SlideShare a Scribd company logo
1 of 115
Download to read offline
Modeling networks: regression with additive and
multiplicative effects
Alexander Volfovsky
Department of Statistical Science, Duke
May 25 2017
May 25, 2017
Health Networks
Why model networks?
Interested in understanding the formation of relationships
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
What models work when the assumptions fail?
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
What models work when the assumptions fail?
How to develop fail-safes to overcome these problems?
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
What models work when the assumptions fail?
How to develop fail-safes to overcome these problems?
Where to apply these?
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
What models work when the assumptions fail?
How to develop fail-safes to overcome these problems?
Where to apply these?
Causal inference
1
Why model networks?
Interested in understanding the formation of relationships
Applied fields: sociology, economics, biology, epidemiology
Fundamental theory questions:
What assumptions are made for different network models?
What models work when the assumptions fail?
How to develop fail-safes to overcome these problems?
Where to apply these?
Causal inference
Link prediction
1
Some context: Facebook
Facebook wants to change its’ ad algorithm.
2
Source: Wikimedia
Some context: Facebook
Facebook wants to change its’ ad algorithm.
Can’t do it on the whole graph
2
Source: Wikimedia
Some context: Facebook
Facebook wants to change its’ ad algorithm.
Can’t do it on the whole graph
Need “total network effect”
2
Source: Wikimedia
How do they solve it?
Interested in estimating
1
N
N
i=1
[Yi (all treated) − Yi (all controls)]
“At a high level, graph cluster randomization is a technique in
which the graph is partitioned into a set of clusters, and then
randomization between treatment and control is performed at
the cluster level.”
Where can we find clusters?
Observable information (e.g. same school)
Unobservable information (“social space”)
3
Some context: (im)migration
Want to know how
regime change affects
population.
Politicians during
election years care
about direct effects.
4
Source: http://openscience.alpine-geckos.at/courses/social-network-
analyses/empirical-network-analysis/
Some more context
Studying tram traffic in Vienna
5
Source: kurier.at
And one more
Studying taxi rides in Porto
442 taxis
1.7 million rides with (x, y) coordinates at 15 second intervals.
6
Source: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017).
Automatic Differentiation Variational Inference. Journal of Machine Learning
Research, 18(14), 1-45.
And one more
Studying taxi rides in Porto
Project into a 100 dimensional latent space.
Learn hidden interpretable patterns...
7
Source: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017).
Automatic Differentiation Variational Inference. Journal of Machine Learning
Research, 18(14), 1-45.
Relational data: common examples and goals
Changes in exports from year to year
−0.30 −0.20 −0.10
−0.4−0.20.00.20.4
first eigenvector of R^
row
secondeigenvectorofR^
row
Australia
Austria
Brazil
Canada
China
China, Hong Kong SAR
Finland
France
Germany
GreeceIndonesia
Ireland
Italy
Japan
Malaysia
Mexico
Netherlands
New Zealand
Norway
Rep. of Korea
Spain
Switzerland
Thailand
Turkey
United Kingdom
USA
−0.25 −0.15 −0.05 0.05
−0.3−0.10.10.3
first eigenvector of R^
col
secondeigenvectorofR^
col
Australia
Austria
Brazil
Canada
China
China, Hong Kong SAR
Finland
France
Germany
Greece
Indonesia
Ireland
Italy
Japan
Malaysia
Mexico
Netherlands
New ZealandNorway
Rep. of Korea
Spain
Switzerland
Thailand
Turkey
United Kingdom
USA
Network regression problems yij = xij β + ij frequently assume
independence of the ij
8
Estimating β in network regression
−0.30 −0.20 −0.10
−0.4−0.20.00.20.4
first eigenvector of R^
row
secondeigenvectorofR^
row
Australia
Austria
Brazil
Canada
China
China, Hong Kong SAR
Finland
France
Germany
GreeceIndonesia
Ireland
Italy
Japan
Malaysia
Mexico
Netherlands
New Zealand
Norway
Rep. of Korea
Spain
Switzerland
Thailand
Turkey
United Kingdom
USA
−0.25 −0.15 −0.05 0.05
−0.3−0.10.10.3
first eigenvector of R^
col
secondeigenvectorofR^
col
Australia
Austria
Brazil
Canada
China
China, Hong Kong SAR
Finland
France
Germany
Greece
Indonesia
Ireland
Italy
Japan
Malaysia
Mexico
Netherlands
New ZealandNorway
Rep. of Korea
Spain
Switzerland
Thailand
Turkey
United Kingdom
USA
For Y =< X, β > +E we have
OLS (assume no dependence among ij ):
ˆβ(ols)
= (mat(X)t
mat(X))−1
mat(X)t
vec(Y )
Oracle GLS (assume dependence among ij ):
ˆβ(gls)
= (mat(X)t
(Σ−1
)mat(X))−1
mat(X)t
(Σ−1
)vec(Y )
9
Network models
The data
There are n actors/nodes labeled 1, . . . , n
Y is a sociomatrix: yij is a dyadic relationship between node i
and node j.
yii frequently undefined.
Covariates:
node specific: xi
dyad specific: xij
Social relations model
Goal: describe the variability in Y .
Sender effects describe sociability.
Receiver effects describe popularity.
Capture this in the Social Relations Model (SRM)
yij = ai + bj + ij
Almost an ANOVA — want to relate ai to bi since the
senders/receivers are from the same set.
Social relations model
yij =µ + ai + bj + ij
(ai , bi )
iid
∼N(0, Σab)
( ij , ji )
iid
∼N(0, Σe)
Σab =
σ2
a σab
σab σ2
b
describes sender/receiver variability and
within person similarity.
Σe = σ2 1 ρ
ρ 1
describes within dyad correlation.
12
Variability
var(yij ) =σ2
a + 2σab + σ2
b + σ2
cov(yij , yik) =σ2
a
cov(yij , ukj ) =σ2
b
cov(yij , yjk) =σab
cov(yij , yji ) =2σab + ρσ2
How hard is it to fit this model?
fit_SRM <- ame(Y)
13
Pictures that pop up
These help capture how well the Markov Chain is mixing and
goodness of fit information.
14
Source: Hoff (2015). arXiv:1506.08237
Goodness of fit
Posterior predictive distributions.
sd.rowmean: standard deviation of row means of Y .
sd.colmean: standard deviation of column means of Y .
dyad.dep: correlation between vectorized Y and vectorized Y t
triad.dep:
i jk eij ejkeki
#triangle on n nodes
Var(vec(Y ))3/2
15
Source: Hoff (2015). arXiv:1506.08237
Incorporating covariates
Imagine you have some covariates and want to fit
yij = βt
d xd,ij + βt
r xr,i + βt
cxc,j + ai + bj + ij
xd,ij are dyad specific covariates.
xr,i are row (sender) covariates.
xc,i are column (receiver) covariates.
Frequently xr,i = xc,i = xi
When does this not make sense?
(Example: popularity is affected by athletic success, but
sociability is not)
How hard is it to fit this model?
fit_SRRM <- ame(Y, Xd=Xd,Xr=Xr,Xc=Xc)
16
Parsing the input
fit_SRRM <- ame(Y,
Xdyad=Xd, #n x n x pd array of covariates
Xrow=Xr, #n x pr matrix of nodal row covariates
Xcol=Xc #n x pc matrix of nodal column covariates
)
Xri,p is the value of the pth row covariate for node i.
Xdi,j,p is the value of the pth dyadic covariate in the direction
of i to j.
Back to basics
Can you get rid of the dependencies in the model?
fit_rm<-ame(Y,Xd=Xd,Xr=Xn,Xc=Xn,
rvar=FALSE, #should you fit row random effects?
cvar=FALSE, #should you fit column random effects?
dcor=FALSE #should you fit a dyadic correlation?
)
Note that summary will output:
Variance parameters:
pmean psd
va 0.000 0.000
cab 0.000 0.000
vb 0.000 0.000
rho 0.000 0.000
ve 0.229 0.011
18
So what’s missing here?
We have a lot of left over variability.
Common themes in network analysis:
Homophily: similar people connect to each other
Stochastic equivalence: similar people act similarly
19
Which is which?
Source: Hoff (2008). NIPS
Which is which?
Left: homophily; Right: stochastic equivalence
What are good models for this?
Source: Hoff (2008). NIPS
Introducing multiplicative effects
SR(R)M can represent second-order dependencies very well.
Has a hard time capturing “triadic” behavior.
Homophily: create dyadic covariates xd,ij = xi xj
Generally this can be represented by
xt
ri
Bxj,i = k l bkl xr,ikxc,jl
This is linear in the covariates and so can be baked into the
amen framework.
Sometimes there is excess correlation to account.
This suggests a multiplicative effects model:
yij = βt
d xd,ij + βt
r xr,i + βt
cxc,j + ai + bj + ut
i vj + ij
21
Fitting these models and beyond
fit_ame2<-ame(Y,Xd,Xn,Xn,
R=2 #dimension of the multiplicative effect
)
22
Source: Hoff (2015). arXiv:1506.08237
What happened here?
Why do multiplicative effects help triadic behavior?
Triadic measure is related to transitivity (at least for binary
data).
Turns out homophily can capture transitivity...
yij = βt
d xd,ij + βt
r xr,i + βt
cxc,j + ai + bj + ut
i vj + ij
ui is information about the sender, vj is information about the
receiver
if ui ≈ vj then ut
i vj > 0...
if ui ≈ uj then there is some stochastic equivalence...
Lets generalize: ordinal models
Imagine a binary (probit) model:
