SlideShare a Scribd company logo
1 of 64
Download to read offline
TRƖƔƘNG ƑAƏI HOƏC ƑAƘ LAƏT
KHOA TOAƙN - TIN HOƏC
TAƏ LEƂ LƔƏI - ƑOƃ NGUYEƂN SƔN
GIAƛI TƍCH 3
(GiaĆ¹o TrƬnh)
-- Lƶu haĆønh noƤi boƤ --
ƑaĆø LaĆÆt 2008
Giaƻi Tƭch 3
TaĆÆ LeĆ¢ LĆ“ĆÆi - ƑoĆ£ NguyeĆ¢n SĆ“n
MuĆÆc luĆÆc
ChƶƓng I. TĆ­ch phaĆ¢n phuĆÆ thuoƤc tham soĆ”
1. TĆ­ch phaĆ¢n phuĆÆ thuoƤc tham soĆ” ................................ 4
2. TĆ­ch phaĆ¢n suy roƤng phuĆÆ thuoƤc tham soĆ” ....................... 9
3. CaĆ¹c tĆ­ch phaĆ¢n Euler ........................................ 14
ChƶƓng II. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp
1. Ƒa taĆÆp khaĆ» vi trong Rn
..................................... 19
2. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp ............................... 24
ChƶƓng III. DaĆÆng vi phaĆ¢n
1. DaĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng ........................... 31
2. DaĆÆng vi phaĆ¢n .............................................. 33
3. BoĆ„ ƱeĆ  PoincareĆ¹ ............................................ 37
ChƶƓng IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n
1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng ................................................ 41
2. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n .................................... 44
3. CoĆ¢ng thĆ¶Ć¹c Stokes .......................................... 47
BaĆøi taƤp. ......................................................... 53
4
I. TƝch phĀ©n phĆ“ thuĆ©c tham sĆØ
1 TƝch phĀ©n phĆ“ thuĆ©c tham sĆØ
1.1 Ā§Ćžnh nghƜa
Ā§Ćžnh nghƜa 1. XƐt hĀµm f(x, t) = f(x1, . . ., xn, t1, . . . , tm) xĀøc Ā®Ćžnh trĀŖn miƒn
X Ɨ T āŠ‚ Rn
Ɨ Rm
. GiĀ¶ sƶ X Ā®o Ā®-Ć®c (Jordan) vĀµ vĆ­i mƧi giĀø trƞ cƱa t āˆˆ T cĆØ
Ā®Ćžnh, hĀµm f(x, t) khĀ¶ tƝch theo x trĀŖn X. Khi Ā®Ć£ tƝch phĀ©n
I(t) =
X
f(x, t)dx (1)
lĀµ hĀµm theo biƕn t = (t1, . . ., tm), gƤi lĀµ tƝch phĀ©n phĆ“ thuĆ©c tham sĆØ vĆ­i m
tham sĆØ t1, . . ., tm.
1.2 TƝnh liĀŖn tĆ“c
Ā§Ćžnh lĆ½ 1. Nƕu f(x, t) liĀŖn tĆ“c trĀŖn X Ɨ T āŠ‚ Rn
Ɨ Rm
, Ć« Ā®Ā©y X, T lĀµ cĀøc tƋp
compact, thƗ tƝch phĀ©n
I(t) =
X
f(x, t)dx
liĀŖn tĆ“c trĀŖn T.
ChĆøng minh. CĆØ Ā®Ćžnh t0 āˆˆ T. Ta sƏ chĆøng minh vĆ­i mƤi > 0, tĆ„n tĀ¹i Ī“ > 0 sao
cho vĆ­i mƤi t āˆˆ T, d(t, t0) < Ī“ ta cĆ£ | I(t) āˆ’ I(t0) |< .
TƵ Ā®Ćžnh nghƜa suy ra
| I(t) āˆ’ I(t0) |=
X
(f(x, t) āˆ’ f(x, t0))dx ā‰¤
X
| f(x, t) āˆ’ f(x, t0) | dx.
Do f liĀŖn tĆ“c trĀŖn compact nĀŖn liĀŖn tĆ“c Ā®Ć’u trĀŖn Ā®Ć£, tĆøc lĀµ tĆ„n tĀ¹i Ī“ > 0 sao cho
| f(x , t ) āˆ’ f(x, t) |<
v(X)
vĆ­i mƤi (x, t), (x , t ) āˆˆ X Ɨ T, d((x , t ), (x, t)) < Ī“.
TƵ Ā®Ć£, vĆ­i d(t, t0) < Ī“ ta cĆ£
| I(t) āˆ’ I(t0) |< v(X)
v(X)
= .
5
2
VƝ dĆ“. 1) Ta cĆ£ lim
tā†’0
1
āˆ’1
āˆš
x2 + t2dx =
1
āˆ’1
|x|dx = 1 vƗ hĀµm
āˆš
x2 + t2 liĀŖn tĆ“c trĀŖn
[āˆ’1, 1] Ɨ [āˆ’ , ].
2) KhĀ¶o sĀøt tƝnh liĀŖn tĆ“c tĀ¹i Ā®iƓm (0, 0) cƱa hĀµm f(x, t) =
xtāˆ’2
eāˆ’x2tāˆ’2
nƕu t = 0
0 nƕu t = 0
.
Nƕu f(x, t) liĀŖn tĆ“c tĀ¹i (0, 0), thƗ f(x, t) liĀŖn tĆ“c trĀŖn [0, 1] Ɨ [āˆ’ , ]. Khi Ā®Ć£, tƝch
phĀ©n I(t) =
1
0
f(x, t)dx liĀŖn tĆ“c trĀŖn [āˆ’ , ] . Nh-ng ta cĆ£
lim
tā†’0
I(t) = lim
tā†’0
1
0
xtāˆ’2
eāˆ’x2tāˆ’2
= āˆ’
1
2
lim
tā†’0
1
0
eāˆ’x2tāˆ’2
d(āˆ’x2
tāˆ’2
)
= āˆ’
1
2
lim
tā†’0
(eāˆ’tāˆ’2
āˆ’ 1) =
1
2
= 0 = I(0).
VƋy, hĀµm f(x, t) khĀ«ng liĀŖn tĆ“c tĀ¹i (0, 0).
Sau Ā®Ā©y chĆ³ng ta sƏ khĀ¶o sĀøt mĆ©t tƦng quĀøt hĆ£a cƱa Ā§Ćžnh lĆ½ 1 trong tr-ĆŖng hĆ®p
X = [a, b].
Ā§Ćžnh lĆ½ 2. Cho f(x, t) liĀŖn tĆ“c trĀŖn [a, b] Ɨ T, vĆ­i T lĀµ tƋp compact vĀµ a(t), b(t)
lĀµ hai hĀµm liĀŖn tĆ“c trĀŖn T sao cho a(t), b(t) āˆˆ [a, b] vĆ­i mƤi t āˆˆ T. Khi Ā®Ć£, tƝch
phĀ©n
I(t) =
b(t)
a(t)
f(x, t)dx
liĀŖn tĆ“c trĀŖn T.
ChĆøng minh. Do f liĀŖn tĆ“c trĀŖn tƋp compact nĀŖn giĆ­i nĆ©i, tĆøc lĀµ tĆ„n tĀ¹i M > 0
sao cho | f(x, y) |ā‰¤ M vĆ­i mƤi (x, t) āˆˆ [a, b] Ɨ T. CĆØ Ā®Ćžnh t0 āˆˆ T ta cĆ£:
| I(t) āˆ’ I(t0) |=
a(t0)
a(t)
f(x, t)dx +
b(t)
b(t0)
f(x, t)dx +
b(t0)
a(t0)
[f(x, t) āˆ’ f(x, t0)]dx
ā‰¤
a(t0)
a(t)
f(x, t)dx +
b(t)
b(t0)
f(x, t)dx +
b(t0)
a(t0)
(f(x, t) āˆ’ f(x, t0))dx
ā‰¤ M | a(t) āˆ’ a(t0) | +M | b(t) āˆ’ b(t0) | +
b(t0)
a(t0)
| f(x, t) āˆ’ f(x, t0) | dx.
6
KhĀ¼ng Ā®Ćžnh suy ra tƵ tƝnh liĀŖn tĆ“c cƱa a(t), b(t) vĀµ Ā§Ćžnh lĆ½ 1. 2
VƝ dĆ“. Do hĀµm
1
1 + x2 + t2
liĀŖn tĆ“c trĀŖn [0, 1] Ɨ [āˆ’ , ] vĀµ cĀøc hĀµm Ī±(t) = t,
Ī²(t) = cos t liĀŖn tĆ“c trĀŖn [āˆ’ , ], ta cĆ£
lim
tā†’0
cost
t
dx
1 + x2 + t2
dx =
1
0
dx
1 + x2
=
Ļ€
4
.
1.3 TƝnh khĀ¶ vi.
Ā§Ćžnh lĆ½ 3. Nƕu f(x, t) vĀµ cĀøc Ā®Ā¹o hĀµm riĀŖng
āˆ‚f
āˆ‚ti
(x, t), i = 1, . . ., m, liĀŖn tĆ“c
trĀŖn X Ɨ T āŠ‚ Rn
Ɨ Rm
, Ć« Ā®Ā©y X, T lĀµ cĀøc tƋp compact, thƗ tƝch phĀ©n
I(t) =
X
f(x, t)dx
khĀ¶ vi trĀŖn
o
T vĀµ vĆ­i mƧi i ta cĆ£:
āˆ‚I
āˆ‚ti
(t) =
X
āˆ‚f
āˆ‚ti
(x, t)dx.
ChĆøng minh. VĆ­i mƧi t0 āˆˆ
o
T cĆØ Ā®Ćžnh ta cĆ£:
I(t0 + hiei) āˆ’ I(t0)
hi
=
X
f(x, t0 + hiei) āˆ’ f(x, t0)
hi
dx.
trong Ā®Ć£ ei lĀµ cĀ¬ sĆ« chƝnh tĀ¾c cƱa Rm
. Āøp dĆ“ng Ā®Ćžnh lĆ½ giĀø trƞ trung bƗnh cho
hĀµm 1 biƕn ta cĆ£:
f(x, t0 + hiei) āˆ’ f(x, t0) =
āˆ‚f
āˆ‚ti
(x, t0 + Īøihiei)hi, 0 < Īøi < 1
Khi Ā®Ć£ :
I(t0 + hiei) āˆ’ I(t0)
hi
āˆ’
X
āˆ‚f
āˆ‚ti
(x, t0)dx =
X
[
āˆ‚f
āˆ‚ti
(x, t0 + Īøihiei) āˆ’
āˆ‚f
āˆ‚ti
(x, t0)]dx
7
Sƶ dĆ“ng tƝnh liĀŖn tĆ“c cƱa
āˆ‚f
āˆ‚ti
(x, t) trĀŖn compact X ƗT vĀµ lĆ½ luƋn nh- trong chĆøng
minh Ā§Ćžnh lĆ½ 1 suy ra
āˆ‚I
āˆ‚ti
(t0) = lim
hiā†’0
I(t0 + hiei) āˆ’ I(t0)
hi
=
X
āˆ‚f
āˆ‚ti
(x, t)dx.
TƝnh liĀŖn tĆ“c cƱa
āˆ‚I
āˆ‚ti
(t) trĀŖn T suy ra tƵ Ā§Ćžnh lĆ½ 1 2
VƝ dĆ“. XƐt I(t) =
Ļ€/2
0
1
cos x
ln
1 + t cos x
1 āˆ’ t cos x
dx, t āˆˆ (āˆ’1, 1). Ta cĆ£ cĀøc hĀµm
f(x, t) =
ļ£±
ļ£²
ļ£³
1
cos x
ln
1 + t cos x
1 āˆ’ t cos x
nƕu x = Ļ€/2
2t nƕu x = Ļ€/2
āˆ‚f
āˆ‚t
(x, t) =
2
1 āˆ’ t2 cos2 x
,
liĀŖn tĆ“c trĀŖn [0, Ļ€/2] Ɨ [āˆ’1 + , 1 āˆ’ ]. VƋy, theo Ā®Ćžnh lĆ½ trĀŖn
I (t) = 2
Ļ€/2
0
dx
1 āˆ’ t2 cos2 x
= 2
āˆž
0
du
1 āˆ’ t2 + u2
=
Ļ€
āˆš
1 āˆ’ t2
.
TƵ Ā®Ć£, I(t) = Ļ€ arcsin t + C. VƗ I(0) = 0, nĀŖn C = 0. VƋy, I(t) = Ļ€ arcsin t.
Ā§Ćžnh lĆ½ 4. Nƕu f(x, t) vĀµ cĀøc Ā®Ā¹o hĀµm riĀŖng
āˆ‚f
āˆ‚ti
(x, t), i = 1, . . . , m, liĀŖn tĆ“c
trĀŖn [a, b] Ɨ T, Ć« Ā®Ā©y T lĀµ tƋp compact trong Rm
, Ī±(t), Ī²(t) khĀ¶ vi trĀŖn T vĀµ
Ī±(t), Ī²(t) āˆˆ [a, b] vĆ­i mƤi t āˆˆ T, thƗ tƝch phĀ©n
I(t) =
b(t)
a(t)
f(x, t)dx
khĀ¶ vi trĀŖn
o
T vĀµ vĆ­i mƧi i ta cĆ£:
āˆ‚I
āˆ‚ti
(t) =
Ī²(t)
Ī±(t)
āˆ‚f
āˆ‚ti
(x, t)dx + f(Ī²(t), t)
āˆ‚Ī²
āˆ‚ti
(t) āˆ’ f(Ī±(t), t)
āˆ‚Ī±
āˆ‚ti
(t).
8
ChĆøng minh. XƐt hĀµm m + 2 biƕn
F(t, u, v) =
v
u
f(x, t)dx, (t, u, v) āˆˆ D = T Ɨ [a, b] Ɨ [a, b].
Ta sƏ chƘ ra rĀ»ng F(t, u, v) lĀµ hĀµm khĀ¶ vi. VĆ­i mƧi u, v cĆØ Ā®Ćžnh, tƵ Ā§Ćžnh lĆ½ 3,
suy ra
āˆ‚F
āˆ‚ti
(t, u, v) =
v
u
āˆ‚f
āˆ‚ti
(x, t)dx.
Vƕ phĀ¶i cƱa Ā®Ā¼ng thĆøc trĀŖn Ā®-Ć®c xem nh- lĀµ tich phĀ©n phĆ“ thuĆ©c cĀøc tham sĆØ t, u, v.
HĀµm
āˆ‚f
āˆ‚ti
(x, t) xem nh- lĀµ hĀµm theo cĀøc biƕn x, t, u, v liĀŖn tĆ“c trĀŖn [a, b]Ɨ D. TƵ
Ā§Ćžnh lĆ½ 2, vĆ­i a(t, u, v) = u, b(t, u, v) = v, suy ra
āˆ‚F
āˆ‚ti
(t, u, v) lĀµ hĀµm liĀŖn tĆ“c
trĀŖn D. NgoĀµi ra ta cƟn cĆ£
āˆ‚F
āˆ‚u
(t, u, v) = āˆ’f(u, t) vĀµ
āˆ‚F
āˆ‚v
(t, u, v) = f(v, t)
Ā®Ć’u lĀµ nhĆ·ng hĀµm liĀŖn tĆ“c trĀŖn D. VƋy, hĀµm F(t, u, v) khĀ¶ vi.
