SlideShare a Scribd company logo
1
AOIEA
深度學習於表面瑕疵檢測:
Strategies for imbalanced data training
蔡篤銘 教授
元智大學
工業工程與管理學系
2018 Taiwan AOI Forum and show
物體表面特徵(surface texture)
2
High-resolution
Resolution
Uniform Low contrast Patterned Homogeneous
texture
Repeated
patterns
Heterogeneous
texture
•Web material
•Paper
•Steel surface
•Mura
•Backlight panel
•Assembled PCB
•IC die
•TFT-LCD
•IC wafer
•TFT-LCD
•Color filter
•Solar cell/wafer
Uniform Low contrast Patterned Homogeneous
texture
Repeated
patterns
Heterogeneous
texture
Inspection in manufacturing
Product & process properties in manufacturing:
• Small , subtle local defect in
− Size
− Shape
− Deformation
− Gray scale/color unevenness
• Imbalanced data
– Many positive (defect-free) samples
– Only a few or No negative (defect) samples
Requirements:
• High precision/accuracy
– Location
– Detection rate
• Computationally fast
(Real-time computation to meet the cycle time)
3
Implement the deep learning models for
• CNN regression for image positioning
• GAN-based techniques to generate synthesized defects for
the data-imbalance problem
• Autoencoding models
– Convolutional Autoencoders (CAE) with one-class SVM classification
for unsupervised anomaly detection
– Variational Autoencoders (VAE) image reconstruction for unsupervised
defect detection
4
5
Deep learning for PCB positioning
6PCB assembly PCB inspection
Deep learning for PCB positioning
A precise positioning system can be used for
 Automated assembly
 Automated visual defect detection
Bare PCB Assembled PCB
 Problem
Predict Angle (θ)、Horizontal displacement (x) and Vertical displacement (y)
of a PCB w.r.t. the template.
7
(θ, x, y)=(-20°, -20, -20) (θ, x, y)=(4°, 0, 12) (θ, x, y)=(20°, 20, 20)
(θ, x, y)=(0°, 0, 0)PCB board
Deep learning for PCB positioning
Template
8
Traditional machine learning for regression
Deep learning for regression
Deep learning regression v.s. traditional ML
regression
9
CNN for regression:
CNN as feature extractor
for SVR regression:
DNN for regression:
CNN + SVR for regression:
Using Convolutional Neural Network (CNN)
and Support Vector Regression (SVR) models
to predict θ, x and y.
10
Linear SVR
Nonlinear SVR (with Kernel transformation)
Polynomial:
Radial Basis Function(RBF):
Support Vector Regression (SVR)
x = input feature(s)
y = output response(s)
11
• Input PCB image into DNN model to predict (θ, x, y)
• Number of hidden layers: 3
Deep Neural Network (DNN) model
12
• Input PCB image into CNN model to predict (θ, x, y)
Convolutional Neural Network (CNN) model
13
Note:
1. Kernel function “Radial Basis Function” is used
2. CNN model is the same as the previous one,
the number of features to SVR is 3.
3. Training time: 2.2 hours (for 9,261 samples)
CNN+SVR model for regression
14
CNN as feature extractor for regression
Note:
1. Kernel function “Radial Basis Function” is used
2. CNN model is the same as the previous one; the last layer of CNN
contains 128 nodes (i.e., number of features to SVR is 128)
3. Training time: 2.2 hours (for 9,261 samples)
15
The good thing about Deep learning for Regression:
The user needs only provide ONE SINGLE template image
16
It creates the input image (x) and the corresponding output (θ, x, y) for DL training
Reference PCB image
provided by users:
Augmented image:
Corresponding output: (θ, x, y)=(-20°, -20, -20) (θ, x, y)=(0°, 0, 0) (θ, x, y)=(20°, 20, 20)
180 pixel
180 pixel
The training samples are automatically generated
by Image Augmentation from the template
17
Range of
Training samples
• Image size: 180 × 180 (pixels)
• Angles: 0°、±2°、±4°、 …、± 20° (every two angles for θ)
• Horizontal displacement: 0、±2、±4、…、 ± 20 (pixel) (every two pixels for x)
• Vertical displacement : 0、±2、±4、…、 ± 20 (pixel) (every two pixels for y)
• Number of training samples: 9,261 (21 × 21 × 21)
Testing samples
• Image size :180 × 180 (pixels)
• Angles : 0°、±1°、±2°、…、± 20°
• Horizontal displacement : 0、±1、±2、…、±20 (pixel)
• Vertical displacement : 0、±1、±2、…、±20 (pixel)
• Number of testing samples :68,921 (41 × 41 × 41)
Note: The images with odd θ, x and y are unseen to the training model
18
Evaluate positioning accuracy by mean error, variance and maximum error.
Angle error (degree) Horizontal error (pixel) Vertical error (pixel)
Mean Variance Max Mean Variance Max Mean Variance Max
DNN 0.111 0.008 0.689 0.119 0.009 1.009 0.120 0.008 0.876
CNN 0.124 0.008 0.634 0.162 0.008 0.657 0.133 0.007 0.563
CNN+SVR 0.049 0.001 0.464 0.049 0.001 0.344 0.055 0.002 0.506
CNN as
feature
extractor
0.068 0.003 0.499 0.066 0.003 0.484 0.069 0.003 0.515
Positioning accuracy
19
Model Time (seconds)
DNN 0.00123
CNN 0.00166
CNN+SVR 0.00230
CNN as feature extractor 0.00541
Note: Equipment
1. CPU: Intel® Core™ i7-6700K CPU @ 4.00GHz × 8
2. GPU: GeForce GTX 1080 Ti
Computation time of each model
It achieves 2-milliseconds efficiency.
20
Defect inspection by image subtraction
Template fT ,
(a) Normal (b) Scratch (c) Extrusion
Test image
,
Image
subtraction
from ,
Result
∆ ,
(d) Intrusion
∆ , fT , ,
Template Aligned
Saw-mark defect detection
in heterogeneous solar wafer images using
- GAN-based training samples generation
- CNN classification
21
Multicrystalline solar wafer inspection
• Multicrystalline silicon wafers
 A multicrystalline solar wafer presents random shapes, sizes and directions of
crystal grains in the surface and results in a heterogeneous texture.
