7.4 Inverse Trig Functions
                            Day 2




Psalm 46:1
God is our refuge and strength, an ever-present help in trouble.
Groups: Simplify (find the exact values):

            ⎛ 2 ⎞
           −1
     1. sin ⎜
            ⎝ 2 ⎟
                 ⎠
            ⎛
            −1    3 ⎞
     2. cos ⎜ −
            ⎝   2 ⎟
                    ⎠

     3. tan −1 3


            −1
     4. tan − 3
Groups: Simplify (find the exact values):

            ⎛ 2 ⎞
           −1                 π
     1. sin ⎜             1.
            ⎝ 2 ⎟
                 ⎠           4

            ⎛−1  3 ⎞       5π
     2. cos ⎜ −          2.
            ⎝   2 ⎟
                    ⎠        6

              −1              π
     3. tan        3       3.
                              3

              −1                π
     4. tan − 3            4. −
                                3
Groups: Simplify (find the exact values):

            ⎛ 2 ⎞
           −1                  π
     1. sin ⎜              1.
            ⎝ 2 ⎟
                 ⎠            4

            ⎛−1  3 ⎞        5π
     2. cos ⎜ −           2.
            ⎝   2 ⎟
                    ⎠         6

              −1               π
     3. tan        3        3.
                               3

              −1                 π
     4. tan − 3             4. −
                                 3
                 5π
 to answer #4 as    would be wrong because
                  3
                         ⎡ π π ⎤
  tan x has a range of
     −1
                         ⎢ − 2 , 2 ⎥
                         ⎣         ⎦
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI

                   5
                                1
               θ
                       a
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI
                                     2       2   2
                                    a +1 = 5
                   5                     2
                                1    a = 24
               θ
                                     a=2 6
                       a
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI
                                             2       2   2
                                            a +1 = 5
                   5                             2
                                1            a = 24
               θ
                                             a=2 6
                       a
                                       1
                            tan θ =
                                      2 6
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI
                                             2       2   2
                                            a +1 = 5
                   5                             2
                                1            a = 24
               θ
                                             a=2 6
                       a
                                       1
                            tan θ =
                                      2 6
                                       1    6
                                    =     g
                                      2 6   6
Let’s go through this one together:
            ⎛ −1 ⎛ 1 ⎞ ⎞
     5. tan ⎜ sin ⎜ ⎟ ⎟
            ⎝     ⎝ 5 ⎠ ⎠

        sin −1 x is + in QI
                                             2       2   2
                                            a +1 = 5
                   5                             2
                                1            a = 24
               θ
                                             a=2 6
                       a
                                       1
                            tan θ =
                                      2 6
                                       1    6
                                    =     g
                                      2 6   6
                                       6
                                    =
                                      12
⎛ −1 ⎛ 3 ⎞ ⎞
Groups:   6. cos ⎜ tan ⎜ ⎟ ⎟
                 ⎝     ⎝ 8 ⎠ ⎠
⎛ −1 ⎛ 3 ⎞ ⎞
Groups:   6. cos ⎜ tan ⎜ ⎟ ⎟
                 ⎝     ⎝ 8 ⎠ ⎠


              c                      2   2
                                     3 +8 =c   2

                          3
          θ                          c = 73
                  8
⎛ −1 ⎛ 3 ⎞ ⎞
Groups:   6. cos ⎜ tan ⎜ ⎟ ⎟
                 ⎝     ⎝ 8 ⎠ ⎠


              c                      2   2
                                     3 +8 =c   2

                          3
          θ                          c = 73
                  8
                              8
                       cosθ =
                              73

                                8 73
                              =
                                 73
⎛ ⎛ 87π ⎞ ⎞
Together:          −1
            7. sin ⎜ sin ⎜ ⎟ ⎟
                   ⎝ ⎝ 4 ⎠ ⎠
⎛ ⎛ 87π ⎞ ⎞
Together:          −1
            7. sin ⎜ sin ⎜ ⎟ ⎟
                   ⎝ ⎝ 4 ⎠ ⎠
                         87π    7π
  1st wrap equivalent of     is
                          4      4
⎛ ⎛ 87π ⎞ ⎞
Together:          −1
            7. sin ⎜ sin ⎜ ⎟ ⎟
                   ⎝ ⎝ 4 ⎠ ⎠
                         87π    7π
  1st wrap equivalent of     is
                          4      4