yij = 1zij >0 zij = µ + ai + bj + ij
Looks like the SRM on the latent scale.
fit_SRM<-ame(Y,
model="bin" #lots of model options here
)
If we go to the iid set up this is just an Erdos-Renyi model:
fit_SRG<-ame(Y,model="bin",
rvar=FALSE,cvar=FALSE,dcor=FALSE)
24
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
25
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
ui are latent factors describing i as a sender
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
ui are latent factors describing i as a sender
vj are latent factors describing j as a receiver
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
ui are latent factors describing i as a sender
vj are latent factors describing j as a receiver
D is a matrix of factor weights
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
ui are latent factors describing i as a sender
vj are latent factors describing j as a receiver
D is a matrix of factor weights
g is an increasing function mapping the latent space to the
observed space.
Even more general
Consider the following generative model:
zij = ut
i Dvj + ij
yij = g(zij )
ui are latent factors describing i as a sender
vj are latent factors describing j as a receiver
D is a matrix of factor weights
g is an increasing function mapping the latent space to the
observed space.
(Some gs... Normal: g(z) = z, binomial: g(z) = 1z≥0)
25
This works for symmetric matrices too!
Imagine that yij = yji then the model looks like:
zij = ui Λuj + ij
yij = g(zij )
26
This works for symmetric matrices too!
Imagine that yij = yji then the model looks like:
zij = ui Λuj + ij
yij = g(zij )
ui ≈ uj represents stochastic equivalence
This works for symmetric matrices too!
Imagine that yij = yji then the model looks like:
zij = ui Λuj + ij
yij = g(zij )
ui ≈ uj represents stochastic equivalence
Λ is a matrix of eigenvalues:
This works for symmetric matrices too!
Imagine that yij = yji then the model looks like:
zij = ui Λuj + ij
yij = g(zij )
ui ≈ uj represents stochastic equivalence
Λ is a matrix of eigenvalues:
positive λi imply homophily, negative ones imply heterophily.
26
What is this latent space?
Problem 1: need to select a dimension R.
27
What is this latent space?
Problem 1: need to select a dimension R.
This is hard... sometimes there is some intuition.
27
What is this latent space?
Problem 1: need to select a dimension R.
This is hard... sometimes there is some intuition.
Problem 2: should the latent positions be interpreted?
27
What is this latent space?
Problem 1: need to select a dimension R.
This is hard... sometimes there is some intuition.
Problem 2: should the latent positions be interpreted?
Unclear — maybe think of the distances in this space...
27
What is this latent space?
Problem 1: need to select a dimension R.
This is hard... sometimes there is some intuition.
Problem 2: should the latent positions be interpreted?
Unclear — maybe think of the distances in this space...
Problem 3: what about my favorite other models like
stochastic blockmodels?
What is this latent space?
Problem 1: need to select a dimension R.
This is hard... sometimes there is some intuition.
Problem 2: should the latent positions be interpreted?
Unclear — maybe think of the distances in this space...
Problem 3: what about my favorite other models like
stochastic blockmodels?
These are just a subclass of models! For example, the
stochastic blockmodel has discrete support for the latent
positions.
What is this latent space?
All quotes from Hoff, et al 2002
A subset of individuals in the population with a large number
of social ties between them may be indicative of a group of
individuals who have nearby positions in this space of
characteristics, or social space.
Various concepts of social space have been discussed by
McFarland and Brown (1973) and Faust (1988).
In the context of this article, social space refers to a space of
unobserved latent characteristics that represent potential
transitive tendencies in network relations.
A probability measure over these unobserved characteristics
induces a model in which the presence of a tie between two
individuals is dependent on the presence of other ties.
(Tiny portion of the) literature
Nowicki, Krzysztof, and Tom A. B. Snijders. ”Estimation and
prediction for stochastic blockstructures.” Journal of the American
Statistical Association 96, no. 455 (2001): 1077-1087.
Hoff, Peter D., Adrian E. Raftery, and Mark S. Handcock. ”Latent
space approaches to social network analysis.” Journal of the
american Statistical association 97, no. 460 (2002): 1090-1098.
Hoff, Peter. ”Modeling homophily and stochastic equivalence in
symmetric relational data.” In Advances in Neural Information
Processing Systems, pp. 657-664. 2008.
Airoldi, Edoardo M., David M. Blei, Stephen E. Fienberg, and Eric
P. Xing. ”Mixed membership stochastic blockmodels.” Journal of
Machine Learning Research 9, no. Sep (2008): 1981-2014.
Hoff, Peter, Bailey Fosdick, Alex Volfovsky, and Katherine Stovel.
”Likelihoods for fixed rank nomination networks.” Network Science
1, no. 03 (2013): 253-277.
Hoff, Peter D. ”Dyadic data analysis with amen.” arXiv preprint
arXiv:1506.08237 (2015).
ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL,
rvar = !(model=="rrl") , cvar = TRUE, dcor = !symmetric,
nvar = TRUE, R = 0, model="nrm",
intercept=!is.element(model,c("rrl","ord")),
symmetric=FALSE,
odmax=rep(max(apply(Y>0,1,sum,na.rm=TRUE)),nrow(Y)), ...)
Y: an n x n square relational matrix of relations.
Xdyad: an n x n x pd array of covariates
Xrow: an n x pr matrix of nodal row covariates
Xcol: an n x pc matrix of nodal column covariates
rvar: logical: fit row random effects (asymmetric case)?
cvar: logical: fit column random effects (asymmetric case)?
dcor: logical: fit a dyadic correlation (asymmetric case)?
nvar: logical: fit nodal random effects (symmetric case)?
R: int: dimension of the multiplicative effects (can be 0)
model: char: one of "nrm","bin","ord","cbin","frn","rrl"
odmax: a scalar integer or vector of length n giving the
maximum number of nominations that each node may make
What’s in the ...?
seed = 1, nscan = 10000, burn = 500, odens = 25,
plot=TRUE, print = TRUE, gof=TRUE
seed: random seed
nscan: number of iterations of the Markov chain
(beyond burn-in)
burn: burn in for the Markov chain
odens: output density for the Markov chain
plot: logical: plot results while running?
print: logical: print results while running?
gof: logical: calculate goodness of fit statistics?
An AddHealth Example
32
Social network data
Datasets: PROSPER, NSCR, AddHealth
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
33
Social network data
Datasets: PROSPER, NSCR, AddHealth
Relate network characteristics to
individual-level behavior !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
33
Social network data
Datasets: PROSPER, NSCR, AddHealth
Relate network characteristics to
individual-level behavior
Literature: ERGM, latent variable models
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
33
Social network data
Datasets: PROSPER, NSCR, AddHealth
Relate network characteristics to
individual-level behavior
Literature: ERGM, latent variable models
Assumptions:
Data is fully observed
The support is the set of all
sociomatrices
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
33
Social network data
Datasets: PROSPER, NSCR, AddHealth
Relate network characteristics to
individual-level behavior
Literature: ERGM, latent variable models
Assumptions:
Data is fully observed
The support is the set of all
sociomatrices
In practice:
Ranked data
Censored observations
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
33
Social network data
Datasets: PROSPER, NSCR, AddHealth
Relate network characteristics to
individual-level behavior
Literature: ERGM, latent variable models
Assumptions:
Data is fully observed
The support is the set of all
sociomatrices
In practice:
Ranked data
Censored observations
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
! !
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!
!
9
10
11
12
0.000.050.100.150.20
proportion
Figure 3
interest is a comparison of such estima
in order to see if the relationships betw
study in Section 3.2. To this end, w
A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
33
Data collection examples
PROmoting School Community-University Partnerships to
Enhance Resilience (PROSPER): “Who are your best and
closest friends in your grade?”
National Longitudinal Study of Adolescent to Adult Health
(AddHealth): “Your male friends. List your closest male
friends. List your best male friend first, then your next best
friend, and so on.”
34
Notation
Z = {zij : i = j} is a sociomatrix of
ordinal relationships
zij > zik denotes person i preferring
person j to person k
Z =