 A saw-mark defect is a severe flaw of wafers when cutting the silicon ingot into
thin wafers using the multi-wire saws.
Defect-free solar wafer image
White saw-mark defect Saw-mark defect caused
by impurity
Solar wafer image
with a black saw-mark defect
22
The proposed deep learning scheme is
composed of two phases:
Defect samples generation using the CycleGAN (Cycle-consistent Generative Adversarial Networks), and then
Defect detection using the CNN (Convolutional Neural Networks) based on
the true defect-free samples and the synthesized defective samples.
• The CycleGAN model combines both the adversarial loss (i.e. GAN) and the cycle consistency loss .
• GAN measures the adversarial lose between the generated images and the target image.
• The consistency lose prevents the learned forward and backward mappings from contradiction.
• It uses unpaired datasets (not specific paired samples in GAN) for the training, and is suited for our
application.
CycleGAN model used for defect patches generation
23
Real solar wafer surfaces
For training the CycleGAN:
• Use a small set of true defect patches (60 for black, 90 for white defects) as the target dataset,
and then randomly collect a small set of defect-free patches (60 & 90) as the input dataset to
the CycleGANs.
Real defect-free samples
Real black saw-mark samples
Real white saw-mark samples
24
Using the CycleGAN model to generate
the defective samples
Synthesized defects:
• Whenever we change the input set with different defect-free patches to the trained
CycleGAN, a new defective set is created.
Real defect-free samples input to the trained CycleGAN
Generated black saw-mark patches
Generated white saw-mark patches
25
The CNN model for classification
• A simple CNN with 3 convolutional layers is used for the training.
• A lean CNN model gives better computational efficiency in the inspection process.
• Training information:
– For the CycleGAN models, 150 (60 & 90 Black and White sawmarks) real defective
patches and 150 (60&90) real defect-free patches are used as the training samples.
– For the CNN model, a total of 4000 real defect-free patches and 4000 synthesized
sawmark patches are used as the training samples.
– Patch size 50 50 pixels
– Training time : 3 hours for CycleGAN , and 1 hour for CNN
CNN model used for defect detection
26
Postprocessing with conventional machine
vision techniques
• The saw-mark in a small windowed patch contains only subtle changes and, thus,
the entire saw-mark region may not be completely detected in the full-sized solar
wafer image.
• Apply the horizontal projection line by line in the resulting binary image B , to
intensify the horizontal saw-mark in the image . That is
P ∑ , , ∀
• The maximum projection value is used as the discriminant measure for saw-mark
detection, i.e. P ∗
P , ∀ . If the horizontal projection P ∗
is large
enough, a saw-mark at line ∗
is declared.
Note: The mean computation time is 0.004 seconds for an image patch of size 50×50
pixels on a PC with an Intel Core 2, 3.6GHz CPU and an NVIDIA GTX 1070 GPU .
27
Detection results on sawmarks
• Detection results of defect-free solar wafer images
Test images Detection result projection 28
Detection results on sawmarks
)( yP
y
)( yP
y
)( yP
y
• Detection results of defective solar wafer images
Test images Detection result projection 29
Detection results on stains / foreign particles
30
Real stains defect samples
Synthesized stain defect samples
Detection results on stains / foreign particles
• Detection results of defective solar wafer images
(a) Test images
(b) Detection result
31
Additional test: Using the CycleGAN model
to generate bump defects
• Bumps defect
32
Real defect samples
Real defect-free samples
Generated defect samples
Autoencoders for defect detection
-Autoencoders for image reconstruction
- Autoencoders for feature extraction
33
Unsupervised Autoencoders for
image reconstruction
, ,
Trained model
Autoencoding Model
Self-reference comparison:
∆ , , ,
	∆ , 	 ∆ 	, , 	 	 	
Encoder Decoder
Image Image
Testing image Reconstructed image
34
Defect detection in TFT-LCD
• Thin Film Transistor-Liquid Crystal Display (TFT-LCD) comprises vertical
data lines and horizontal gate lines .
• The main types of defects are pinholes, particles and scratches defect.
defect-free
LCD image
LCD image with
Particle defects
LCD image with
Pinhole defects
LCD image with
Scratch defects 35
VAE (Variational AutoEncoder) model for
image reconstraction
- The Model
• Structure of the VAE model
			 Zp Z p Z 		
Defect-free Defect-free
Latent variables
36
VAE model for image reconstruction
- Detection results by image subtraction
• Defect-free image
• Defect image (true defects)
Original image Restored image Image subtraction Binarization
, , ∆ ,
Original image Restored image Image subtraction Binarization
, , ∆ ,
37
Use AE for feature extraction for
anomaly detection (with one-class SVM)
• Testing image is reconstructed from the trained AE model.
• The features are extracted from the last layer of the Encoder , and used as
the input data of the one-class SVM to identify the anomalies.
ZEncoder DecoderEncoder Decoder
Test
image
Anomaly detection
Feature maps
One-class
SVM
Trained AE model
38
Use AE for feature extraction for
anomaly detection (one-class SVM)
• One-class SVM (Support Vector Machine)
Ni
NiR
CR
i
ii
N
i
i
,,2,1,0
,,2,1,
s.t.
Min
22
1
2