HĀµm I(t) Ā®-Ć®c xem nh- lĀµ hĀµm hĆ®p I(t) = F(t, Ī±(t), Ī²(t)). TƵ Ā®Ć£ , hĀµm I(t)
khĀ¶ vi vĀµ
āˆ‚I
āˆ‚ti
(t) =
āˆ‚F
āˆ‚ti
(t, Ī±(t), Ī²(t)) +
āˆ‚F
āˆ‚u
(t, Ī±(t), Ī²(t))
āˆ‚Ī±
āˆ‚ti
(t) +
āˆ‚F
āˆ‚v
(t, Ī±(t), Ī²(t))
āˆ‚Ī²
āˆ‚ti
(t)
=
Ī²(t)
Ī±(t)
āˆ‚f
āˆ‚ti
(x, t)dx + f(Ī²(t), t)
āˆ‚Ī²
āˆ‚ti
(t) āˆ’ f(Ī±(t), t)
āˆ‚Ī±
āˆ‚ti
(t).
2
VƝ dĆ“. XƐt tƝch phĀ©n I(t) =
sin t
t
etx
dx. Theo Ā§Ćžnh lĆ½ trĀŖn, hĀµm I(t) khĀ¶ vi vĀµ
I (t) =
sin t
t
xetx
dx + et sin t
cos t āˆ’ et2
.
9
2 TƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ
2.1 CĀøc Ā®Ćžnh nghƜa
Ā§Ćžnh nghƜa 2. GiĀ¶ sƶ hĀµm f(x, t) xĀøc Ā®Ćžnh trĀŖn [a, āˆž) Ɨ T, T āŠ‚ R, sao cho vĆ­i
mƧi t āˆˆ T cĆØ Ā®Ćžnh , hĀµm f(x, t) khĀ¶ tƝch trĀŖn [a, b], vĆ­i mƤi b > a. TƝch phĀ©n
I(t) =
āˆž
a
f(x, t)dx (1),
gƤi lĀµ tƝch phĀ©n suy rĆ©ng loĀ¹i 1 phĆ“ thuĆ©c tham sĆØ. TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“
tĀ¹i t0 nƕuu tƝch phĀ©n
āˆž
a
f(x, t0)dx hĀ«i tĆ“, tĆøc lĀµ tĆ„n tĀ¹i lim
bā†’āˆž
b
a
f(x, t0)dx = I(t0)
hĆ·u hĀ¹n.
TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“ trĀŖn T nƕuu hĆ©i tĆ“ tĀ¹i mƤi Ā®iƓm cƱa T, tĆøc lĀµ
āˆ€ > 0, āˆ€t āˆˆ T, āˆƒa0( , t) > a, sao cho āˆ€b ā‰„ a0 =ā‡’
āˆž
b
f(x, t) < .
TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“ Ā®Ć’u trĀŖn T nƕuu
āˆ€ > 0, āˆƒa0( ) > a, sao cho āˆ€b ā‰„ a0, āˆ€t āˆˆ T =ā‡’
āˆž
b
f(x, t) < .
Ā§Ćžnh nghƜa 3. GiĀ¶ sƶ hĀµm f(x, t) xĀøc Ā®Ćžnh trĀŖn [a, b) Ɨ T, T āŠ‚ R, sao cho vĆ­i
mƧi t āˆˆ T cĆØ Ā®Ćžnh , hĀµm f(x, t) khĀ¶ tƝch trĀŖn mƧi Ā®oĀ¹n [a, b āˆ’ Ī·], Ī· > 0 . TƝch
phĀ©n
J(t) =
b
a
f(x, t)dx = lim
Ī·ā†’0+
bāˆ’Ī·
a
f(x, t)dx, (2)
gƤi lĀµ tƝch phĀ©n suy rĆ©ng loĀ¹i 2 phĆ“ thuĆ©c tham sĆØ. TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“
tĀ¹i t0 nƕuu tƝch phĀ©n
b
a
f(x, t0)dx hĆ©i tĆ“, tĆøc lĀµ tĆ„n tĀ¹i lim
Ī·ā†’0
bāˆ’Ī·
a
f(x, t0)dx = J(t0)
hĆ·u hĀ¹n.
TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“ trĀŖn T nƕuu hĆ©i tĆ“ tĀ¹i mƤi Ā®iƓm cƱa T, tĆøc lĀµ
āˆ€ > 0, āˆ€t āˆˆ T, āˆƒĪ“( , t) > 0, sao cho 0 < āˆ€Ī· < Ī“ =ā‡’
b
bāˆ’Ī·
f(x, t) < .
10
TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“ Ā®Ć’u trĀŖn T nƕuu
āˆ€ > 0, āˆƒĪ“0( ) > 0, sao cho 0 < āˆ€Ī· < Ī“, āˆ€t āˆˆ T =ā‡’
b
bāˆ’Ī·
f(x, t) < .
ChĆ³ Ć½. 1) T-Ā¬ng tĆ¹, ta Ā®Ćžnh nghƜa
I(t) =
b
āˆ’āˆž
f(x, t)dx = lim
aā†’āˆ’āˆž
b
a
f(x, t)f(x, t),
J(t) =
b
a
f(x, t)dx = lim
Ī·ā†’0+
b
a+Ī·
f(x, t)f(x, t),
vĀµ cĆ²ng cĆ£ khĀøi niƖm hĆ©i tĆ“, hĆ©i tĆ“ Ā®Ć’u t-Ā¬ng Ćøng.
2) ViƖc khĀ¶o sĀøt tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ loĀ¹i 2 Ā®-Ć®c thĆ¹c hiƖn
hoĀµn toĀµn t-Ā¬ng tĆ¹ nh- loĀ¹i 1, tƵ Ā®Ćžnh nghƜa cĀøc khĀøi niƖm Ā®Ć•n cĀøc tƝnh chƊt.
Do Ā®Ć£, trong mĆ“c nĀµy, ta chƘ khĀ¶o sĀøt tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ
I(t) =
āˆž
a
f(x, t)dx.
VƝ dĆ“. XƐt tƝch phĀ©n I(t) =
āˆž
0
teāˆ’xt
dx. Khi Ā®Ć£
a) I(t) hĆ©i tĆ“ trĀŖn (0, āˆž) vƗ
āˆ€ > 0, āˆ€t āˆˆ T, āˆƒa0 =
ln
āˆ’t
, āˆ€b > a0 =ā‡’
āˆž
b
teāˆ’xt
= eāˆ’bt
< .
b) I(t) khĀ«ng hĆ©i tĆ“ Ā®Ć’u trĀŖn (0, āˆž) vƗ vĆ­i āˆˆ (0, 1), vĆ­i mƤi a0 > 0, nƕu chƤn
b = a0 vĀµ t tƵ bƊt Ā®Ā¼ng thĆøc 0 < t <
ln
āˆ’a0
, thƗ ta cĆ£
āˆž
b
teāˆ’xt
= eāˆ’bt
> .
c) I(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn Tr = [r, āˆž), vĆ­i r > 0. ThƋt vƋy, ta cĆ£
āˆ€ > 0, āˆƒa0 =
ln
āˆ’r
, āˆ€b ā‰„ a0, āˆ€t āˆˆ Tr =ā‡’
āˆž
b
teāˆ’xt
= eāˆ’bt
< eāˆ’a0r
< .
11
2.2 MĆ©t sĆØ tiĀŖu chuƈn hĆ©i tĆ“ Ā®Ć’u
Ā§Ćžnh lĆ½ 5. (TiĀŖu chuƈn Cauchy) TƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn
T khi vĀµ chƘ khi
āˆ€ > 0, āˆƒa0( ) > a, sao cho āˆ€b1, b2 ā‰„ a0, āˆ€t āˆˆ T =ā‡’
b2
b1
f(x, t) < . (āˆ—)
ChĆøng minh. GiĀ¶ sƶ I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T. Khi Ā®Ć£, Ā§iƒu kiƖn (āˆ—)
suy ra tƵ bƊt Ā®Ā¼ng thĆøc
b2
b1
f(x, t) ā‰¤
āˆž
b1
f(x, t) +
āˆž
b2
f(x, t)
Ng-Ć®c lĀ¹i, vĆ­i t cĆØ Ā®Ćžnh, Ā®iƒu kiƖn (āˆ—) suy ra I(t) hĆ©i tĆ“. Trong (āˆ—), cho b2 ā†’ 0,
suy ra I(t hĆ©i tĆ“ Ā®Ć’u theo Ā®Ćžnh nghƜa. 2
Ā§Ćžnh lĆ½ 6. (TiĀŖu chuƈn Weierstrass) GiĀ¶ sƶ
(1) tĆ„n tĀ¹i hĀµm Ļ•(x) sao cho |f(x, t)| ā‰¤ Ļ•(x), āˆ€x ā‰„ a, āˆ€t āˆˆ T,
(2) tƝch phĀ©n
āˆž
a
Ļ•(x)dx hĆ©i tĆ“.
Khi Ā®Ć£, tƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T.
ChĆøng minh. Theo tiĀŖu chuƈn Cauchy Ā®ĆØi vĆ­i tƝch phĀ©n suy rĆ©ng hĆ©i tĆ“, vĆ­i mƤi
> 0, tĆ„n tĀ¹i a0 sao cho
b2
b1
Ļ•(x) < , āˆ€b1, b2 ā‰„ a0.
Suy ra,
b2
b1
f(x, t) ā‰¤
b2
b1
|f(x, t)| ā‰¤
b2
b1
Ļ•(x) < .
Theo Ā§Ćžnh lĆ½ 5, tƝch phĀ©n I(t) hĆ©i tĆ“ Ā®Ć’u. 2
Ā§Ć“ khĀ¶o sĀøt tƝnh chƊt cƱa tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ hĆ©i tĆ“ Ā®Ć’u, chĆ³ng
ta thiƕt lƋp mĆØi quan hƖ giĆ·a nĆ£ vĀµ dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u.
12
MƖnh Ā®Ć’ 1. GiĀ¶ sƶ tƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T vĀµ (an), vĆ­i
an > a. lĀµ dĀ·y sĆØ sao cho lim
nā†’āˆž
an = āˆž. Khi Ā®Ć£, dĀ·y hĀµm
In(t) =
an
a
f(x, t)dx
hĆ©i tĆ“ Ā®Ć’u tĆ­i hĀµm sĆØ I(t) trĀŖn T.
ChĆøng minh. Do I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ trĀŖn T nĀŖn dĀ·y hĀµm (In(t)) hĆ©i tĆ“ tĆ­i
I(t) trĀŖn T. VƗ I(t) hĆ©i tĆ“ Ā®Ć’u nĀŖn vĆ­i mƤi > 0, tĆ„n tĀ¹i a0 sao cho
āˆž
b
f(x, t) < , āˆ€b > a0, āˆ€t āˆˆ T.
VƗ lim
nā†’āˆž
an = āˆž nĀŖn tĆ„n tĀ¹i N > 0 sao cho vĆ­i mƤi n ā‰„ N, ta cĆ£ an ā‰„ b. VƋy,
ta cĆ£
|In(t) āˆ’ I(t)| =
an
a
f(x, t) āˆ’
āˆž
a
f(x, t) =
āˆž
an
f(x, t) < ,
vĆ­i mƤi n ā‰„ N, vĆ­i mƤi t āˆˆ T. TƵ Ā®Ć£, In(t) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t) trĀŖn T. 2
2.2.1 TƝnh liĀŖn tĆ“c
Ā§Ćžnh lĆ½ 7. Nƕu hĀµm f(x, t) liĀŖn tĆ“c trĀŖn [a, āˆž) Ɨ [c, d] vĀµ tƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ trĀŖn trĀŖn [c, d], thƗ I(t) liĀŖn tĆ“c trĀŖn [c, d].
ChĆøng minh. GƤi (an), vĆ­i an > a. lĀµ dĀ·y sĆØ sao cho lim
nā†’āˆž
an = āˆž vĀµ xƐt dĀ·y
hĀµm
In(t) =
an
a
f(x, t)dx, t āˆˆ [c, d].
VĆ­i mƧi n cĆØ Ā®Ćžnh, theo Ā§Ćžnh lĆ½ 1, hĀµm In(t) liĀŖn tĆ“c trĀŖn [c, d]. Theo mƖnh Ā®Ć’
1, dĀ·y hĀµm (In(t)) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t). Theo Ā®Ćžnh lĆ½ vƒ tƝnh liĀŖn tĆ“c cƱa dĀ·y hĀµm
hĆ©i tĆ“ Ā®Ć’u, I(t) liĀŖn tĆ“c trĀŖn [c, d]. 2
13
2.2.2 TƝnh khĀ¶ vi
Ā§Ćžnh lĆ½ 8. GiĀ¶ sƶ
(a) HĀµm f(x, t) liĀŖn tĆ“c vĀµ cĆ£ Ā®Ā¹o hĀµm riĀŖng
āˆ‚f
āˆ‚t
(x, t) liĀŖn tĆ“c trĀŖn [a, āˆž)Ɨ[c, d].
(b) TƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ trĀŖn [c, d].
(c) TƝch phĀ©n
āˆž
a
āˆ‚f
āˆ‚t
(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d].
Khi Ā®Ć£, hĀµm I(t) khĀ¶ vi trĀŖn [c, d] vĀµ ta cĆ£ cĀ«ng thĆøc I (t) =
āˆž
a
āˆ‚f
āˆ‚t
(x, t)dx.
ChĆøng minh. XƐt dĀ·y hĀµm
In(t) =
a+n
a
f(x, t)dx, t āˆˆ [c, d].
VĆ­i mƧi n, theo Ā§Ćžnh lĆ½ 3, hĀµm In(t) khĀ¶ vi trĀŖn [c, d] vĀµ
In(t) =
a+n
a
āˆ‚f
āˆ‚t
(x, t)dx, t āˆˆ [c, d].
Ta cĆ£ limIn(t) = I(t) vĀµ limIn(t) =
āˆž
a
āˆ‚f
āˆ‚t
(x, t)dx. Theo mƖnh Ā®Ć’ 1, dĀ·y hĀµm
In(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d]. Theo Ā®Ćžnh lĆ½ vƒ tƝnh khĀ¶ vi cƱa dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u,
I(t) khĀ¶ vi trĀŖn [c, d] vĀµ
I (t) = lim
nā†’āˆž
In(t) = lim
nā†’āˆž
In(t) =
āˆž
a
āˆ‚f
āˆ‚t
(x, t)dx.
2
2.2.3 TƝnh khĀ¶ tƝch
Ā§Ćžnh lĆ½ 9. GiĀ¶ sƶ hĀµm f(x, t) liĀŖn tĆ“c trĀŖn [a, āˆž) Ɨ [c, d] vĀµ tƝch phĀ©n I(t) =
āˆž
a
f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d]. Khi Ā®Ć£, hĀµm I(t) khĀ¶ tƝch trĀŖn [c, d] vĀµ ta cĆ£
cĀ«ng thĆøc
d
c
I(t)dt =
d
c
āˆž
a
f(x, t)dx dt =
āˆž
a
d
c
f(x, t)dt dx
14
ChĆøng minh. Theo Ā§Ćžnh lĆ½ 7, I(t) lĀµ hĀµm liĀŖn tĆ“c trĀŖn [c, d], do Ā®Ć£ khĀ¶ tƝch. XƐt
dĀ·y hĀµm
In(t) =
a+n
a
f(x, t)dx, t āˆˆ [c, d].
