SlideShare a Scribd company logo
1 of 17
Download to read offline
Flavio Maggioni Piero Belforte
EASYSCAN e confronto misure/simulazione di emissione EM Close
Field da PCBs
Data di redazione: 26 settembre 2000
Numero di pagine: 17
AUTORI: Flavio MAGGIONI (IN-SP)
REVISIONE: Piero BELFORTE (IN-SM)
Executive summary
EASYSCAN e’ un prototipo di prodotto sviluppato per il rilevamento di mappe bidimensionali planari
di emissione elettromagnetica (EM) da schede elettroniche e piccoli apparati (per esempio: telefoni
portatili). L’attivita’, svolta nell’ambito del progetto P24 “Evoluzione dei modelli di progettazione”, task
4 “Impatto dei vincoli di compatibilita’ elettromagnetica”, aveva il triplice scopo di valutare le
prestazioni della apparecchiatura EASYSCAN, delle sonde di campo magnetico utilizzate e la
validazione del software di valutazione simulativa dello stesso fenomeno disponibile in THRIS.
L’analisi ha dimostrato un buon grado di affidabilita’ dei risultati, sia dello strumento di scansione che
del software di valutazione simulativa. Anche le sonde utilizzate hanno mostrato una sufficiente
capacita’ di risoluzione del campo misurato (ordine del millimetro). Sono emerse criticita’ soprattutto
di tipo meccanico e di lentezza dello strumento di scansione, superabili in una eventuale attivita’ di
ingegnerizzazione e alcuni problemi di stabilita’ del software sia di simulazione che di controllo dello
strumento di scansione. Il presente documento, dopo una introduzione della problematica, descrive i
risultati delle prove effettuare ed i confronti fra misure e simulazioni.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 2 di 17
Riservatezza USO INTERNO CSELT
Indice del documento
1 Introduzione.........................................................................................................................3
1.1 Analisi EM Close Field.......................................................................................................3
1.2 Contenuto..........................................................................................................................3
2 Descrizione del sistema di scansione ...................................................................................3
2.1 Lo strumento Easy Scan....................................................................................................3
3 Descrizione del tool di simulazione.......................................................................................4
3.1 Il sistema THRIS................................................................................................................4
3.2 L’analisi simulativa di emissione EM Close Field................................................................4
4 Descrizione del Setup di misura ...........................................................................................5
5 Sonde ..................................................................................................................................5
6 Test vehicle 1.......................................................................................................................6
6.1 Descrizione del test vehicle 1.............................................................................................6
6.2 Confronti misure/simulazione.............................................................................................6
7 Test vehicle 2.......................................................................................................................8
7.1 Descrizione del test vehicle 2.............................................................................................8
7.2 Confronti misure/simulazioni ..............................................................................................9
8 Conclusioni ........................................................................................................................12
9 Bibliografia.........................................................................................................................13
10 Elenco di sigle, acronimi e simboli......................................................................................13
11 Glossario ...........................................................................................................................13
12 Appendice A: Descrizione delle sonde utilizzate .................................................................14
13 Appendice B: Calibrazione della sonda RF B 3-2................................................................15
13.1 Setup di calibrazione .......................................................................................................15
13.2 Test vehicle e procedura di misura adottata.....................................................................15
13.3 Risultati di misura ............................................................................................................16
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 3 di 17
Riservatezza USO INTERNO CSELT
1 Introduzione
1.1 Analisi EM Close Field
La rilevazione di campo elettromagnetico emesso da un corpo radiante puo’ essere effettuata in
condizioni di Far Field, Near Field o Close Field. Mentre le prime due sono differenziate dal rapporto
fra la distanza di misura e la lunghezza d’onda della radiazione elettromagnetica, il Close Field si puo’
definire una situazione particolare di Near Field in cui la distaza fisica dal corpo radiante e’ piccola
confrontata alle dimensioni dell’oggetto radiante, (dell’ordine di millimetri o centimetri per un PCB).
Questa tecnica permette di identificare con precisione i punti di fuga di emissione elettromagnetica di
interi apparati oppure spot di emissione da schede elettroniche. Il valore di campo ottenuto con
questa tecnica, a causa dell’elevato gradiente del campo elettromagnetico che si verifica in
prossimita’ del corpo radiante che lo genera, e’ fortemente sensibile alla distanza di misura (e’ facile
avere sensibilita’ dell’ordine di parecchi dB/mm) percui si inquadra piu’ come una caratterizzazione di
tipo qualitativo che quantitativo.
1.2 Contenuto
Il presente documento contiene un confronto fra misure e simulazione di emissione
elettromagnetica in condizioni di Close Field, con un triplice scopo:
1) Collaudo della apparecchiatura di misura di scansione elettromagnetica EASYSCAN realizzata
in CSELT per la rilevazione di mappe bidimensionali di emissione elettromagnetica in condizioni
di Close Field;
2) Validazione del software di simulazione EmiR disponibile nel sistema THRIS per la rilevazione
simulata di mappe bidimensionali di emissione elettromagnetica in condizioni di Close Filed
3) Verifica prestazionale di sonde per la rilevazione di campo elettromagnetico in condizioni di
Close Field.
2 Descrizione del sistema di scansione
2.1 Lo strumento Easy Scan
Easy Scan e’ costituito da una piattaforma orizzontale traslabile in due direzioni ortogonali
tramite viti millimetriche e motori passo passo controllati da una apparecchiatura hardware. Il controllo
software e’ effettuato tramite un programma in linguaggio VEE, mentre la visualizzazione delle mappe
di emissioni rilevate dalla strumentazione e’ affidata ad una particolare funzione del sistema THRIS.
L’altezza della sonda di misura e’ pure controllata dal software VEE tramite una vite millimetrica
ed un motore passo passo. Lo strumento permette la misurazione di componenti di campo nelle tre
direzioni spaziali x,y,z, compatibilmente alle caratteristiche della sonda utilizzata.
Una descrizione dettagliata del sistema di scansione e del software di controllo VEE e’
contenuta in [1].
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 4 di 17
Riservatezza USO INTERNO CSELT
Figura 2.1.1: Sistema di misura EM Close Field EASY SCAN.
3 Descrizione del tool di simulazione
3.1 Il sistema THRIS
Il sistema THRIS e’ un sistema hardware/software che, fra le altre funzionalita’, permette la
simulazione della Signal Integrity e del comportamento EMC di schede elettroniche. Nato inizialmente
come strumento applicabile per l’inserzione fisica di guasti durante la qualificazione degli apparati di
telecomunicazione, nel corso di alcuni anni e’ diventato un potente strumento di verifica del progetto
hardware a livello elettrico ed elettromagnetico. Fra le varie funzionalita’ comprende l’analisi pre-
layout a livello elettrico di interconnessioni critiche e l’analisi post-layout a livello elettrico
(terminazioni, impedenza delle piste, diafonie, rumore di commutazione simultanea) di interi PCB e di
sistemi composti da piu’ PCB. Recentemente l’interesse e’ stato indirizzato alle problematiche di
emissione elettromagnetica (irradiata e condotta), con lo scopo di prevenire, tramite un approccio
simulativo a livello di progetto, eventuali criticita’ che potrebbero manifestarsi solamente durante la
fase di certificazione del prodotto finito.
3.2 L’analisi simulativa di emissione EM Close Field
Una delle analisi possibili del sistema THRIS e’ la simulazione dell’emissione in condizioni
Close Field, limitatamente ai contributi dovuti alle piste dei layer top e bottom, di schede elettroniche a
circuito stampato.
La procedura di simulazione e’ riassunta brevemente:
1) In una prima fase, tutti o alcuni segnali della scheda vengono simulati a livello elettrico. I
modelli utilizzati per i driver (I/O dei componenti della scheda) permettono l’assegnamento di
segnali digitali o analogici con frequenze e fasi diverse fra loro, emulando il piu’ similmente
possibile il comportamento reale della scheda sotto test.
2) Nel setup di simulazione viene specificato il campo di frequenze utilizzato per il test. La
frequenza minima e’ correlata al segnale ripetitivo piu’ lento sul PCB che si vuole analizzare,
mentre quella piu’ alta e’ 1GHz per default, ma puo’ essere modificata dall’utente. La frequenza
di campionamento rispetta il criterio di Nayquist.
3) La simulazione dei segnali sulla scheda avviene a livello elettrico nel dominio del tempo. La