− z12 · · · z1n
z21 −
... −
zn1 −





35
Notation
Z = {zij : i = j} is a sociomatrix of
ordinal relationships
zij > zik denotes person i preferring
person j to person k
Z =





− z12 · · · z1n
z21 −
... −
zn1 −





35
Notation
Z = {zij : i = j} is a sociomatrix of
ordinal relationships
zij > zik denotes person i preferring
person j to person k
Z =





− z12 · · · z1n
z21 −
... −
zn1 −





Instead of Z we observe a sociomatrix Y = {yij : i = j}
35
Notation
Z = {zij : i = j} is a sociomatrix of
ordinal relationships
zij > zik denotes person i preferring
person j to person k
Z =





− z12 · · · z1n
z21 −
... −
zn1 −





Instead of Z we observe a sociomatrix Y = {yij : i = j}
Different sampling schemes define different maps between Y
and Z (set relations between yij and zij ).
35
Notation
Z = {zij : i = j} is a sociomatrix of
ordinal relationships
zij > zik denotes person i preferring
person j to person k
Z =





− z12 · · · z1n
z21 −
... −
zn1 −





Instead of Z we observe a sociomatrix Y = {yij : i = j}
Different sampling schemes define different maps between Y
and Z (set relations between yij and zij ).
Statistical model {p (Z|θ) : θ ∈ Θ} assists in analysis
35
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
zi1 zi2 zi3 zi4 0> 0> 0> 0> 0> 0>> > > >
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
36
Fixed rank nominations
yij > yik ⇒ zij > zik
}F (Y )yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
m = maximal number of nominations, di = individual outdegree
Differentiates between different ranks
Captures censoring in the data
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > >
36
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
zi1 zi2 zi3 zi4 ? ? ? ? ? ?> > > >
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > >
37
Rank
yij > yik ⇒ zij > zik } R (Y )
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
Valid but not fully informative: F (Y ) R (Y )
Cannot estimate row (“sender”) specific effects
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > >
37
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
4 3 2 1 0 0 0 0 0 0
>0 >0 >0 >0 0> 0> 0> 0> 0> 0>
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
38
Binary
yij > yik ⇒ zij > zik
yij = 0 and di < m ⇒ zij ≤ 0
yij > 0 ⇒ zij > 0
} B (Y )
yij = 0 ⇒ zij < 0
F(Y)
R(Y)
B(Y)
Neither fully informative nor valid!
Discards information on the ranks
Ignores the censoring on the outdegrees
In particular: F (Y ) ⊂ B (Y )
zi
yi
1 2 3 4 5 6 7 8 9 10
5 4 3 2 1 0 0 0 0 0
>0 >0 >0 >0 >0 0> 0> 0> 0> 0>
38
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
39
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )):
39
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )):
1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where
a = max(zik : yik < yij ) and b = min(zik : yik > yij ).
39
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )):
1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where
a = max(zik : yik < yij ) and b = min(zik : yik > yij ).
2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0.
39
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )):
1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where
a = max(zik : yik < yij ) and b = min(zik : yik > yij ).
2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0.
3. yij = 0 and di = m: zij ∼ p(zij |Z−ij , θ)1zij ≤min(zik :yik >0)
39
Bayesian Estimation for Fixed Rank Nominations
Model: Z ∼ p(Z|θ), θ ∈ Θ
Data: Z ∈ F(Y )
Likelihood:
LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) =
F(Y )
dP (Z|θ)
Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated
by a Gibbs sampler.
Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )):
1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where
a = max(zik : yik < yij ) and b = min(zik : yik > yij ).
2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0.
3. yij = 0 and di = m: zij ∼ p(zij |Z−ij , θ)1zij ≤min(zik :yik >0)
Allows for imputation of missing yij
39
Simulations
We generated Z from the following Social Relations Model
(Warner, Kenny and Stoto (1979)):
zij = βt
xij + ai + bj + ij
ai
bi
iid
∼ normal 0,
1 0.5
0.5 1
ij
ji
iid
∼ normal 0,
1 0.9
0.9 1
Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2
xir , xjc: individual level variables
xij1: pair specific variable
xij2: co-membership in a group
40
Simulations
We generated Z from the following Social Relations Model
(Warner, Kenny and Stoto (1979)):
zij = βt
xij + ai + bj + ij
ai
bi
iid
∼ normal 0,
1 0.5
0.5 1
ij
ji
iid
∼ normal 0,
1 0.9
0.9 1
Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2
xir , xjc: individual level variables
xij1: pair specific variable
xij2: co-membership in a group
βr = βc = βd1 = βd2 = 1 and β0 = −3.26
xir , xic, xij1
iid
∼ N (0, 1) xij2 = si sj /.42 for si
iid
∼ binary (1/2)
40
Simulations
We generated Z from the following Social Relations Model
(Warner, Kenny and Stoto (1979)):
zij = βt
xij + ai + bj + ij
ai
bi
iid
∼ normal 0,
1 0.5
0.5 1
ij
ji
iid
∼ normal 0,
1 0.9
0.9 1
Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2
xir , xjc: individual level variables
xij1: pair specific variable
xij2: co-membership in a group
βr = βc = βd1 = βd2 = 1 and β0 = −3.26
xir , xic, xij1
iid
∼ N (0, 1) xij2 = si sj /.42 for si
iid
∼ binary (1/2)
40
Simulations - Censoring
8 simulations for each m ∈ {5, 15} with 100 nodes each1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
Confidence intervals under the three different likelihood for column
and an iid dyadic variable. The groups of three CIs are based on
binary, FRN and rank likelihoods from left to right.
41
Simulations - Censoring
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
2
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
2
m = 5 m = 15
Rank likelihood cannot estimate row effects
Z ∈ R (Y ) ⇐⇒ Z + c1t
∈ R (Y ) ∀c ∈ Rn
Simulations - Censoring
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
2
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
2
m = 5 m = 15
Rank likelihood cannot estimate row effects
Z ∈ R (Y ) ⇐⇒ Z + c1t
∈ R (Y ) ∀c ∈ Rn
Binary likelihood poorly estimates row effects
Simulations - Censoring
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
2
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
2
m = 5 m = 15
Rank likelihood cannot estimate row effects
Z ∈ R (Y ) ⇐⇒ Z + c1t
∈ R (Y ) ∀c ∈ Rn
Binary likelihood poorly estimates row effects
Large amount of censoring
Simulations - Censoring
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
2
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
2
m = 5 m = 15
Rank likelihood cannot estimate row effects
Z ∈ R (Y ) ⇐⇒ Z + c1t
∈ R (Y ) ∀c ∈ Rn
Binary likelihood poorly estimates row effects
Large amount of censoring
⇒ Heterogeneity of censored outdegrees is low
Simulations - Censoring
1 2 3 4 5 6 7 8
0.00.51.01.5
!r
! !
! ! ! ! ! !
!
!
! !
! ! !
!
m = 5
1 2 3 4 5 6 7 8
0.40.81.21.6
!c
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
2
1 2 3 4 5 6 7 8
0.00.51.01.5
! !
!
! !
! ! !
!
!
! !
! ! ! !
m = 15
1 2 3 4 5 6 7 8
0.40.81.21.6
! !
!
!
! !
!
!
! !
!
! ! !
!
!! !
!
!
! !
!
!
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
2
m = 5 m = 15
Rank likelihood cannot estimate row effects
Z ∈ R (Y ) ⇐⇒ Z + c1t
∈ R (Y ) ∀c ∈ Rn
Binary likelihood poorly estimates row effects
Large amount of censoring
⇒ Heterogeneity of censored outdegrees is low
⇒ Regression coefficients estimated too low
Simulations - Censoring
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
Recall: xij2 ∝ si sj , an indicator of comembership to a group
43
Simulations - Censoring
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
Recall: xij2 ∝ si sj , an indicator of comembership to a group
Ignore the censoring
43
Simulations - Censoring
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
Recall: xij2 ∝ si sj , an indicator of comembership to a group
Ignore the censoring
⇒ Binary likelihood underestimates row variability
43
Simulations - Censoring
1 2 3 4 5 6 7 8
0.81.0
!d1
!
!
!
!
!
!
!
!!
!
! !
!
!
!
!!
!
! !
!
!
!
!
1 2 3 4 5 6 7 8
0.40.81.2
!d2
!
! ! !
!
!
!
!
!
!
!
!
!
!
! !
! !
!
!
!
! !
!
simulation
1 2 3 4 5 6 7 8
0.81.0
!
!
! !
!
!
! !
!
!
! !
!
! !
!
!
!
!
!
!
! !
!
1 2 3 4 5 6 7 8
0.40.81.2
! ! !
! !
!
!
!
! !
!
! !
!
!
!! ! !
! !
!
!
!
simulation
m = 5 m = 15
Recall: xij2 ∝ si sj , an indicator of comembership to a group
Ignore the censoring
⇒ Binary likelihood underestimates row variability
⇒ Underestimate the variability in xij2
43
Simulations - information in the ranks
Let C (Y ) be the set of values for which the following is true:
yij > 0 ⇒ zij > 0
yij = 0 and di < m ⇒ zij ≤ 0
min {zij : yij > 0} ≥ max {zij : yij = 0}
We refer to LC (θ : Y ) = Pr (Z ∈ C (Y )|θ) as the censored
binary likelihood.
Recognizes censoring but ignores information in the ranks
Simulations - information in the ranks
Let C (Y ) be the set of values for which the following is true:
yij > 0 ⇒ zij > 0
yij = 0 and di < m ⇒ zij ≤ 0
min {zij : yij > 0} ≥ max {zij : yij = 0}
We refer to LC (θ : Y ) = Pr (Z ∈ C (Y )|θ) as the censored
binary likelihood.
Recognizes censoring but ignores information in the ranks
Performs similarly to FRN in the previous study
Less precise than FRN when m is big
Simulations - information in the ranks
Same setup as before, but average uncensored outdegree is m
10 20 30 40 50
0.20.40.60.81.01.21.4
m
relativeconcentrationaroundtruevalue
! ! !
! !r
!
!
! ! !c
!
!
!
! !d1
! !
!
! !d2
2: Posterior concentration around true parameter values. The average of E[(β −
(S)]/E[(β − β∗)2|C(S)] across eight simulated datasets for each m ∈ {5, 15, 30, 50}.
censored binomial likelihood. As the censored binomial likelihood recognizes the censoring in
data, we expect it to provide parameter estimates that do not have the biases of the binomial
ood estimators. On the other hand, LC ignores the information in the ranks of the scored
duals, and so we might expect it to provide less precise estimates than the FRN likelihood.
βr : row
βc: column
βd1: continuous dyad
βd2: co-membership
Relative concentration around true value of each parameter:
Measured by E (β − 1)
2
|F (Y ) /E (β − 1)
2
|C (Y ) for each β
45
Simulations - information in the ranks
Same setup as before, but average uncensored outdegree is m
10 20 30 40 50
0.20.40.60.81.01.21.4
m
relativeconcentrationaroundtruevalue
! ! !
! !r
!
!
! ! !c
!
!
!
! !d1
! !
!
! !d2
2: Posterior concentration around true parameter values. The average of E[(β −
(S)]/E[(β − β∗)2|C(S)] across eight simulated datasets for each m ∈ {5, 15, 30, 50}.
censored binomial likelihood. As the censored binomial likelihood recognizes the censoring in
data, we expect it to provide parameter estimates that do not have the biases of the binomial
ood estimators. On the other hand, LC ignores the information in the ranks of the scored
duals, and so we might expect it to provide less precise estimates than the FRN likelihood.
βr : row
βc: column
βd1: continuous dyad
βd2: co-membership
Relative concentration around true value of each parameter:
Measured by E (β − 1)
2
|F (Y ) /E (β − 1)
2
|C (Y ) for each β
When m n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.
AddHealth Data - Results
−3.65−3.50−3.35
β
intercept
q
q
−0.050.000.050.10
rsmoke rdrink rgpa
q q q
q
q
q
−0.050.000.050.10
csmoke cdrink cgpa
q q q
q
q q
q q q
−0.050.000.050.10
β
dsmoke ddrink dgpa
q q q q q q q
q q
0.20.40.6
β
dacad darts dsport dcivic
q
qq
q
qq
q
qq
q
qq
0.20.40.60.81.0
β
dgrade drace
q q q
q
q q
646 females were asked to rank up to 5 female friends
Mean model with row, column and dyadic effects for smoking,
drinking and gpa as well as dyadic effects for comembership in
activities and grade, and a similarity-in-race measure.
The CIs are based on binary, FRN and rank likelihoods.
46