VĆ­i mƧi n cĆØ Ā®Ćžnh, theo Ā§Ćžnh lĆ½ 1, hĀµm In(t) liĀŖn tĆ“c trĀŖn [c, d]. Theo mƖnh Ā®Ć’
1, dĀ·y hĀµm (In(t)) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t) trĀŖn [c, d]. Theo Ā®Ćžnh lĆ½ vƒ tƝnh khĀ¶ tƝch
cƱa dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u, ta cĆ£
d
c
I(t)dt =
d
c
lim
nā†’āˆž
In(t) dt = lim
nā†’āˆž
d
c
In(t)dt
= lim
nā†’āˆž
d
c
a+n
a
f(x, t)dx dt
= lim
nā†’āˆž
a+n
a
d
c
f(x, t)dx dt =
āˆž
a
d
c
f(x, t)dt .
2
3 CĀøc tƝch phĀ©n Euler
3.1 TƝch phĀ©n Euler loĀ¹i 1
3.1.1 Ā§Ćžnh nghƜa
TƝch phĀ©n Euler loĀ¹i 1 hay hĀµm Beta lĀµ tƝch phĀ©n phĆ“ thuĆ©c 2 tham sĆØ dĀ¹ng
B(p, q) =
1
0
xpāˆ’1
(1 āˆ’ x)qāˆ’1
dx, p > 0, q > 0.
3.1.2 CĀøc tƝnh chƊt cuĀ¶ hĀµm Beta
1) SĆ¹ hĆ©i tĆ“. Ta phĀ©n tƝch B(p, q) thĀµnh hai tƝch phĀ©n
B(p, q) =
1/2
0
xpāˆ’1
(1 āˆ’ x)qāˆ’1
dx +
1
1/2
xpāˆ’1
(1 āˆ’ x)qāˆ’1
dx = B1(p, q) + B2(p, q).
15
TƝch phĀ©n B1 hĆ©i tĆ“ nƕu p > 0 vĀµ phĀ©n kĆŗ nƕu p ā‰¤ 0. Ā§iƒu nĀµy suy ra tƵ
xpāˆ’1
(1 āˆ’ x)qāˆ’1
ā‰¤ Mqxpāˆ’1
, Mq = max
0ā‰¤xā‰¤1/2
(1 āˆ’ x)qāˆ’1
xpāˆ’1
(1 āˆ’ x)qāˆ’1
ā‰„ mqxpāˆ’1
, mq = min
0ā‰¤xā‰¤1/2
(1 āˆ’ x)qāˆ’1
.
T-Ā¬ng tĆ¹, tƝch phĀ©n B2 hĆ©i tĆ“ nƕu q > 0 vĀµ phĀ©n kĆŗ nƕu q ā‰¤ 0. Nh- vƋy hĀµm
B(p, q) xĀøc Ā®Ćžnh vĆ­i mƤi p > 0, q > 0.
2) SĆ¹ hĆ©i tĆ“ Ā®Ć’u. TƝch phĀ©n B(p, q) hĆ©i tĆ“ Ā®Ć’u trĀŖn chĆ· nhƋt [p0, p1] Ɨ [q0, q1],
trong Ā®Ć£, 0 < p0 < p1, 0 < q0 < q1. Ā§iƒu nĀµy suy ra tƵ Ā®Āønh giĀø
xpāˆ’1
(1 āˆ’ x)qāˆ’1
ā‰¤ xp0āˆ’1
(1 āˆ’ x)q0āˆ’1
, āˆ€x āˆˆ (0, 1), p ā‰„ p0, q ā‰„ q0,
vĀµ sau Ā®Ć£ sƶ dĆ“ng tiĀŖu chuƈn Weierstrass.
3) TƝnh liĀŖn tĆ“c. HĀµm B(p, q) liĀŖn tĆ“c trĀŖn miƒn xĀøc Ā®Ćžnh cƱa nĆ£. ThƋt vƋy, vĆ­i
mƤi (p, q), p > 0, q > 0, tƝch phĀ©n B(p, q) hĆ©i Ā®Ć’u trĀŖn [pāˆ’ , p+ ]Ɨ[qāˆ’ ,q+ ],
do Ā®Ć£ liĀŖn tĆ“c trĀŖn miƒn nĀµy.
4) TƝnh Ā®ĆØi xĆøng. BĀ»ng cĀøch Ā®Ć„i biƕn x = 1 āˆ’ t, ta Ā®-Ć®c B(p, q) = B(q, p).
5) CĀ«ng thĆøc truy hĆ„i. BĀ»ng cĀøch lƊy tƝch phĀ©n tƵng phƇn tƵ tƝch phĀ©n B(p, q) ta
Ā®-Ć®c
B(p + 1, q + 1) =
q
p + q + 1
B(p + 1, q) =
q
p + q + 1
B(p, q + 1).
Ā§Ć†c biƖt, nƕu m, n lĀµ cĀøc sĆØ tĆ¹ nhiĀŖn, thƗ Āøp dĆ“ng liĀŖn tiƕp cĀ«ng thĆøc trĀŖn, ta cĆ£
B(1, 1) = 1
B(p + 1, 1) =
1
p + 1
B(p + 1, n) =
n!
(p + n)(p + n āˆ’ 1) Ā· Ā· Ā· (p + 1)
B(m, n) =
(n āˆ’ 1)!(m āˆ’ 1)!
(m + n āˆ’ 1)!
.
16
3.2 TƝch phĀ©n Euler loĀ¹i 2
3.2.1 Ā§Ćžnh nghƜa
TƝch phĀ©n Euler loĀ¹i 2 hay hĀµm Gamma lĀµ tƝch phĀ©n phĆ“ thuĆ©c tham sĆØ dĀ¹ng
Ī“(p) =
āˆž
0
xpāˆ’1
eāˆ’x
dx, p > 0.
3.2.2 CĀøc tƝnh chƊt cuĀ¶ hĀµm Gamma
1) SĆ¹ hĆ©i tĆ“. Ta phĀ©n tƝch B(p, q) thĀµnh hai tƝch phĀ©n
Ī“(p) =
1
0
xpāˆ’1
eāˆ’x
dx +
āˆž
1
xpāˆ’1
eāˆ’x
dx = Ī“1(p) + Ī“2(p).
TƝch phĀ©n Ī“1(p) hĆ©i tĆ“ khi p > 0. Ā§iƒu nĀµy suy ra tƵ
xpāˆ’1
eāˆ’x
ā‰¤ xpāˆ’1
, āˆ€x āˆˆ (0, 1].
TƝch phĀ©n Ī“2(p) hĆ©i tĆ“ khi p > 0. Ā§iƒu nĀµy suy ra tƵ
lim
xā†’āˆž
xpāˆ’1
eāˆ’x
1
xp+1
= lim
xā†’āˆž
=
x2p
ex
= 0, vĀµ
āˆž
1
1
xp+1
< āˆž.
Suy ra, tƝch phĀ©n Ī“(p) =
āˆž
0
xpāˆ’1
eāˆ’x
dx hƩi tƓ khi p > 0.
2) SĆ¹ hĆ©i tĆ“ Ā®Ć’u. TƝch phĀ©n Ī“1(p) hĆ©i tĆ“ Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [p0.p1], vĆ­i p1 > p0 > 0.
Ā§iƒu nĀµy suy ra tƵ
xpāˆ’1
eāˆ’x
ā‰¤ xp0āˆ’1
(0 < x ā‰¤ 1)
1
0
xp0āˆ’1
< āˆž,
xpāˆ’1
eāˆ’x
ā‰¤ xp1āˆ’1
eāˆ’x
, (1 ā‰¤ x < āˆž),
āˆž
1
xp0āˆ’1
eāˆ’x
< āˆž.
3) TƝnh liĀŖn tĆ“c. TƵ tƝnh hĆ©i tĆ“ Ā®Ć’u suy ra hĀµm Ī“(p) liĀŖn tĆ“c trĀŖn miƒn xĀøc Ā®Ćžnh
cƱa nĆ£.
17
4) CĀ«ng thĆøc truy hĆ„i. BĀ»ng cĀøch tƝch phĀ©n tƵng phƇn, ta cĆ£
Ī“(p + 1) =
āˆž
0
xp
eāˆ’x
dx = lim
bā†’āˆž
xp
eāˆ’x
b
0
+ p
b
0
xpāˆ’1
eāˆ’x
dx = pĪ“(p).
Nƕu n lĀµ sĆØ tĆ¹ nhiĀŖn, thƗ Āøp dĆ“ng liĀŖn tiƕp cĀ«ng thĆøc trĀŖn, ta cĆ£
Ī“(p + n) = (n + p āˆ’ 1)(n + p āˆ’ 2) Ā· Ā· Ā· pĪ“(p).
NĆ£i riĀŖng, Ī“(1) = 1, Ī“(n + 1) = n!, Ī“(1/2) =
āˆž
0
eāˆ’x
āˆš
x
dx = 2
āˆž
0
eāˆ’x2
dx =
āˆš
Ļ€.
5) LiĀŖn hƖ vĆ­i hĀµm Beta. BĀ»ng phƐp Ā®Ć¦i biƕn x = ty, t > 0, ta cĆ£
Ī“(p)
tp
=
āˆž
0
ypāˆ’1
eāˆ’ty
dy.
Thay p bĆ«i p + q vĀµ t bĆ«i t + 1 ta Ā®-Ć®c
Ī“(p + q)
(1 + t)p+q
=
āˆž
0
yp+qāˆ’1
eāˆ’(1+t)y
dy.
NhĀ©n hai vƕ cƱa Ā®Ā¼ng thĆøc trĀŖn vĆ­i tpāˆ’1
rĆ„i lƊy tƝch phĀ©n theo t tƵ 0 Ā®Ć•n āˆž ta
Ā®-Ć®c
Ī“(p + q)
āˆž
0
tpāˆ’1
(1 + t)p+q
dy =
āˆž
0
āˆž
0
tpāˆ’1
eāˆ’ty
yp+qāˆ’1
eāˆ’y
dy dt.
Ā§Ć¦i biƕn x =
t
1 + t
, ta Ā®-Ć®c B(p, q) =
āˆž
0
tpāˆ’1
(1 + t)p+q
. MƆt khĀøc, cĆ£ thƓ Ā®Ć¦i thĆø tĆ¹
tƝch phĀ©n Ć« vƕ phĀ¶i (hĀ·y kiƓm chĆøng Ā®iƒu nĀµy nh- bĀµi tƋp). TƵ Ā®Ć£
Ī“(p + q)B(p, q) =
āˆž
0
āˆž
0
tpāˆ’1
eāˆ’ty
yp+qāˆ’1
eāˆ’ty
dt dy
=
āˆž
0
yp+qāˆ’1
eāˆ’y Ī“(p)
yp
dy
= Ī“(a)
āˆž
0
yqāˆ’1
eāˆ’y
dy = Ī“(p)Ī“(q).
VƋy. ta cĆ£ cĀ«ng thĆøc
B(p, q) =
Ī“(p)Ī“(q)
Ī“(p + q)
.
II. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp khaĆ» vi
1. ƑA TAƏP KHAƛ VI TRONG Rn
1.1 ƑƶƓĆøng cong. TaƤp con C āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø ƱƶƓĆøng cong trĆ“n lĆ“Ć¹p Cp(p ā‰„ 1) neĆ”uu
moĆÆi x āˆˆ C, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, khoaĆ»ng mĆ“Ć» I āŠ‚ R, vaĆø Ļ• : I ā†’ Rn
thuoƤc lĆ“Ć¹p Cp, Ļ•(t) = (x1(t), Ā· Ā· Ā· , xn(t)), sao cho:
(1) Ļ• : I ā†’ C āˆ© V laĆø 1-1.
(2) Ļ• (t) = (x1(t), Ā· Ā· Ā· , xn(t)) = 0, vĆ“Ć¹i moĆÆi t āˆˆ I.
Khi ƱoĆ¹ (Ļ•, I) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a C taĆÆi x.
s
t0
E
Ļ• s
x0
"!
#
Vector Ļ• (t) goĆÆi laĆø vector tieĆ”p xuĆ¹c cuĆ»a C taĆÆi x. Ta coĆ¹ phƶƓng trƬnh tham soĆ” cuĆ»a ƱƶƓĆøng
thaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i C taĆÆi Ļ•(t0):
x = Ļ•(t0) + sĻ• (t0), s āˆˆ R
VĆ­ duĆÆ. Trong R2.
a) ƑƶƓĆøng troĆøn coĆ¹ theĆ„ cho bĆ“Ć»i tham soĆ” hoaĆ¹: x = a cos t, y = a sin t, t āˆˆ [0, 2Ļ€).
b) Tham soĆ” hoaĆ¹: x = a cos t, y = a sin t, z = bt, t āˆˆ (0, H), moĆ¢ taĆ» ƱƶƓĆøng xoaĆ©n.
BaĆøi taƤp: VieĆ”t cuĆÆ theĆ„ phƶƓng trƬnh tieĆ”p tuyeĆ”n khi n = 2 hay n = 3.
NhaƤn xeĆ¹t. ƑieĆ u kieƤn Ļ• (t) = 0 baĆ»o ƱaĆ»m cho ƱƶƓĆøng cong khoĆ¢ng coĆ¹ goĆ¹c hay ƱieĆ„m
luĆøi. ChaĆŗng haĆÆn, neĆ”u Ļ•(t) = (t3, t2) thƬ ƱƶƓĆøng cong coĆ¹ ƱieĆ„m luĆøi taĆÆi (0, 0), coĆøn Ļ•(t) =
(t3, |t|3), thƬ ƱƶƓĆøng cong coĆ¹ ƱieĆ„m goĆ¹c taĆÆi (0, 0).
1.2 MaĆ«t cong. TaƤp con S āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø maĆ«t cong trĆ“n lĆ“Ć¹p Cp (p ā‰„ 1) neĆ”uu moĆÆi
x āˆˆ S, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ R2, vaĆø Ļ• : U ā†’ Rn thuoƤc lĆ“Ć¹p
Cp, Ļ•(u, v) = (x1(u, v), Ā· Ā· Ā· , xn(u, v)), sao cho:
(1) Ļ• : U ā†’ S āˆ© V laĆø 1-1.
(2) rank Ļ• (u, v) = 2, i.e. D1Ļ•(u, v), D2Ļ•(u, v) ƱoƤc laƤp tuyeĆ”n tĆ­nh, āˆ€(u, v) āˆˆ U.
Khi ƱoĆ¹ (Ļ•, U) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a S taĆÆi x.