finestra temporale di simulazione e’ correlata dalla frequenza del segnale ripetitivo piu’ lento.
Alla fine della simulazione, i valori di tensione e corrente presenti ad un’estremo di ogni
segmento di layout dei layer top e bottom della scheda vengono memorizzati su file. A titolo di
esempio, per una interconnessione dal punto A al punto B rappresentata da n-segmenti di
lunghezza variabile verranno salvati 2n forme d’onda, n di tensione ed n di corrente. Queste
forma d’onda possono, inoltre, essere visualizzate sullo schermo.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 5 di 17
Riservatezza USO INTERNO CSELT
4) Un primo algoritmo permette di passare dalle tensioni e correnti fisiche salvate nel file alle onde
progressive e regressive di tensione e corrente sui vari tratti di pista, sempre nel dominio del
tempo. Una descrizione di questo tipo permette di calcolare l’andamento nel tempo di tensione
e corrente in un punto qualunque intermedio di un segmento.
5) Un algoritmo di FFT viene applicato alle onde progressive e regressive, passando dal dominio
del tempo a quello delle frequenze.
6) A questo punto viene specificata una griglia bidimensionale XY, avente un passo di griglia
specificato da utente ed una altezza della sonda virtuale dalla scheda sotto analisi (positiva per
le mappe relative al top layer e negativa per quelle relative al bottom layer). Il potere risolutivo
dell’analisi varia in funzione dell’altezza a cui viene calcolata la mappa e puo’ arrivare (per
altezze molto piccole) a volori dell’ordine di alcuni millimetri.
7) Come ultima fase di calcolo, per ogni punto di griglia della mappa vengono sommati (in modulo
e fase) i contributi di irradiazione di ogni segmento delle interconnessioni coinvolte nell’analisi (i
segmenti piu’ lunghi vengono a loro volta spezzettati in piu’ segmentini elementari) ed il campo
risultante raprresentato nelle sue componenti x,y e z in valore RMS o massimo (a scelta
dell’utente).
8) La mappa (una per ogni armonica della minore frequenza di analisi specificata nel setup di
simulazione), con rappresentazione a curve di livello, viene quindi mostrata sovrapposta al
disegno del layout della scheda utilizzando un scala a gradazione di colore (rosso = campo piu’
intenso). Una serie di comandi permette di:
- Selezionare la frequenza;
- Selezionare la componente di campo desiderata (x,y,z, totale);
- Specificare i limiti della scala di gradazione dei colori;
- Effettuare zoom
Una descrizione accurata della user interface del sistema THRIS e’ disponibile in [2].
4 Descrizione del Setup di misura
Il setup di misura prevede lo strumento EASYSCAN ed una scheda a circuito stampato
irradiante. Per le prove sono state utilizzate due schede di prova. Il campo magnetico rivelato dalla
sonda viene amplificato ed inviato ad un analizzatore di spettro. Il software di controllo di EASYSCAN
provvede a spostare la sonda secondo una griglia definita da utente ed ad acquisire, dall’analizzatore
di spettro, i valori di campo misurati. Alla fine della scansione i dati vengono salvati su file e possono
essere visualizzati, tramite THRIS, in formato di mappe bidimensionali sovrapposte al disegno della
scheda elettronica sotto test.
5 Sonde
Le sonde utilizzate nel corso della sperimentazione sono 2:
- Sonda HP 11940A Close–field probe 30MHz-1GHz
- Sonda RFB 3-2 prodotta dalla LANGER EMV-TechniK (D)
Una descrizione piu’ dettagliata delle sonde utilizzate e’ riportata in appendice A.
Tutte le prove indicate nei capitoli successivi sono state condotte con la sonda RFB 3-2, tenendo
conto delle curve di correzione ricavate dalla procedura indicata in appendice B.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 6 di 17
Riservatezza USO INTERNO CSELT
6 Test vehicle 1
6.1 Descrizione del test vehicle 1
Il primo test vehicle e’ rappresentato da una microstrip a serpentina su un PCB. La topologia
della pista e’ la seguente:
Figura 6.1.1: Pattern del primo test vehicle.
La larghezza della pista e’ di 1.2mm e lo spessore totale della scheda (due layer, il secondo e’
un piano continuo di massa) pari a 1.5mm. Il materiale considerato e’ FR4 (costante dielettrica
supposta pari a 4.7).
Come driver e’ stato utilizzato un generatore sinusoidale connesso ad un capo della pista.
L’altra estremita’ della pista e’ stata lasciata non terminata, per causare l’instaurarsi di onde
stazionarie.
6.2 Confronti misure/simulazione
Il generatore (impedenza interna 50 ohm) e’ stato impostato ad una frequenza di 300MHz, con
un livello di segnale pari a 90dbV (RMS), equivalente ad una sinusoide con ampiezza massima di
0.0894 Vpp, valore utilizzato anche per la simulazione.
La figura 6.2.1 mostra il confronto fra campo misurato e simulato, a 300MHz, della scheda sotto
test. La distanza della sonda dalla scheda e’ di 5mm ed il campo rilevato e’ limitato alla componente
in direzione z (normale alla scheda). La grigliatura di partenza (misurata e simulata) ha un passo di
3mm in entrambe le direzioni x e y. Per agevolare il contronto, sono stati fatte alcune sezioni del
solido di irradiazione, per intensita’ del campo maggiori di 50dBA/m.
Si puo’ notare la notevole somiglianza dei pattern di campo sia nella forma (sono ben visibili i
ventri ed i nodi dell’onda stazionaria) che nei valori (lo scarto fra il valori massimi misurati e simulati e’
inferiore ai 3dB.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 7 di 17
Riservatezza USO INTERNO CSELT
Figura 6.2.1: Confronto fra misura e simulazione del primo test vehicle.
Frequenza = 300MHz, distanza della sonda dalla scheda = 5mm. Passo di
scansione misurato e simulato = 3mm in entrambe le direzioni x ed y.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 8 di 17
Riservatezza USO INTERNO CSELT
7 Test vehicle 2
7.1 Descrizione del test vehicle 2
Come secondo veicolo di test e’ stata utilizzata una scheda di test completa di oscillatore, e
componenti. Il layout della scheda e’ riportato in fig. 7.1.1
Figura 7.1.1: Layout della scheda utilizzata come test.
La funzione della scheda e’ molto semplice: Un oscillatore locale quarzato genera una
frequenza di 16.893 MHZ che viene distribuita tramite U6 ai tre contatori U4, U3 ed U1 (FACT163).
Ognuno di questi contatori ha cinque uscite, a frequenza 8, 4, 2 ed 1 Mhz piu’ il bit di carry (in U3 il bit
di carry non viene utilizzato).
I componenti U5 ed U2 hanno solo funzione di receiver, mentre U7 e’ un driver di linea e transforma il
segnale ricevuto in un segnale differenziale collegato ad un connettore esterno. La scheda, utilizzata
anche come test per la valutazione delle emissioni irradiate, e’ alimentata autonomamente da un
pacco di batterie schermate collocato sul lato opposto della scheda, dove risiede l’alimentatore
stabilizzato tradizionale (schermato e non switching). La scheda ha 4 layers, con i due centrali
costituiti da piani continui di massa ed alimentazione.
La scheda cosi’ costituita irradia essenzialmente per tre cause:
- modo differenziale dalle piste,
- modo differenziale dai loop di alimentazione dei componenti,
- modo comune dai piani di massa ed alimentazione.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 9 di 17
Riservatezza USO INTERNO CSELT
L’analisi di emissione EM in close field permette di rilevare i primi due fenomeni. Durante l’analisi e’
stato notato comunque che l’analisi in close field permette di rilevare anche le frequenze di risonanza
del piano di massa della scheda. E’ sufficiente infatti porre la sonda in una posizione ai bordi della
scheda e lontano dai componenti per rilevare uno spettro di emissione caratterizzato da un picco
principale (intorno a 200MHZ) e sue armoniche. Ovviamente, il segnali presenti sulla scheda devono
contenere armoniche tali da stimolare la frequenza di risonanza del piano (idealmente una delta di
dirac, ma e’ sufficiente un segnale lento a fronti ripidi che genera numerose armoniche superiori di
grande ampiezza).
Il segnale spettrale misurato sulla scheda presenta, in teoria, armoniche ogni 1.0558MHZ, causate
dalla frequenza del bit piu’ significativo dei contatori. Comunque, la potenza spettrale ricade
maggiormente nelle armoniche del clock (ogni 16 MHz circa), nei bit piu’ significativi dei contatori
(ogni 8 MHZ circa) e via via a scalare fino alle armoniche intermedie a passo di 1.0558MHz. La
medesima configurazione di segnale e’ stata simulata tramite THRIS.
7.2 Confronti misure/simulazioni
Fig. 7.2.1 mostra il confronto fra misura e simulazione per una armonica del clock (terza armonica del
clock a 16.9MHz, circa 50.6 MHz). I diversi grafici sono tutti relativi alla medesima frequenza, ma
disegnando, volta per volta, solo il campo maggiore di un valore specificato da utente, permettendo
cosi’ una visualizzazione tipo “a curve di livello”. Dall’analisi si vede come il contributo maggiore
all’emissione misurata sia portato dalle piste di clock. Gli spot di colore intenso rilevato nelle misure
sono in corrispondenza dei componenti, che hanno registrato i valore massimo di campo (circa
99dbuA/m), mentre le piste raggiungono al massimo un valore di 85dbuA/m. Comunque, lo spessore
dei componenti provoca un errore sistematico di misura del campo emesso dagli stessi poiche’ la
distanza dalla sonda diminuisce fino a circa 3mm invece dei 5mm delle piste, causando un errore di
sovrastima del campo misurato di almeno 5-8db (vedi appendice B). Con questa correzione il campo
emesso dai componenti si riavvicina notevolmente a quello emesso dalle piste. Relativamente alle
piste si nota invece una buona corrispondenza fra misura e simulazione, con una differenza
qualitativa di alcuni dB fra le mappe simulate e misurate.
Fig. 7.2.2 mostra il confronto fra misura e simulazione per una armonica del bit meno significativo del
contatore (settima armonica di 8.45MHz, circa 60MHz). L’emissione e’ chiaramente dovuta alle piste
dei contatori, mentre il contributo delle piste del clock e’ nullo (non e’ una armonica del clock). Il
campo massimo e’ in generale circa 10db inferiore delle piste di clock di fig. 7.2.11. La corrispondenza