More Related Content

What's hot

Adaptive network models of socio-cultural dynamics
Adaptive network models of socio-cultural dynamicsAdaptive network models of socio-cultural dynamics
Adaptive network models of socio-cultural dynamicsHiroki Sayama
 
02 Network Data Collection
02 Network Data Collection02 Network Data Collection
02 Network Data Collectiondnac
 
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)dnac
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...Daniel Katz
 
03 Ego Network Analysis
03 Ego Network Analysis03 Ego Network Analysis
03 Ego Network Analysisdnac
 
Self-organization of society: fragmentation, disagreement, and how to overcom...
Self-organization of society: fragmentation, disagreement, and how to overcom...Self-organization of society: fragmentation, disagreement, and how to overcom...
Self-organization of society: fragmentation, disagreement, and how to overcom...Hiroki Sayama
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...Daniel Katz
 
11 Network Experiments and Interventions
11 Network Experiments and Interventions11 Network Experiments and Interventions
11 Network Experiments and Interventionsdnac
 
04 Diffusion and Peer Influence
04 Diffusion and Peer Influence04 Diffusion and Peer Influence
04 Diffusion and Peer Influencednac
 
Complexity Explained: A brief intro to complex systems
Complexity Explained: A brief intro to complex systemsComplexity Explained: A brief intro to complex systems
Complexity Explained: A brief intro to complex systemsHiroki Sayama
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and OverviewDuke Network Analysis Center
 
20142014_20142015_20142115
20142014_20142015_2014211520142014_20142015_20142115
20142014_20142015_20142115Divita Madaan
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...Daniel Katz
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...Daniel Katz
 
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...Social Network Analysis - Lecture 4 in Introduction to Computational Social S...
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...Lauri Eloranta
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...Duke Network Analysis Center
 

What's hot (20)

Adaptive network models of socio-cultural dynamics
Adaptive network models of socio-cultural dynamicsAdaptive network models of socio-cultural dynamics
Adaptive network models of socio-cultural dynamics
 
02 Network Data Collection
02 Network Data Collection02 Network Data Collection
02 Network Data Collection
 
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)
13 An Introduction to Stochastic Actor-Oriented Models (aka SIENA)
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
 
03 Ego Network Analysis
03 Ego Network Analysis03 Ego Network Analysis
03 Ego Network Analysis
 
Self-organization of society: fragmentation, disagreement, and how to overcom...
Self-organization of society: fragmentation, disagreement, and how to overcom...Self-organization of society: fragmentation, disagreement, and how to overcom...
Self-organization of society: fragmentation, disagreement, and how to overcom...
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 1 - Professor...
 
11 Contagion
11 Contagion11 Contagion
11 Contagion
 
14 Dynamic Networks
14 Dynamic Networks14 Dynamic Networks
14 Dynamic Networks
 
11 Network Experiments and Interventions
11 Network Experiments and Interventions11 Network Experiments and Interventions
11 Network Experiments and Interventions
 
04 Diffusion and Peer Influence
04 Diffusion and Peer Influence04 Diffusion and Peer Influence
04 Diffusion and Peer Influence
 
Complexity Explained: A brief intro to complex systems
Complexity Explained: A brief intro to complex systemsComplexity Explained: A brief intro to complex systems
Complexity Explained: A brief intro to complex systems
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview
 
20142014_20142015_20142115
20142014_20142015_2014211520142014_20142015_20142115
20142014_20142015_20142115
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 2 - Professor...
 
09 Ego Network Analysis
09 Ego Network Analysis09 Ego Network Analysis
09 Ego Network Analysis
 
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...
ICPSR - Complex Systems Models in the Social Sciences - Lecture 6 - Professor...
 
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...Social Network Analysis - Lecture 4 in Introduction to Computational Social S...
Social Network Analysis - Lecture 4 in Introduction to Computational Social S...
 
08 Statistical Models for Nets I, cross-section
08 Statistical Models for Nets I, cross-section08 Statistical Models for Nets I, cross-section
08 Statistical Models for Nets I, cross-section
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...
 

Similar to 08 Inference for Networks – DYAD Model Overview (2017)

08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)dnac
 
Module 3: Linear Regression
Module 3:  Linear RegressionModule 3:  Linear Regression
Module 3: Linear RegressionSara Hooker
 
Relational machine-learning
Relational machine-learningRelational machine-learning
Relational machine-learningBhushan Kotnis
 
Jeffrey xu yu large graph processing
Jeffrey xu yu large graph processingJeffrey xu yu large graph processing
Jeffrey xu yu large graph processingjins0618
 
Simplicial closure and higher-order link prediction
Simplicial closure and higher-order link predictionSimplicial closure and higher-order link prediction
Simplicial closure and higher-order link predictionAustin Benson
 
Mutiple linear regression project
Mutiple linear regression projectMutiple linear regression project
Mutiple linear regression projectJAPAN SHAH
 
Hunermund causal inference in ml and ai
Hunermund   causal inference in ml and aiHunermund   causal inference in ml and ai
Hunermund causal inference in ml and aiBoston Global Forum
 
SPSS statistics - get help using SPSS
SPSS statistics - get help using SPSSSPSS statistics - get help using SPSS
SPSS statistics - get help using SPSScsula its training
 
Course Title: Introduction to Machine Learning, Chapter 2- Supervised Learning
Course Title: Introduction to Machine Learning,  Chapter 2- Supervised LearningCourse Title: Introduction to Machine Learning,  Chapter 2- Supervised Learning
Course Title: Introduction to Machine Learning, Chapter 2- Supervised LearningShumet Tadesse
 
Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data scienceBrad Klingenberg
 
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...Förderverein Technische Fakultät
 
Knowledge And Patterns
Knowledge And PatternsKnowledge And Patterns
Knowledge And PatternsDavid Wilson
 
Higher-order Link Prediction GraphEx
Higher-order Link Prediction GraphExHigher-order Link Prediction GraphEx
Higher-order Link Prediction GraphExAustin Benson
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionAustin Benson
 
Machine Learning Algorithm - Linear Regression
Machine Learning Algorithm - Linear RegressionMachine Learning Algorithm - Linear Regression
Machine Learning Algorithm - Linear RegressionKush Kulshrestha
 
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...Xiaohan Zeng
 
Paper Summary of Disentangling by Factorising (Factor-VAE)
Paper Summary of Disentangling by Factorising (Factor-VAE)Paper Summary of Disentangling by Factorising (Factor-VAE)
Paper Summary of Disentangling by Factorising (Factor-VAE)준식 최
 