Khi coĆ” Ć±Ć²nh moƤt bieĆ”n u hay v, Ļ• cho caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ. CaĆ¹c vector D1Ļ•(u, v),
D2Ļ•(u, v) goĆÆi laĆø caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a S taĆÆi Ļ•(u, v). Ta coĆ¹ phƶƓng trƬnh tham soĆ” cuĆ»a
maĆ«t phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u0, v0):
x = Ļ•(u0, v0) + sD1Ļ• (u0, v0) + tD2Ļ•(u0, v0), (s, t) āˆˆ R2
II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 20
s E
ā†’u
T
ā†’v
U
E
Ļ• sx EĀ 
Ā 
Ā 
Ā 
Ā 
S V
TrƶƓĆøng hĆ“ĆÆp n = 3, N(u, v) = D1Ļ•(u, v) Ɨ D2Ļ•(u, v) = (A(u, v), B(u, v), C(u, v)),
laĆø vector vuoĆ¢ng goĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u, v). Khi ƱoĆ¹ phƶƓng trƬnh toĆ„ng quaĆ¹t cuĆ»a maĆ«t phaĆŗng
tieĆ”p xuĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u0, v0) = (x0, y0, z0):
A(u0, v0)(x āˆ’ x0) + B(u0, v0)(y āˆ’ y0) + C(u0, v0)(z āˆ’ z0) = 0
BaĆøi taƤp: XaĆ¹c Ć±Ć²nh toĆÆa ƱoƤ vector phaĆ¹p qua caĆ¹c ƱaĆÆo haĆøm rieĆ¢ng cuĆ»a Ļ•.
VĆ­ duĆÆ. Trong R3.
a) Tham soĆ” hoaĆ¹ maĆ«t caĆ u:
x = a cos Ļ† sin Īø, y = a sin Ļ† sin Īø, z = a cos Īø, (Ļ†, Īø) āˆˆ (0, 2Ļ€) Ɨ (0, Ļ€)
b) Tham soĆ” hoaĆ¹ maĆ«t xuyeĆ”n:
x = (a+b cos Ļ†) sin Īø, y = (a+b sin Ļ†) sin Īø, z = b sin Ļ†, (Ļ†, Īø) āˆˆ (0, 2Ļ€)Ɨ(0, 2Ļ€), (0  b  a)
BaĆøi taƤp: VieĆ”t phƶƓng trƬnh maĆ«t phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i caĆ¹c maĆ«t treĆ¢n.
BaĆ¢y giĆ“Ćø, ta toĆ„ng quaĆ¹t hoaĆ¹ caĆ¹c khaĆ¹i nieƤm treĆ¢n.
1.3 Ƒa taĆÆp. TaƤp con M āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø Ʊa taĆÆp k chieĆ u lĆ“Ć¹p Cp (p ā‰„ 1) neĆ”uu moĆÆi
x āˆˆ M, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ Rk, vaĆø Ļ• : U ā†’ Rn thuoƤc
lĆ“Ć¹p Cp, sao cho:
(M1) Ļ• : U ā†’ M āˆ© V laĆø 1-1.
(M2) rank Ļ• (u) = k, i.e. D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u) ƱoƤc laƤp tuyeĆ”n tĆ­nh, vĆ“Ć¹i moĆÆi u āˆˆ U.
Khi ƱoĆ¹ (Ļ•, U) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x.
Khi coĆ” Ć±Ć²nh k āˆ’ 1 bieĆ”n trong caĆ¹c bieĆ”n, Ļ• cho caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ. CaĆ¹c vector
D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u) goĆÆi laĆø caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a M taĆÆi Ļ•(u). Ta coĆ¹ phƶƓng trƬnh
tham soĆ” cuĆ»a k- phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi Ļ•(u0):
x = Ļ•(u0) + t1D1Ļ•(u0 + Ā· Ā· Ā· + tkDkĻ•(u0), (t1, Ā· Ā· Ā· , tk) āˆˆ Rk
1.4 Cho Ʊa taĆÆp bĆ“Ć»i heƤ phƶƓng trƬnh. Cho taƤp mĆ“Ć» V āŠ‚ Rn vaĆø caĆ¹c haĆøm lĆ“Ć¹p Cp
F1, Ā· Ā· Ā· , Fm : V ā†’ R. XeĆ¹t taƤp cho bĆ“Ć»i heƤ phƶƓng trƬnh
M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0}
II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 21
GiaĆ» sƶƻ rank (DF1, Ā· Ā· Ā· , DFm)(x) = m, āˆ€x āˆˆ M. Khi ƱoĆ¹ M laĆø Ʊa taĆÆp khaĆ»Ćø vi, n āˆ’ m
chieĆ u, lĆ“Ć¹p Cp.
ChĆ¶Ć¹ng minh: ƑaĆ«t k = n āˆ’ m. KyĆ¹ hieƤu x = (x , y) āˆˆ Rk Ɨ Rm = Rn, vaĆø
F = (F1, Ā· Ā· Ā· , Fm).
VĆ“Ć¹i moĆ£i a āˆˆ M, baĆØng pheĆ¹p hoaĆ¹n vĆ² toĆÆa ƱoƤ, coĆ¹ theĆ„ giaĆ» thieĆ”t det
āˆ‚F
āˆ‚y
(a) = 0. Theo
Ć±Ć²nh lyĆ¹ haĆøm aĆ„Ć n, Ć“Ć» laĆ¢n caƤn V cuĆ»a a = (a , b), ta coĆ¹
M āˆ© V = {(x , y) āˆˆ V : F(x , y) = 0} = {(x , y) āˆˆ V : y = g(x )},
vĆ“Ć¹i g laĆø haĆøm lĆ“Ć¹p Cp Ć“Ć» moƤt laĆ¢n caƤn U cuĆ»a a . VaƤy Ļ• : U ā†’ Rn, Ļ•(x ) = (x , g(x )) laĆø
moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi a.
VĆ­ duĆÆ. Trong R3.
a) MaĆ«t caĆ u S2 cho bĆ“Ć»i phƶƓng trƬnh: F(x, y, z) = x2 + y2 + z2 āˆ’ 1 = 0.
DeĆ£ kieĆ„m tra F (x, y, z) = (2x, 2y, 2z) = (0, 0, 0) treĆ¢n S2. VaƤy S2 laĆø Ʊa taĆÆp khaĆ» vi 2
chieƠu (= maƫt cong trƓn).
b) ƑƶƓĆøng troĆøn C cho bĆ“Ć»i heƤ phƶƓng trƬnh sau laĆø Ʊa taĆÆp 1 chieĆ u
F1(x, y, z) = x2 + y2 + z2 āˆ’ 1 = 0
F2(x, y, z) = x + y + z = 0
NhaƤn xeĆ¹t. NeĆ”u (Ļˆ, W) laĆø tham soĆ” hoaĆ¹ khaĆ¹c cuĆ»a M taĆÆi x, thƬ toĆ n taĆÆi caĆ¹c laĆ¢n caƤn
W , U cuĆ»a Ļˆāˆ’1(x), Ļ•āˆ’1(x) tƶƓng Ć¶Ć¹ng sao cho treĆ¢n W ta coĆ¹ Ļˆ = Ļ• ā—¦ h, trong ƱoĆ¹
h = Ļ•āˆ’1 ā—¦ Ļˆ : W ā†’ U laĆø vi phoĆ¢i, i.e. song aĆ¹nh vaĆø hāˆ’1 khaĆ» vi.
ChĆ¶Ć¹ng minh: RoƵƵ raĆøng h = Ļ•āˆ’1 ā—¦Ļˆ laĆø song aĆ¹nh tƶĆø Ļˆāˆ’1(Ļˆ(W)āˆ©Ļ•(U)) leĆ¢n Ļ•āˆ’1(Ļˆ(W)āˆ©
Ļ•(U)). Ta caĆ n chĆ¶Ć¹ng minh h thuoƤc lĆ“Ć¹p Cp.
Do rank DĻ• = k, hoaĆ¹n vĆ² toĆÆa ƱoƤ, coĆ¹ theĆ„ giaĆ» thieĆ”t k doĆøng ƱaĆ u cuĆ»a DĻ•(u) laĆø ƱoƤc laƤp
tuyeĆ”n tĆ­nh khi u thuoƤc moƤt laĆ¢n caƤn U cuĆ»a ƱieĆ„m Ʊang xeĆ¹t, i.e.
D(Ļ•1, Ā· Ā· Ā· , Ļ•k)
D(u1, Ā· Ā· Ā· , uk)
= 0
treĆ¢n U .
KyĆ¹ hieƤu x = (x , y) āˆˆ Rk Ɨ Rnāˆ’k. GoĆÆi i : Rk ā†’ Rk Ɨ Rnāˆ’k laĆø pheĆ¹p nhuĆ¹ng
i(u) = (u, 0), vaĆø p = Rk Ɨ Rnāˆ’k ā†’ Rk laĆø pheĆ¹p chieĆ”u p(x , y) = x .
ƑaĆ«t Ī¦(u, y) = (Ļ•(u), y). TƶĆø giaĆ» thieĆ”t det DĪ¦ =
D(Ļ•1, Ā· Ā· Ā· , Ļ•k)
D(u1, Ā· Ā· Ā· , uk)
= 0. Theo Ć±Ć²nh lyĆ¹
haĆøm ngƶƓĆÆc, toĆ n taĆÆi Ī¦āˆ’1 āˆˆ Cp Ć±Ć²a phƶƓng.
Ta coĆ¹ h = Ļ•āˆ’1 ā—¦ Ļˆ = (Ī¦ ā—¦ i)āˆ’1 ā—¦ Ļˆ = p ā—¦ Ī¦āˆ’1 ā—¦ Ļˆ. CaĆ¹c haĆøm thaĆønh phaĆ n laĆø thuoƤc lĆ“Ć¹p
Cp, neĆ¢n h thuoƤc lĆ“Ć¹p Cp.
1.5 KhoĆ¢ng gian tieĆ”p xuĆ¹c. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u vaĆø x0 āˆˆ M.
Cho Ī³ : (āˆ’ , ) ā†’ M laĆø ƱƶƓĆøng cong lĆ“Ć¹p C1 treĆ¢n M, Ī³(0) = x0. Khi ƱoĆ¹ Ī³ (0) ƱƶƓĆÆc
goĆÆi laĆø vector tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0. TaƤp moĆÆi vector tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0 ƱƶƓĆÆc goĆÆi laĆø
khoĆ¢ng gian tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0 vaĆø kyĆ¹ hieƤu Tx0 M.
NeĆ”u (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x0 = Ļ•(u0), thƬ
Tx0 M = {v āˆˆ Rn
: v = t1D1Ļ•(u0) + Ā· Ā· Ā· + tkDkĻ•(u0), t1, Ā· Ā· Ā· , tk āˆˆ R} = ImDĻ•(u0).
II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 22
NeĆ”u M cho bĆ“Ć»i heƤ phƶƓng trƬnh F1 = Ā· Ā· Ā· = Fm = 0, taĆÆi laĆ¢n caƤn x0, thƬ
Tx0 M = {v āˆˆ Rn
: v āŠ„ grad Fi(x0), i = 1, Ā· Ā· Ā· , m}.
VieĆ”t moƤt caĆ¹ch khaĆ¹c Tx0 M cho bĆ“Ć»i heƤ phƶƓng trƬnh
v āˆˆ Rn
:  grad F1(x0), v = Ā· Ā· Ā· = grad Fm(x0), v = 0
BaĆøi taƤp: TƬm phƶƓng trƬnh khoĆ¢ng gian tieĆ”p xuĆ¹c cho S2 vaĆø C Ć“Ć» vĆ­ duĆÆ treĆ¢n.
1.6 Ƒa taĆÆp coĆ¹ bĆ“Ćø. Ta seƵ duĆøng caĆ¹c kyĆ¹ hieƤu:
Hk = {x = (x1, Ā· Ā· Ā· , xk) āˆˆ Rk : xk ā‰„ 0} vaĆø goĆÆi laĆø nƶƻa khoĆ¢ng gian cuĆ»a Rk,
āˆ‚Hk = {x āˆˆ Hk : xk = 0} = Rkāˆ’1 Ɨ 0 vaĆø goĆÆi laĆø bĆ“Ćø cuĆ»a Hk,
Hk
+ = {x āˆˆ Hk : xk  0} vaĆø goĆÆi laĆø phĆ­a trong cuĆ»a Hk.
TaƤp con M āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø Ʊa taĆÆp k chieĆ u lĆ“Ć¹p Cp
coĆ¹ bĆ“Ćø neĆ”uu moĆÆi x āˆˆ M, toĆ n taĆÆi
laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ Rk, vaĆø Ļ• : U ā†’ Rn thuoƤc lĆ“Ć¹p Cp, sao cho:
(M1) Ļ• : U āˆ© Hk ā†’ M āˆ© V laĆø 1-1.
(M2) rank Ļ• (u) = k, vĆ“Ć¹i moĆÆi u āˆˆ U.
Khi ƱoĆ¹ caĆ¹c ƱieĆ„m x = Ļ•(u), u āˆˆ U, ƱƶƓĆÆc phaĆ¢n thaĆønh 2 loaĆÆi:
ƑieĆ„m trong cuĆ»a M , neĆ”u u āˆˆ Hk
+.
ƑieĆ„m bĆ“Ćø cuĆ»a M , neĆ”u u āˆˆ āˆ‚Hk.
KyĆ¹ hieƤu āˆ‚M = {x āˆˆ M : x laĆø ƱieĆ„m bĆ“Ćø cuĆ»a M}, vaĆø goĆÆi laĆø bĆ“Ćø cuĆ»a M .
NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a ƱieĆ„m trong vaĆø ƱieĆ„m bieĆ¢n khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹.
s E
Rkāˆ’1
Txk
U Hk
E
Ļ•
s
x
EĀ 
Ā 
Ā 
M V
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
MeƤnh ƱeĆ . Cho taƤp mĆ“Ć» V āŠ‚ Rn vaĆø caĆ¹c haĆøm lĆ“Ć¹p Cp, F1, Ā· Ā· Ā· , Fm, Fm+1 : V ā†’ R. XeĆ¹t
caĆ¹c taƤp cho bĆ“Ć»i heƤ phƶƓng trƬnh vaĆø baĆ”t phƶƓng trƬnh
M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0, Fm+1(x) ā‰„ 0}
āˆ‚M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = Fm+1(x) = 0}
GiaĆ» sƶƻ rank (DF1, Ā· Ā· Ā· , DFm)(x) = m, āˆ€x āˆˆ M, vaĆø rank (DF1, Ā· Ā· Ā· , DFm+1)(x) =
m + 1, āˆ€x āˆˆ āˆ‚M. Khi ƱoĆ¹ M laĆø Ʊa taĆÆp khaĆ»Ćø vi, n āˆ’ m chieĆ u, lĆ“Ć¹p Cp, coĆ¹ bĆ“Ćø āˆ‚M.
ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ 1.4
VĆ­ duĆÆ. Trong R3 hƬnh caĆ u ƱoĆ¹ng B cho bĆ“Ć»i baĆ”t phƶƓng trƬnh: x2 + y2 + z2 ā‰¤ 1, laĆø Ʊa
II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 23
taĆÆp 3 chieĆ u coĆ¹ bĆ“Ćø laĆø maĆ«t caĆ u āˆ‚B cho bĆ“Ć»i: x2 + y2 + z2 = 1.
