30
1:
1.2:
! "! #$ %! "! #$ %
& % ' ( %
! " # $
% & ' ( # # $ # # )*+,-./0 +
! " # $# %&
% & ' ( # # $ # # )*+,-./0 +
1 2 3 2
& 2 $
4$ 5# " $ $
" 6 $ $ ( 2 2 #
4$ 5# 7 8 9 $ 2:
8
. # "$% %
) $ ) % ):
" " *
( $! % )% )*)$ % ! +
* ! + , % " % " ( ) (
)% " ! "! #$ %.
! " # $# %&
)% " ! "! #$ %.
" " * -
(-)
" " *
(-)
-.
1. + ) )
1. ) $% +
'! " # $# %&
! "
# $%& $ # $ '
# $# $ ( $# $ #
) # *# $%& $ # $ '
log x
bx a b aανν= =
logb a
) # *# $%& $ # $ '
* + :
3
2
4
3
3
5
2 2
1/4 2
log 8 3 2 8
log 81 4 3 81
log 125 3 5 125
1 1 1
log 1/16 2
4 4 16
αϕο
αϕο
αϕο
αϕο
= =
= =
= =
= = =
-.
1. + ) )
2. & *)# + ) )
(! " # $# %&
30, * # . ) / ! + , ) $ )
/ ) 2, 0 $ * *)# (% ! + ) %
1 ) 2 % ):
% * ( % * *)# (% ! + ) % # " ) 0 )#3 ) 3 :
; ./0;
2log logx x=
; ./0;; ./0;
1 log1=0
2 log2=1
4 log4=2
8 log8=3
16 log16=4
32 log32=5
64 log64=6
…
1024 log1024=10
; ./0;
2048 log2048=11
4096 log4096=12
8192 log8192=13
…
220 log220=20
230 log230=30
240 log240=40
…
-.
1. + ) )
3. *)$ % + (& )% + ) %)
)! " # $# %&
4* "$ " + ( *) 0 ) ) 0,% $ ) ) ( ):
& ! * # , % ) ( «",0 )» " "$ ! + ) .
,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( :
log logK
b ba K a=
,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( :
$ $ " ) ( # ) % 2 %:
6 ) " $ ) # , % $% & «",0 )».
5 . %: # ) )*)# +) * *)# (% ! + ) %:
(log )X
b a
logX
b a
log log
log (log )
K
b b
X X
b b
a K a
a a
=
=
log log
log (log )
K
X X
a K a
a a
=
=
-.
1. + ) )
3. *)$ % + ( !! + - %)
*! " # $# %&
) )# )*)$ , ) $ , " ! + # " )
! + ) «" + » / , ) #$! :
log
log
log
c
b
c
a
a
b
=
)*)$ ) " !( ) $ / # ) *) % ) $% )
*( 2.
* + :
2
8
2
64
3
9
3
log 32 5
log 32 1.66
log 8 3
log 2048 11
log 2048 1.83
log64 6
log 27 3
log 27 1.5
log 9 2
= = =
= = =
= = =
-.
1. + ) )
3. *)$ % + ( + ) % ) , # ) 6! %)
+! " # $# %&
( # ) ) 2 % *( )*)$ %:
log ( ) log log
log log log
b b b
b b b
xy x y
x
x y
y
= +
= −
6 ) )*)# +) * *)# (% ! + ) %:
+ ! " " " . ! + ) % , ) " *
0 + %:
" " ) , )% " , )%
"$ ) * " " , )%
! )"$ :
log( ) log log
log log log
xy x y
x
x y
y
= +
= −
log (log )b bxy x y= ⋅ log log ( )b bxy xy≠
-.
1. + ) )
3. *)$ % + ( #0 % *( )
,! " # $# %&
1 # ) 2 % (" !( )# ) )*)$
0 +,%:
logb x
b x=
2
5
10
log 2
log ( )
5
10
n
n n
n
n n+
=
= +
)*)$ % 0 )*) ) $ )
)% " ! "! #$ %, $" #0 . )% )% %
# )#,% / 2.
* + :
2
2 log
log4 log4 2
2
4 2 2 2
n
n
n n n
n =
= = =
10log ( )
10 n n
n n+
= +
-.
1. + ) )
4. 0)# % f(x)=log x
! " # $# %&
30 ! " )0 " )# (
" ) )
% 2 ) ) + 0)# " % f(x)=log x:
( $ ):
f(x) 2 ) " !( + ( ) )# $ "$ " ) * "
" ! )# ).
$ " )# " ," ) + . $ ) ) " ) .
-.