Similar to 08 Inference for Networks – DYAD Model Overview (2017) (20)

08 Exponential Random Graph Models (2016)
08 Exponential Random Graph Models (2016)08 Exponential Random Graph Models (2016)
08 Exponential Random Graph Models (2016)
 
08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)
 
Module 3: Linear Regression
Module 3:  Linear RegressionModule 3:  Linear Regression
Module 3: Linear Regression
 
Relational machine-learning
Relational machine-learningRelational machine-learning
Relational machine-learning
 
Jeffrey xu yu large graph processing
Jeffrey xu yu large graph processingJeffrey xu yu large graph processing
Jeffrey xu yu large graph processing
 
Simplicial closure and higher-order link prediction
Simplicial closure and higher-order link predictionSimplicial closure and higher-order link prediction
Simplicial closure and higher-order link prediction
 
Mutiple linear regression project
Mutiple linear regression projectMutiple linear regression project
Mutiple linear regression project
 
Hunermund causal inference in ml and ai
Hunermund   causal inference in ml and aiHunermund   causal inference in ml and ai
Hunermund causal inference in ml and ai
 
SPSS statistics - get help using SPSS
SPSS statistics - get help using SPSSSPSS statistics - get help using SPSS
SPSS statistics - get help using SPSS
 
Course Title: Introduction to Machine Learning, Chapter 2- Supervised Learning
Course Title: Introduction to Machine Learning,  Chapter 2- Supervised LearningCourse Title: Introduction to Machine Learning,  Chapter 2- Supervised Learning
Course Title: Introduction to Machine Learning, Chapter 2- Supervised Learning
 
Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data science
 
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
 
Knowledge And Patterns
Knowledge And PatternsKnowledge And Patterns
Knowledge And Patterns
 
Higher-order Link Prediction GraphEx
Higher-order Link Prediction GraphExHigher-order Link Prediction GraphEx
Higher-order Link Prediction GraphEx
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link prediction
 
Gbs1
Gbs1Gbs1
Gbs1
 
Machine Learning Algorithm - Linear Regression
Machine Learning Algorithm - Linear RegressionMachine Learning Algorithm - Linear Regression
Machine Learning Algorithm - Linear Regression
 
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
 
Paper Summary of Disentangling by Factorising (Factor-VAE)
Paper Summary of Disentangling by Factorising (Factor-VAE)Paper Summary of Disentangling by Factorising (Factor-VAE)
Paper Summary of Disentangling by Factorising (Factor-VAE)
 

More from Duke Network Analysis Center

01 Add Health Network Data Challenges: IRB and Security Issues
01 Add Health Network Data Challenges: IRB and Security Issues01 Add Health Network Data Challenges: IRB and Security Issues
01 Add Health Network Data Challenges: IRB and Security IssuesDuke Network Analysis Center
 
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...Duke Network Analysis Center
 
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)Duke Network Analysis Center
 
02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and OverviewDuke Network Analysis Center
 
00 Differentiating Between Network Structure and Network Function
00 Differentiating Between Network Structure and Network Function00 Differentiating Between Network Structure and Network Function
00 Differentiating Between Network Structure and Network FunctionDuke Network Analysis Center
 
00 Arrest Networks and the Spread of Violent Victimization
00 Arrest Networks and the Spread of Violent Victimization00 Arrest Networks and the Spread of Violent Victimization
00 Arrest Networks and the Spread of Violent VictimizationDuke Network Analysis Center
 
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...Duke Network Analysis Center
 

More from Duke Network Analysis Center (20)

01 Add Health Network Data Challenges: IRB and Security Issues
01 Add Health Network Data Challenges: IRB and Security Issues01 Add Health Network Data Challenges: IRB and Security Issues
01 Add Health Network Data Challenges: IRB and Security Issues
 
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...
00 Social Networks of Youth and Young People Who Misuse Prescription Opiods a...
 
24 The Evolution of Network Thinking
24 The Evolution of Network Thinking24 The Evolution of Network Thinking
24 The Evolution of Network Thinking
 
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)
22 An Introduction to Stochastic Actor-Oriented Models (SAOM or Siena)
 
20 Network Experiments
20 Network Experiments20 Network Experiments
20 Network Experiments
 
19 Electronic Medical Records
19 Electronic Medical Records19 Electronic Medical Records
19 Electronic Medical Records
 
18 Diffusion Models and Peer Influence
18 Diffusion Models and Peer Influence18 Diffusion Models and Peer Influence
18 Diffusion Models and Peer Influence
 
15 Network Visualization and Communities
15 Network Visualization and Communities15 Network Visualization and Communities
15 Network Visualization and Communities
 
13 Community Detection
13 Community Detection13 Community Detection
13 Community Detection
 
11 Respondent Driven Sampling
11 Respondent Driven Sampling11 Respondent Driven Sampling
11 Respondent Driven Sampling
 
07 Whole Network Descriptive Statistics
07 Whole Network Descriptive Statistics07 Whole Network Descriptive Statistics
07 Whole Network Descriptive Statistics
 
04 Network Data Collection
04 Network Data Collection04 Network Data Collection
04 Network Data Collection
 
02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview
 
00 Differentiating Between Network Structure and Network Function
00 Differentiating Between Network Structure and Network Function00 Differentiating Between Network Structure and Network Function
00 Differentiating Between Network Structure and Network Function
 
00 Arrest Networks and the Spread of Violent Victimization
00 Arrest Networks and the Spread of Violent Victimization00 Arrest Networks and the Spread of Violent Victimization
00 Arrest Networks and the Spread of Violent Victimization
 
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...
00 Networks of People Who Use Opiods Nonmedically: Reports from Rural Souther...
 
12 SN&H Keynote: Thomas Valente, USC
12 SN&H Keynote: Thomas Valente, USC12 SN&H Keynote: Thomas Valente, USC
12 SN&H Keynote: Thomas Valente, USC
 
11 Siena Models for Selection & Influence
11 Siena Models for Selection & Influence 11 Siena Models for Selection & Influence
11 Siena Models for Selection & Influence
 
10 Network Experiments
10 Network Experiments10 Network Experiments
10 Network Experiments
 
09 Diffusion Models & Peer Influence
09 Diffusion Models & Peer Influence09 Diffusion Models & Peer Influence
09 Diffusion Models & Peer Influence
 

Recently uploaded

A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfWadeK3
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 

Recently uploaded (20)

