 周辺開発 実業務に デプロイ 販売 サポート やっておけばよかった場所 機械学習・ディープラーニングを活用しやすい データを貯めよう
  21. 21. 20©2017 Ridge-i All Rights Reserved. ケース2 技術詳細設計の必要性 「多目的は無目的」
  22. 22. 21©2017 Ridge-i All Rights Reserved. 2年前に作った汎用AI
  23. 23. 22©2017 Ridge-i All Rights Reserved. 放送レベルに特化させたAI 実証実験映像(4K)
  24. 24. 23©2017 Ridge-i All Rights Reserved. WEB上の汎用AIサービス Ridge-i + NHK ART 汎用的なAIと、RI彩色技術との比較
  25. 25. 24©2017 Ridge-i All Rights Reserved. モノクロ映像自動彩色AI - 活用実例 大相撲 (5/21 NHKで放送) NHKスペシャル「戦後ゼロ年 東京 ブラックホール 1945-1946」 (8/20放送) 数百倍の省力化を実現しながらも、放送クオリティを確保
  26. 26. 25©2017 Ridge-i All Rights Reserved. ケース2 まとめ ©2017 Ridge-i All Rights Reserved. ビジネス要件を満たす条件の見極め 相談 検討開始 活用 戦略 技術 詳細検討 開発 実証実験 周辺開発 実業務に デプロイ 販売 サポート やってよかった場所 目的が定まれば、技術の最適化が可能 汎用モデルはビジネスでは使えないことも
  27. 27. 26©2017 Ridge-i All Rights Reserved. ケース3 開発力の必要性 「ブラックボックスじゃ困るんだよ」
  28. 28. 27©2017 Ridge-i All Rights Reserved. ケース3 ブラックボックス問題 ■よくある質問 「AIが理由を説明できないと、問い合わせがあった時に困る」 「じゃぁ、決定木でも使えば?精度は落ちるかもね」 ■技術者的 模範解答 囲碁有段者 実際の解説 「単純にして荒々しい一手」 、 「そこの1目が厚いと思ったので」 「人間はもっともらしく言うのが得意なだけ」
  29. 29. 28©2017 Ridge-i All Rights Reserved. DNN Prediction 2輪車 飛行機 Visual Explanation R&D – Visual Explanations of DNN output ディープラーニングが注目した箇所を図示する機能を追加
  30. 30. 29©2017 Ridge-i All Rights Reserved. ケース3 まとめ ©2017 Ridge-i All Rights Reserved. ディープラーニングの構造まで踏み込んだ技術力 相談 検討開始 活用 戦略 技術 詳細検討 開発 実証実験 周辺開発 実業務に デプロイ 販売 サポート 強くてよかった場所 ニーズをコードまで落とす理解力
  31. 31. 30©2017 Ridge-i All Rights Reserved. おまけ 社内R&D 事例
  32. 32. 31©2017 Ridge-i All Rights Reserved. R&D case - Super Resolution Low quality (Input) Deep Learning (Output) Grand Truth 1/36 1/1 1/1
  33. 33. 32©2017 Ridge-i All Rights Reserved. R&D case - Depth estimation (single camera) Single RGB Image (Input) Deep Learning (Output)
  34. 34. 33©2017 Ridge-i All Rights Reserved. さいごに
  35. 35. 34©2017 Ridge-i All Rights Reserved. どの課題に、どのAI技術を使うのか、見極めが重要 お気軽にご相談ください 問い合わせ contact@ridge-i.com 相談 検討 開始 活用 戦略 技術 詳細 開発 POC 周辺開発 実業務に デプロイ AI導入 達成 新しい技術とビジネス機会を一緒に見つけていきましょう! (We’re hiring!!)

×