fra misura e simulazione e’ notevole, anche in termini quantitativi di campo misurato/simulato, come
rivelato dal sezionamento “a curve di livello”.
1 Le commutazioni sono anche doppie
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 10 di 17
Riservatezza USO INTERNO CSELT
Fig. 7.2.1: Confronto fra mappe di emissione in close field (5mm di distanza dalla
scheda) misurate e simulate alla frequenza di 50.5MHz circa (terza armonica del clock).
Passo di scansione di misura 4mm in x ed y, Passo di scansione di simulazione 6mm in
x ed y.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 11 di 17
Riservatezza USO INTERNO CSELT
Fig. 7.2.2: Confronto fra mappe di emissione in close field (5mm di distanza dalla
scheda) misurate e simulate alla frequenza di 60MHz circa (settima armonica della
frequenza del bit meno significativo dei contatori – circa 8.45MHz). Passo di scansione
di misura 4mm in x ed y, Passo di scansione di simulazione 6mm in x ed y.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 12 di 17
Riservatezza USO INTERNO CSELT
8 Conclusioni
L’attivita’ ha permesso di confermare l’utilizzabilita’ dello strumento di scansione EM in close
field EASYSCAN. Nonostante la lentezza della fase di inizializzazione (circa 10 minuti) ed i tempi di
scansione elevati (circa 90 minuti per una scansione a 4mm di griglia di una scheda di 28x25cm per
un totale di oltre 4000 punti di misura), l’apparecchiatura ha mostrato una discreta utilizzabilita’ ed
affidabilita’, specialmente su mappe di piccole dimesioni. I confronti fra misure e simulazione hanno
mostrato un corrispondenza del’ordine di alcuni dB, piu’ che buona in questo tipo di applicazione. La
sonda utilizzata (Sonda RFB 3-2 prodotta dalla LANGER EMV-TechniK (D)) ha mostrato delle buone
prestazioni, nonostante le ridotte dimensioni.
Alcune criticita’ sono emerse nella stabilita’ del software di controllo della apparecchiatura
(sviluppato in ambiente VEE) e in quello di simulazione, elencate in altro documento. Dal punto di
vista meccanico, l’apparecchiatura (ora costruita in plexiglass per evitare problemi di interferenza sul
campo EM misurato) ha mostrato problemi di scarsa rigidita’ meccanica, rispettando con fatica le
tolleranze di planarita’ del pianale di sostegno della apparecchiature sotto test richieste durante la
scansione (ordine di decimi di millimetri su superfici di 30x30.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 13 di 17
Riservatezza USO INTERNO CSELT
9 Bibliografia
[1] “EASY SCAN User Manual”, 1999
[2] ,"EmiR User Manual", 1999
10 Elenco di sigle, acronimi e simboli
EMC: ElectroMagnetic Compatibility
EASY SCAN: Electromagnetic Analysis SYstem by SCANning
THRIS: Telecom Hardware Robustness Inspection System
EmiR: Emission Radiated
PCB: Printed Circuit Board
11 Glossario
Far Field: Situazione di campo quando la distanza della sorgente radiante e’ superiore alla
lunghezza d’onda
Near Field: Situazione di campo quando la distanza della sorgente radiante e’ comparabile o
inferiore alla lunghezza d’onda
Close Field: situazione particolare di campo Near Field caratterizzata da una distanza di misura
particolarmente ridotta rispetto alla dimensione dell’oggetto radiante.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 14 di 17
Riservatezza USO INTERNO CSELT
12 Appendice A: Descrizione delle sonde utilizzate
La sonda HP 11940A viene fornita per misure nel range da 30MHz ad 1GHz, con una curva di
calibrazione. La sonda RF B 3-2 e’ invece disponibile per un range maggiore, anche se priva di curva
di calibrazione.
Figura 12.1: Sonde HP 11940A (sopra) e RF B 3-2 (sotto) a confronto.
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 15 di 17
Riservatezza USO INTERNO CSELT
13 Appendice B: Calibrazione della sonda RF B 3-2
13.1 Setup di calibrazione
La sonda HP (HP11940A) e’ stata calibrata in fabbrica ed e’ quindi disponibile una curva del
fattore d’antenna per frequenze da 30MHz fino ad 1GHz. Il sistema EASY SCAN utilizza questa curva
di fattore d’antenna per ottenere i dati su analizzatore di spettro direttamente in A/m. Purtroppo
questa sonda fornisce la misura di un campo mediato su una striscia laga pochi millimetri ma lunga
circa 2cm, il che non permette una risoluzione spaziale molto elevata.
Per contro, per la sonda RF B 3-2 della LANGER EMV-Technik non viene fornita con una curva
di calibrazione. Le sue dimensioni fisiche sono invece ottimali per l’analisi in oggetto a questo
documento.
Come prima fase e’ stata effettuata una analisi prestazionale comparativa fra le due sonde.
13.2 Test vehicle e procedura di misura adottata
Come piastra di test per l’analisi prestazionale e’ stato utilizzato una semplice microstrip
rettilinea di circa 20cm di lunghezza e 50ohm di impedenza caratteristica terminata a 50 ohm ad una
estremita’ e con l’altra estremita’ connessa ad un generatore di segnale sinusoidale a frequenza
variabile e con 50ohm di impedenza interna. La scelta di perfetto adattamento e’ stata fatta per
ridurre al minimo (in teoria annullare completamente) la presenza di onde stazionarie sulla struttura.
Infatti, era necessario creare una situazione di campo di intensita’ uniforme lungo la pista, cosa che
non avviene in presenza dei ventri e nodi tipici della formazione di onde stazionarie quando la
lunghezza d’onda del segnale si avvicina alla lunghezza fisica della pista radiante. La frequenza
massima del generatore e’ stata fissata a 1GHz, frequenza percui la lunghezza d’onda e’ comunque
grande rispetto alla apertura delle sonde.
Non avendo possibilita’ di calcolare esattamente a quale distanza della estremita’ della sonda e’
posta la bobina rivelatrice di campo, e’ stato preso come punto di riferimento ai fini dell’allineamento
l’estremita’ fisica delle due sonde.
Particolare attenzione deve essere posta nel mantenere la struttura radiante perfettamente
planare (un calibro con nonio ventesimale e’ stato utilizzato per verificare le distanze in piu’ posizioni
della scheda, unitamente all’uso di uno spessimetro). L’errore massimo di planarita’ e’ stato contenuto
in circa 1/10mm nell’intorno di 4-5cm dal centro della struttura radiante e per distanze da 2 a 40mm
della sonda dalla struttura emettente.
Figura 13.2.1: Configurazione adottata per la calibrazione della sonda RF-B-3-2. Le due sonde sono
collegate rigidamente fra loro ad una altezza controllata dalla scheda.
x
Terminazione
a 50 ohm
Clock generator
HP11940A
RF-B-3-2
zy
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 16 di 17
Riservatezza USO INTERNO CSELT
In una prima fase l’insiene delle sonde e’ stato posto al centro (in senso longitudiale) della
struttura radiante, abbastanza disassato da mostrare una condizione di massimo di campo (la
posizione esattamente vericale mostra una condizione di campo nullo, poiche’ entrambe le sonde
sono sensibili solamente alla componente z (Fig. 11.2.1). Da questa posizione e’ stata eseguito
inizialmente uno spostamento lungo l’asse y (lungitudinalmente alla struttura radiante) per verificare
l’uniformita’ di campo rivelato dalla sonda HP. L’effetto introdotto dalla lunghezza finita della pista
radiante e dalla presenza di effetti di onde stazionarie dovuti al non perfetto matching delle
terminazioni sull’intensita’ di campo si e’ dimostrata trascurabile nei dintorni del centro della struttura
radiante.
A completamento della fase di preparazione e verifica del setup, e’ stato anche verificato che la
presenza contemporanea delle sonde non alterasse il valore di campo misurato.
13.3 Risultati di misura
La misura vera e propria e’ stata quindi effettuata impostando una distanza del sistema di
sonde (rigidamente connesse fra loro) dalla microstriscia di 5mm ed effettuando varie passate nella
direzione x (trasversalmente alla pista) posizionando l’analizzatore di spettro in condizione di “Max
Hold” attivato. In questo modo e’ stato misurato il valore massimo del campo emesso prescindendo
da eventuali tolleranze di posizionamento delle sonde nella direzione x. In queste condizioni e’ stato
rilevato il campo misurato dalla sonda HP11940A per diverse frequenze del generatore. In particolare,
per un segnale del generatore di 0dbV (pari ad un segnale sulla pista pari a 1.4142sint volts), e’
stato registrato un campo praticamente costante di circa 95dbuA/m nel range 30MHz-1GHz, valore,
tra l’altro, confermato2 dalla simulazione della suddetta situazione con il tool di predizione del campo
elettromagnetico close field EmiR.
Ripetendo la misura con la sonda RF-B-3-2, e’ stata ricavato, per differenza, il fattore d’antenna
da inserire nel software VEE di controllo di EASY SCAN.
Figura 13.3.1: Fattore d’antenna della sonda RF-B-3-2 ricavato come scostamento dai valori
misurati con la sonda HP11940A (utilizzata come riferimento) e dalla simulazione.
2 La differenza fra campo simulato e misurato dalla sonda HP11940A per questa semplice struttura e’
risultata (a 5mm di altezza) di alcuni dB, giustificabili anche dall’incertezza di posizionamento in
altezza della sonda)
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
Frequenza (MHz)
fattored'antenna(dBA/Vm)
EASYSCAN e confronto misure/simulazione di emissione EM Close Field
da PCBs
Data redazione: 2 marzo 2013 Pagina 17 di 17
Riservatezza USO INTERNO CSELT
E’ stato anche valutato il comportamento delle due sonde in funzione della distanza dalla struttura
radiante. Per distanze minori di 5mm la sonda RF-B-3-2 tende a rilevare un campo maggiore di quella
HP (+5dB di scostamento a 2mm di distanza). Per distanze maggiori di 5mm, la sonda RF-B-3-2
tende a rivelare un campo progressivamente maggiore (-3dB a 40mm di altezza), come riassunto
nella seguente tabella:
Distanza 2mm 5mm 10mm 20mm 40mm
Frequenza
50MHz HP11940A 81.7 75.7 68.9 60.5 48.0
RF-B-3-2 82.8 (+1.1) 75.2 (-0.5) 66.8 (-2.1) 57.8 (-2.7) 49.2 (+1.2)
250MHZ HP11940A 80.8 75.1 67.2 58.5 49.9
RF-B-3-2 83.0 75.2 66.5 56.7 46.8
500MHz HP11940A 82.1 76.1 68.6 59.9 51.1
RF-B-3-2 83.3 75.5 66.6 56.5 45.7
750MHz HP11940A 81.8 75.8 68.2 59.5 50.7
RF-B-3-2 84.0 76.2 67.1 56.6 46.63
950MHz HP11940A 82.0 76.0 68.3 59.7 51.21
RF-B-3-2 83.5 75.6 66.0 56.4 47.2