A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 

08 Inference for Networks – DYAD Model Overview (2017)

  • 1. Modeling networks: regression with additive and multiplicative effects Alexander Volfovsky Department of Statistical Science, Duke May 25 2017 May 25, 2017 Health Networks
  • 2. Why model networks? Interested in understanding the formation of relationships 1
  • 3. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology 1
  • 4. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: 1
  • 5. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? 1
  • 6. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? What models work when the assumptions fail? 1
  • 7. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? What models work when the assumptions fail? How to develop fail-safes to overcome these problems? 1
  • 8. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? What models work when the assumptions fail? How to develop fail-safes to overcome these problems? Where to apply these? 1
  • 9. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? What models work when the assumptions fail? How to develop fail-safes to overcome these problems? Where to apply these? Causal inference 1
  • 10. Why model networks? Interested in understanding the formation of relationships Applied fields: sociology, economics, biology, epidemiology Fundamental theory questions: What assumptions are made for different network models? What models work when the assumptions fail? How to develop fail-safes to overcome these problems? Where to apply these? Causal inference Link prediction 1
  • 11. Some context: Facebook Facebook wants to change its’ ad algorithm. 2 Source: Wikimedia
  • 12. Some context: Facebook Facebook wants to change its’ ad algorithm. Can’t do it on the whole graph 2 Source: Wikimedia
  • 13. Some context: Facebook Facebook wants to change its’ ad algorithm. Can’t do it on the whole graph Need “total network effect” 2 Source: Wikimedia
  • 14. How do they solve it? Interested in estimating 1 N N i=1 [Yi (all treated) − Yi (all controls)] “At a high level, graph cluster randomization is a technique in which the graph is partitioned into a set of clusters, and then randomization between treatment and control is performed at the cluster level.” Where can we find clusters? Observable information (e.g. same school) Unobservable information (“social space”) 3
  • 15. Some context: (im)migration Want to know how regime change affects population. Politicians during election years care about direct effects. 4 Source: http://openscience.alpine-geckos.at/courses/social-network- analyses/empirical-network-analysis/
  • 16. Some more context Studying tram traffic in Vienna 5 Source: kurier.at
  • 17. And one more Studying taxi rides in Porto 442 taxis 1.7 million rides with (x, y) coordinates at 15 second intervals. 6 Source: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic Differentiation Variational Inference. Journal of Machine Learning Research, 18(14), 1-45.
  • 18. And one more Studying taxi rides in Porto Project into a 100 dimensional latent space. Learn hidden interpretable patterns... 7 Source: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic Differentiation Variational Inference. Journal of Machine Learning Research, 18(14), 1-45.
  • 19. Relational data: common examples and goals Changes in exports from year to year −0.30 −0.20 −0.10 −0.4−0.20.00.20.4 first eigenvector of R^ row secondeigenvectorofR^ row Australia Austria Brazil Canada China China, Hong Kong SAR Finland France Germany GreeceIndonesia Ireland Italy Japan Malaysia Mexico Netherlands New Zealand Norway Rep. of Korea Spain Switzerland Thailand Turkey United Kingdom USA −0.25 −0.15 −0.05 0.05 −0.3−0.10.10.3 first eigenvector of R^ col secondeigenvectorofR^ col Australia Austria Brazil Canada China China, Hong Kong SAR Finland France Germany Greece Indonesia Ireland Italy Japan Malaysia Mexico Netherlands New ZealandNorway Rep. of Korea Spain Switzerland Thailand Turkey United Kingdom USA Network regression problems yij = xij β + ij frequently assume independence of the ij 8
  • 20. Estimating β in network regression −0.30 −0.20 −0.10 −0.4−0.20.00.20.4 first eigenvector of R^ row secondeigenvectorofR^ row Australia Austria Brazil Canada China China, Hong Kong SAR Finland France Germany GreeceIndonesia Ireland Italy Japan Malaysia Mexico Netherlands New Zealand Norway Rep. of Korea Spain Switzerland Thailand Turkey United Kingdom USA −0.25 −0.15 −0.05 0.05 −0.3−0.10.10.3 first eigenvector of R^ col secondeigenvectorofR^ col Australia Austria Brazil Canada China China, Hong Kong SAR Finland France Germany Greece Indonesia Ireland Italy Japan Malaysia Mexico Netherlands New ZealandNorway Rep. of Korea Spain Switzerland Thailand Turkey United Kingdom USA For Y =< X, β > +E we have OLS (assume no dependence among ij ): ˆβ(ols) = (mat(X)t mat(X))−1 mat(X)t vec(Y ) Oracle GLS (assume dependence among ij ): ˆβ(gls) = (mat(X)t (Σ−1 )mat(X))−1 mat(X)t (Σ−1 )vec(Y ) 9
  • 21. Network models The data There are n actors/nodes labeled 1, . . . , n Y is a sociomatrix: yij is a dyadic relationship between node i and node j. yii frequently undefined. Covariates: node specific: xi dyad specific: xij
  • 22. Social relations model Goal: describe the variability in Y . Sender effects describe sociability. Receiver effects describe popularity. Capture this in the Social Relations Model (SRM) yij = ai + bj + ij Almost an ANOVA — want to relate ai to bi since the senders/receivers are from the same set.
  • 23. Social relations model yij =µ + ai + bj + ij (ai , bi ) iid ∼N(0, Σab) ( ij , ji ) iid ∼N(0, Σe) Σab = σ2 a σab σab σ2 b describes sender/receiver variability and within person similarity. Σe = σ2 1 ρ ρ 1 describes within dyad correlation. 12
  • 24. Variability var(yij ) =σ2 a + 2σab + σ2 b + σ2 cov(yij , yik) =σ2 a cov(yij , ukj ) =σ2 b cov(yij , yjk) =σab cov(yij , yji ) =2σab + ρσ2 How hard is it to fit this model? fit_SRM <- ame(Y) 13
  • 25. Pictures that pop up These help capture how well the Markov Chain is mixing and goodness of fit information. 14 Source: Hoff (2015). arXiv:1506.08237
  • 26. Goodness of fit Posterior predictive distributions. sd.rowmean: standard deviation of row means of Y . sd.colmean: standard deviation of column means of Y . dyad.dep: correlation between vectorized Y and vectorized Y t triad.dep: i jk eij ejkeki #triangle on n nodes Var(vec(Y ))3/2 15 Source: Hoff (2015). arXiv:1506.08237
  • 27. Incorporating covariates Imagine you have some covariates and want to fit yij = βt d xd,ij + βt r xr,i + βt cxc,j + ai + bj + ij xd,ij are dyad specific covariates. xr,i are row (sender) covariates. xc,i are column (receiver) covariates. Frequently xr,i = xc,i = xi When does this not make sense? (Example: popularity is affected by athletic success, but sociability is not) How hard is it to fit this model? fit_SRRM <- ame(Y, Xd=Xd,Xr=Xr,Xc=Xc) 16
  • 28. Parsing the input fit_SRRM <- ame(Y, Xdyad=Xd, #n x n x pd array of covariates Xrow=Xr, #n x pr matrix of nodal row covariates Xcol=Xc #n x pc matrix of nodal column covariates ) Xri,p is the value of the pth row covariate for node i. Xdi,j,p is the value of the pth dyadic covariate in the direction of i to j.
  • 29. Back to basics Can you get rid of the dependencies in the model? fit_rm<-ame(Y,Xd=Xd,Xr=Xn,Xc=Xn, rvar=FALSE, #should you fit row random effects? cvar=FALSE, #should you fit column random effects? dcor=FALSE #should you fit a dyadic correlation? ) Note that summary will output: Variance parameters: pmean psd va 0.000 0.000 cab 0.000 0.000 vb 0.000 0.000 rho 0.000 0.000 ve 0.229 0.011 18
  • 30. So what’s missing here? We have a lot of left over variability. Common themes in network analysis: Homophily: similar people connect to each other Stochastic equivalence: similar people act similarly 19
  • 31. Which is which? Source: Hoff (2008). NIPS
  • 32. Which is which? Left: homophily; Right: stochastic equivalence What are good models for this? Source: Hoff (2008). NIPS
  • 33. Introducing multiplicative effects SR(R)M can represent second-order dependencies very well. Has a hard time capturing “triadic” behavior. Homophily: create dyadic covariates xd,ij = xi xj Generally this can be represented by xt ri Bxj,i = k l bkl xr,ikxc,jl This is linear in the covariates and so can be baked into the amen framework. Sometimes there is excess correlation to account. This suggests a multiplicative effects model: yij = βt d xd,ij + βt r xr,i + βt cxc,j + ai + bj + ut i vj + ij 21
  • 34. Fitting these models and beyond fit_ame2<-ame(Y,Xd,Xn,Xn, R=2 #dimension of the multiplicative effect ) 22 Source: Hoff (2015). arXiv:1506.08237
  • 35. What happened here? Why do multiplicative effects help triadic behavior? Triadic measure is related to transitivity (at least for binary data). Turns out homophily can capture transitivity... yij = βt d xd,ij + βt r xr,i + βt cxc,j + ai + bj + ut i vj + ij ui is information about the sender, vj is information about the receiver if ui ≈ vj then ut i vj > 0... if ui ≈ uj then there is some stochastic equivalence...
  • 36. Lets generalize: ordinal models Imagine a binary (probit) model: yij = 1zij >0 zij = µ + ai + bj + ij Looks like the SRM on the latent scale. fit_SRM<-ame(Y, model="bin" #lots of model options here ) If we go to the iid set up this is just an Erdos-Renyi model: fit_SRG<-ame(Y,model="bin", rvar=FALSE,cvar=FALSE,dcor=FALSE) 24
  • 37. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) 25
  • 38. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) ui are latent factors describing i as a sender
  • 39. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) ui are latent factors describing i as a sender vj are latent factors describing j as a receiver
  • 40. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) ui are latent factors describing i as a sender vj are latent factors describing j as a receiver D is a matrix of factor weights
  • 41. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) ui are latent factors describing i as a sender vj are latent factors describing j as a receiver D is a matrix of factor weights g is an increasing function mapping the latent space to the observed space.