MeƤnh ƱeĆ . Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u. Khi ƱoĆ¹:
(1) āˆ‚M laĆø Ʊa taĆÆp khaĆ» vi k āˆ’ 1 chieĆ u khoĆ¢ng bĆ“Ćø, i.e. āˆ‚(āˆ‚M) = āˆ….
(2) NeĆ”u x āˆˆ āˆ‚M, thƬ Txāˆ‚M laĆø khoĆ¢ng gian con k āˆ’ 1 chieĆ u cuĆ»a TxM.
ChĆ¶Ć¹ng minh: GoĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi ƱoĆ¹ deĆ£
thaĆ”y neĆ”u (Ļ•, U) laĆø tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x vaĆø x āˆˆ āˆ‚M, thƬ (Ļ•ā—¦i, iāˆ’1(U)) laĆø tham soĆ”
hoaĆ¹ cuĆ»a āˆ‚M taĆÆi x. VĆ“Ć¹i tham soĆ” hoaĆ¹ ƱoĆ¹ x laĆø ƱieĆ„m trong cuĆ»a āˆ‚M. VaƤy āˆ‚(āˆ‚M) = āˆ….
HĆ“n nƶƵa Txāˆ‚M laĆø khoĆ¢ng gian sinh bĆ“Ć»i D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u) neĆ¢n laĆø khoĆ¢ng gian con
k āˆ’ 1 chieĆ u cuĆ»a TxM.
1.7 Ɩƙng duĆÆng vaĆøo baĆøi toaĆ¹n cƶĆÆc trĆ² ƱieĆ u kieƤn.
Cho F = (F1, Ā· Ā· Ā· , Fm) : V ā†’ Rm, thuoƤc lĆ“Ć¹p C1 treĆ¢n taƤp mĆ“Ć» V āŠ‚ Rn.
GoĆÆi M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0}, vaĆø giaĆ» thieĆ”t rank F (x) = m, āˆ€x āˆˆ M.
Cho f : V ā†’ R, thuoƤc lĆ“Ć¹p C1.
BaĆøi toaĆ¹n: TƬm cƶĆÆc trĆ² cuĆ»a haĆøm haĆÆn cheĆ” f|M . NoĆ¹i caĆ¹ch khaĆ¹c laĆø tƬm cƶĆÆc trĆ² cuĆ»a f vĆ“Ć¹i
ƱieĆ u kieƤn raĆøng buoƤc F1 = Ā· Ā· Ā· = Fm = 0.
NhaƤn xeĆ¹t. VƬ M laĆø Ʊa taĆÆp, neĆ¢n vĆ“Ć¹i moĆ£i a āˆˆ M toĆ n taĆÆi tham soĆ” hoaĆ¹ (Ļ•, U) cuĆ»a M taĆÆi
a, vĆ“Ć¹i a = Ļ•(b).
ƑieĆ u kieƤn caĆ n. NeĆ”u f ƱaĆÆt cƶĆÆc trĆ² vĆ“Ć¹i raĆøng buoƤc F1 = Ā· Ā· Ā· = Fm = 0, taĆÆi a, thƬ
grad f(a) āŠ„ TaM, i.e. toĆ n taĆÆi Ī»1, Ā· Ā· Ā· , Ī»m āˆˆ R, sao cho
grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a)
ChĆ¶Ć¹ng minh: Theo nhaƤn xeĆ¹t treĆ¢n, roƵ raĆøng f|M ƱaĆÆt cƶĆÆc trĆ² taĆÆi a tƶƓng ƱƶƓng vĆ“Ć¹i f ā—¦ Ļ•
ƱaĆÆt cƶĆÆc trĆ² taĆÆi b.
Suy ra (f ā—¦ Ļ•) (b) = f (a)Ļ• (b) = 0. VaƤy  grad f(a), v = 0, āˆ€v āˆˆ ImĻ• (b) = TaM,
i.e. grad f(a) āŠ„ TaM. Do rank (grad F1(a), Ā· Ā· Ā· , grad Fm(a)) = m = codimTaM,
neĆ¢n grad f(a) thuoƤc khoĆ¢ng gian sinh bĆ“Ć»i grad F1(a), Ā· Ā· Ā· , grad Fm(a).
PhƶƓng phaĆ¹p nhaĆ¢n tƶƻ hoaĆ¹ Lagrange. TƶĆø keĆ”t quĆ»a treĆ¢n, ƱeĆ„ tƬm ƱieĆ„m nghi ngĆ“Ćø cƶĆÆc trĆ²
cuĆ»a f vĆ“Ć¹i ƱieĆ u kieƤn F1 = Ā· Ā· Ā· = Fm = 0, ta laƤp haĆøm Lagrange
L(x, Ī») = f(x) āˆ’ Ī»1F1(x) āˆ’ Ā· Ā· Ā· āˆ’ Ī»mFm(x), x āˆˆ V, Ī» = (Ī»1, Ā· Ā· Ā· , Ī»m) āˆˆ Rm
NeĆ”u a laĆø cƶĆÆc trĆ² ƱieĆ u kieƤn, thƬ toĆ n taĆÆi Ī» āˆˆ Rm, sao cho (a, Ī») laĆø nghieƤm heƤ
ļ£±
ļ£“ļ£“ļ£“ļ£“ļ£“ļ£²
ļ£“ļ£“ļ£“ļ£“ļ£“ļ£³
āˆ‚L
āˆ‚x
(x, Ī») = 0
F1(x) = 0
...
Fm(x) = 0
VĆ­ duĆÆ. XeĆ¹t cƶĆÆc trĆ² f(x, y, z) = x + y + z, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1, x + z = 1.
TrĆ¶Ć“Ć¹c heĆ”t, ta thaĆ”y ƱieĆ u kieƤn raĆøng buoƤc xaĆ¹c Ć±Ć²nh moƤt Ʊa taĆÆp (Ellip E).
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 24
LaƤp haĆøm Lagrange L(x, y, z, Ī»1, Ī»2) = x + y + z āˆ’ Ī»1(x2 + y2 āˆ’ 1) āˆ’ Ī»2(x + z āˆ’ 1).
Giaƻi heƤ phƶƓng trƬnh
ļ£±
ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£²
ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£³
āˆ‚L
āˆ‚x
= 1 āˆ’ 2Ī»1x āˆ’Ī»2 = 0
āˆ‚L
āˆ‚y
= 1 āˆ’ 2Ī»1y = 0
āˆ‚L
āˆ‚z
= 1 āˆ’Ī»2 = 0
x2 + y2 āˆ’ 1 = 0
x + z āˆ’ 1 = 0
Ta coĆ¹ caĆ¹c ƱieĆ„m nghi ngĆ“Ćø cƶĆÆc trĆ² laĆø (0, Ā±1, 1). Do taƤp ƱieĆ u kieƤn compact, neĆ¢n f phaĆ»i
ƱaĆÆt max, min treĆ¢n taƤp ƱoĆ¹. HĆ“n nƶƵa, caĆ¹c ƱieĆ„m cƶĆÆc trĆ² ƱoĆ¹ phaĆ»i laĆø moƤt trong caĆ¹c ƱieĆ„m
nghi ngĆ“Ćø cƶĆÆc trĆ². VaƤy
max f|E = max{f(0, 1, 1) = 1, f(0, āˆ’1, 1) = 0} = f(0, 1, 1) = 1,
min f|E = min{f(0, 1, 1) = 1, f(0, āˆ’1, 1) = 0} = f(0, āˆ’1, 1) = 0
Trong trƶƓĆøng hĆ“ĆÆp taƤp ƱieĆ u kieƤn khoĆ¢ng compact, ta coĆ¹ theĆ„ sƶƻ duĆÆng keĆ”t quĆ»a sau:
ƑieĆ u kieƤn ƱuĆ». GiaĆ» sƶƻ f, F1, Ā· Ā· Ā· , Fm thuoƤc lĆ“Ć¹p C2, vaĆø
grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a), i.e.
āˆ‚L
āˆ‚x
(a, Ī») = 0.
ƑaĆ«t HxL(x, a) laĆø Hessian cuĆ»a haĆøm Lagrange L theo bieĆ”n x. Khi ƱoĆ¹
NeĆ”u HxL(a, Ī»)|TaM xaĆ¹c Ć±Ć²nh dƶƓng, thƬ f|M ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi a.
NeĆ”u HxL(a, Ī»)|TaM xaĆ¹c Ć±Ć²nh aĆ¢m, thƬ f|M ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi a.
NeĆ”u HxL(a, Ī»)|TaM khoĆ¢ng xaĆ¹c Ć±Ć²nh daĆ”u, thƬ f|M khoĆ¢ng ƱaĆÆt cƶĆÆc trĆ² taĆÆi a.
ChĆ¶Ć¹ng minh: VĆ“Ć¹i caĆ¹c kyĆ¹ hieƤu Ć“Ć» phaĆ n treĆ¢n, baĆøi toaĆ¹n tƬm cƶĆÆc trĆ² cuĆ»a f|M tƶƓng ƱƶƓng baĆøi
toaĆ¹n tƬm cƶĆÆc trĆ² cuĆ»a fā—¦Ļ•. Do f (a)Ļ• (b) = 0, tĆ­nh ƱaĆÆo haĆøm caĆ”p 2, ta coĆ¹ H(fā—¦Ļ•)(a)(h) =
Hf(a)(Ļ• (b)h) (BaĆøi taƤp).
Do Fi ā—¦ Ļ• = 0, ta coĆ¹ H(Fi ā—¦ Ļ•) = 0 vaĆø theo tĆ­nh toaĆ¹n treĆ¢n H(Fi ā—¦ Ļ•)(b)(h) =
HFi(a)(Ļ• (b)(h).
Suy ra HxL(a, Ī»)|TaM = H(f ā—¦ Ļ•)(b)|TaM .
TƶĆø ƱieĆ u kieƤn ƱuĆ» cuĆ»a baĆøi toaĆ¹n cƶĆÆc trĆ² Ć±Ć²a phƶƓng ta coĆ¹ keĆ”t quĆ»a. .
VĆ­ duĆÆ. Cho k āˆˆ N vaĆø a āˆˆ R. TƬm cƶĆÆc trĆ² f(x1, Ā· Ā· Ā· , xn) = xk
1 + Ā· Ā· Ā· + xk
n, vĆ“Ć¹i raĆøng
buoƤc x1 + Ā· Ā· Ā· + xn = an.
2. TƍCH PHAƂN HAƘM SOƁ TREƂN ƑA TAƏP
2.1 ƑoƤ daĆøi, dieƤn tĆ­ch, theĆ„ tĆ­ch trong R3. Trong R3, coĆ¹ trang bĆ² tĆ­ch voĆ¢ hĆ¶Ć“Ć¹ng Euclid
 Ā·, Ā· , neĆ¢n coĆ¹ khaĆ¹i nieƤm ƱoƤ daĆøi vaĆø vuoĆ¢ng goĆ¹c.
ƑoƤ daĆøi vector T = (xt, yt, zt): T = x2
t + y2
t + z2
t
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 25
DieƤn tĆ­ch hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i u = (xu, yu, zu), v = (xv, yv, zv):
dt(u, v) = u vāŠ„ = u Ɨ v
=
u 2  u, v 
 v, u  v 2
1
2
= u 2 v 2 āˆ’ |  u, v  |2.
trong ƱoĆ¹ v = v + vāŠ„ laĆø phaĆ¢n tĆ­ch: v laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c v leĆ¢n u, vāŠ„ āŠ„ u.
ChĆ¶Ć¹ng minh: Ta coĆ¹ v = Ī±u,  vāŠ„, u = 0. Suy ra
 u, u   u, v 
 v, u   v, v 
=
 u, u   u, v  +  u, vāŠ„ 
 v, u   v, v  +  v, vāŠ„ 
=
 u, u  Ī±  u, u 
 v, u  Ī±  v, u 
+
 u, u  0
 v, u  vāŠ„ 2
= u 2 vāŠ„ 2
TƶĆø ƱoĆ¹ suy ra coĆ¢ng thĆ¶Ć¹c treĆ¢n
TheĆ„ tĆ­ch khoĆ”i bƬnh haĆønh taĆÆo bĆ“Ć»i u, v, w āˆˆ R3:
tt(u, v, w) = dt(u, v) wāŠ„
= |  u Ɨ v, w  | = | det(u, v, w)|
=
 u, u   u, v   u, w 
 v, u   v, v   v, w 
 w, u   w, v   w, w 
1
2
trong ƱoĆ¹ w = w +wāŠ„ laĆø phaĆ¢n tĆ­ch: w laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c w leĆ¢n maĆ«t phaĆŗng sinh
bƓƻi u, v.
Ā¢
Ā¢
Ā¢
Ā¢Ā¢w
E
u
ĀØĀØĀØB
v
TwāŠ„ ĀØĀØĀØ
Ā¢
Ā¢
Ā¢
Ā¢Ā¢
ĀØĀØĀØĀ¢
Ā¢
Ā¢
Ā¢Ā¢
Ā¢
Ā¢
Ā¢
Ā¢Ā¢
ĀØĀØĀØ
ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ coĆ¢ng thĆ¶Ć¹c cho dieƤn tĆ­ch. (BaĆøi taƤp)
2.2 TheĆ„ tĆ­ch k chieĆ u trong Rn. Trong Rn coĆ¹ trang bĆ² tĆ­ch voĆ¢ hĆ¶Ć“Ć¹ng Euclid. TheĆ„ tĆ­ch
k chieĆ u cuĆ»a hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i v1, Ā· Ā· Ā· , vk āˆˆ Rn, ƱƶƓĆÆc Ć±Ć²nh nghĆ³a qui naĆÆp theo k:
V1(v1) = v1 , Vk(v1, Ā· Ā· Ā· , vk) = Vkāˆ’1(v1, Ā· Ā· Ā· , vkāˆ’1) vāŠ„
k
trong ƱoĆ¹ vk = vk +vāŠ„
k laĆø phaĆ¢n tĆ­ch: vk laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c cuĆ»a vk leĆ¢n khoĆ¢ng gian
sinh bĆ“Ć»i v1, Ā· Ā· Ā· , vkāˆ’1.
CoĆ¢ng thĆ¶Ć¹c tĆ­nh. GoĆÆi G(v1, Ā· Ā· Ā· , vk) = ( vi, vj )1ā‰¤i,jā‰¤k laĆø ma traƤn Gramm. Khi ƱoĆ¹
Vk(v1, Ā· Ā· Ā· , vk) = det G(v1, Ā· Ā· Ā· , vk)
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 26
ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ coĆ¢ng thĆ¶Ć¹c cho dieƤn tĆ­ch (BaĆøi taƤp).
2.3 PhaĆ n tƶƻ ƱoƤ daĆøi - ƑoƤ daĆøi ƱƶƓĆøng cong. Cho C āŠ‚ R3 laĆø ƱƶƓĆøng cong cho bĆ“Ć»i tham
soĆ” hoaĆ¹
Ļ• : I ā†’ R3
, Ļ•(t) = (x(t), y(t), z(t))
Ta caĆ n tĆ­nh ƱoƤ daĆøi l(C) cuĆ»a ƱƶƓĆøng cong.