                    ⎛ 7π ⎞
                    −1
            ∴ = sin ⎜ sin ⎟
                    ⎝    4 ⎠
⎛ ⎛ 87π ⎞ ⎞
Together:            −1
              7. sin ⎜ sin ⎜ ⎟ ⎟
                     ⎝ ⎝ 4 ⎠ ⎠
                         87π    7π
  1st wrap equivalent of     is
                          4      4

                      ⎛ 7π ⎞
                      −1
              ∴ = sin ⎜ sin ⎟
                      ⎝    4 ⎠
             −1                        ⎡ π π ⎤
 since sin        is defined from       ⎢ − 2 , 2 ⎥
                                       ⎣         ⎦
⎛ ⎛ 87π ⎞ ⎞
Together:            −1
              7. sin ⎜ sin ⎜ ⎟ ⎟
                     ⎝ ⎝ 4 ⎠ ⎠
                         87π    7π
  1st wrap equivalent of     is
                          4      4

                      ⎛ 7π ⎞
                      −1
              ∴ = sin ⎜ sin ⎟
                      ⎝    4 ⎠
             −1                        ⎡ π π ⎤
 since sin        is defined from       ⎢ − 2 , 2 ⎥
                                       ⎣         ⎦

            7π                        π
               is incorrect ... but −                  is correct!
             4                        4
Together: Find approximate first wrap angles.
Together: Find approximate first wrap angles.
              ⎛ 6 ⎞
              −1
       8. sin ⎜ ⎟     (in radians)
              ⎝ 7 ⎠
Together: Find approximate first wrap angles.
              ⎛ 6 ⎞
              −1
       8. sin ⎜ ⎟         (in radians)
              ⎝ 7 ⎠

                   1.0297
Together: Find approximate first wrap angles.
              ⎛ 6 ⎞
               −1
       8. sin ⎜ ⎟          (in radians)
              ⎝ 7 ⎠

                    1.0297


        9. tan −1 ( −15 )
Together: Find approximate first wrap angles.
              ⎛ 6 ⎞
               −1
       8. sin ⎜ ⎟          (in radians)
              ⎝ 7 ⎠

                    1.0297


        9. tan −1 ( −15 )

  Calculator gives us -1.5042, but this is not in the
  first wrap. Add 2π
Together: Find approximate first wrap angles.
              ⎛ 6 ⎞
               −1
       8. sin ⎜ ⎟          (in radians)
              ⎝ 7 ⎠

                    1.0297


        9. tan −1 ( −15 )

  Calculator gives us -1.5042, but this is not in the
  first wrap. Add 2π
                    4.7790

  If the directions didn’t ask for the first wrap ...
  -1.5042 would be fine.
HW #7

To avoid situations in which you might make mistakes
may be the biggest mistake of all.
                             Peter McWilliams