  • 42. Even more general Consider the following generative model: zij = ut i Dvj + ij yij = g(zij ) ui are latent factors describing i as a sender vj are latent factors describing j as a receiver D is a matrix of factor weights g is an increasing function mapping the latent space to the observed space. (Some gs... Normal: g(z) = z, binomial: g(z) = 1z≥0) 25
  • 43. This works for symmetric matrices too! Imagine that yij = yji then the model looks like: zij = ui Λuj + ij yij = g(zij ) 26
  • 44. This works for symmetric matrices too! Imagine that yij = yji then the model looks like: zij = ui Λuj + ij yij = g(zij ) ui ≈ uj represents stochastic equivalence
  • 45. This works for symmetric matrices too! Imagine that yij = yji then the model looks like: zij = ui Λuj + ij yij = g(zij ) ui ≈ uj represents stochastic equivalence Λ is a matrix of eigenvalues:
  • 46. This works for symmetric matrices too! Imagine that yij = yji then the model looks like: zij = ui Λuj + ij yij = g(zij ) ui ≈ uj represents stochastic equivalence Λ is a matrix of eigenvalues: positive λi imply homophily, negative ones imply heterophily. 26
  • 47. What is this latent space? Problem 1: need to select a dimension R. 27
  • 48. What is this latent space? Problem 1: need to select a dimension R. This is hard... sometimes there is some intuition. 27
  • 49. What is this latent space? Problem 1: need to select a dimension R. This is hard... sometimes there is some intuition. Problem 2: should the latent positions be interpreted? 27
  • 50. What is this latent space? Problem 1: need to select a dimension R. This is hard... sometimes there is some intuition. Problem 2: should the latent positions be interpreted? Unclear — maybe think of the distances in this space... 27
  • 51. What is this latent space? Problem 1: need to select a dimension R. This is hard... sometimes there is some intuition. Problem 2: should the latent positions be interpreted? Unclear — maybe think of the distances in this space... Problem 3: what about my favorite other models like stochastic blockmodels?
  • 52. What is this latent space? Problem 1: need to select a dimension R. This is hard... sometimes there is some intuition. Problem 2: should the latent positions be interpreted? Unclear — maybe think of the distances in this space... Problem 3: what about my favorite other models like stochastic blockmodels? These are just a subclass of models! For example, the stochastic blockmodel has discrete support for the latent positions.
  • 53. What is this latent space? All quotes from Hoff, et al 2002 A subset of individuals in the population with a large number of social ties between them may be indicative of a group of individuals who have nearby positions in this space of characteristics, or social space. Various concepts of social space have been discussed by McFarland and Brown (1973) and Faust (1988). In the context of this article, social space refers to a space of unobserved latent characteristics that represent potential transitive tendencies in network relations. A probability measure over these unobserved characteristics induces a model in which the presence of a tie between two individuals is dependent on the presence of other ties.
  • 54. (Tiny portion of the) literature Nowicki, Krzysztof, and Tom A. B. Snijders. ”Estimation and prediction for stochastic blockstructures.” Journal of the American Statistical Association 96, no. 455 (2001): 1077-1087. Hoff, Peter D., Adrian E. Raftery, and Mark S. Handcock. ”Latent space approaches to social network analysis.” Journal of the american Statistical association 97, no. 460 (2002): 1090-1098. Hoff, Peter. ”Modeling homophily and stochastic equivalence in symmetric relational data.” In Advances in Neural Information Processing Systems, pp. 657-664. 2008. Airoldi, Edoardo M., David M. Blei, Stephen E. Fienberg, and Eric P. Xing. ”Mixed membership stochastic blockmodels.” Journal of Machine Learning Research 9, no. Sep (2008): 1981-2014. Hoff, Peter, Bailey Fosdick, Alex Volfovsky, and Katherine Stovel. ”Likelihoods for fixed rank nomination networks.” Network Science 1, no. 03 (2013): 253-277. Hoff, Peter D. ”Dyadic data analysis with amen.” arXiv preprint arXiv:1506.08237 (2015).
  • 55. ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rrl") , cvar = TRUE, dcor = !symmetric, nvar = TRUE, R = 0, model="nrm", intercept=!is.element(model,c("rrl","ord")), symmetric=FALSE, odmax=rep(max(apply(Y>0,1,sum,na.rm=TRUE)),nrow(Y)), ...) Y: an n x n square relational matrix of relations. Xdyad: an n x n x pd array of covariates Xrow: an n x pr matrix of nodal row covariates Xcol: an n x pc matrix of nodal column covariates rvar: logical: fit row random effects (asymmetric case)? cvar: logical: fit column random effects (asymmetric case)? dcor: logical: fit a dyadic correlation (asymmetric case)? nvar: logical: fit nodal random effects (symmetric case)? R: int: dimension of the multiplicative effects (can be 0) model: char: one of "nrm","bin","ord","cbin","frn","rrl" odmax: a scalar integer or vector of length n giving the maximum number of nominations that each node may make
  • 56. What’s in the ...? seed = 1, nscan = 10000, burn = 500, odens = 25, plot=TRUE, print = TRUE, gof=TRUE seed: random seed nscan: number of iterations of the Markov chain (beyond burn-in) burn: burn in for the Markov chain odens: output density for the Markov chain plot: logical: plot results while running? print: logical: print results while running? gof: logical: calculate goodness of fit statistics?
  • 58. Social network data Datasets: PROSPER, NSCR, AddHealth ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w 33
  • 59. Social network data Datasets: PROSPER, NSCR, AddHealth Relate network characteristics to individual-level behavior ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w 33
  • 60. Social network data Datasets: PROSPER, NSCR, AddHealth Relate network characteristics to individual-level behavior Literature: ERGM, latent variable models ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w 33
  • 61. Social network data Datasets: PROSPER, NSCR, AddHealth Relate network characteristics to individual-level behavior Literature: ERGM, latent variable models Assumptions: Data is fully observed The support is the set of all sociomatrices ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w 33
  • 62. Social network data Datasets: PROSPER, NSCR, AddHealth Relate network characteristics to individual-level behavior Literature: ERGM, latent variable models Assumptions: Data is fully observed The support is the set of all sociomatrices In practice: Ranked data Censored observations ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w 33
  • 63. Social network data Datasets: PROSPER, NSCR, AddHealth Relate network characteristics to individual-level behavior Literature: ERGM, latent variable models Assumptions: Data is fully observed The support is the set of all sociomatrices In practice: Ranked data Censored observations ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! 9 10 11 12 0.000.050.100.150.20 proportion Figure 3 interest is a comparison of such estima in order to see if the relationships betw study in Section 3.2. To this end, w A type of likelihood that accommodates the ranked and censored nature of data from Fixed Rank Nomination (FRN) surveys and allows for estimation of regression effects. 33
  • 64. Data collection examples PROmoting School Community-University Partnerships to Enhance Resilience (PROSPER): “Who are your best and closest friends in your grade?” National Longitudinal Study of Adolescent to Adult Health (AddHealth): “Your male friends. List your closest male friends. List your best male friend first, then your next best friend, and so on.” 34
  • 65. Notation Z = {zij : i = j} is a sociomatrix of ordinal relationships zij > zik denotes person i preferring person j to person k Z =      − z12 · · · z1n z21 − ... − zn1 −      35
  • 66. Notation Z = {zij : i = j} is a sociomatrix of ordinal relationships zij > zik denotes person i preferring person j to person k Z =      − z12 · · · z1n z21 − ... − zn1 −      35
  • 67. Notation Z = {zij : i = j} is a sociomatrix of ordinal relationships zij > zik denotes person i preferring person j to person k Z =      − z12 · · · z1n z21 − ... − zn1 −      Instead of Z we observe a sociomatrix Y = {yij : i = j} 35
  • 68. Notation Z = {zij : i = j} is a sociomatrix of ordinal relationships zij > zik denotes person i preferring person j to person k Z =      − z12 · · · z1n z21 − ... − zn1 −      Instead of Z we observe a sociomatrix Y = {yij : i = j} Different sampling schemes define different maps between Y and Z (set relations between yij and zij ). 35
  • 69. Notation Z = {zij : i = j} is a sociomatrix of ordinal relationships zij > zik denotes person i preferring person j to person k Z =      − z12 · · · z1n z21 − ... − zn1 −      Instead of Z we observe a sociomatrix Y = {yij : i = j} Different sampling schemes define different maps between Y and Z (set relations between yij and zij ). Statistical model {p (Z|θ) : θ ∈ Θ} assists in analysis 35
  • 70. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree 36
  • 71. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 36
  • 72. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 36
  • 73. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 zi1 zi2 zi3 zi4 0> 0> 0> 0> 0> 0>> > > > 36
  • 74. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 36
  • 75. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 36
  • 76. Fixed rank nominations yij > yik ⇒ zij > zik }F (Y )yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) m = maximal number of nominations, di = individual outdegree Differentiates between different ranks Captures censoring in the data zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > > 36
  • 77. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) 37
  • 78. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 37
  • 79. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 37
  • 80. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 zi1 zi2 zi3 zi4 ? ? ? ? ? ?> > > > 37
  • 81. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 37
  • 82. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 37
  • 83. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > > 37