 



ax
Ra
Positive samples
Support vector
Outlier
Center point (a)
Radius (R)
	 a 	 	, 	 	 	
39
Use AE for feature extraction for anomaly
detection (one-class SVM) : The Model
• Structure of the AE model:
ZEncoder DecoderEncoder Decoder
Feature maps
Use AE for feature extraction for anomaly
detection (one-class SVM) : Training samples (LCD)
 Train only positive (defect-free) samples:
− Original 256 256 LCD images are rotated between 	0°
and 35°
with	5°
increment.
− 256 random image patches of size 28×28 are used for training.
− Using the AE model to extract the features for the one-class SVM model.
 Testing data:
− 160 positive samples
− 33 negative (true defect) samples
Computation time : training 15 minutes , testing 0.00008 seconds
41
Use AE for feature extraction for anomaly
detection (one-class SVM) : Detection results (LCD)
• Feature size : 490 (10 feature maps of size 7*7)
• Testing data : 160 positive samples 、 33 negative (true defect) samples
Prediction
Actual Normal Outlier
Normal 89% 11%
Outlier 0% 100%
Type I error 11%
Type II error 0%
Overall recognition rate 90%
42
Use AE for feature extraction for anomaly
detection (one-class SVM) : Detection results (LCD)
• Feature size : 49 (use only the best feature map with size 7*7)
Testing data : 160 positive samples , 33 negative (true defect) samples
Prediction
Actual Normal Outlier
Normal 92% 8%
Outlier 0% 100%
Type I error 8%
Type II error 0%
Overall recognition rate 92%
43
A thought on Deep Learning:
• Can Deep Learning replace Machine Vision?
• MV as preprocessing , and DL as postprocessing
– MV for defect detection, and DL for defect classification
– Or, vice versa
• MV in DL models?
– “Convolution” and “pooling” are parts of image processing operations
– Human knowledge in DL models
(e.g. embed the known defect features to the DL model)
44
45
Thank you
AOIEA

More Related Content

What's hot

PR 127: FaceNet
PR 127: FaceNetPR 127: FaceNet
PR 127: FaceNet
Taeoh Kim
 
NeurIPS2020参加報告
NeurIPS2020参加報告NeurIPS2020参加報告
NeurIPS2020参加報告
Sho Takase
 
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII
 
識別モデルと生成モデルと損失データ
識別モデルと生成モデルと損失データ識別モデルと生成モデルと損失データ
識別モデルと生成モデルと損失データ
Shohei Miyashita
 
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
Deep Learning JP
 
PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習
Naoto Usuyama
 
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
Shoki Miyagawa
 
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly DetectionTowards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
harmonylab
 
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
Deep Learning JP
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
テスト分析についての説明資料公開用
テスト分析についての説明資料公開用テスト分析についての説明資料公開用
テスト分析についての説明資料公開用
Tsuyoshi Yumoto
 
[DL輪読会]Real-Time Semantic Stereo Matching
[DL輪読会]Real-Time Semantic Stereo Matching[DL輪読会]Real-Time Semantic Stereo Matching
[DL輪読会]Real-Time Semantic Stereo Matching
Deep Learning JP
 
機械学習システムのアーキテクチャアラカルト
機械学習システムのアーキテクチャアラカルト機械学習システムのアーキテクチャアラカルト
機械学習システムのアーキテクチャアラカルト
BrainPad Inc.
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況
cvpaper. challenge
 
Perception distortion-tradeoff 20181128
Perception distortion-tradeoff 20181128Perception distortion-tradeoff 20181128
Perception distortion-tradeoff 20181128
Masakazu Shinoda
 
Software-company Transformation
Software-company TransformationSoftware-company Transformation
Software-company Transformation
Yasuharu Nishi
 
[DL輪読会]SlowFast Networks for Video Recognition
[DL輪読会]SlowFast Networks for Video Recognition[DL輪読会]SlowFast Networks for Video Recognition
[DL輪読会]SlowFast Networks for Video Recognition
Deep Learning JP
 