More Related Content

Viewers also liked

1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)
1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)
1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)Piero Belforte
 
DWS vs CST CABLE STUDIO SIMULATION SPEEDUP
DWS vs CST CABLE STUDIO SIMULATION SPEEDUPDWS vs CST CABLE STUDIO SIMULATION SPEEDUP
DWS vs CST CABLE STUDIO SIMULATION SPEEDUPPiero Belforte
 
Spicy Schematics Facebook Post Collection_Nov. 2012- Feb. 2015
Spicy Schematics Facebook Post Collection_Nov. 2012-  Feb. 2015Spicy Schematics Facebook Post Collection_Nov. 2012-  Feb. 2015
Spicy Schematics Facebook Post Collection_Nov. 2012- Feb. 2015Piero Belforte
 
1991 pb historical_an_microwave_mixers_dwn
1991 pb historical_an_microwave_mixers_dwn1991 pb historical_an_microwave_mixers_dwn
1991 pb historical_an_microwave_mixers_dwnPiero Belforte
 
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINES
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINESDWS MODELING OF MULTICONDUCTOR TRANSMISSION LINES
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINESPiero Belforte
 
2012 trasmission line approximation using lc cells pb_dws
2012 trasmission line approximation using lc cells pb_dws2012 trasmission line approximation using lc cells pb_dws
2012 trasmission line approximation using lc cells pb_dwsPiero Belforte
 
2013 pb rg58 coax cable models and measurements
2013 pb rg58 coax cable models and measurements2013 pb rg58 coax cable models and measurements
2013 pb rg58 coax cable models and measurementsPiero Belforte
 
1990 pb historical_brochure_high_performance_systems
1990 pb historical_brochure_high_performance_systems1990 pb historical_brochure_high_performance_systems
1990 pb historical_brochure_high_performance_systemsPiero Belforte
 
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)Piero Belforte
 
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...Piero Belforte
 
2007 biased reflectometry_international_zurich_congress_on_emc_september_2007
2007 biased reflectometry_international_zurich_congress_on_emc_september_20072007 biased reflectometry_international_zurich_congress_on_emc_september_2007
2007 biased reflectometry_international_zurich_congress_on_emc_september_2007Piero Belforte
 
SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.Piero Belforte
 
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collectionPiero Belforte
 
Cseltmuseum expanded post records from june 9 2015 to june 19 2015
Cseltmuseum expanded post records from june 9 2015 to june 19 2015 Cseltmuseum expanded post records from june 9 2015 to june 19 2015
Cseltmuseum expanded post records from june 9 2015 to june 19 2015 Piero Belforte
 
Cseltmuseum post records_dec.2012-july2013
Cseltmuseum post records_dec.2012-july2013Cseltmuseum post records_dec.2012-july2013
Cseltmuseum post records_dec.2012-july2013Piero Belforte
 
2013_pb_dws vs microcap 10 benchmark
2013_pb_dws  vs microcap 10  benchmark2013_pb_dws  vs microcap 10  benchmark
2013_pb_dws vs microcap 10 benchmarkPiero Belforte
 
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHOD
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHODDIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHOD
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHODPiero Belforte
 
2012 pb vi trajectory plots for transmission line models evaluation
2012 pb vi trajectory plots for transmission line models evaluation2012 pb vi trajectory plots for transmission line models evaluation
2012 pb vi trajectory plots for transmission line models evaluationPiero Belforte
 
Digital Wave Simulation of Lossy Lines for Multi-Gigabit Applications
Digital Wave Simulation of Lossy Lines for Multi-Gigabit ApplicationsDigital Wave Simulation of Lossy Lines for Multi-Gigabit Applications
Digital Wave Simulation of Lossy Lines for Multi-Gigabit ApplicationsPiero Belforte
 

Viewers also liked (20)

1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)
1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)
1974 pb cselt_gs_short_circuit_issues_on_pds_manuscripts (1) (1)
 
DWS vs CST CABLE STUDIO SIMULATION SPEEDUP
DWS vs CST CABLE STUDIO SIMULATION SPEEDUPDWS vs CST CABLE STUDIO SIMULATION SPEEDUP
DWS vs CST CABLE STUDIO SIMULATION SPEEDUP
 
Spicy Schematics Facebook Post Collection_Nov. 2012- Feb. 2015
Spicy Schematics Facebook Post Collection_Nov. 2012-  Feb. 2015Spicy Schematics Facebook Post Collection_Nov. 2012-  Feb. 2015
Spicy Schematics Facebook Post Collection_Nov. 2012- Feb. 2015
 
1991 pb historical_an_microwave_mixers_dwn
1991 pb historical_an_microwave_mixers_dwn1991 pb historical_an_microwave_mixers_dwn
1991 pb historical_an_microwave_mixers_dwn
 
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINES
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINESDWS MODELING OF MULTICONDUCTOR TRANSMISSION LINES
DWS MODELING OF MULTICONDUCTOR TRANSMISSION LINES
 
2012 trasmission line approximation using lc cells pb_dws
2012 trasmission line approximation using lc cells pb_dws2012 trasmission line approximation using lc cells pb_dws
2012 trasmission line approximation using lc cells pb_dws
 
2013 pb rg58 coax cable models and measurements
2013 pb rg58 coax cable models and measurements2013 pb rg58 coax cable models and measurements
2013 pb rg58 coax cable models and measurements
 
1990 pb historical_brochure_high_performance_systems
1990 pb historical_brochure_high_performance_systems1990 pb historical_brochure_high_performance_systems
1990 pb historical_brochure_high_performance_systems
 
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
 
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...
1975 it new_method_for_electrical_simulation_using_digital_wave_filters(it)_a...
 
2007 biased reflectometry_international_zurich_congress_on_emc_september_2007
2007 biased reflectometry_international_zurich_congress_on_emc_september_20072007 biased reflectometry_international_zurich_congress_on_emc_september_2007
2007 biased reflectometry_international_zurich_congress_on_emc_september_2007
 
SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.
 
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection
1993 new modelling&simulation_environment_pb_gen_1993_full_slide_collection
 
Cseltmuseum expanded post records from june 9 2015 to june 19 2015
Cseltmuseum expanded post records from june 9 2015 to june 19 2015 Cseltmuseum expanded post records from june 9 2015 to june 19 2015
Cseltmuseum expanded post records from june 9 2015 to june 19 2015
 
Cseltmuseum post records_dec.2012-july2013
Cseltmuseum post records_dec.2012-july2013Cseltmuseum post records_dec.2012-july2013
Cseltmuseum post records_dec.2012-july2013
 
2013_pb_dws vs microcap 10 benchmark
2013_pb_dws  vs microcap 10  benchmark2013_pb_dws  vs microcap 10  benchmark
2013_pb_dws vs microcap 10 benchmark
 
DWS 8.5 USER MANUAL
DWS 8.5 USER MANUALDWS 8.5 USER MANUAL
DWS 8.5 USER MANUAL
 
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHOD
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHODDIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHOD
DIGITAL WAVE FORMULATION OF QUASI-STATIC PEEC METHOD
 
2012 pb vi trajectory plots for transmission line models evaluation
2012 pb vi trajectory plots for transmission line models evaluation2012 pb vi trajectory plots for transmission line models evaluation
2012 pb vi trajectory plots for transmission line models evaluation
 
Digital Wave Simulation of Lossy Lines for Multi-Gigabit Applications
Digital Wave Simulation of Lossy Lines for Multi-Gigabit ApplicationsDigital Wave Simulation of Lossy Lines for Multi-Gigabit Applications
Digital Wave Simulation of Lossy Lines for Multi-Gigabit Applications
 

Similar to 2000 fm pb_easyscan_emission_maps_sim_vs_measure (1)

Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...
Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...
Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...Daniele Naibo
 
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...MarcoCautero1
 
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdf
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdfCancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdf
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdfRiccardoCorocher
 
Caratterizzazione di sensori di immagineCMOS
Caratterizzazione di sensori di immagineCMOSCaratterizzazione di sensori di immagineCMOS
Caratterizzazione di sensori di immagineCMOSErlis Hasa
 
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...Snpambiente
 
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.Realizzazione di un controllore basato su piattaforma robotica Thymio 2.
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.anwarNazik
 
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...shadykal
 
a1dddf507ce838f51f5349d2b2c25241
a1dddf507ce838f51f5349d2b2c25241a1dddf507ce838f51f5349d2b2c25241
a1dddf507ce838f51f5349d2b2c25241Nunzio Meli
 
Progettazione, realizzazione e controllo di un sistema Cart and Beam
Progettazione, realizzazione e controllo di un sistema Cart and BeamProgettazione, realizzazione e controllo di un sistema Cart and Beam
Progettazione, realizzazione e controllo di un sistema Cart and BeamGian Mauro Musso
 
Radioastronomia amatoriale e radiotelescopi
Radioastronomia amatoriale e radiotelescopiRadioastronomia amatoriale e radiotelescopi
Radioastronomia amatoriale e radiotelescopiFlavio Falcinelli
 
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...DanieleMarchese6
 
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...LucaMosetti3
 
Assoautomazione guida encoder
Assoautomazione guida encoderAssoautomazione guida encoder
Assoautomazione guida encoderLika Electronic
 
ppt Ivan Riolino_led_eos2013
ppt Ivan Riolino_led_eos2013ppt Ivan Riolino_led_eos2013
ppt Ivan Riolino_led_eos2013AREA Science Park
 
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...Simone Fini
 

Similar to 2000 fm pb_easyscan_emission_maps_sim_vs_measure (1) (20)

2013_10_Felici.PDF
2013_10_Felici.PDF2013_10_Felici.PDF
2013_10_Felici.PDF
 
2013_10_Felici.PDF
2013_10_Felici.PDF2013_10_Felici.PDF
2013_10_Felici.PDF
 
Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...
Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...
Misura della resistenza degli aghi di uno zoccolo usato per il test di moduli...
 
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...
Progetto, realizzazione e caratterizzazione dell'elettronica di acquisizione ...
 