  • 84. Rank yij > yik ⇒ zij > zik } R (Y ) yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 yij = 0 ⇒ zij < 0 F(Y) R(Y) Valid but not fully informative: F (Y ) R (Y ) Cannot estimate row (“sender”) specific effects zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 zi1 zi2 zi3 zi4 zi5 ? ? ? ? ?> > > > > 37
  • 85. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) 38
  • 86. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 38
  • 87. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 38
  • 88. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 4 3 2 1 0 0 0 0 0 0 >0 >0 >0 >0 0> 0> 0> 0> 0> 0> 38
  • 89. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 38
  • 90. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 38
  • 91. Binary yij > yik ⇒ zij > zik yij = 0 and di < m ⇒ zij ≤ 0 yij > 0 ⇒ zij > 0 } B (Y ) yij = 0 ⇒ zij < 0 F(Y) R(Y) B(Y) Neither fully informative nor valid! Discards information on the ranks Ignores the censoring on the outdegrees In particular: F (Y ) ⊂ B (Y ) zi yi 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 0 0 0 0 >0 >0 >0 >0 >0 0> 0> 0> 0> 0> 38
  • 92. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. 39
  • 93. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )): 39
  • 94. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )): 1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where a = max(zik : yik < yij ) and b = min(zik : yik > yij ). 39
  • 95. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )): 1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where a = max(zik : yik < yij ) and b = min(zik : yik > yij ). 2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0. 39
  • 96. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )): 1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where a = max(zik : yik < yij ) and b = min(zik : yik > yij ). 2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0. 3. yij = 0 and di = m: zij ∼ p(zij |Z−ij , θ)1zij ≤min(zik :yik >0) 39
  • 97. Bayesian Estimation for Fixed Rank Nominations Model: Z ∼ p(Z|θ), θ ∈ Θ Data: Z ∈ F(Y ) Likelihood: LF (θ : Y ) = Pr (Z ∈ F (Y )|θ) = F(Y ) dP (Z|θ) Estimation: Given p(θ), p(θ|Z ∈ F(Y )) can be approximated by a Gibbs sampler. Simulate zij ∼ p(zij |θ, Z−ij , Z ∈ F(Y )): 1. yij > 0: zij ∼ p(zij |θ, Z−ij )1zij ∈(a,b) where a = max(zik : yik < yij ) and b = min(zik : yik > yij ). 2. yij = 0 and di < m: zij ∼ p(zij |Z−ij , θ)1zij ≤0. 3. yij = 0 and di = m: zij ∼ p(zij |Z−ij , θ)1zij ≤min(zik :yik >0) Allows for imputation of missing yij 39
  • 98. Simulations We generated Z from the following Social Relations Model (Warner, Kenny and Stoto (1979)): zij = βt xij + ai + bj + ij ai bi iid ∼ normal 0, 1 0.5 0.5 1 ij ji iid ∼ normal 0, 1 0.9 0.9 1 Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2 xir , xjc: individual level variables xij1: pair specific variable xij2: co-membership in a group 40
  • 99. Simulations We generated Z from the following Social Relations Model (Warner, Kenny and Stoto (1979)): zij = βt xij + ai + bj + ij ai bi iid ∼ normal 0, 1 0.5 0.5 1 ij ji iid ∼ normal 0, 1 0.9 0.9 1 Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2 xir , xjc: individual level variables xij1: pair specific variable xij2: co-membership in a group βr = βc = βd1 = βd2 = 1 and β0 = −3.26 xir , xic, xij1 iid ∼ N (0, 1) xij2 = si sj /.42 for si iid ∼ binary (1/2) 40
  • 100. Simulations We generated Z from the following Social Relations Model (Warner, Kenny and Stoto (1979)): zij = βt xij + ai + bj + ij ai bi iid ∼ normal 0, 1 0.5 0.5 1 ij ji iid ∼ normal 0, 1 0.9 0.9 1 Mean model: βtxij = β0 + βr xir + βcxjc + βd1 xij1 + βd2 xij2 xir , xjc: individual level variables xij1: pair specific variable xij2: co-membership in a group βr = βc = βd1 = βd2 = 1 and β0 = −3.26 xir , xic, xij1 iid ∼ N (0, 1) xij2 = si sj /.42 for si iid ∼ binary (1/2) 40
  • 101. Simulations - Censoring 8 simulations for each m ∈ {5, 15} with 100 nodes each1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 Confidence intervals under the three different likelihood for column and an iid dyadic variable. The groups of three CIs are based on binary, FRN and rank likelihoods from left to right. 41
  • 102. Simulations - Censoring 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 2 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2 m = 5 m = 15 Rank likelihood cannot estimate row effects Z ∈ R (Y ) ⇐⇒ Z + c1t ∈ R (Y ) ∀c ∈ Rn
  • 103. Simulations - Censoring 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 2 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2 m = 5 m = 15 Rank likelihood cannot estimate row effects Z ∈ R (Y ) ⇐⇒ Z + c1t ∈ R (Y ) ∀c ∈ Rn Binary likelihood poorly estimates row effects
  • 104. Simulations - Censoring 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 2 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2 m = 5 m = 15 Rank likelihood cannot estimate row effects Z ∈ R (Y ) ⇐⇒ Z + c1t ∈ R (Y ) ∀c ∈ Rn Binary likelihood poorly estimates row effects Large amount of censoring
  • 105. Simulations - Censoring 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 2 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2 m = 5 m = 15 Rank likelihood cannot estimate row effects Z ∈ R (Y ) ⇐⇒ Z + c1t ∈ R (Y ) ∀c ∈ Rn Binary likelihood poorly estimates row effects Large amount of censoring ⇒ Heterogeneity of censored outdegrees is low
  • 106. Simulations - Censoring 1 2 3 4 5 6 7 8 0.00.51.01.5 !r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 5 1 2 3 4 5 6 7 8 0.40.81.21.6 !c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 2 1 2 3 4 5 6 7 8 0.00.51.01.5 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m = 15 1 2 3 4 5 6 7 8 0.40.81.21.6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2 m = 5 m = 15 Rank likelihood cannot estimate row effects Z ∈ R (Y ) ⇐⇒ Z + c1t ∈ R (Y ) ∀c ∈ Rn Binary likelihood poorly estimates row effects Large amount of censoring ⇒ Heterogeneity of censored outdegrees is low ⇒ Regression coefficients estimated too low
  • 107. Simulations - Censoring 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 Recall: xij2 ∝ si sj , an indicator of comembership to a group 43
  • 108. Simulations - Censoring 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 Recall: xij2 ∝ si sj , an indicator of comembership to a group Ignore the censoring 43
  • 109. Simulations - Censoring 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 Recall: xij2 ∝ si sj , an indicator of comembership to a group Ignore the censoring ⇒ Binary likelihood underestimates row variability 43
  • 110. Simulations - Censoring 1 2 3 4 5 6 7 8 0.81.0 !d1 ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 !d2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! simulation 1 2 3 4 5 6 7 8 0.81.0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 2 3 4 5 6 7 8 0.40.81.2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! simulation m = 5 m = 15 Recall: xij2 ∝ si sj , an indicator of comembership to a group Ignore the censoring ⇒ Binary likelihood underestimates row variability ⇒ Underestimate the variability in xij2 43
  • 111. Simulations - information in the ranks Let C (Y ) be the set of values for which the following is true: yij > 0 ⇒ zij > 0 yij = 0 and di < m ⇒ zij ≤ 0 min {zij : yij > 0} ≥ max {zij : yij = 0} We refer to LC (θ : Y ) = Pr (Z ∈ C (Y )|θ) as the censored binary likelihood. Recognizes censoring but ignores information in the ranks
  • 112. Simulations - information in the ranks Let C (Y ) be the set of values for which the following is true: yij > 0 ⇒ zij > 0 yij = 0 and di < m ⇒ zij ≤ 0 min {zij : yij > 0} ≥ max {zij : yij = 0} We refer to LC (θ : Y ) = Pr (Z ∈ C (Y )|θ) as the censored binary likelihood. Recognizes censoring but ignores information in the ranks Performs similarly to FRN in the previous study Less precise than FRN when m is big
  • 113. Simulations - information in the ranks Same setup as before, but average uncensored outdegree is m 10 20 30 40 50 0.20.40.60.81.01.21.4 m relativeconcentrationaroundtruevalue ! ! ! ! !r ! ! ! ! !c ! ! ! ! !d1 ! ! ! ! !d2 2: Posterior concentration around true parameter values. The average of E[(β − (S)]/E[(β − β∗)2|C(S)] across eight simulated datasets for each m ∈ {5, 15, 30, 50}. censored binomial likelihood. As the censored binomial likelihood recognizes the censoring in data, we expect it to provide parameter estimates that do not have the biases of the binomial ood estimators. On the other hand, LC ignores the information in the ranks of the scored duals, and so we might expect it to provide less precise estimates than the FRN likelihood. βr : row βc: column βd1: continuous dyad βd2: co-membership Relative concentration around true value of each parameter: Measured by E (β − 1) 2 |F (Y ) /E (β − 1) 2 |C (Y ) for each β 45
  • 114. Simulations - information in the ranks Same setup as before, but average uncensored outdegree is m 10 20 30 40 50 0.20.40.60.81.01.21.4 m relativeconcentrationaroundtruevalue ! ! ! ! !r ! ! ! ! !c ! ! ! ! !d1 ! ! ! ! !d2 2: Posterior concentration around true parameter values. The average of E[(β − (S)]/E[(β − β∗)2|C(S)] across eight simulated datasets for each m ∈ {5, 15, 30, 50}. censored binomial likelihood. As the censored binomial likelihood recognizes the censoring in data, we expect it to provide parameter estimates that do not have the biases of the binomial ood estimators. On the other hand, LC ignores the information in the ranks of the scored duals, and so we might expect it to provide less precise estimates than the FRN likelihood. βr : row βc: column βd1: continuous dyad βd2: co-membership Relative concentration around true value of each parameter: Measured by E (β − 1) 2 |F (Y ) /E (β − 1) 2 |C (Y ) for each β When m n, most of the information found by considering ranked/unranked individuals as groups rather than the relative ordering of the ranked individuals.
  • 115. AddHealth Data - Results −3.65−3.50−3.35 β intercept q q −0.050.000.050.10 rsmoke rdrink rgpa q q q q q q −0.050.000.050.10 csmoke cdrink cgpa q q q q q q q q q −0.050.000.050.10 β dsmoke ddrink dgpa q q q q q q q q q 0.20.40.6 β dacad darts dsport dcivic q qq q qq q qq q qq 0.20.40.60.81.0 β dgrade drace q q q q q q 646 females were asked to rank up to 5 female friends Mean model with row, column and dyadic effects for smoking, drinking and gpa as well as dyadic effects for comembership in activities and grade, and a similarity-in-race measure. The CIs are based on binary, FRN and rank likelihoods. 46