PhaĆ¢n hoaĆÆch I thaĆønh caĆ¹c ƱoaĆÆn con Ii = [ti, ti + āˆ†ti]. Khi ƱoĆ¹ l(C) = i l(Ļ•(Ii)).
Khi āˆ†ti beĆ¹, thƬ l(Ļ•(Ii)) āˆ¼ l(Ļ• (ti)āˆ†ti) = Ļ• (ti) āˆ†ti.
Ć‘Ć²nh nghĆ³a phaĆ n tƶƻ ƱoƤ daĆøi : dl = Ļ• (t) dt = x 2
t + y 2
t + z 2
t dt
Ć‘Ć²nh nghĆ³a ƱoƤ daĆøi cuĆ»a C:
l(C) =
C
dl =
I
x 2
t + y 2
t + z 2
t dt
2.4 PhaĆ n tƶƻ dieƤn tĆ­ch - DieƤn tĆ­ch maĆ«t. Cho S āŠ‚ R3 laĆø maĆ«t cong cho bĆ“Ć»i tham soĆ”
hoaĆ¹
Ļ• : U ā†’ R3
, Ļ•(u, v) = (x(u, v), y(u, v), z(u, v))
Ta caƠn tƭnh dieƤn tƭch cuƻa maƫt S.
GƦa sƶƻ U coĆ¹ theĆ„ phaĆ¢n hoaĆÆch bĆ“Ć»i caĆ¹c hƬnh chƶƵ nhaƤt beĆ¹ Ui = [ui, ui+āˆ†ui]Ɨ[vi, vi+āˆ†vi].
Khi ƱoĆ¹ dt(S) = i dt(Ļ•(Ui)).
Khi āˆ†ui, āˆ†vi beĆ¹, thƬ dt(Ļ•(Ui)) āˆ¼ dt(D1Ļ•(ui, vi)āˆ†ui, D2Ļ•(ui, vi)āˆ†vi).
Ć‘Ć²nh nghĆ³a phaĆ n tƶƻ dieƤn tĆ­ch :
dS = dt(D1Ļ•, D2Ļ•)dudv = EG āˆ’ F2dudv,
trong ƱoĆ¹
E = D1Ļ• 2 = xu
2
+ yu
2
+ zu
2
G = D2Ļ• 2 = xv
2
+ yv
2
+ zv
2
F =  D1Ļ•, D2Ļ•  = xuxv + yuyv + zuzv
Khi ƱoĆ¹ Ć±Ć²nh nghĆ³a dieƤn tĆ­ch cuĆ»a S :
dt(S) =
S
dS =
U
EG āˆ’ F2dudv
2.5 PhaĆ n tƶƻ theĆ„ tĆ­ch - TheĆ„ tĆ­ch hƬnh khoĆ”i. Cho H laĆø hƬnh khoĆ”i cho bĆ“Ć»i tham soĆ” hoaĆ¹
Ļ• : A ā†’ R3
, Ļ•(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))
ƑeĆ„ tĆ­nh theĆ„ tĆ­ch H, baĆØng laƤp luaƤn tƶƓng tƶĆÆ nhƶ caĆ¹c phaĆ n treĆ¢n, ta coĆ¹ caĆ¹c Ć±Ć²nh nghĆ³a:
PhaƠn tƶƻ theƄ tƭch:
dV = tt(D1Ļ•, D2Ļ•, D3Ļ•)dudvdw = | det JĻ•|dudvdw
TheĆ„ tĆ­ch H: V (H) = H dV = A | det JĻ•|dudvdw.
BaĆ¢y giĆ“Ćø ta toĆ„ng quaĆ¹t hoaĆ¹ caĆ¹c khaĆ¹i nieƤm treĆ¢n.
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 27
2.6 PhaĆ n tƶƻ theĆ„ tĆ­ch treĆ¢n Ʊa taĆÆp. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u.
PhaĆ n tƶƻ theĆ„ tĆ­ch treĆ¢n M laĆø aĆ¹nh xaĆÆ
dV : M x ā†’ dV (x) = theĆ„ tĆ­ch k chieĆ u haĆÆn cheĆ” treĆ¢n TxM.
GiaĆ»Ćø sƶƻ (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x = Ļ•(u1, Ā· Ā· Ā· , uk). Khi ƱoĆ¹
dV (x)(D1Ļ•(x)āˆ†u1, Ā· Ā· Ā· , DkĻ•(x)āˆ†uk) = Vk(D1Ļ•(x), Ā· Ā· Ā· , DkĻ•(x))āˆ†u1 Ā· Ā· Ā· āˆ†uk
VaƤy neĆ”u ƱaĆ«t GĻ• = ( DiĻ•, DjĻ• )1ā‰¤i,jā‰¤k, thƬ qua tham soĆ” hoĆ¹a
dV = det GĻ• du1 Ā· Ā· Ā· duk
2.6 TĆ­ch phaĆ¢n haĆøm treĆ¢n Ʊa taĆÆp. Cho f : M ā†’ R laĆø haĆøm treĆ¢n Ʊa taĆÆp khaĆ» vi k chieĆ u.
Sau ƱaĆ¢y ta xaĆ¢y dƶĆÆng tĆ­ch phaĆ¢n cuĆ»a f treĆ¢n M (coĆøn goĆÆi laĆø tĆ­ch phaĆ¢n loaĆÆi 1)
M
fdV
NeĆ”u M = Ļ•(U) vĆ“Ć¹i (Ļ•, U) laĆø tham soĆ” hoĆ¹a, thƬ Ć±Ć²nh nghĆ³a
M
fdV =
U
f ā—¦ Ļ• det GĻ•, trong ƱoĆ¹ GĻ• = ( DiĻ•, DjĻ• )1ā‰¤i,jā‰¤k.
Khi k = 1 tĆ­ch phaĆ¢n treĆ¢n goĆÆi laĆø tĆ­ch phaĆ¢n ƱƶƓĆøng vaĆø kyĆ¹ hieƤu
M
fdl.
Khi k = 2 tĆ­ch phaĆ¢n treĆ¢n goĆÆi laĆø tĆ­ch phaĆ¢n maĆ«t vaĆø kyĆ¹ hieƤu
M
fdS.
TrƶƓĆøng hĆ“ĆÆp toĆ„ng quaĆ¹t, khi M cho bĆ“Ć»i nhieĆ u tham soĆ” hoĆ¹a, ngƶƓĆøi ta duĆøng kyƵ thuĆÆaĆ¢t phaĆ¢n
hoaĆÆch ƱƓn vĆ² sau ƱaĆ¢y ƱeĆ„ ā€˜daĆ¹nā€™ caĆ¹c tĆ­ch phaĆ¢n treĆ¢n tƶĆøng tham soĆ” hoaĆ¹.
Cho O = {(Ļ•i, Ui) : i āˆˆ I} laĆø hoĆÆ caĆ¹c tham soĆ” hoaĆ¹ M. HoĆÆ Ī˜ = {Īøi : i āˆˆ I} goĆÆi laĆø
phaĆ¢n hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ O neĆ”uu caĆ¹c ƱieĆ u sau thoĆ»a vĆ“Ć¹i moĆÆi i āˆˆ I:
(P1) Īøi : M ā†’ [0, 1] lieĆ¢n tuĆÆc.
(P2) suppĪøi = {x āˆˆ M : Īø(x) = 0} laĆø taƤp compact.
(P3) suppĪøi āŠ‚ Ļ•i(Ui).
(P4) MoĆÆi x āˆˆ M, toĆ n taĆÆi laĆ¢n caƤn V cuĆ»a x, sao cho chƦ coĆ¹ hƶƵu haĆÆn chƦ soĆ” i āˆˆ I
Īøi = 0 treĆ¢n V .
(P5) iāˆˆI Īøi(x) = 1, āˆ€x āˆˆ M.
TĆ­nh chaĆ”t (P4) goĆÆi laĆø tĆ­nh hƶƵu haĆÆn Ć±Ć²a phƶƓng cuĆ»a hoĆÆ {supp Īøi, i āˆˆ I}. Do tĆ­nh chaĆ”t
naĆøy toĆ„ng Ć“Ć» (P5) laĆø toĆ„ng hƶƵu haĆÆn vĆ“Ć¹i moĆÆi x.
Ć‘Ć²nh lyĆ¹. VĆ“Ć¹i moĆÆi hoĆÆ O caĆ¹c tham soĆ” hoaĆ¹ cuĆ»a Ʊa taĆÆp M, toĆ n taĆÆi hoĆÆ phaĆ¢n hoaĆÆch ƱƓn vĆ²
phuĆø hĆ“ĆÆp vĆ“Ć¹i O.
ChĆ¶Ć¹ng minh: GƦa sƶƻ M compact, k chieĆ u. VĆ“Ć¹i moĆÆi x āˆˆ M, toĆ n taĆÆi (Ļ•x, Ux) āˆˆ O laĆø
tham soĆ” hoaĆ¹ taĆÆi x. GoĆÆi Bx āŠƒ Ux laĆø moƤt hƬnh caĆ u taĆ¢n Ļ•āˆ’1
x (x). GƦa sƶƻ Bx = B(a, r).
HaĆøm gx : Rk ā†’ R ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau
gx(u) =
ļ£±
ļ£“ļ£²
ļ£“ļ£³
e
āˆ’ 1
r2āˆ’ uāˆ’a 2
, neĆ”u u āˆ’ a ā‰¤ r
0 , neĆ”u u āˆ’ a  r.
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 28
Khi ƱoĆ¹ gx āˆˆ Cāˆž (baĆøi taƤp). ƑaĆ«t Ėœgx(y) = gx(Ļ•āˆ’1
x (y)), neĆ”u y āˆˆ Ļ•x(Ux), vaĆøĆø Ėœgx(y) = 0,
neĆ”u y āˆˆ Ļ•x(Ux). Khi ƱoĆ¹ Ėœgx lieĆ¢n tuĆÆc treĆ¢n M. VƬ M compact, toĆ n taĆÆi hƶƵu haĆÆn
x1, Ā· Ā· Ā· , xN āˆˆ M, sao cho Ļ•x1 (Bx1 ), Ā· Ā· Ā· Ļ•xN (BxN ) phuĆ» M ƑaĆ«t Īøi =
Ėœgxi
Ėœgx1 + Ā· Ā· Ā· + ĖœgxN
.
Khi ƱoĆ¹ hoĆÆ {Īøi : i = 1, Ā· Ā· Ā· N} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² caĆ n tƬm.
Khi M khoĆ¢ng compact, toĆ n taĆÆi hoĆÆ Ć±eĆ”m ƱƶƓĆÆc caĆ¹c taƤp Ļ•x(Bx), hƶƵu haĆÆn Ć±Ć²a phƶƓng phuĆ»
M. LaƤp luaƤn tƶƓng tƶĆÆ nhƶ treĆ¢n coĆ¹ theĆ„ xaĆ¢y dƶĆÆng phaĆ¢n hoaĆÆch ƱƓn vĆ² trong trƶƓĆøng hĆ“ĆÆp
naĆøy.
GƦa sƶƻ Ʊa taĆÆp M ƱƶƓĆÆc tham soĆ” hoaĆ¹ bĆ“Ć»i hoĆÆ O = {(Ļ•i, Ui) : i āˆˆ I}. Theo Ć±Ć²nh lyĆ¹ treĆ¢n
ta coĆ¹ hoĆÆ Ī˜ = {Īøi : i āˆˆ I} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i O. Ć‘Ć²nh nghĆ³a
M
fdV =
iāˆˆI Ļ•i(Ui)
ĪøifdV (=
iāˆˆI Ui
Īøif ā—¦ Ļ•i det GĻ•i ).
vĆ“Ć¹i gƦa thieĆ”t veĆ” phaĆ»i toĆ n taĆÆi. ChaĆŗng haĆÆn, khi M compact vaĆø f lieĆ¢n tuĆÆc.
NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a treĆ¢n khoĆ¢ng phuĆÆ thuoƤc hoĆÆ tham soĆ” vaĆø phaĆ¢n hoaĆÆch ƱƓn vĆ².
ChĆ¶Ć¹ng minh: Khi hai tham soĆ” hoaĆ¹ cuĆ»a M thoĆ»a Ļ•(U) = Ļˆ(W). Khi ƱoĆ¹ Ļˆ = Ļ• ā—¦ h,
vĆ“Ć¹i h laĆø vi phoĆ¢i. DeĆ£ kieĆ„m tra caĆ¹c ma traƤn Gramm quan heƤ vĆ“Ć¹i nhau theo coĆ¢ng thĆ¶Ć¹c
GĻˆ(w) = tJh(w)GĻ•(h(w))Jh(w). Theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n, ta coĆ¹
U
f ā—¦ Ļ• det GĻ• =
W
f ā—¦ Ļ• ā—¦ h| det Jh| det GĻ• ā—¦ h
=
W
f ā—¦ Ļˆ det tJhGĻ• ā—¦ h det Jh =
W
f ā—¦ Ļˆ det GĻˆ.
VaƤy Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹.
NeĆ”u Ī˜ = {Īøj : j āˆˆ J} laĆø moƤt phaĆ¢n hoaĆÆch ƱƓn vĆ² khaĆ¹c cuĆ»a M. Khi ƱoĆ¹
j M
Īøjf =
j M
(
i
Īøi)Īøjf =
i,j M
ĪøiĪøjf =
i,j M
ĪøjĪøif =
i M
(
j
Īøj)Īøif.
VaƤy Ć±Ć²nh nghĆ³a cuƵng khoĆ¢ng phuĆÆ thuoƤc phaĆ¢n hoaĆÆch ƱƓn vĆ².
NhaĆ©c laĆÆi caĆ¹c coĆ¢ng thĆ¶Ć¹c tĆ­nh:
Khi Ļ• : I ā†’ Rn, Ļ•(t) = (x1(t), Ā· Ā· Ā· , xn(t)) laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong C. Ta coĆ¹
C
fdl =
I
f ā—¦ Ļ• Ļ• =
I
f(Ļ•(t)) (x1)2(t) + Ā· Ā· Ā· + (xn)2(t)dt.
Khi Ļ• : U ā†’ R3, Ļ•(u, v) = (x(u, v), y(u, v), z(u, v)) laĆø tham soĆ” hoaĆ¹ maĆ«t S. Ta coĆ¹
S
fdS =
U
f ā—¦ Ļ• EG āˆ’ F2,
trong ƱoĆ¹
E = D1Ļ• 2 = xu
2
+ yu
2
+ zu
2
G = D2Ļ• 2 = xv
2
+ yv
2
+ zv
2
F =  D1Ļ•, D2Ļ•  = xuxv + yuyv + zuzv
II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 29
VĆ­ duĆÆ.
a) ƑoƤ daĆøi ƱƶƓĆøng xoaĆ©n C: x = a cos t, y = a sin t, z = bt, t āˆˆ [0, h], laĆø
C
dl =
h
0
a2 sin2
t + a2 cos2 t + b2dt = h a2 + b2
b) ƑeĆ„ tĆ­nh dieƤn tĆ­ch maĆ«t caĆ u baĆ¹n kĆ­nh R, trĆ¶Ć“Ć¹c heĆ”t tham soĆ” hoaĆ¹, chaĆŗng haĆÆn
Ļ•(Ļ†, Īø) = (R cos Ļ† sin Īø, R sin Ļ† sin Īø, R cos Īø), (Ļ†, Īø) āˆˆ U = (0, 2Ļ€) Ɨ (0, Ļ€)
Khi ƱoĆ¹ caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a caĆ¹c ƱƶƓĆøng toĆÆa ƱoƤ:
D1Ļ•(Ļ†, Īø) = (āˆ’R sin Ļ† sin Īø, R cos Ļ† sin Īø, 0)
D2Ļ•(Ļ†, Īø) = (R cos Ļ† cos Īø, R sin Ļ† cos Īø, āˆ’R sin Īø).