1. + ) )
5. &)"!$% # ) )"!$% + ) %
! " # $# %&
# ) )% 2 % )%:
% + 0 % ) :
1
2
( ) loglog
( ) logloglog
f n n
f n n
=
=
% + 0 % ) :
1 ) ". . , :
) )% " % " ," ) + . :
!! # ) $ ) " )# " % " )
1
2
( ) log(log )
( ) log(log(log ))
f n n
f n n
=
=
log(log 256) log(8) 3
log(log(log16)) log(log 4) log(2) 1
= =
= = =
logloglog loglog logn n n< <
. * ! + #
1. 5 *) +
! " # $# %&
< # = < #
- .! &
/ . 0. 1
log x
bx a b aανν= = log 2x
x a aανν= =
log ( ) log logb b bxy x y= + log( ) log logxy x y= +
x x
/ . 2# !
3## / 4 !
! . &
! # / .
5%6 ! "
log log logb b b
x
x y
y
= − log log log
x
x y
y
= −
log
log
log
c
b
c
a
a
b
=
log
log
log 2
c
c
a
a =
log logK
b ba K a= log logK
a K a=
log (log )X X
b ba a= log (log )X X
a a=
logb x
b x= log
2 x
x=
. * ! + #
2. ! "! #$ %
% #03 2 :
6 ) % * 5-6 )%.
" " # ! ( * ! + "
) 2 % / :
! " # $# %&
(2 ) " )# % " ! "! #$ % )%
" # )%
) 2 % / :
1. - # (.) " ) ).
1. ) )% " ( 2) ( (* ! * * " )
# " ) " *)$ ) ) * ) %,
!!)3% " / 2
2. #0 . )% )% % # )#,% / 2,
) " )3 % )*)$
3. 6 " 2 )% % # , % ( % )*)$ %
! + )
4. +# % # , % # ) 0,
" ,! )% )#,% )%
log
2 x
x =
. * ! + #
2. ! "! #$ %
1. ( (.)
" + ( * " % " ( 2 + (.) ) %
%.
) 2 + + (.) " ) ) , «# »
* ! * " ," ) +) " 0 ( # ! )% 2 %
)%:
# ).)# * )%.
'! " # $# %&
# ).)# * )%.
# )% $" ) % " 2 )% * " .
" ! + #! ) 3 # ) #0 %
* # *)# (% ) (%.
# )% $" ) % ") ) )#,% )*)$ %.
7 ! ( (.) ) " ) )# . & ! * :
# * , ) $ * "
,% " !! "! ) , % )% )%, / $
" ! " )!
$ , , " ) ( (.), $
7 6 " ," ) " (.) $! % )% )%.
. * ! + #
2. ! "! #$ %
1. ( (.)
% * ( , " * )+ :
(! " # $# %&
( $ ) , # ) ,% " !/ % )%
)%, 2 #) " ( (.)
. * ! + #
2. ! "! #$ %
2. # )#,% / 2
)% )% " , (.) ,
" *)$ ) $ #0 . )% )%
( 7 ! 8 ) , ) /+ ) (.) ) % # )#,% / 2.
% * ( 2,!)2 % " % " + ( " * )+ :
)! " # $# %&
. * ! + #
2. ! "! #$ %
3. 2 )% % # , %
1" ) " 3 % # , % # ) # )%
" 2 )% ! + " , 0 ) (%.
$ % # ) " !) ) , # # ) , ", ) $! %
) * )% " ) % ) (% ! +
" * )+ " !
*! " # $# %&
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
!)# / . (2 ) % # , % , 0 (
)% " 2 )% , " "$ )% + ,% 0,%.
- )#$ * +$ ) +) " 0 ( ) " # % )% + ,%
0,% " ! "! #$ %.
!!! " " , ) " #(5 ) ) " "! # (
, ) $ ) , " #(5 ) +) $ /# ) , $ :
+! " # $# %&
, ) $ ) , " #(5 ) +) $ /# ) , $ :
" . + !( $ "$ $ % ) "
" " "$ )% , *) + !( $ ,
$ " 0 . " ) ) + !( "$ ,%:
# ) 3 % , % "$ $ " )
" !! "! ) , . . :
, # ) " !) ) " ! , $ # ) # ) "$ $
%. . .:
/ $, ) ,% , ! 9 * " ! " )