3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向
Kensho Hara
 
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試みGTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
kthrlab
 

What's hot (20)

PR 127: FaceNet
PR 127: FaceNetPR 127: FaceNet
PR 127: FaceNet
 
NeurIPS2020参加報告
NeurIPS2020参加報告NeurIPS2020参加報告
NeurIPS2020参加報告
 
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
 
識別モデルと生成モデルと損失データ
識別モデルと生成モデルと損失データ識別モデルと生成モデルと損失データ
識別モデルと生成モデルと損失データ
 
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
 
PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習
 
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
 
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly DetectionTowards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
 
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
【DL輪読会】An Image is Worth One Word: Personalizing Text-to-Image Generation usi...
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
 
テスト分析についての説明資料公開用
テスト分析についての説明資料公開用テスト分析についての説明資料公開用
テスト分析についての説明資料公開用
 
[DL輪読会]Real-Time Semantic Stereo Matching
[DL輪読会]Real-Time Semantic Stereo Matching[DL輪読会]Real-Time Semantic Stereo Matching
[DL輪読会]Real-Time Semantic Stereo Matching
 
機械学習システムのアーキテクチャアラカルト
機械学習システムのアーキテクチャアラカルト機械学習システムのアーキテクチャアラカルト
機械学習システムのアーキテクチャアラカルト
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況
 
Perception distortion-tradeoff 20181128
Perception distortion-tradeoff 20181128Perception distortion-tradeoff 20181128
Perception distortion-tradeoff 20181128
 
Software-company Transformation
Software-company TransformationSoftware-company Transformation
Software-company Transformation
 
[DL輪読会]SlowFast Networks for Video Recognition
[DL輪読会]SlowFast Networks for Video Recognition[DL輪読会]SlowFast Networks for Video Recognition
[DL輪読会]SlowFast Networks for Video Recognition
 
3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向3D CNNによる人物行動認識の動向
3D CNNによる人物行動認識の動向
 
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試みGTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
GTTM分析器「PyGTTM」の試作,及び,ディープラーニングを用いた精度向上の試み
 

Similar to 2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘

Convolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detectionConvolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detection
Darian Frajberg
 
Weakly Supervised Whole Slide Image Analysis Using Cloud Computing
Weakly Supervised Whole Slide Image Analysis Using Cloud ComputingWeakly Supervised Whole Slide Image Analysis Using Cloud Computing
Weakly Supervised Whole Slide Image Analysis Using Cloud Computing
Sean Yu
 
Optimizing Terascale Machine Learning Pipelines with Keystone ML
Optimizing Terascale Machine Learning Pipelines with Keystone MLOptimizing Terascale Machine Learning Pipelines with Keystone ML
Optimizing Terascale Machine Learning Pipelines with Keystone ML
Spark Summit
 
05 contours seg_matching
05 contours seg_matching05 contours seg_matching
05 contours seg_matching
ankit_ppt
 
Anjali (qa qc on cr dr)
Anjali (qa qc on cr dr)Anjali (qa qc on cr dr)
Anjali (qa qc on cr dr)globalsoin
 
Temporal Segment Network
Temporal Segment NetworkTemporal Segment Network
Temporal Segment Network
Dongang (Sean) Wang
 
Computer Graphics
Computer GraphicsComputer Graphics
Computer Graphics
Adri Jovin
 
PillQC-Deep-Learning
PillQC-Deep-LearningPillQC-Deep-Learning
PillQC-Deep-Learning
GianmarcoRusso7
 
Real time-image-processing-applied-to-traffic-queue-detection-algorithm
Real time-image-processing-applied-to-traffic-queue-detection-algorithmReal time-image-processing-applied-to-traffic-queue-detection-algorithm
Real time-image-processing-applied-to-traffic-queue-detection-algorithmajayrampelli
 
74 real time-image-processing-applied-to-traffic-queue-d
74 real time-image-processing-applied-to-traffic-queue-d74 real time-image-processing-applied-to-traffic-queue-d
74 real time-image-processing-applied-to-traffic-queue-dravi247272
 
5707_10_auto-encoder.pptx
5707_10_auto-encoder.pptx5707_10_auto-encoder.pptx
5707_10_auto-encoder.pptx
SidoriOne
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用
CHENHuiMei
 
presentation
presentationpresentation
presentationlei zhang
 
Computer graphics - Nitish Nagar
Computer graphics - Nitish NagarComputer graphics - Nitish Nagar
Computer graphics - Nitish Nagar
Nitish Nagar
 
SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)Reheman Baikejiang
 
Build Your Own 3D Scanner: 3D Scanning with Structured Lighting
Build Your Own 3D Scanner: 3D Scanning with Structured LightingBuild Your Own 3D Scanner: 3D Scanning with Structured Lighting
Build Your Own 3D Scanner: 3D Scanning with Structured Lighting
Douglas Lanman
 
OBDPC 2022
OBDPC 2022OBDPC 2022
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Lionel Briand
 
IMAGE PROCESSING
IMAGE PROCESSINGIMAGE PROCESSING
IMAGE PROCESSING
ABHISHEK MAURYA
 
Hand gestures recognition seminar_ppt.pptx.pdf
Hand gestures recognition seminar_ppt.pptx.pdfHand gestures recognition seminar_ppt.pptx.pdf
Hand gestures recognition seminar_ppt.pptx.pdf
SwathiSoman5
 