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdf
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdfCancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdf
Cancellatori_d_Eco_per_Dispositivi_di_Allarmistica_ed_Emergenza.pdf
 
Andrea_Gangemi_tesi
Andrea_Gangemi_tesiAndrea_Gangemi_tesi
Andrea_Gangemi_tesi
 
Caratterizzazione di sensori di immagineCMOS
Caratterizzazione di sensori di immagineCMOSCaratterizzazione di sensori di immagineCMOS
Caratterizzazione di sensori di immagineCMOS
 
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...
Sistema di test di funzionalità per sonde di campo elettrico in alta frequenz...
 
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.Realizzazione di un controllore basato su piattaforma robotica Thymio 2.
Realizzazione di un controllore basato su piattaforma robotica Thymio 2.
 
Ing alexrosa
Ing alexrosaIng alexrosa
Ing alexrosa
 
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...
Sviluppo di un sistema a microonde finalizzato alla misura del livello dell'a...
 
a1dddf507ce838f51f5349d2b2c25241
a1dddf507ce838f51f5349d2b2c25241a1dddf507ce838f51f5349d2b2c25241
a1dddf507ce838f51f5349d2b2c25241
 
Mech Eng Thesis
Mech Eng ThesisMech Eng Thesis
Mech Eng Thesis
 
Progettazione, realizzazione e controllo di un sistema Cart and Beam
Progettazione, realizzazione e controllo di un sistema Cart and BeamProgettazione, realizzazione e controllo di un sistema Cart and Beam
Progettazione, realizzazione e controllo di un sistema Cart and Beam
 
Radioastronomia amatoriale e radiotelescopi
Radioastronomia amatoriale e radiotelescopiRadioastronomia amatoriale e radiotelescopi
Radioastronomia amatoriale e radiotelescopi
 
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...
Studio e sviluppo di una soluzione circuitale per la simulazione di un rivela...
 
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...
Progettazione di un braccio robotico basato su piattaforma Arduino per la scr...
 
Assoautomazione guida encoder
Assoautomazione guida encoderAssoautomazione guida encoder
Assoautomazione guida encoder
 
ppt Ivan Riolino_led_eos2013
ppt Ivan Riolino_led_eos2013ppt Ivan Riolino_led_eos2013
ppt Ivan Riolino_led_eos2013
 
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...
Costruzione e Sviluppo in ambiente STNucleo di un Quadricottero con Stabilizz...
 

More from Piero Belforte

Simulation-modeling matrix
Simulation-modeling matrixSimulation-modeling matrix
Simulation-modeling matrixPiero Belforte
 
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...Piero Belforte
 
3 experimental wideband_characterization_of_a parallel-plate_capacitor
3 experimental wideband_characterization_of_a parallel-plate_capacitor3 experimental wideband_characterization_of_a parallel-plate_capacitor
3 experimental wideband_characterization_of_a parallel-plate_capacitorPiero Belforte
 
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...Piero Belforte
 
Cseltmuseum post records from September 2018 to January2019
Cseltmuseum post records from September 2018 to January2019Cseltmuseum post records from September 2018 to January2019
Cseltmuseum post records from September 2018 to January2019Piero Belforte
 
Cseltmuseum post records August2018
Cseltmuseum post records August2018Cseltmuseum post records August2018
Cseltmuseum post records August2018Piero Belforte
 
Cseltmuseum post records July 2018
Cseltmuseum post records July 2018Cseltmuseum post records July 2018
Cseltmuseum post records July 2018Piero Belforte
 
Multigigabit modeling of hi safe+ flying probe fp011
Multigigabit modeling of hi safe+ flying probe fp011Multigigabit modeling of hi safe+ flying probe fp011
Multigigabit modeling of hi safe+ flying probe fp011Piero Belforte
 
Cseltmuseum post records June 2018
Cseltmuseum post records June 2018Cseltmuseum post records June 2018
Cseltmuseum post records June 2018Piero Belforte
 
CSELTMUSEUM POST RECORDS MAY 2018
CSELTMUSEUM POST RECORDS MAY 2018CSELTMUSEUM POST RECORDS MAY 2018
CSELTMUSEUM POST RECORDS MAY 2018Piero Belforte
 
CSELTMUSEUM POST RECORDS APRIL 2018
CSELTMUSEUM POST RECORDS APRIL 2018CSELTMUSEUM POST RECORDS APRIL 2018
CSELTMUSEUM POST RECORDS APRIL 2018Piero Belforte
 
CSELTMUSEUM post records March_2018
CSELTMUSEUM  post records March_2018CSELTMUSEUM  post records March_2018
CSELTMUSEUM post records March_2018Piero Belforte
 
CSELTMUSEUM POST RECORDS FEBRUARY 2018
CSELTMUSEUM POST RECORDS FEBRUARY  2018CSELTMUSEUM POST RECORDS FEBRUARY  2018
CSELTMUSEUM POST RECORDS FEBRUARY 2018Piero Belforte
 
CSELTMUSEUM POST RECORDS JANUARY 2018
CSELTMUSEUM POST RECORDS JANUARY 2018CSELTMUSEUM POST RECORDS JANUARY 2018
CSELTMUSEUM POST RECORDS JANUARY 2018Piero Belforte
 
CSELTMUSEUM expanded post records, December 2017
CSELTMUSEUM expanded post records, December 2017CSELTMUSEUM expanded post records, December 2017
CSELTMUSEUM expanded post records, December 2017Piero Belforte
 
HDT (High Design Technology) related content on Cseltmuseum Dec. 13 2017
HDT (High Design Technology) related content on Cseltmuseum  Dec. 13 2017HDT (High Design Technology) related content on Cseltmuseum  Dec. 13 2017
HDT (High Design Technology) related content on Cseltmuseum Dec. 13 2017Piero Belforte
 
HiSAFE related content on Cseltmuseum Dec. 13 2017
HiSAFE related content on Cseltmuseum Dec. 13 2017 HiSAFE related content on Cseltmuseum Dec. 13 2017
HiSAFE related content on Cseltmuseum Dec. 13 2017 Piero Belforte
 
CSELTMUSEUM post record August to December 2017
 CSELTMUSEUM post record August to December 2017 CSELTMUSEUM post record August to December 2017
CSELTMUSEUM post record August to December 2017Piero Belforte
 
Piero Belforte related presentations on slideplayer.com july 12 2017
Piero Belforte related presentations on slideplayer.com july 12 2017Piero Belforte related presentations on slideplayer.com july 12 2017
Piero Belforte related presentations on slideplayer.com july 12 2017Piero Belforte
 
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...Piero Belforte
 

More from Piero Belforte (20)

Simulation-modeling matrix
Simulation-modeling matrixSimulation-modeling matrix
Simulation-modeling matrix
 
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
 
3 experimental wideband_characterization_of_a parallel-plate_capacitor
3 experimental wideband_characterization_of_a parallel-plate_capacitor3 experimental wideband_characterization_of_a parallel-plate_capacitor
3 experimental wideband_characterization_of_a parallel-plate_capacitor
 
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
 
Cseltmuseum post records from September 2018 to January2019
Cseltmuseum post records from September 2018 to January2019Cseltmuseum post records from September 2018 to January2019
Cseltmuseum post records from September 2018 to January2019
 
Cseltmuseum post records August2018
Cseltmuseum post records August2018Cseltmuseum post records August2018
Cseltmuseum post records August2018
 
Cseltmuseum post records July 2018
Cseltmuseum post records July 2018Cseltmuseum post records July 2018
Cseltmuseum post records July 2018
 
Multigigabit modeling of hi safe+ flying probe fp011
Multigigabit modeling of hi safe+ flying probe fp011Multigigabit modeling of hi safe+ flying probe fp011
Multigigabit modeling of hi safe+ flying probe fp011
 
Cseltmuseum post records June 2018
Cseltmuseum post records June 2018Cseltmuseum post records June 2018
Cseltmuseum post records June 2018
 
CSELTMUSEUM POST RECORDS MAY 2018
CSELTMUSEUM POST RECORDS MAY 2018CSELTMUSEUM POST RECORDS MAY 2018
CSELTMUSEUM POST RECORDS MAY 2018
 
CSELTMUSEUM POST RECORDS APRIL 2018
CSELTMUSEUM POST RECORDS APRIL 2018CSELTMUSEUM POST RECORDS APRIL 2018
CSELTMUSEUM POST RECORDS APRIL 2018
 
CSELTMUSEUM post records March_2018
CSELTMUSEUM  post records March_2018CSELTMUSEUM  post records March_2018
CSELTMUSEUM post records March_2018
 
CSELTMUSEUM POST RECORDS FEBRUARY 2018
CSELTMUSEUM POST RECORDS FEBRUARY  2018CSELTMUSEUM POST RECORDS FEBRUARY  2018
CSELTMUSEUM POST RECORDS FEBRUARY 2018
 
CSELTMUSEUM POST RECORDS JANUARY 2018
CSELTMUSEUM POST RECORDS JANUARY 2018CSELTMUSEUM POST RECORDS JANUARY 2018
CSELTMUSEUM POST RECORDS JANUARY 2018
 
CSELTMUSEUM expanded post records, December 2017
CSELTMUSEUM expanded post records, December 2017CSELTMUSEUM expanded post records, December 2017
CSELTMUSEUM expanded post records, December 2017
 
HDT (High Design Technology) related content on Cseltmuseum Dec. 13 2017
HDT (High Design Technology) related content on Cseltmuseum  Dec. 13 2017HDT (High Design Technology) related content on Cseltmuseum  Dec. 13 2017
HDT (High Design Technology) related content on Cseltmuseum Dec. 13 2017
 
HiSAFE related content on Cseltmuseum Dec. 13 2017
HiSAFE related content on Cseltmuseum Dec. 13 2017 HiSAFE related content on Cseltmuseum Dec. 13 2017
HiSAFE related content on Cseltmuseum Dec. 13 2017
 
CSELTMUSEUM post record August to December 2017
 CSELTMUSEUM post record August to December 2017 CSELTMUSEUM post record August to December 2017
CSELTMUSEUM post record August to December 2017
 
Piero Belforte related presentations on slideplayer.com july 12 2017
Piero Belforte related presentations on slideplayer.com july 12 2017Piero Belforte related presentations on slideplayer.com july 12 2017
Piero Belforte related presentations on slideplayer.com july 12 2017
 
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...
Collection of Cselt related presentations on slideplayer.com by_Piero_Belfort...
 