# , % "$ % $ % " , " #(5 ).
5 6 logn n n n< <
2 4 2 logn n n+ < +
) "$0 % ) % ) .$ "$ $ )
8" , "!, ") ! )# :
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
,3 # ! . 7.% ! .%8 3#/ "
( ) (1)nΤ = Θ )(log)( nn k
Θ=Τ )()( k
nn Θ=Τ )()( n
an Θ=Τ )!()( nn Θ=Τ
)()( n
nn Θ=Τ
8" , "!, ") ! )# :
' $ $ 6 2
(1)
6 6>1
«# $» n
6 6
«# $» n
6 6 1<a<2, ,/: ,%
«# $» n
6 6 «# $» n
log log log logK
n n n< <
2 3
... K
n n n n< < < <
... 2 3 ...n n n n
a b< < < < <
! n
n n<
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
1 ) #! " * )+ " ! % 2 %:
! " # $# %&
( ):
9 ," ):
2
3log log 2.32n n n< <
1 2 3f f f< <
. * ! + #
2. ! "! #$ %
% * ( 3 " % " ," ) ) " % )% 2 )%:
! " # $# %&
. # )%
# 6 $ % 1
" ! + % #$! % ! + % % " ! +) .
* " " ! + # )/3%, # ) 2( " ) *(
0 )#3 ) 3 # ) ! + ) %
! " # $# %&
5
4
1.log 25
2.log 644
8
3
4
9
6
2.log 64
3.log 64
4.log7
5.log 45
6.log 62
7.log 33
8.log 80
9.log 244
. # )%
# 6 $ % 2
" ! + % #$! % ! + ) % # % !! + / %:
! " # $# %&
128
4
1.log 32
2.log 5124
9
4
2.log 512
3.log 27
4.log 1/ 2
. # )%
0 + 1
)% " # )% (2 ) " )# %
" ! "! #$ %:
'! " # $# %&
log
1
log
2
( ) 1.5
( ) 10log
( ) 0.005log
n
n
n
f n n
f n n
f n n
=
=
=3
4
( ) 0.005log
( ) 1.15
n
n
f n n
f n n
=
=
. # )%
0 + 2
)% " # )% (2 ) " )# %
" ! "! #$ %:
(! " # $# %&
log
1
5 2 6
2
( ) 8log 4
( ) 10( )
n n
f n n n n
f n n n n
= +
= + +
2 5 7
3
4
4
( )
( ) log n
f n n n n
f n n
= ⋅ +
=
. # )%
0 + 3
)% " # )% (2 ) " )# %
" ! "! #$ %:
)! " # $# %&
1
2
( ) 3
( ) log( )
n
n
f n
f n n
=
=
log
3
5
4
( ) 2
( ) ( )
n
n
f n
f n n
=
=

ΠΛΗ30 ΜΑΘΗΜΑ 1.2 (4in1)

  • 1.
    30 1: 1.2: ! "! #$%! "! #$ % & % ' ( % ! " # $ % & ' ( # # $ # # )*+,-./0 + ! " # $# %& % & ' ( # # $ # # )*+,-./0 + 1 2 3 2 & 2 $ 4$ 5# " $ $ " 6 $ $ ( 2 2 # 4$ 5# 7 8 9 $ 2: 8 . # "$% % ) $ ) % ): " " * ( $! % )% )*)$ % ! + * ! + , % " % " ( ) ( )% " ! "! #$ %. ! " # $# %& )% " ! "! #$ %. " " * - (-) " " * (-) -. 1. + ) ) 1. ) $% + '! " # $# %& ! " # $%& $ # $ ' # $# $ ( $# $ # ) # *# $%& $ # $ ' log x bx a b aανν= = logb a ) # *# $%& $ # $ ' * + : 3 2 4 3 3 5 2 2 1/4 2 log 8 3 2 8 log 81 4 3 81 log 125 3 5 125 1 1 1 log 1/16 2 4 4 16 αϕο αϕο αϕο αϕο = = = = = = = = =
  • 2.