Similar to 2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘 (20)

Convolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detectionConvolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detection
 
Weakly Supervised Whole Slide Image Analysis Using Cloud Computing
Weakly Supervised Whole Slide Image Analysis Using Cloud ComputingWeakly Supervised Whole Slide Image Analysis Using Cloud Computing
Weakly Supervised Whole Slide Image Analysis Using Cloud Computing
 
Optimizing Terascale Machine Learning Pipelines with Keystone ML
Optimizing Terascale Machine Learning Pipelines with Keystone MLOptimizing Terascale Machine Learning Pipelines with Keystone ML
Optimizing Terascale Machine Learning Pipelines with Keystone ML
 
05 contours seg_matching
05 contours seg_matching05 contours seg_matching
05 contours seg_matching
 
Anjali (qa qc on cr dr)
Anjali (qa qc on cr dr)Anjali (qa qc on cr dr)
Anjali (qa qc on cr dr)
 
Temporal Segment Network
Temporal Segment NetworkTemporal Segment Network
Temporal Segment Network
 
Computer Graphics
Computer GraphicsComputer Graphics
Computer Graphics
 
PillQC-Deep-Learning
PillQC-Deep-LearningPillQC-Deep-Learning
PillQC-Deep-Learning
 
Real time-image-processing-applied-to-traffic-queue-detection-algorithm
Real time-image-processing-applied-to-traffic-queue-detection-algorithmReal time-image-processing-applied-to-traffic-queue-detection-algorithm
Real time-image-processing-applied-to-traffic-queue-detection-algorithm
 
74 real time-image-processing-applied-to-traffic-queue-d
74 real time-image-processing-applied-to-traffic-queue-d74 real time-image-processing-applied-to-traffic-queue-d
74 real time-image-processing-applied-to-traffic-queue-d
 
5707_10_auto-encoder.pptx
5707_10_auto-encoder.pptx5707_10_auto-encoder.pptx
5707_10_auto-encoder.pptx
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用
 
presentation
presentationpresentation
presentation
 
Computer graphics - Nitish Nagar
Computer graphics - Nitish NagarComputer graphics - Nitish Nagar
Computer graphics - Nitish Nagar
 
SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)
 
Build Your Own 3D Scanner: 3D Scanning with Structured Lighting
Build Your Own 3D Scanner: 3D Scanning with Structured LightingBuild Your Own 3D Scanner: 3D Scanning with Structured Lighting
Build Your Own 3D Scanner: 3D Scanning with Structured Lighting
 
OBDPC 2022
OBDPC 2022OBDPC 2022
OBDPC 2022
 
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
 
IMAGE PROCESSING
IMAGE PROCESSINGIMAGE PROCESSING
IMAGE PROCESSING
 
Hand gestures recognition seminar_ppt.pptx.pdf
Hand gestures recognition seminar_ppt.pptx.pdfHand gestures recognition seminar_ppt.pptx.pdf
Hand gestures recognition seminar_ppt.pptx.pdf
 

More from CHENHuiMei

小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
QIF對AOI設備業之衝擊與機會
QIF對AOI設備業之衝擊與機會QIF對AOI設備業之衝擊與機會
QIF對AOI設備業之衝擊與機會
CHENHuiMei
 
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
CHENHuiMei
 
基於少樣本深度學習之橡膠墊片檢測系統
基於少樣本深度學習之橡膠墊片檢測系統基於少樣本深度學習之橡膠墊片檢測系統
基於少樣本深度學習之橡膠墊片檢測系統
CHENHuiMei
 
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
CHENHuiMei
 
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
使用人工智慧檢測三維錫球瑕疵_台大傅楸善使用人工智慧檢測三維錫球瑕疵_台大傅楸善
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
CHENHuiMei
 
IIoT發展趨勢及設備業者因應之_微軟葉怡君
IIoT發展趨勢及設備業者因應之_微軟葉怡君IIoT發展趨勢及設備業者因應之_微軟葉怡君
IIoT發展趨勢及設備業者因應之_微軟葉怡君
CHENHuiMei
 
精密機械的空間軌跡精度光學檢測法_台大范光照
精密機械的空間軌跡精度光學檢測法_台大范光照精密機械的空間軌跡精度光學檢測法_台大范光照
精密機械的空間軌跡精度光學檢測法_台大范光照
CHENHuiMei
 
Report
ReportReport
Report
CHENHuiMei
 
Deep learning
Deep learningDeep learning
Deep learning
CHENHuiMei
 
When AOI meets AI
When AOI meets AIWhen AOI meets AI
When AOI meets AI
CHENHuiMei
 
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
CHENHuiMei
 
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
CHENHuiMei
 
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
CHENHuiMei
 
2018AOI論壇_AOI and IoT產線應用_工研院周森益
2018AOI論壇_AOI and IoT產線應用_工研院周森益2018AOI論壇_AOI and IoT產線應用_工研院周森益
2018AOI論壇_AOI and IoT產線應用_工研院周森益
CHENHuiMei
 