2000 fm pb_easyscan_emission_maps_sim_vs_measure (1)

  • 1. Flavio Maggioni Piero Belforte EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data di redazione: 26 settembre 2000 Numero di pagine: 17 AUTORI: Flavio MAGGIONI (IN-SP) REVISIONE: Piero BELFORTE (IN-SM) Executive summary EASYSCAN e’ un prototipo di prodotto sviluppato per il rilevamento di mappe bidimensionali planari di emissione elettromagnetica (EM) da schede elettroniche e piccoli apparati (per esempio: telefoni portatili). L’attivita’, svolta nell’ambito del progetto P24 “Evoluzione dei modelli di progettazione”, task 4 “Impatto dei vincoli di compatibilita’ elettromagnetica”, aveva il triplice scopo di valutare le prestazioni della apparecchiatura EASYSCAN, delle sonde di campo magnetico utilizzate e la validazione del software di valutazione simulativa dello stesso fenomeno disponibile in THRIS. L’analisi ha dimostrato un buon grado di affidabilita’ dei risultati, sia dello strumento di scansione che del software di valutazione simulativa. Anche le sonde utilizzate hanno mostrato una sufficiente capacita’ di risoluzione del campo misurato (ordine del millimetro). Sono emerse criticita’ soprattutto di tipo meccanico e di lentezza dello strumento di scansione, superabili in una eventuale attivita’ di ingegnerizzazione e alcuni problemi di stabilita’ del software sia di simulazione che di controllo dello strumento di scansione. Il presente documento, dopo una introduzione della problematica, descrive i risultati delle prove effettuare ed i confronti fra misure e simulazioni.
  • 2. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 2 di 17 Riservatezza USO INTERNO CSELT Indice del documento 1 Introduzione.........................................................................................................................3 1.1 Analisi EM Close Field.......................................................................................................3 1.2 Contenuto..........................................................................................................................3 2 Descrizione del sistema di scansione ...................................................................................3 2.1 Lo strumento Easy Scan....................................................................................................3 3 Descrizione del tool di simulazione.......................................................................................4 3.1 Il sistema THRIS................................................................................................................4 3.2 L’analisi simulativa di emissione EM Close Field................................................................4 4 Descrizione del Setup di misura ...........................................................................................5 5 Sonde ..................................................................................................................................5 6 Test vehicle 1.......................................................................................................................6 6.1 Descrizione del test vehicle 1.............................................................................................6 6.2 Confronti misure/simulazione.............................................................................................6 7 Test vehicle 2.......................................................................................................................8 7.1 Descrizione del test vehicle 2.............................................................................................8 7.2 Confronti misure/simulazioni ..............................................................................................9 8 Conclusioni ........................................................................................................................12 9 Bibliografia.........................................................................................................................13 10 Elenco di sigle, acronimi e simboli......................................................................................13 11 Glossario ...........................................................................................................................13 12 Appendice A: Descrizione delle sonde utilizzate .................................................................14 13 Appendice B: Calibrazione della sonda RF B 3-2................................................................15 13.1 Setup di calibrazione .......................................................................................................15 13.2 Test vehicle e procedura di misura adottata.....................................................................15 13.3 Risultati di misura ............................................................................................................16
  • 3. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 3 di 17 Riservatezza USO INTERNO CSELT 1 Introduzione 1.1 Analisi EM Close Field La rilevazione di campo elettromagnetico emesso da un corpo radiante puo’ essere effettuata in condizioni di Far Field, Near Field o Close Field. Mentre le prime due sono differenziate dal rapporto fra la distanza di misura e la lunghezza d’onda della radiazione elettromagnetica, il Close Field si puo’ definire una situazione particolare di Near Field in cui la distaza fisica dal corpo radiante e’ piccola confrontata alle dimensioni dell’oggetto radiante, (dell’ordine di millimetri o centimetri per un PCB). Questa tecnica permette di identificare con precisione i punti di fuga di emissione elettromagnetica di interi apparati oppure spot di emissione da schede elettroniche. Il valore di campo ottenuto con questa tecnica, a causa dell’elevato gradiente del campo elettromagnetico che si verifica in prossimita’ del corpo radiante che lo genera, e’ fortemente sensibile alla distanza di misura (e’ facile avere sensibilita’ dell’ordine di parecchi dB/mm) percui si inquadra piu’ come una caratterizzazione di tipo qualitativo che quantitativo. 1.2 Contenuto Il presente documento contiene un confronto fra misure e simulazione di emissione elettromagnetica in condizioni di Close Field, con un triplice scopo: 1) Collaudo della apparecchiatura di misura di scansione elettromagnetica EASYSCAN realizzata in CSELT per la rilevazione di mappe bidimensionali di emissione elettromagnetica in condizioni di Close Field; 2) Validazione del software di simulazione EmiR disponibile nel sistema THRIS per la rilevazione simulata di mappe bidimensionali di emissione elettromagnetica in condizioni di Close Filed 3) Verifica prestazionale di sonde per la rilevazione di campo elettromagnetico in condizioni di Close Field. 2 Descrizione del sistema di scansione 2.1 Lo strumento Easy Scan Easy Scan e’ costituito da una piattaforma orizzontale traslabile in due direzioni ortogonali tramite viti millimetriche e motori passo passo controllati da una apparecchiatura hardware. Il controllo software e’ effettuato tramite un programma in linguaggio VEE, mentre la visualizzazione delle mappe di emissioni rilevate dalla strumentazione e’ affidata ad una particolare funzione del sistema THRIS. L’altezza della sonda di misura e’ pure controllata dal software VEE tramite una vite millimetrica ed un motore passo passo. Lo strumento permette la misurazione di componenti di campo nelle tre direzioni spaziali x,y,z, compatibilmente alle caratteristiche della sonda utilizzata. Una descrizione dettagliata del sistema di scansione e del software di controllo VEE e’ contenuta in [1].
  • 4. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 4 di 17 Riservatezza USO INTERNO CSELT Figura 2.1.1: Sistema di misura EM Close Field EASY SCAN. 3 Descrizione del tool di simulazione 3.1 Il sistema THRIS Il sistema THRIS e’ un sistema hardware/software che, fra le altre funzionalita’, permette la simulazione della Signal Integrity e del comportamento EMC di schede elettroniche. Nato inizialmente come strumento applicabile per l’inserzione fisica di guasti durante la qualificazione degli apparati di telecomunicazione, nel corso di alcuni anni e’ diventato un potente strumento di verifica del progetto hardware a livello elettrico ed elettromagnetico. Fra le varie funzionalita’ comprende l’analisi pre- layout a livello elettrico di interconnessioni critiche e l’analisi post-layout a livello elettrico (terminazioni, impedenza delle piste, diafonie, rumore di commutazione simultanea) di interi PCB e di sistemi composti da piu’ PCB. Recentemente l’interesse e’ stato indirizzato alle problematiche di emissione elettromagnetica (irradiata e condotta), con lo scopo di prevenire, tramite un approccio simulativo a livello di progetto, eventuali criticita’ che potrebbero manifestarsi solamente durante la fase di certificazione del prodotto finito. 3.2 L’analisi simulativa di emissione EM Close Field Una delle analisi possibili del sistema THRIS e’ la simulazione dell’emissione in condizioni Close Field, limitatamente ai contributi dovuti alle piste dei layer top e bottom, di schede elettroniche a circuito stampato. La procedura di simulazione e’ riassunta brevemente: 1) In una prima fase, tutti o alcuni segnali della scheda vengono simulati a livello elettrico. I modelli utilizzati per i driver (I/O dei componenti della scheda) permettono l’assegnamento di segnali digitali o analogici con frequenze e fasi diverse fra loro, emulando il piu’ similmente possibile il comportamento reale della scheda sotto test. 2) Nel setup di simulazione viene specificato il campo di frequenze utilizzato per il test. La frequenza minima e’ correlata al segnale ripetitivo piu’ lento sul PCB che si vuole analizzare, mentre quella piu’ alta e’ 1GHz per default, ma puo’ essere modificata dall’utente. La frequenza di campionamento rispetta il criterio di Nayquist. 3) La simulazione dei segnali sulla scheda avviene a livello elettrico nel dominio del tempo. La finestra temporale di simulazione e’ correlata dalla frequenza del segnale ripetitivo piu’ lento. Alla fine della simulazione, i valori di tensione e corrente presenti ad un’estremo di ogni segmento di layout dei layer top e bottom della scheda vengono memorizzati su file. A titolo di esempio, per una interconnessione dal punto A al punto B rappresentata da n-segmenti di lunghezza variabile verranno salvati 2n forme d’onda, n di tensione ed n di corrente. Queste forma d’onda possono, inoltre, essere visualizzate sullo schermo.