Suy ra E = R2 sin2
Īø, F = 0, G = R2.
DieƤn tĆ­ch maĆ«t caĆ u laĆø
S
dS =
U
EG āˆ’ F2dĻ†dĪø =
2Ļ€
0
Ļ€
0
R2
sin ĪødĻ†dĪø = 4Ļ€R2
c) ƑeĆ„ tĆ­nh theĆ„ tĆ­ch hƬnh caĆ u baĆ¹n kĆ­nh R, coĆ¹ theĆ„ duĆøng tham soĆ” hoaĆ¹
Ļ•(r, Ļ†, Īø) = (r cos Ļ† sin Īø, r sin Ļ† sin Īø, r cos Īø), (r, Ļ†, Īø) āˆˆ U = (0, R) Ɨ (0, 2Ļ€) Ɨ (0, Ļ€)
Khi ƱoĆ¹
D1Ļ•(r, Ļ†, Īø) = (cos Ļ† sin Īø, sin Ļ† sin Īø, cos Īø)
D2Ļ•(r, Ļ†, Īø) = (āˆ’r sin Ļ† sin Īø, r cos Ļ† sin Īø, 0)
D3Ļ•(r, Ļ†, Īø) = (r cos Ļ† cos Īø, r sin Ļ† cos Īø, āˆ’r sin Īø).
TheĆ„ tĆ­ch hƬnh caĆ u laĆø
B(0,R)
dV =
U
det( DiĻ•, DjĻ• )drdĻ†dĪø
=
R
0
2Ļ€
0
Ļ€
0
1 0 0
0 r2 sin2
Īø 0
0 0 r2
drdĻ†dĪø =
4
3
Ļ€R3
III. DaĆÆng vi phaĆ¢n
Khi tĆ­nh tĆ­ch phaĆ¢n treĆ¢n Ʊa taĆÆp ta caĆ n moƤt ƱoĆ”i tƶƓĆÆng baĆ”t bieĆ”n vĆ“Ć¹i pheĆ¹p tham soĆ” hoaĆ¹.
VĆ­ du ĆÆƱƓn giaĆ»n nhaĆ”t laĆø khi tĆ­nh tĆ­ch phaĆ¢n treĆ¢n R, theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n ta coĆ¹
b
a
f(x)dx =
Ī²
Ī±
f(Ļ•(t))Ļ• (t)dt
trong ƱoĆ¹ Ļ• laĆø vi phoĆ¢i tƶĆø (Ī±, Ī²) leĆ¢n (a, b).
NgƶƓĆøi ta Ʊƶa vaĆøo khaĆ¹i nieƤm daĆÆng vi phaĆ¢n baƤc 1: Ļ‰ = f(x)dx
vaĆø pheĆ¹p ƱoĆ„i bieĆ”n: Ļ•āˆ—Ļ‰ = f(Ļ•(t))Ļ• (t)dt.
Khi ƱoĆ¹ coĆ¢ng thĆ¶Ć¹c treĆ¢n coĆ¹ theĆ„ vieĆ”t laĆÆi laĆø
b
a
Ļ‰ =
Ī²
Ī±
Ļ•āˆ—
Ļ‰
NgoaĆøi ra daĆÆng vi phaĆ¢n cuƵng laĆø khaĆ¹i nieƤm thĆ­ch hĆ“ĆÆp ƱeĆ„Ć„ tĆ­ch phaĆ¢n trƶƓĆøng vector treĆ¢n
Ʊa taĆÆp seƵ ƱƶƓĆÆc ƱeĆ  caƤp ƱeĆ”n Ć“Ć» chƶƓng sau.
ChƶƓng naĆøy xeĆ¹t ƱeĆ”n caĆ¹c daĆÆng vi phaĆ¢n vaĆø caĆ¹c pheĆ¹p toaĆ¹n treĆ¢n chuĆ¹ng.
1. DAƏNG k-TUYEƁN TƍNH PHAƛN ƑOƁI XƖƙNG.
1.1. Ć‘Ć²nh nghĆ³a. Cho V laĆø khoĆ¢ng gian vector treĆ¢n R. MoƤt daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i
xĆ¶Ć¹ng treĆ¢n V laĆø moƤt aĆ¹nh xaĆÆ
Ļ‰ : V Ɨ Ā· Ā· Ā· Ɨ V
k laĆ n
ā†’ R
thoĆ»a caĆ¹c ƱieĆ u kieƤn sau vĆ“Ć¹i moĆÆi v1, Ā· Ā· Ā· , vk āˆˆ V , Ī± āˆˆ R vaĆø 1 ā‰¤ i  j ā‰¤ k:
(A1) Ļ‰(v1, Ā· Ā· Ā· , vi + vi, Ā· Ā· Ā· , vk) = Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk) + Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk).
(A2) Ļ‰(v1, Ā· Ā· Ā· , Ī±vi, Ā· Ā· Ā· , vk) = Ī±Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk).
(A3) Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vk) = āˆ’ Ļ‰(v1, Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk).
NhaƤn xeĆ¹t. ƑieĆ u kieƤn (A1)(A2) coĆ¹ nghĆ³a laĆø Ļ‰ tuyeĆ”n tĆ­nh theo tƶĆøng bieĆ”n
NhaƤn xeĆ¹t. ƑieĆ u kieƤn (A3) tƶƓng ƱƶƓng vĆ“Ć¹i moƤt trong caĆ¹c ƱieĆ u kieƤn sau:
(A3ā€™) Ļ‰(v1, Ā· Ā· Ā· , vi Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vk) = 0, neĆ”u vi = vj, vĆ“Ć¹i moĆÆi i = j.
(A3ā€) Ļ‰(vĻƒ(1), Ā· Ā· Ā· , vĻƒ(k)) = (Ļƒ)Ļ‰(v1, Ā· Ā· Ā· , vk),
vĆ“Ć¹i moĆÆi hoaĆ¹n vĆ² Ļƒ cuĆ»a {1, Ā· Ā· Ā· , k}, (Ļƒ) laĆø kyĆ¹ soĆ” (= sign ij(Ļƒ(j) āˆ’ Ļƒ(j))).
ChĆ¶Ć¹ng minh: (A3) ā‡’ (A3ā€™): Trong bieĆ„u thĆ¶Ć¹c cuĆ»a (A3) neĆ”u vi = vj, thƬ
2Ļ‰(v1, Ā· Ā· Ā· , vi Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk) = 0. Suy ra (A3ā€™).
(A3ā€™) ā‡’ (A3): Trong bieĆ„u thĆ¶Ć¹c cuĆ»a (A3ā€™) neĆ”u vi = vj = v + w, thƬ tƶĆø (A1) (A3ā€™) suy
ra
Ļ‰(v1, Ā· Ā· Ā· , v, Ā· Ā· Ā· , w, Ā· Ā· Ā· , vk) + Ļ‰(v1, Ā· Ā· Ā· , w, Ā· Ā· Ā· , v, Ā· Ā· Ā· , vk) = 0.
(A3) ā‡’ (A3ā€): Aƙp duĆÆng moĆÆi pheĆ¹p hoaĆ¹n vĆ² laĆø hĆ“ĆÆp cuĆ»a caĆ¹c pheĆ¹p chuyeĆ„n vĆ², kyĆ¹ soĆ” moĆ£i
pheĆ¹p chuyeĆ„n vĆ² laĆø āˆ’1, vaĆø kyĆ¹ soĆ” cuĆ»a hĆ“ĆÆp 2 hoaĆ¹n vĆ² baĆØng tĆ­ch kyĆ¹ soĆ” cuĆ»a 2 hoaĆ¹n vĆ² ƱoĆ¹.
III.1. DaĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng. 32
(A3ā€) ā‡’ (A3): Aƙp duĆÆng (A3ā€) vĆ“Ć¹i Ļƒ laĆø chuyeĆ„n vĆ² i vaĆø j.
VĆ­ duĆÆ. Cho F laĆø moƤt vector trong R3. Khi ƱoĆ¹:
a) WF (v) = F, v , v āˆˆ R3, laĆø daĆÆng 1-tuyeĆ”n tĆ­nh treĆ¢n R3 (coĆ¢ng cuĆ»a F doĆÆc theo v)
b) Ļ‰F (v1, v2) = F, v1 Ɨ v2 , v1, v2 āˆˆ R3, laĆø daĆÆng 2-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n
R3 (thoĆ¢ng lƶƓĆÆng cuĆ»a F qua hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i v1, v2)
c) Ć‘Ć²nh thĆ¶Ć¹c laĆø daĆÆng n-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n Rn. GiaĆ¹ trĆ² det(v1, Ā· Ā· Ā· , vn) laĆø
theĆ„ tĆ­ch coĆ¹ hĆ¶Ć“Ć¹ng cuĆ»a bƬnh haĆønh taĆÆo bĆ“Ć»i v1, Ā· Ā· Ā· , vn āˆˆ Rn.
1.2 KhoĆ¢ng gian vector Ī›k(V ). KyĆ¹ hieƤu Ī›k(V ) laĆø taƤp moĆÆi daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n
ƱoĆ”i xĆ¶Ć¹ng treĆ¢n V . TreĆ¢n taƤp naĆøy ta Ć±Ć²nh nghĆ³a 2 pheĆ¹p toaĆ¹n:
(Ļ‰ + Ī³)(v1, Ā· Ā· Ā· , vk) = Ļ‰(v1, Ā· Ā· Ā· , vk) + Ī³(v1, Ā· Ā· Ā· , vk)
(Ī±Ļ‰)(v1, Ā· Ā· Ā· , vk) = Ī±Ļ‰(v1, Ā· Ā· Ā· , vk) , vĆ“Ć¹i Ļ‰, Ī³ āˆˆ Ī›k(V ), Ī± āˆˆ R.
DeĆ£ thaĆ”y (Ī›k(V ), +, Ā·) laĆø khoĆ¢ng gian vector treĆ¢n R.
VĆ­ duĆÆ.
a) Ī›1(V ) chĆ­nh laĆø khoĆ¢ng gian ƱoĆ”i ngaĆ£u cuĆ»a V , i.e. Ī›1(V ) = V āˆ— = L(V, R).
b) Cho Ļ•1, Ļ•2 āˆˆ V āˆ—. Ć‘Ć²nh nghĆ³a daĆÆng 2-tuyeĆ”n tĆ­nh: Ļ•1 āˆ§ Ļ•2 : V Ɨ V ā†’ R,
(Ļ•1 āˆ§ Ļ•2)(v1, v2) = Ļ•1(v1)Ļ•2(v2) āˆ’ Ļ•2(v1)Ļ•1(v2) = det
Ļ•1(v1) Ļ•1(v2)
Ļ•2(v1) Ļ•2(v2)
VeĆ  maĆ«t hƬnh hoĆÆc giaĆ¹ trĆ² treĆ¢n chĆ­nh laĆø dieƤn tĆ­ch coĆ¹ hĆ¶Ć“Ć¹ng cuĆ»a hƬnh bƬnh haĆønh trong R2
taĆÆo bĆ“Ć»i Ļ•(v1), Ļ•(v2), trong ƱoĆ¹ Ļ• = (Ļ•1, Ļ•2) : V ā†’ R2.
1.3 TĆ­ch ngoaĆÆi. Cho Ļ•1, Ā· Ā· Ā· , Ļ•k āˆˆ V āˆ—. TĆ­ch ngoaĆÆi cuĆ»a caĆ¹c daĆÆng treĆ¢n laĆø moƤt k-daĆÆng
Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k āˆˆ Ī›k(V ), ƱƶƓĆÆc Ć±Ć²nh nghĆ³a:
Ļ•1āˆ§Ā· Ā· Ā·āˆ§Ļ•k(v1, Ā· Ā· Ā· , vk) =
Ļƒ
(Ļƒ)Ļ•Ļƒ(1)(v1) Ā· Ā· Ā· Ļ•Ļƒ(k)(vk) = det(Ļ•i(vj)), v1, Ā· Ā· Ā· , vk āˆˆ V,
i.e. Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k =
Ļƒ
(Ļƒ)Ļ•Ļƒ(1) āŠ— Ā· Ā· Ā· āŠ— Ļ•Ļƒ(k).
TĆ­nh chaĆ”t. VĆ“Ć¹i moĆÆi Ļ•1, Ā· Ā· Ā· , Ļ•k, Ļ•i āˆˆ Ī›1(V ), Ī±, Ī² āˆˆ R vaĆø i = 1, Ā· Ā· Ā· , k,
(1) Ļ•1 āˆ§Ā· Ā· Ā·āˆ§(Ī±Ļ•i +Ī²Ļ•i)āˆ§Ā· Ā· Ā·āˆ§Ļ•k = Ī±Ļ•1 āˆ§Ā· Ā· Ā·āˆ§Ļ•i āˆ§Ā· Ā· Ā·āˆ§Ļ•k +Ī²Ļ•1 āˆ§Ā· Ā· Ā·āˆ§Ļ•i āˆ§Ā· Ā· Ā·āˆ§Ļ•k.
(2) Ļ•Ļƒ(1) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•Ļƒ(k) = (Ļƒ)Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k, vĆ“Ć¹i Ļƒ laĆø hoaĆ¹n vĆ².
ChĆ¶Ć¹ng minh: Suy tƶĆø tĆ­nh chaĆ”t cuĆ»a Ć±Ć²nh thĆ¶Ć¹c.
1.4 BieĆ„u dieĆ£n daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng. Cho V laĆø moƤt khoĆ¢ng gian vector
treĆ¢n R. GiaĆ» sƶƻ Ļ•1, Ā· Ā· Ā· , Ļ•n laĆø moƤt cĆ“ sĆ“Ć» cuĆ»a V āˆ—. Khi ƱoĆ¹ moƤt cĆ“ sĆ“Ć» cuĆ»a Ī›k(V ) laĆø heƤ
{Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
, 1 ā‰¤ i1  Ā· Ā· Ā·  ik ā‰¤ n}.
Nhƶ vaƤy moĆÆi Ļ‰ āˆˆ Ī›k(V ) coĆ¹ bieĆ„u dieĆ£n duy nhaĆ”t dĆ¶Ć“Ć¹i daĆÆng
Ļ‰ =
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
ai1Ā·Ā·Ā·ik
Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
III.2 DaĆÆng vi phaĆ¢n. 33
vaĆø dim Ī›k(V ) = Ck
n =
n!
(n āˆ’ k)!k!
.