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
CHENHuiMei
 
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
CHENHuiMei
 
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
CHENHuiMei
 
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
CHENHuiMei
 
200704 Dr. Schenk 產品策略
200704 Dr. Schenk 產品策略200704 Dr. Schenk 產品策略
200704 Dr. Schenk 產品策略
CHENHuiMei
 

More from CHENHuiMei (20)

小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
 
QIF對AOI設備業之衝擊與機會
QIF對AOI設備業之衝擊與機會QIF對AOI設備業之衝擊與機會
QIF對AOI設備業之衝擊與機會
 
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
 
基於少樣本深度學習之橡膠墊片檢測系統
基於少樣本深度學習之橡膠墊片檢測系統基於少樣本深度學習之橡膠墊片檢測系統
基於少樣本深度學習之橡膠墊片檢測系統
 
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
 
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
使用人工智慧檢測三維錫球瑕疵_台大傅楸善使用人工智慧檢測三維錫球瑕疵_台大傅楸善
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
 
IIoT發展趨勢及設備業者因應之_微軟葉怡君
IIoT發展趨勢及設備業者因應之_微軟葉怡君IIoT發展趨勢及設備業者因應之_微軟葉怡君
IIoT發展趨勢及設備業者因應之_微軟葉怡君
 
精密機械的空間軌跡精度光學檢測法_台大范光照
精密機械的空間軌跡精度光學檢測法_台大范光照精密機械的空間軌跡精度光學檢測法_台大范光照
精密機械的空間軌跡精度光學檢測法_台大范光照
 
Report
ReportReport
Report
 
Deep learning
Deep learningDeep learning
Deep learning
 
When AOI meets AI
When AOI meets AIWhen AOI meets AI
When AOI meets AI
 
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
 
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
 
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
 
2018AOI論壇_AOI and IoT產線應用_工研院周森益
2018AOI論壇_AOI and IoT產線應用_工研院周森益2018AOI論壇_AOI and IoT產線應用_工研院周森益
2018AOI論壇_AOI and IoT產線應用_工研院周森益
 
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
 
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
 
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
 
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
 
200704 Dr. Schenk 產品策略
200704 Dr. Schenk 產品策略200704 Dr. Schenk 產品策略
200704 Dr. Schenk 產品策略
 

Recently uploaded

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 

Recently uploaded (20)