  • 5. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 5 di 17 Riservatezza USO INTERNO CSELT 4) Un primo algoritmo permette di passare dalle tensioni e correnti fisiche salvate nel file alle onde progressive e regressive di tensione e corrente sui vari tratti di pista, sempre nel dominio del tempo. Una descrizione di questo tipo permette di calcolare l’andamento nel tempo di tensione e corrente in un punto qualunque intermedio di un segmento. 5) Un algoritmo di FFT viene applicato alle onde progressive e regressive, passando dal dominio del tempo a quello delle frequenze. 6) A questo punto viene specificata una griglia bidimensionale XY, avente un passo di griglia specificato da utente ed una altezza della sonda virtuale dalla scheda sotto analisi (positiva per le mappe relative al top layer e negativa per quelle relative al bottom layer). Il potere risolutivo dell’analisi varia in funzione dell’altezza a cui viene calcolata la mappa e puo’ arrivare (per altezze molto piccole) a volori dell’ordine di alcuni millimetri. 7) Come ultima fase di calcolo, per ogni punto di griglia della mappa vengono sommati (in modulo e fase) i contributi di irradiazione di ogni segmento delle interconnessioni coinvolte nell’analisi (i segmenti piu’ lunghi vengono a loro volta spezzettati in piu’ segmentini elementari) ed il campo risultante raprresentato nelle sue componenti x,y e z in valore RMS o massimo (a scelta dell’utente). 8) La mappa (una per ogni armonica della minore frequenza di analisi specificata nel setup di simulazione), con rappresentazione a curve di livello, viene quindi mostrata sovrapposta al disegno del layout della scheda utilizzando un scala a gradazione di colore (rosso = campo piu’ intenso). Una serie di comandi permette di: - Selezionare la frequenza; - Selezionare la componente di campo desiderata (x,y,z, totale); - Specificare i limiti della scala di gradazione dei colori; - Effettuare zoom Una descrizione accurata della user interface del sistema THRIS e’ disponibile in [2]. 4 Descrizione del Setup di misura Il setup di misura prevede lo strumento EASYSCAN ed una scheda a circuito stampato irradiante. Per le prove sono state utilizzate due schede di prova. Il campo magnetico rivelato dalla sonda viene amplificato ed inviato ad un analizzatore di spettro. Il software di controllo di EASYSCAN provvede a spostare la sonda secondo una griglia definita da utente ed ad acquisire, dall’analizzatore di spettro, i valori di campo misurati. Alla fine della scansione i dati vengono salvati su file e possono essere visualizzati, tramite THRIS, in formato di mappe bidimensionali sovrapposte al disegno della scheda elettronica sotto test. 5 Sonde Le sonde utilizzate nel corso della sperimentazione sono 2: - Sonda HP 11940A Close–field probe 30MHz-1GHz - Sonda RFB 3-2 prodotta dalla LANGER EMV-TechniK (D) Una descrizione piu’ dettagliata delle sonde utilizzate e’ riportata in appendice A. Tutte le prove indicate nei capitoli successivi sono state condotte con la sonda RFB 3-2, tenendo conto delle curve di correzione ricavate dalla procedura indicata in appendice B.
  • 6. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 6 di 17 Riservatezza USO INTERNO CSELT 6 Test vehicle 1 6.1 Descrizione del test vehicle 1 Il primo test vehicle e’ rappresentato da una microstrip a serpentina su un PCB. La topologia della pista e’ la seguente: Figura 6.1.1: Pattern del primo test vehicle. La larghezza della pista e’ di 1.2mm e lo spessore totale della scheda (due layer, il secondo e’ un piano continuo di massa) pari a 1.5mm. Il materiale considerato e’ FR4 (costante dielettrica supposta pari a 4.7). Come driver e’ stato utilizzato un generatore sinusoidale connesso ad un capo della pista. L’altra estremita’ della pista e’ stata lasciata non terminata, per causare l’instaurarsi di onde stazionarie. 6.2 Confronti misure/simulazione Il generatore (impedenza interna 50 ohm) e’ stato impostato ad una frequenza di 300MHz, con un livello di segnale pari a 90dbV (RMS), equivalente ad una sinusoide con ampiezza massima di 0.0894 Vpp, valore utilizzato anche per la simulazione. La figura 6.2.1 mostra il confronto fra campo misurato e simulato, a 300MHz, della scheda sotto test. La distanza della sonda dalla scheda e’ di 5mm ed il campo rilevato e’ limitato alla componente in direzione z (normale alla scheda). La grigliatura di partenza (misurata e simulata) ha un passo di 3mm in entrambe le direzioni x e y. Per agevolare il contronto, sono stati fatte alcune sezioni del solido di irradiazione, per intensita’ del campo maggiori di 50dBA/m. Si puo’ notare la notevole somiglianza dei pattern di campo sia nella forma (sono ben visibili i ventri ed i nodi dell’onda stazionaria) che nei valori (lo scarto fra il valori massimi misurati e simulati e’ inferiore ai 3dB.
  • 7. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 7 di 17 Riservatezza USO INTERNO CSELT Figura 6.2.1: Confronto fra misura e simulazione del primo test vehicle. Frequenza = 300MHz, distanza della sonda dalla scheda = 5mm. Passo di scansione misurato e simulato = 3mm in entrambe le direzioni x ed y.
  • 8. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 8 di 17 Riservatezza USO INTERNO CSELT 7 Test vehicle 2 7.1 Descrizione del test vehicle 2 Come secondo veicolo di test e’ stata utilizzata una scheda di test completa di oscillatore, e componenti. Il layout della scheda e’ riportato in fig. 7.1.1 Figura 7.1.1: Layout della scheda utilizzata come test. La funzione della scheda e’ molto semplice: Un oscillatore locale quarzato genera una frequenza di 16.893 MHZ che viene distribuita tramite U6 ai tre contatori U4, U3 ed U1 (FACT163). Ognuno di questi contatori ha cinque uscite, a frequenza 8, 4, 2 ed 1 Mhz piu’ il bit di carry (in U3 il bit di carry non viene utilizzato). I componenti U5 ed U2 hanno solo funzione di receiver, mentre U7 e’ un driver di linea e transforma il segnale ricevuto in un segnale differenziale collegato ad un connettore esterno. La scheda, utilizzata anche come test per la valutazione delle emissioni irradiate, e’ alimentata autonomamente da un pacco di batterie schermate collocato sul lato opposto della scheda, dove risiede l’alimentatore stabilizzato tradizionale (schermato e non switching). La scheda ha 4 layers, con i due centrali costituiti da piani continui di massa ed alimentazione. La scheda cosi’ costituita irradia essenzialmente per tre cause: - modo differenziale dalle piste, - modo differenziale dai loop di alimentazione dei componenti, - modo comune dai piani di massa ed alimentazione.
  • 9. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 9 di 17 Riservatezza USO INTERNO CSELT L’analisi di emissione EM in close field permette di rilevare i primi due fenomeni. Durante l’analisi e’ stato notato comunque che l’analisi in close field permette di rilevare anche le frequenze di risonanza del piano di massa della scheda. E’ sufficiente infatti porre la sonda in una posizione ai bordi della scheda e lontano dai componenti per rilevare uno spettro di emissione caratterizzato da un picco principale (intorno a 200MHZ) e sue armoniche. Ovviamente, il segnali presenti sulla scheda devono contenere armoniche tali da stimolare la frequenza di risonanza del piano (idealmente una delta di dirac, ma e’ sufficiente un segnale lento a fronti ripidi che genera numerose armoniche superiori di grande ampiezza). Il segnale spettrale misurato sulla scheda presenta, in teoria, armoniche ogni 1.0558MHZ, causate dalla frequenza del bit piu’ significativo dei contatori. Comunque, la potenza spettrale ricade maggiormente nelle armoniche del clock (ogni 16 MHz circa), nei bit piu’ significativi dei contatori (ogni 8 MHZ circa) e via via a scalare fino alle armoniche intermedie a passo di 1.0558MHz. La medesima configurazione di segnale e’ stata simulata tramite THRIS. 7.2 Confronti misure/simulazioni Fig. 7.2.1 mostra il confronto fra misura e simulazione per una armonica del clock (terza armonica del clock a 16.9MHz, circa 50.6 MHz). I diversi grafici sono tutti relativi alla medesima frequenza, ma disegnando, volta per volta, solo il campo maggiore di un valore specificato da utente, permettendo cosi’ una visualizzazione tipo “a curve di livello”. Dall’analisi si vede come il contributo maggiore all’emissione misurata sia portato dalle piste di clock. Gli spot di colore intenso rilevato nelle misure sono in corrispondenza dei componenti, che hanno registrato i valore massimo di campo (circa 99dbuA/m), mentre le piste raggiungono al massimo un valore di 85dbuA/m. Comunque, lo spessore dei componenti provoca un errore sistematico di misura del campo emesso dagli stessi poiche’ la distanza dalla sonda diminuisce fino a circa 3mm invece dei 5mm delle piste, causando un errore di sovrastima del campo misurato di almeno 5-8db (vedi appendice B). Con questa correzione il campo emesso dai componenti si riavvicina notevolmente a quello emesso dalle piste. Relativamente alle piste si nota invece una buona corrispondenza fra misura e simulazione, con una differenza qualitativa di alcuni dB fra le mappe simulate e misurate. Fig. 7.2.2 mostra il confronto fra misura e simulazione per una armonica del bit meno significativo del contatore (settima armonica di 8.45MHz, circa 60MHz). L’emissione e’ chiaramente dovuta alle piste dei contatori, mentre il contributo delle piste del clock e’ nullo (non e’ una armonica del clock). Il campo massimo e’ in generale circa 10db inferiore delle piste di clock di fig. 7.2.11. La corrispondenza fra misura e simulazione e’ notevole, anche in termini quantitativi di campo misurato/simulato, come rivelato dal sezionamento “a curve di livello”. 1 Le commutazioni sono anche doppie
