This dissertation applies a modified statistical dynamical diffraction theory (mSDDT) to analyze high-resolution x-ray diffraction (HRXRD) data from C-doped Si and SiGe heterostructures. The mSDDT improves upon previous statistical dynamical diffraction theory by incorporating weighted and layered broadening effects to better model defective and partially relaxed materials. Experimental HRXRD scans of SiGe samples are fitted using mSDDT and compared to commercial software. The results demonstrate mSDDT's ability to quantitatively characterize relaxed and defective semiconductor structures through non-destructive metrology.