0709 ch 7 day 9

  • 1.
    7.4 Inverse TrigFunctions Day 2 Psalm 46:1 God is our refuge and strength, an ever-present help in trouble.
  • 2.
    Groups: Simplify (findthe exact values): ⎛ 2 ⎞ −1 1. sin ⎜ ⎝ 2 ⎟ ⎠ ⎛ −1 3 ⎞ 2. cos ⎜ − ⎝ 2 ⎟ ⎠ 3. tan −1 3 −1 4. tan − 3
  • 3.
    Groups: Simplify (findthe exact values): ⎛ 2 ⎞ −1 π 1. sin ⎜ 1. ⎝ 2 ⎟ ⎠ 4 ⎛−1 3 ⎞ 5π 2. cos ⎜ − 2. ⎝ 2 ⎟ ⎠ 6 −1 π 3. tan 3 3. 3 −1 π 4. tan − 3 4. − 3
  • 4.
    Groups: Simplify (findthe exact values): ⎛ 2 ⎞ −1 π 1. sin ⎜ 1. ⎝ 2 ⎟ ⎠ 4 ⎛−1 3 ⎞ 5π 2. cos ⎜ − 2. ⎝ 2 ⎟ ⎠ 6 −1 π 3. tan 3 3. 3 −1 π 4. tan − 3 4. − 3 5π to answer #4 as would be wrong because 3 ⎡ π π ⎤ tan x has a range of −1 ⎢ − 2 , 2 ⎥ ⎣ ⎦
  • 5.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠
  • 6.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI
  • 7.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI 5 1 θ a
  • 8.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI 2 2 2 a +1 = 5 5 2 1 a = 24 θ a=2 6 a
  • 9.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI 2 2 2 a +1 = 5 5 2 1 a = 24 θ a=2 6 a 1 tan θ = 2 6
  • 10.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI 2 2 2 a +1 = 5 5 2 1 a = 24 θ a=2 6 a 1 tan θ = 2 6 1 6 = g 2 6 6
  • 11.
    Let’s go throughthis one together: ⎛ −1 ⎛ 1 ⎞ ⎞ 5. tan ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 5 ⎠ ⎠ sin −1 x is + in QI 2 2 2 a +1 = 5 5 2 1 a = 24 θ a=2 6 a 1 tan θ = 2 6 1 6 = g 2 6 6 6 = 12
  • 12.
    ⎛ −1 ⎛3 ⎞ ⎞ Groups: 6. cos ⎜ tan ⎜ ⎟ ⎟ ⎝ ⎝ 8 ⎠ ⎠
  • 13.
    ⎛ −1 ⎛3 ⎞ ⎞ Groups: 6. cos ⎜ tan ⎜ ⎟ ⎟ ⎝ ⎝ 8 ⎠ ⎠ c 2 2 3 +8 =c 2 3 θ c = 73 8
  • 14.
    ⎛ −1 ⎛3 ⎞ ⎞ Groups: 6. cos ⎜ tan ⎜ ⎟ ⎟ ⎝ ⎝ 8 ⎠ ⎠ c 2 2 3 +8 =c 2 3 θ c = 73 8 8 cosθ = 73 8 73 = 73
  • 15.
    ⎛ ⎛ 87π⎞ ⎞ Together: −1 7. sin ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 4 ⎠ ⎠
  • 16.
    ⎛ ⎛ 87π⎞ ⎞ Together: −1 7. sin ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 4 ⎠ ⎠ 87π 7π 1st wrap equivalent of is 4 4
  • 17.
    ⎛ ⎛ 87π⎞ ⎞ Together: −1 7. sin ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 4 ⎠ ⎠ 87π 7π 1st wrap equivalent of is 4 4 ⎛ 7π ⎞ −1 ∴ = sin ⎜ sin ⎟ ⎝ 4 ⎠
  • 18.
    ⎛ ⎛ 87π⎞ ⎞ Together: −1 7. sin ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 4 ⎠ ⎠ 87π 7π 1st wrap equivalent of is 4 4 ⎛ 7π ⎞ −1 ∴ = sin ⎜ sin ⎟ ⎝ 4 ⎠ −1 ⎡ π π ⎤ since sin is defined from ⎢ − 2 , 2 ⎥ ⎣ ⎦
  • 19.
    ⎛ ⎛ 87π⎞ ⎞ Together: −1 7. sin ⎜ sin ⎜ ⎟ ⎟ ⎝ ⎝ 4 ⎠ ⎠ 87π 7π 1st wrap equivalent of is 4 4 ⎛ 7π ⎞ −1 ∴ = sin ⎜ sin ⎟ ⎝ 4 ⎠ −1 ⎡ π π ⎤ since sin is defined from ⎢ − 2 , 2 ⎥ ⎣ ⎦ 7π π is incorrect ... but − is correct! 4 4
  • 20.
    Together: Find approximatefirst wrap angles.
  • 21.
    Together: Find approximatefirst wrap angles. ⎛ 6 ⎞ −1 8. sin ⎜ ⎟ (in radians) ⎝ 7 ⎠
  • 22.
    Together: Find approximatefirst wrap angles. ⎛ 6 ⎞ −1 8. sin ⎜ ⎟ (in radians) ⎝ 7 ⎠ 1.0297
  • 23.
    Together: Find approximatefirst wrap angles. ⎛ 6 ⎞ −1 8. sin ⎜ ⎟ (in radians) ⎝ 7 ⎠ 1.0297 9. tan −1 ( −15 )
  • 24.
    Together: Find approximatefirst wrap angles. ⎛ 6 ⎞ −1 8. sin ⎜ ⎟ (in radians) ⎝ 7 ⎠ 1.0297 9. tan −1 ( −15 ) Calculator gives us -1.5042, but this is not in the first wrap. Add 2π
  • 25.
    Together: Find approximatefirst wrap angles. ⎛ 6 ⎞ −1 8. sin ⎜ ⎟ (in radians) ⎝ 7 ⎠ 1.0297 9. tan −1 ( −15 ) Calculator gives us -1.5042, but this is not in the first wrap. Add 2π 4.7790 If the directions didn’t ask for the first wrap ... -1.5042 would be fine.
  • 26.
    HW #7 To avoidsituations in which you might make mistakes may be the biggest mistake of all. Peter McWilliams