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 

2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘

  • 1. 1 AOIEA 深度學習於表面瑕疵檢測: Strategies for imbalanced data training 蔡篤銘 教授 元智大學 工業工程與管理學系 2018 Taiwan AOI Forum and show
  • 2. 物體表面特徵(surface texture) 2 High-resolution Resolution Uniform Low contrast Patterned Homogeneous texture Repeated patterns Heterogeneous texture •Web material •Paper •Steel surface •Mura •Backlight panel •Assembled PCB •IC die •TFT-LCD •IC wafer •TFT-LCD •Color filter •Solar cell/wafer Uniform Low contrast Patterned Homogeneous texture Repeated patterns Heterogeneous texture
  • 3. Inspection in manufacturing Product & process properties in manufacturing: • Small , subtle local defect in − Size − Shape − Deformation − Gray scale/color unevenness • Imbalanced data – Many positive (defect-free) samples – Only a few or No negative (defect) samples Requirements: • High precision/accuracy – Location – Detection rate • Computationally fast (Real-time computation to meet the cycle time) 3
  • 4. Implement the deep learning models for • CNN regression for image positioning • GAN-based techniques to generate synthesized defects for the data-imbalance problem • Autoencoding models – Convolutional Autoencoders (CAE) with one-class SVM classification for unsupervised anomaly detection – Variational Autoencoders (VAE) image reconstruction for unsupervised defect detection 4
  • 5. 5 Deep learning for PCB positioning
  • 6. 6PCB assembly PCB inspection Deep learning for PCB positioning A precise positioning system can be used for  Automated assembly  Automated visual defect detection Bare PCB Assembled PCB
  • 7.  Problem Predict Angle (θ)、Horizontal displacement (x) and Vertical displacement (y) of a PCB w.r.t. the template. 7 (θ, x, y)=(-20°, -20, -20) (θ, x, y)=(4°, 0, 12) (θ, x, y)=(20°, 20, 20) (θ, x, y)=(0°, 0, 0)PCB board Deep learning for PCB positioning Template
  • 8. 8 Traditional machine learning for regression Deep learning for regression Deep learning regression v.s. traditional ML regression
  • 9. 9 CNN for regression: CNN as feature extractor for SVR regression: DNN for regression: CNN + SVR for regression: Using Convolutional Neural Network (CNN) and Support Vector Regression (SVR) models to predict θ, x and y.
  • 10. 10 Linear SVR Nonlinear SVR (with Kernel transformation) Polynomial: Radial Basis Function(RBF): Support Vector Regression (SVR) x = input feature(s) y = output response(s)
  • 11. 11 • Input PCB image into DNN model to predict (θ, x, y) • Number of hidden layers: 3 Deep Neural Network (DNN) model
  • 12. 12 • Input PCB image into CNN model to predict (θ, x, y) Convolutional Neural Network (CNN) model
  • 13. 13 Note: 1. Kernel function “Radial Basis Function” is used 2. CNN model is the same as the previous one, the number of features to SVR is 3. 3. Training time: 2.2 hours (for 9,261 samples) CNN+SVR model for regression
  • 14. 14 CNN as feature extractor for regression Note: 1. Kernel function “Radial Basis Function” is used 2. CNN model is the same as the previous one; the last layer of CNN contains 128 nodes (i.e., number of features to SVR is 128) 3. Training time: 2.2 hours (for 9,261 samples)
  • 15. 15 The good thing about Deep learning for Regression: The user needs only provide ONE SINGLE template image
  • 16. 16 It creates the input image (x) and the corresponding output (θ, x, y) for DL training Reference PCB image provided by users: Augmented image: Corresponding output: (θ, x, y)=(-20°, -20, -20) (θ, x, y)=(0°, 0, 0) (θ, x, y)=(20°, 20, 20) 180 pixel 180 pixel The training samples are automatically generated by Image Augmentation from the template
  • 17. 17 Range of Training samples • Image size: 180 × 180 (pixels) • Angles: 0°、±2°、±4°、 …、± 20° (every two angles for θ) • Horizontal displacement: 0、±2、±4、…、 ± 20 (pixel) (every two pixels for x) • Vertical displacement : 0、±2、±4、…、 ± 20 (pixel) (every two pixels for y) • Number of training samples: 9,261 (21 × 21 × 21) Testing samples • Image size :180 × 180 (pixels) • Angles : 0°、±1°、±2°、…、± 20° • Horizontal displacement : 0、±1、±2、…、±20 (pixel) • Vertical displacement : 0、±1、±2、…、±20 (pixel) • Number of testing samples :68,921 (41 × 41 × 41) Note: The images with odd θ, x and y are unseen to the training model
  • 18. 18 Evaluate positioning accuracy by mean error, variance and maximum error. Angle error (degree) Horizontal error (pixel) Vertical error (pixel) Mean Variance Max Mean Variance Max Mean Variance Max DNN 0.111 0.008 0.689 0.119 0.009 1.009 0.120 0.008 0.876 CNN 0.124 0.008 0.634 0.162 0.008 0.657 0.133 0.007 0.563 CNN+SVR 0.049 0.001 0.464 0.049 0.001 0.344 0.055 0.002 0.506 CNN as feature extractor 0.068 0.003 0.499 0.066 0.003 0.484 0.069 0.003 0.515 Positioning accuracy
  • 19. 19 Model Time (seconds) DNN 0.00123 CNN 0.00166 CNN+SVR 0.00230 CNN as feature extractor 0.00541 Note: Equipment 1. CPU: Intel® Core™ i7-6700K CPU @ 4.00GHz × 8 2. GPU: GeForce GTX 1080 Ti Computation time of each model It achieves 2-milliseconds efficiency.
  • 20. 20 Defect inspection by image subtraction Template fT , (a) Normal (b) Scratch (c) Extrusion Test image , Image subtraction from , Result ∆ , (d) Intrusion ∆ , fT , , Template Aligned
  • 21. Saw-mark defect detection in heterogeneous solar wafer images using - GAN-based training samples generation - CNN classification 21
  • 22. Multicrystalline solar wafer inspection • Multicrystalline silicon wafers  A multicrystalline solar wafer presents random shapes, sizes and directions of crystal grains in the surface and results in a heterogeneous texture.  A saw-mark defect is a severe flaw of wafers when cutting the silicon ingot into thin wafers using the multi-wire saws. Defect-free solar wafer image White saw-mark defect Saw-mark defect caused by impurity Solar wafer image with a black saw-mark defect 22
  • 23. The proposed deep learning scheme is composed of two phases: Defect samples generation using the CycleGAN (Cycle-consistent Generative Adversarial Networks), and then Defect detection using the CNN (Convolutional Neural Networks) based on the true defect-free samples and the synthesized defective samples. • The CycleGAN model combines both the adversarial loss (i.e. GAN) and the cycle consistency loss . • GAN measures the adversarial lose between the generated images and the target image. • The consistency lose prevents the learned forward and backward mappings from contradiction. • It uses unpaired datasets (not specific paired samples in GAN) for the training, and is suited for our application. CycleGAN model used for defect patches generation 23