    -. 1. + )) 2. & *)# + ) ) (! " # $# %& 30, * # . ) / ! + , ) $ ) / ) 2, 0 $ * *)# (% ! + ) % 1 ) 2 % ): % * ( % * *)# (% ! + ) % # " ) 0 )#3 ) 3 : ; ./0; 2log logx x= ; ./0;; ./0; 1 log1=0 2 log2=1 4 log4=2 8 log8=3 16 log16=4 32 log32=5 64 log64=6 … 1024 log1024=10 ; ./0; 2048 log2048=11 4096 log4096=12 8192 log8192=13 … 220 log220=20 230 log230=30 240 log240=40 … -. 1. + ) ) 3. *)$ % + (& )% + ) %) )! " # $# %& 4* "$ " + ( *) 0 ) ) 0,% $ ) ) ( ): & ! * # , % ) ( «",0 )» " "$ ! + ) . ,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( : log logK b ba K a= ,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( : $ $ " ) ( # ) % 2 %: 6 ) " $ ) # , % $% & «",0 )». 5 . %: # ) )*)# +) * *)# (% ! + ) %: (log )X b a logX b a log log log (log ) K b b X X b b a K a a a = = log log log (log ) K X X a K a a a = = -. 1. + ) ) 3. *)$ % + ( !! + - %) *! " # $# %& ) )# )*)$ , ) $ , " ! + # " ) ! + ) «" + » / , ) #$! : log log log c b c a a b = )*)$ ) " !( ) $ / # ) *) % ) $% ) *( 2. * + : 2 8 2 64 3 9 3 log 32 5 log 32 1.66 log 8 3 log 2048 11 log 2048 1.83 log64 6 log 27 3 log 27 1.5 log 9 2 = = = = = = = = = -. 1. + ) ) 3. *)$ % + ( + ) % ) , # ) 6! %) +! " # $# %& ( # ) ) 2 % *( )*)$ %: log ( ) log log log log log b b b b b b xy x y x x y y = + = − 6 ) )*)# +) * *)# (% ! + ) %: + ! " " " . ! + ) % , ) " * 0 + %: " " ) , )% " , )% "$ ) * " " , )% ! )"$ : log( ) log log log log log xy x y x x y y = + = − log (log )b bxy x y= ⋅ log log ( )b bxy xy≠
  • 3.
    -. 1. + )) 3. *)$ % + ( #0 % *( ) ,! " # $# %& 1 # ) 2 % (" !( )# ) )*)$ 0 +,%: logb x b x= 2 5 10 log 2 log ( ) 5 10 n n n n n n+ = = + )*)$ % 0 )*) ) $ ) )% " ! "! #$ %, $" #0 . )% )% % # )#,% / 2. * + : 2 2 log log4 log4 2 2 4 2 2 2 n n n n n n = = = = 10log ( ) 10 n n n n+ = + -. 1. + ) ) 4. 0)# % f(x)=log x ! " # $# %& 30 ! " )0 " )# ( " ) ) % 2 ) ) + 0)# " % f(x)=log x: ( $ ): f(x) 2 ) " !( + ( ) )# $ "$ " ) * " " ! )# ). $ " )# " ," ) + . $ ) ) " ) . -. 1. + ) ) 5. &)"!$% # ) )"!$% + ) % ! " # $# %& # ) )% 2 % )%: % + 0 % ) : 1 2 ( ) loglog ( ) logloglog f n n f n n = = % + 0 % ) : 1 ) ". . , : ) )% " % " ," ) + . : !! # ) $ ) " )# " % " ) 1 2 ( ) log(log ) ( ) log(log(log )) f n n f n n = = log(log 256) log(8) 3 log(log(log16)) log(log 4) log(2) 1 = = = = = logloglog loglog logn n n< < . * ! + # 1. 5 *) + ! " # $# %& < # = < # - .! & / . 0. 1 log x bx a b aανν= = log 2x x a aανν= = log ( ) log logb b bxy x y= + log( ) log logxy x y= + x x / . 2# ! 3## / 4 ! ! . & ! # / . 5%6 ! " log log logb b b x x y y = − log log log x x y y = − log log log c b c a a b = log log log 2 c c a a = log logK b ba K a= log logK a K a= log (log )X X b ba a= log (log )X X a a= logb x b x= log 2 x x=
  • 4.
    . * !+ # 2. ! "! #$ % % #03 2 : 6 ) % * 5-6 )%. " " # ! ( * ! + " ) 2 % / : ! " # $# %& (2 ) " )# % " ! "! #$ % )% " # )% ) 2 % / : 1. - # (.) " ) ). 1. ) )% " ( 2) ( (* ! * * " ) # " ) " *)$ ) ) * ) %, !!)3% " / 2 2. #0 . )% )% % # )#,% / 2, ) " )3 % )*)$ 3. 6 " 2 )% % # , % ( % )*)$ % ! + ) 4. +# % # , % # ) 0, " ,! )% )#,% )% log 2 x x = . * ! + # 2. ! "! #$ % 1. ( (.) " + ( * " % " ( 2 + (.) ) % %. ) 2 + + (.) " ) ) , «# » * ! * " ," ) +) " 0 ( # ! )% 2 % )%: # ).)# * )%. '! " # $# %& # ).)# * )%. # )% $" ) % " 2 )% * " . " ! + #! ) 3 # ) #0 % * # *)# (% ) (%. # )% $" ) % ") ) )#,% )*)$ %. 7 ! ( (.) ) " ) )# . & ! * : # * , ) $ * " ,% " !! "! ) , % )% )%, / $ " ! " )! $ , , " ) ( (.), $ 7 6 " ," ) " (.) $! % )% )%. . * ! + # 2. ! "! #$ % 1. ( (.) % * ( , " * )+ : (! " # $# %& ( $ ) , # ) ,% " !/ % )% )%, 2 #) " ( (.) . * ! + # 2. ! "! #$ % 2. # )#,% / 2 )% )% " , (.) , " *)$ ) $ #0 . )% )% ( 7 ! 8 ) , ) /+ ) (.) ) % # )#,% / 2. % * ( 2,!)2 % " % " + ( " * )+ : )! " # $# %&
  • 5.