  • 10. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 10 di 17 Riservatezza USO INTERNO CSELT Fig. 7.2.1: Confronto fra mappe di emissione in close field (5mm di distanza dalla scheda) misurate e simulate alla frequenza di 50.5MHz circa (terza armonica del clock). Passo di scansione di misura 4mm in x ed y, Passo di scansione di simulazione 6mm in x ed y.
  • 11. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 11 di 17 Riservatezza USO INTERNO CSELT Fig. 7.2.2: Confronto fra mappe di emissione in close field (5mm di distanza dalla scheda) misurate e simulate alla frequenza di 60MHz circa (settima armonica della frequenza del bit meno significativo dei contatori – circa 8.45MHz). Passo di scansione di misura 4mm in x ed y, Passo di scansione di simulazione 6mm in x ed y.
  • 12. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 12 di 17 Riservatezza USO INTERNO CSELT 8 Conclusioni L’attivita’ ha permesso di confermare l’utilizzabilita’ dello strumento di scansione EM in close field EASYSCAN. Nonostante la lentezza della fase di inizializzazione (circa 10 minuti) ed i tempi di scansione elevati (circa 90 minuti per una scansione a 4mm di griglia di una scheda di 28x25cm per un totale di oltre 4000 punti di misura), l’apparecchiatura ha mostrato una discreta utilizzabilita’ ed affidabilita’, specialmente su mappe di piccole dimesioni. I confronti fra misure e simulazione hanno mostrato un corrispondenza del’ordine di alcuni dB, piu’ che buona in questo tipo di applicazione. La sonda utilizzata (Sonda RFB 3-2 prodotta dalla LANGER EMV-TechniK (D)) ha mostrato delle buone prestazioni, nonostante le ridotte dimensioni. Alcune criticita’ sono emerse nella stabilita’ del software di controllo della apparecchiatura (sviluppato in ambiente VEE) e in quello di simulazione, elencate in altro documento. Dal punto di vista meccanico, l’apparecchiatura (ora costruita in plexiglass per evitare problemi di interferenza sul campo EM misurato) ha mostrato problemi di scarsa rigidita’ meccanica, rispettando con fatica le tolleranze di planarita’ del pianale di sostegno della apparecchiature sotto test richieste durante la scansione (ordine di decimi di millimetri su superfici di 30x30.
  • 13. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 13 di 17 Riservatezza USO INTERNO CSELT 9 Bibliografia [1] “EASY SCAN User Manual”, 1999 [2] ,"EmiR User Manual", 1999 10 Elenco di sigle, acronimi e simboli EMC: ElectroMagnetic Compatibility EASY SCAN: Electromagnetic Analysis SYstem by SCANning THRIS: Telecom Hardware Robustness Inspection System EmiR: Emission Radiated PCB: Printed Circuit Board 11 Glossario Far Field: Situazione di campo quando la distanza della sorgente radiante e’ superiore alla lunghezza d’onda Near Field: Situazione di campo quando la distanza della sorgente radiante e’ comparabile o inferiore alla lunghezza d’onda Close Field: situazione particolare di campo Near Field caratterizzata da una distanza di misura particolarmente ridotta rispetto alla dimensione dell’oggetto radiante.
  • 14. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 14 di 17 Riservatezza USO INTERNO CSELT 12 Appendice A: Descrizione delle sonde utilizzate La sonda HP 11940A viene fornita per misure nel range da 30MHz ad 1GHz, con una curva di calibrazione. La sonda RF B 3-2 e’ invece disponibile per un range maggiore, anche se priva di curva di calibrazione. Figura 12.1: Sonde HP 11940A (sopra) e RF B 3-2 (sotto) a confronto.
  • 15. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 15 di 17 Riservatezza USO INTERNO CSELT 13 Appendice B: Calibrazione della sonda RF B 3-2 13.1 Setup di calibrazione La sonda HP (HP11940A) e’ stata calibrata in fabbrica ed e’ quindi disponibile una curva del fattore d’antenna per frequenze da 30MHz fino ad 1GHz. Il sistema EASY SCAN utilizza questa curva di fattore d’antenna per ottenere i dati su analizzatore di spettro direttamente in A/m. Purtroppo questa sonda fornisce la misura di un campo mediato su una striscia laga pochi millimetri ma lunga circa 2cm, il che non permette una risoluzione spaziale molto elevata. Per contro, per la sonda RF B 3-2 della LANGER EMV-Technik non viene fornita con una curva di calibrazione. Le sue dimensioni fisiche sono invece ottimali per l’analisi in oggetto a questo documento. Come prima fase e’ stata effettuata una analisi prestazionale comparativa fra le due sonde. 13.2 Test vehicle e procedura di misura adottata Come piastra di test per l’analisi prestazionale e’ stato utilizzato una semplice microstrip rettilinea di circa 20cm di lunghezza e 50ohm di impedenza caratteristica terminata a 50 ohm ad una estremita’ e con l’altra estremita’ connessa ad un generatore di segnale sinusoidale a frequenza variabile e con 50ohm di impedenza interna. La scelta di perfetto adattamento e’ stata fatta per ridurre al minimo (in teoria annullare completamente) la presenza di onde stazionarie sulla struttura. Infatti, era necessario creare una situazione di campo di intensita’ uniforme lungo la pista, cosa che non avviene in presenza dei ventri e nodi tipici della formazione di onde stazionarie quando la lunghezza d’onda del segnale si avvicina alla lunghezza fisica della pista radiante. La frequenza massima del generatore e’ stata fissata a 1GHz, frequenza percui la lunghezza d’onda e’ comunque grande rispetto alla apertura delle sonde. Non avendo possibilita’ di calcolare esattamente a quale distanza della estremita’ della sonda e’ posta la bobina rivelatrice di campo, e’ stato preso come punto di riferimento ai fini dell’allineamento l’estremita’ fisica delle due sonde. Particolare attenzione deve essere posta nel mantenere la struttura radiante perfettamente planare (un calibro con nonio ventesimale e’ stato utilizzato per verificare le distanze in piu’ posizioni della scheda, unitamente all’uso di uno spessimetro). L’errore massimo di planarita’ e’ stato contenuto in circa 1/10mm nell’intorno di 4-5cm dal centro della struttura radiante e per distanze da 2 a 40mm della sonda dalla struttura emettente. Figura 13.2.1: Configurazione adottata per la calibrazione della sonda RF-B-3-2. Le due sonde sono collegate rigidamente fra loro ad una altezza controllata dalla scheda. x Terminazione a 50 ohm Clock generator HP11940A RF-B-3-2 zy
  • 16. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 16 di 17 Riservatezza USO INTERNO CSELT In una prima fase l’insiene delle sonde e’ stato posto al centro (in senso longitudiale) della struttura radiante, abbastanza disassato da mostrare una condizione di massimo di campo (la posizione esattamente vericale mostra una condizione di campo nullo, poiche’ entrambe le sonde sono sensibili solamente alla componente z (Fig. 11.2.1). Da questa posizione e’ stata eseguito inizialmente uno spostamento lungo l’asse y (lungitudinalmente alla struttura radiante) per verificare l’uniformita’ di campo rivelato dalla sonda HP. L’effetto introdotto dalla lunghezza finita della pista radiante e dalla presenza di effetti di onde stazionarie dovuti al non perfetto matching delle terminazioni sull’intensita’ di campo si e’ dimostrata trascurabile nei dintorni del centro della struttura radiante. A completamento della fase di preparazione e verifica del setup, e’ stato anche verificato che la presenza contemporanea delle sonde non alterasse il valore di campo misurato. 13.3 Risultati di misura La misura vera e propria e’ stata quindi effettuata impostando una distanza del sistema di sonde (rigidamente connesse fra loro) dalla microstriscia di 5mm ed effettuando varie passate nella direzione x (trasversalmente alla pista) posizionando l’analizzatore di spettro in condizione di “Max Hold” attivato. In questo modo e’ stato misurato il valore massimo del campo emesso prescindendo da eventuali tolleranze di posizionamento delle sonde nella direzione x. In queste condizioni e’ stato rilevato il campo misurato dalla sonda HP11940A per diverse frequenze del generatore. In particolare, per un segnale del generatore di 0dbV (pari ad un segnale sulla pista pari a 1.4142sint volts), e’ stato registrato un campo praticamente costante di circa 95dbuA/m nel range 30MHz-1GHz, valore, tra l’altro, confermato2 dalla simulazione della suddetta situazione con il tool di predizione del campo elettromagnetico close field EmiR. Ripetendo la misura con la sonda RF-B-3-2, e’ stata ricavato, per differenza, il fattore d’antenna da inserire nel software VEE di controllo di EASY SCAN. Figura 13.3.1: Fattore d’antenna della sonda RF-B-3-2 ricavato come scostamento dai valori misurati con la sonda HP11940A (utilizzata come riferimento) e dalla simulazione. 2 La differenza fra campo simulato e misurato dalla sonda HP11940A per questa semplice struttura e’ risultata (a 5mm di altezza) di alcuni dB, giustificabili anche dall’incertezza di posizionamento in altezza della sonda) 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 Frequenza (MHz) fattored'antenna(dBA/Vm)
  • 17. EASYSCAN e confronto misure/simulazione di emissione EM Close Field da PCBs Data redazione: 2 marzo 2013 Pagina 17 di 17 Riservatezza USO INTERNO CSELT E’ stato anche valutato il comportamento delle due sonde in funzione della distanza dalla struttura radiante. Per distanze minori di 5mm la sonda RF-B-3-2 tende a rilevare un campo maggiore di quella HP (+5dB di scostamento a 2mm di distanza). Per distanze maggiori di 5mm, la sonda RF-B-3-2 tende a rivelare un campo progressivamente maggiore (-3dB a 40mm di altezza), come riassunto nella seguente tabella: Distanza 2mm 5mm 10mm 20mm 40mm Frequenza 50MHz HP11940A 81.7 75.7 68.9 60.5 48.0 RF-B-3-2 82.8 (+1.1) 75.2 (-0.5) 66.8 (-2.1) 57.8 (-2.7) 49.2 (+1.2) 250MHZ HP11940A 80.8 75.1 67.2 58.5 49.9 RF-B-3-2 83.0 75.2 66.5 56.7 46.8 500MHz HP11940A 82.1 76.1 68.6 59.9 51.1 RF-B-3-2 83.3 75.5 66.6 56.5 45.7 750MHz HP11940A 81.8 75.8 68.2 59.5 50.7 RF-B-3-2 84.0 76.2 67.1 56.6 46.63 950MHz HP11940A 82.0 76.0 68.3 59.7 51.21 RF-B-3-2 83.5 75.6 66.0 56.4 47.2