  • 24. Real solar wafer surfaces For training the CycleGAN: • Use a small set of true defect patches (60 for black, 90 for white defects) as the target dataset, and then randomly collect a small set of defect-free patches (60 & 90) as the input dataset to the CycleGANs. Real defect-free samples Real black saw-mark samples Real white saw-mark samples 24
  • 25. Using the CycleGAN model to generate the defective samples Synthesized defects: • Whenever we change the input set with different defect-free patches to the trained CycleGAN, a new defective set is created. Real defect-free samples input to the trained CycleGAN Generated black saw-mark patches Generated white saw-mark patches 25
  • 26. The CNN model for classification • A simple CNN with 3 convolutional layers is used for the training. • A lean CNN model gives better computational efficiency in the inspection process. • Training information: – For the CycleGAN models, 150 (60 & 90 Black and White sawmarks) real defective patches and 150 (60&90) real defect-free patches are used as the training samples. – For the CNN model, a total of 4000 real defect-free patches and 4000 synthesized sawmark patches are used as the training samples. – Patch size 50 50 pixels – Training time : 3 hours for CycleGAN , and 1 hour for CNN CNN model used for defect detection 26
  • 27. Postprocessing with conventional machine vision techniques • The saw-mark in a small windowed patch contains only subtle changes and, thus, the entire saw-mark region may not be completely detected in the full-sized solar wafer image. • Apply the horizontal projection line by line in the resulting binary image B , to intensify the horizontal saw-mark in the image . That is P ∑ , , ∀ • The maximum projection value is used as the discriminant measure for saw-mark detection, i.e. P ∗ P , ∀ . If the horizontal projection P ∗ is large enough, a saw-mark at line ∗ is declared. Note: The mean computation time is 0.004 seconds for an image patch of size 50×50 pixels on a PC with an Intel Core 2, 3.6GHz CPU and an NVIDIA GTX 1070 GPU . 27
  • 28. Detection results on sawmarks • Detection results of defect-free solar wafer images Test images Detection result projection 28
  • 29. Detection results on sawmarks )( yP y )( yP y )( yP y • Detection results of defective solar wafer images Test images Detection result projection 29
  • 30. Detection results on stains / foreign particles 30 Real stains defect samples Synthesized stain defect samples
  • 31. Detection results on stains / foreign particles • Detection results of defective solar wafer images (a) Test images (b) Detection result 31
  • 32. Additional test: Using the CycleGAN model to generate bump defects • Bumps defect 32 Real defect samples Real defect-free samples Generated defect samples
  • 33. Autoencoders for defect detection -Autoencoders for image reconstruction - Autoencoders for feature extraction 33
  • 34. Unsupervised Autoencoders for image reconstruction , , Trained model Autoencoding Model Self-reference comparison: ∆ , , , ∆ , ∆ , , Encoder Decoder Image Image Testing image Reconstructed image 34
  • 35. Defect detection in TFT-LCD • Thin Film Transistor-Liquid Crystal Display (TFT-LCD) comprises vertical data lines and horizontal gate lines . • The main types of defects are pinholes, particles and scratches defect. defect-free LCD image LCD image with Particle defects LCD image with Pinhole defects LCD image with Scratch defects 35
  • 36. VAE (Variational AutoEncoder) model for image reconstraction - The Model • Structure of the VAE model Zp Z p Z Defect-free Defect-free Latent variables 36
  • 37. VAE model for image reconstruction - Detection results by image subtraction • Defect-free image • Defect image (true defects) Original image Restored image Image subtraction Binarization , , ∆ , Original image Restored image Image subtraction Binarization , , ∆ , 37
  • 38. Use AE for feature extraction for anomaly detection (with one-class SVM) • Testing image is reconstructed from the trained AE model. • The features are extracted from the last layer of the Encoder , and used as the input data of the one-class SVM to identify the anomalies. ZEncoder DecoderEncoder Decoder Test image Anomaly detection Feature maps One-class SVM Trained AE model 38
  • 39. Use AE for feature extraction for anomaly detection (one-class SVM) • One-class SVM (Support Vector Machine) Ni NiR CR i ii N i i ,,2,1,0 ,,2,1, s.t. Min 22 1 2          ax Ra Positive samples Support vector Outlier Center point (a) Radius (R) a , 39
  • 40. Use AE for feature extraction for anomaly detection (one-class SVM) : The Model • Structure of the AE model: ZEncoder DecoderEncoder Decoder Feature maps
  • 41. Use AE for feature extraction for anomaly detection (one-class SVM) : Training samples (LCD)  Train only positive (defect-free) samples: − Original 256 256 LCD images are rotated between 0° and 35° with 5° increment. − 256 random image patches of size 28×28 are used for training. − Using the AE model to extract the features for the one-class SVM model.  Testing data: − 160 positive samples − 33 negative (true defect) samples Computation time : training 15 minutes , testing 0.00008 seconds 41
  • 42. Use AE for feature extraction for anomaly detection (one-class SVM) : Detection results (LCD) • Feature size : 490 (10 feature maps of size 7*7) • Testing data : 160 positive samples 、 33 negative (true defect) samples Prediction Actual Normal Outlier Normal 89% 11% Outlier 0% 100% Type I error 11% Type II error 0% Overall recognition rate 90% 42
  • 43. Use AE for feature extraction for anomaly detection (one-class SVM) : Detection results (LCD) • Feature size : 49 (use only the best feature map with size 7*7) Testing data : 160 positive samples , 33 negative (true defect) samples Prediction Actual Normal Outlier Normal 92% 8% Outlier 0% 100% Type I error 8% Type II error 0% Overall recognition rate 92% 43
  • 44. A thought on Deep Learning: • Can Deep Learning replace Machine Vision? • MV as preprocessing , and DL as postprocessing – MV for defect detection, and DL for defect classification – Or, vice versa • MV in DL models? – “Convolution” and “pooling” are parts of image processing operations – Human knowledge in DL models (e.g. embed the known defect features to the DL model) 44