    . * !+ # 2. ! "! #$ % 3. 2 )% % # , % 1" ) " 3 % # , % # ) # )% " 2 )% ! + " , 0 ) (%. $ % # ) " !) ) , # # ) , ", ) $! % ) * )% " ) % ) (% ! + " * )+ " ! *! " # $# %& . * ! + # 2. ! "! #$ % 4. (+# ) # 3 !)# / . (2 ) % # , % , 0 ( )% " 2 )% , " "$ )% + ,% 0,%. - )#$ * +$ ) +) " 0 ( ) " # % )% + ,% 0,% " ! "! #$ %. !!! " " , ) " #(5 ) ) " "! # ( , ) $ ) , " #(5 ) +) $ /# ) , $ : +! " # $# %& , ) $ ) , " #(5 ) +) $ /# ) , $ : " . + !( $ "$ $ % ) " " " "$ )% , *) + !( $ , $ " 0 . " ) ) + !( "$ ,%: # ) 3 % , % "$ $ " ) " !! "! ) , . . : , # ) " !) ) " ! , $ # ) # ) "$ $ %. . .: / $, ) ,% , ! 9 * " ! " ) # , % "$ % $ % " , " #(5 ). 5 6 logn n n n< < 2 4 2 logn n n+ < + ) "$0 % ) % ) .$ "$ $ ) 8" , "!, ") ! )# : . * ! + # 2. ! "! #$ % 4. (+# ) # 3 ,3 # ! . 7.% ! .%8 3#/ " ( ) (1)nΤ = Θ )(log)( nn k Θ=Τ )()( k nn Θ=Τ )()( n an Θ=Τ )!()( nn Θ=Τ )()( n nn Θ=Τ 8" , "!, ") ! )# : ' $ $ 6 2 (1) 6 6>1 «# $» n 6 6 «# $» n 6 6 1<a<2, ,/: ,% «# $» n 6 6 «# $» n log log log logK n n n< < 2 3 ... K n n n n< < < < ... 2 3 ...n n n n a b< < < < < ! n n n< . * ! + # 2. ! "! #$ % 4. (+# ) # 3 1 ) #! " * )+ " ! % 2 %: ! " # $# %& ( ): 9 ," ): 2 3log log 2.32n n n< < 1 2 3f f f< <
  • 6.
    . * !+ # 2. ! "! #$ % % * ( 3 " % " ," ) ) " % )% 2 )%: ! " # $# %& . # )% # 6 $ % 1 " ! + % #$! % ! + % % " ! +) . * " " ! + # )/3%, # ) 2( " ) *( 0 )#3 ) 3 # ) ! + ) % ! " # $# %& 5 4 1.log 25 2.log 644 8 3 4 9 6 2.log 64 3.log 64 4.log7 5.log 45 6.log 62 7.log 33 8.log 80 9.log 244 . # )% # 6 $ % 2 " ! + % #$! % ! + ) % # % !! + / %: ! " # $# %& 128 4 1.log 32 2.log 5124 9 4 2.log 512 3.log 27 4.log 1/ 2 . # )% 0 + 1 )% " # )% (2 ) " )# % " ! "! #$ %: '! " # $# %& log 1 log 2 ( ) 1.5 ( ) 10log ( ) 0.005log n n n f n n f n n f n n = = =3 4 ( ) 0.005log ( ) 1.15 n n f n n f n n = =
  • 7.
    . # )% 0+ 2 )% " # )% (2 ) " )# % " ! "! #$ %: (! " # $# %& log 1 5 2 6 2 ( ) 8log 4 ( ) 10( ) n n f n n n n f n n n n = + = + + 2 5 7 3 4 4 ( ) ( ) log n f n n n n f n n = ⋅ + = . # )% 0 + 3 )% " # )% (2 ) " )# % " ! "! #$ %: )! " # $# %& 1 2 ( ) 3 ( ) log( ) n n f n f n n = = log 3 5 4 ( ) 2 ( ) ( ) n n f n f n n = =