ChĆ¶Ć¹ng minh: GoĆÆi {Ļ•1, Ā· Ā· Ā· , Ļ•n} laĆø cĆ“ sĆ“Ć» ƱoĆ”i ngaĆ£u cuĆ»a {e1, Ā· Ā· Ā· , en}, i.e. Ļ•i(ej) = Ī“ij
(delta Kronecker).
Cho Ļ‰ āˆˆ Ī›k(V ). Cho v1, Ā· Ā· Ā· , vk āˆˆ V . Khi ƱoĆ¹
v1 =
i1
Ļ•i1 (v1)ei1 , Ā· Ā· Ā· , vk =
ik
Ļ•ik
(vk)eik
,
Ļ‰(v1, Ā· Ā· Ā· , vk) = Ļ‰(
i1
Ļ•i1 (v1)ei1 , Ā· Ā· Ā· ,
ik
Ļ•ik
(vk)eik
)
=
i1,Ā·Ā·Ā· ,ik
Ļ•i1 (v1) Ā· Ā· Ā· Ļ•ik
(vk)Ļ‰(ei1 , Ā· Ā· Ā· , eik
)
=
i1Ā·Ā·Ā·ik Ļƒ
Ļ•iĻƒ(1)
(v1) Ā· Ā· Ā· Ļ•iĻƒ(k)
(vk) (Ļƒ)Ļ‰(ei1, Ā· Ā· Ā· , eik
)
=
i1Ā·Ā·Ā·ik
Ļ‰(ei1 , Ā· Ā· Ā· , eik
)Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
(v1, Ā· Ā· Ā· , vk)
VaƤy heƤ {Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
, 1 ā‰¤ i1  Ā· Ā· Ā·  ik ā‰¤ n} laĆø heƤ sinh. ƑeĆ„ chĆ¶Ć¹ng minh tĆ­nh ƱoƤc
laƤp tuyeĆ”n tĆ­nh, trĆ¶Ć“Ć¹c heĆ”t nhaƤn xeĆ¹t laĆø
Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
(ej1 , Ā· Ā· Ā· , ejk
) =
1 neĆ”u (i1, Ā· Ā· Ā· , ik) = (j1, Ā· Ā· Ā· , jk)
0 neĆ”u (i1, Ā· Ā· Ā· , ik) = (j1, Ā· Ā· Ā· , jk)
Suy ra neĆ”u toĆ„ hĆ“ĆÆp tuyeĆ”n tĆ­nh
Ļ‰ =
i1Ā·Ā·Ā·ik
ai1Ā·ik
Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
= 0,
thƬ theo nhaƤn xeĆ¹t treĆ¢n Ļ‰(ei1 , Ā· Ā· Ā· , eik
) = ai1Ā·Ā·Ā·ik
= 0.
ƑaĆ«c bieƤt: Ī›k(V ) = 0, khi k  n, Ī›n(V ) coĆ¹ soĆ” chieĆ u laĆø Cn
n = 1, vaĆø moĆÆi Ļ‰ āˆˆ Ī›n(V )
coĆ¹ bieĆ„u dieĆ£n Ļ‰ = aĻ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•n, vĆ“Ć¹i a āˆˆ R .
2. DAƏNG VI PHAƂN
2.1 Ć‘Ć²nh nghĆ³a. Cho U laĆø taƤp mĆ“Ć» trong Rn. MoƤt daĆÆng vi phaĆ¢n baƤc k hay k-daĆÆng vi
phaĆ¢n treĆ¢n U laĆø moƤt aĆ¹nh xaĆÆ
Ļ‰ : U ā†’ Ī›k
(Rn
).
DaĆÆng vi phaĆ¢n Ļ‰ goĆÆi laĆø thuoƤc lĆ“Ć¹p Cp neĆ”u aĆ¹nh xaĆÆ treĆ¢n thuoƤc lĆ“Ć¹p Cp.
KyĆ¹ hieƤu ā„¦k
p(U) laĆø taƤp moĆÆi k-daĆÆng vi phaĆ¢n lĆ“Ć¹p Cp treĆ¢n U, vaĆø ā„¦k(U) = ā„¦k
āˆž(U).
DeĆ£ thaĆ”y ā„¦k
p(U) coĆ¹ caĆ”u truĆ¹c khoĆ¢ng gian vector.
VĆ­ duĆÆ. Cho U āŠ‚ R3 vaĆø F : U ā†’ R3 laĆø moƤt trƶƓĆøng vector. Khi ƱoĆ¹ caĆ¹c daĆÆng vi phaĆ¢n
sau ƱƶƓĆÆc duĆøng ƱeĆ„ ƱaĆ¹nh giaĆ¹ thoĆ¢ng lƶƓĆÆng cuĆ»a F doĆÆc theo moƤt ƱƶƓĆøng hay qua moƤt maĆ«t
a) WF : U ā†’ Ī›1(R3), WF (x, y, z)(v) = F(x, y, z), v 
b) Ļ‰F : U ā†’ Ī›2(R3), Ļ‰(x, y, z)(v1, v2) = F(x, y, z), v1 Ɨ v2 .
III.2 DaĆÆng vi phaĆ¢n. 34
Cho f : U ā†’ R laĆø haĆøm lĆ“Ć¹p Cp+1. Khi ƱoĆ¹ vĆ“Ć¹i moĆÆi x āˆˆ U, f (x) : Rn ā†’ R laĆø daĆÆng
tuyeĆ”n tĆ­nh. Ta Ć±Ć²nh nghĆ³a vi phaĆ¢n cuĆ»a f laĆø 1-daĆÆng vi phaĆ¢n
df : U ā†’ Ī›1
(Rn
), x ā†’ df(x) = f (x).
XeĆ¹t haĆøm toĆÆa ƱoƤ thĆ¶Ć¹ i xi : Rn ā†’ R, (x1, Ā· Ā· Ā· , xn) ā†’ xi. Ta coĆ¹
dxi(x)(v) = xi(x)v = vi, v = (v1, Ā· Ā· Ā· , vn) āˆˆ Rn
.
VaƤy
df(x)(v) = f (x)v =
āˆ‚f
āˆ‚x1
(x)v1 + Ā· Ā· Ā· +
āˆ‚f
āˆ‚xn
(x)vn
=
āˆ‚f
āˆ‚x1
(x)dx1(x)(v) + Ā· Ā· Ā· +
āˆ‚f
āˆ‚xn
(x)dxn(x)(v).
Hay laĆø df =
n
i=1
āˆ‚f
āˆ‚xi
dxi.
2.2 BieĆ„u dieĆ£n daĆÆng vi phaĆ¢n. TĆ­ch ngoaĆÆi cuĆ»a caĆ¹c 1-vi phaĆ¢n Ļ•1, Ā· Ā· Ā· , Ļ•k āˆˆ ā„¦1(U):
(Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k)(x) = Ļ•1(x) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k(x), x āˆˆ U,
laĆø moƤt k-daĆÆng vi phaĆ¢n treĆ¢n U. Do caĆ¹c 1-daĆÆng dx1, Ā· Ā· Ā· , dxn laĆø moƤt cĆ“ sĆ“Ć» cuĆ»a ā„¦1(U),
neĆ¢n caĆ¹c k-daĆÆng vi phaĆ¢n treĆ¢n U coĆ¹ bieĆ„u dieĆ£n duy nhaĆ”t dĆ¶Ć“Ć¹i daĆÆng
Ļ‰ =
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
ai1Ā·Ā·Ā·ik
dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik
,
trong ƱoĆ¹ ai1Ā·Ā·Ā·ik
laĆø caĆ¹c haĆøm treĆ¢n U vaĆø thuoƤc lĆ“Ć¹p Cp neĆ”u Ļ‰ laĆø daĆÆng lĆ“Ć¹p Cp.
VĆ­ duĆÆ. NeĆ”u U āŠ‚ R3, thƬ ta thƶƓĆøng kyĆ¹ hieƤu caĆ¹c toĆÆa ƱoƤ laĆø (x, y, z). Khi ƱoĆ¹
CaĆ¹c 0-daĆÆng vi phaĆ¢n chĆ­nh laĆø caĆ¹c haĆøm f : U ā†’ R.
CaĆ¹c 1-daĆÆng vi phaĆ¢n coĆøn goĆÆi laĆø daĆÆng Pfaff vaĆø coĆ¹ bieĆ„u dieĆ£n Pdx + Qdy + Rdz .
CaĆ¹c 2-daĆÆng vi phaĆ¢n coĆ¹ bieĆ„u dieĆ£n Adx āˆ§ dy + Bdy āˆ§ dz + Cdz āˆ§ dx .
CaĆ¹c 3-daĆÆng vi phaĆ¢n coĆ¹ bieĆ„u dieĆ£n fdx āˆ§ dy āˆ§ dz .
BaĆøi taƤp: Cho U āŠ‚ R3 vaĆø F : U ā†’ R3, F = (P, Q, R). ChĆ¶Ć¹ng minh caĆ¹c daĆÆng vi phaĆ¢n
cho Ć“Ć» vĆ­ duĆÆ 2.1 coĆ¹ bieĆ„u dieĆ£n
a) WF = Pdx + Qdy + Rdz
b) Ļ‰F = Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy .
2.3 ToaĆ¹n tƶƻ ƱoĆ„i bieĆ”n. Cho U, V laĆø caĆ¹c taƤp mĆ“Ć» trong Rm, Rn tƶƓng Ć¶Ć¹ng. GiaĆ» sƶƻ
Ļ• : U ā†’ V, u = (u1, Ā· Ā· Ā· , um) ā†’ x = (Ļ•1(u), Ā· Ā· Ā· , Ļ•n(u)) laĆø aĆ¹nh xaĆÆ khaĆ» vi. Khi ƱoĆ¹
toaĆ¹n tƶƻ ƱoĆ„i bieĆ”n
Ļ•āˆ—
: ā„¦k
(V ) ā†’ ā„¦k
(U), Ļ‰ ā†’ Ļ•āˆ—
Ļ‰
ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau
Ļ‰ =
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
ai1Ā·Ā·Ā·ik
(x)dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik
,
Ļ•āˆ—Ļ‰(u) =
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
ai1Ā·Ā·Ā·ik
(Ļ•(u))dĻ•i1 āˆ§ Ā· Ā· Ā· āˆ§ dĻ•ik
.
III.2 DaĆÆng vi phaĆ¢n. 35
VĆ­ duĆÆ.
a) Cho Ļ• : R ā†’ R2, Ļ•(t) = (x = cos t, y = sin t) vaĆø Ļ‰(x, y) = xdy āˆ’ ydx.
Khi ƱoĆ¹ Ļ•āˆ—Ļ‰(t) = cos td(sin t) āˆ’ sin td(cos t) = dt.
b) Cho Ļ• : R2 ā†’ R2, Ļ•(r, Īø) = (x = r cos Īø, y = r sin Īø) vā€¦ Ļ‰(x, y) = dx āˆ§ dy. Khi
ƱoĆ¹
Ļ•āˆ—Ļ‰(r, Īø) = d(r cos Īø) āˆ§ d(r sin Īø)
= (cos Īødr āˆ’ r sin ĪødĪø) āˆ§ (sin Īødr + r cos ĪødĪø)
= rdr āˆ§ dĪø (do dr āˆ§ dr = dĪø āˆ§ dĪø = 0, dĪø āˆ§ dr = āˆ’dr āˆ§ dĪø).
Tƭnh chaƔt.
(1) Ļ•āˆ—(Ļ‰1 + Ļ‰2) = Ļ•āˆ—(Ļ‰1) + Ļ•āˆ—(Ļ‰2), Ļ‰1, Ļ‰2 āˆˆ ā„¦k(V ).
(2) Ļ•āˆ—(Ī³1 āˆ§ Ā· Ā· Ā· āˆ§ Ī³k) = Ļ•āˆ—(Ī³1) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•āˆ—(Ī³k), Ī³1, Ā· Ā· Ā· , Ī³k āˆˆ ā„¦1(V ).
(3) Ļ•āˆ—(dxi) = dĻ•i =
m
j=1
āˆ‚Ļ•i
āˆ‚uj
duj.
ChĆ¶Ć¹ng minh: Xem nhƶ baĆøi taƤp.
BaĆøi taƤp: Cho Ļ• : Rn ā†’ Rn khaĆ» vi. ChĆ¶Ć¹ng minh
Ļ•āˆ—
(f(x)dx1 āˆ§ Ā· Ā· Ā· āˆ§ dxn) = f(Ļ•(u)) det Ļ• (u)du1 āˆ§ Ā· Ā· Ā· āˆ§ dun.
NhaƤn xeĆ¹t. CoĆ¹ theĆ„ Ć±Ć²nh nghĆ³a toaĆ¹n tƶƻ ƱoĆ„i bieĆ”n khoĆ¢ng qua bieĆ„u dieĆ£n treĆ¢n toĆÆa ƱoƤ (i.e.
Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc heƤ toĆÆa ƱoƤ) nhƶ sau
Ļ•āˆ—
Ļ‰(u)(v1, Ā· Ā· Ā· , vk) = Ļ‰(Ļ•(u))(Ļ• (u)v1, Ā· Ā· Ā· , Ļ• (u)vk).
2.4 ToaĆ¹n tƶƻ vi phaĆ¢n. VĆ“Ć¹i moĆ£i k āˆˆ N, toaĆ¹n tƶƻ vi phaĆ¢n ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau
d : ā„¦k
(U) ā†’ ā„¦k+1
(U),
d(
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
ai1Ā·Ā·Ā·ik
dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik
) =
1ā‰¤i1Ā·Ā·Ā·ikā‰¤n
dai1Ā·Ā·Ā·ik
āˆ§ dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik
.
VĆ­ duĆÆ. VĆ“Ć¹i n = 2, kyĆ¹ hieƤu toĆÆa ƱoƤ laĆø (x, y). Khi ƱoĆ¹
d (Pdx + Qdy) = dP āˆ§ dx + dQ āˆ§ dy
=
āˆ‚P
āˆ‚x
dx +
āˆ‚P
āˆ‚y
dy āˆ§ dx +
āˆ‚Q
āˆ‚x
dx +
āˆ‚Q
āˆ‚y
dy āˆ§ dy
=
āˆ‚Q
āˆ‚x
āˆ’
āˆ‚P
āˆ‚y
dx āˆ§ dy
(ƱeĆ„ yĆ¹ laĆø dx āˆ§ dx = dy āˆ§ dy = 0, dy āˆ§ dx = āˆ’dx āˆ§ dy).
Trong R3 cho daĆÆng vi phaĆ¢n Ļ‰(x, y, z) = sin xydx + ex2+ydy + arctgxdz.
III.2 DaĆÆng vi phaĆ¢n. 36
Khi ƱoĆ¹
dĻ‰ = (d sin xy) āˆ§ dx + d(ex2+y) āˆ§ dy + d(arctgx) āˆ§ dz
= (y cos xydx + x cos xydy) āˆ§ dx + (2xex2+ydx + ex2+ydy) āˆ§ dy +
1
1 + x2
dx āˆ§ dz
= (2xex2+y āˆ’ x cos xy)dx āˆ§ dy āˆ’
1
1 + x2
dz āˆ§ dx.
BaĆøi taƤp: TĆ­nh d (P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz),
vaĆø d (P(x, y, z)dx āˆ§ dz + Q(x, y, z)dz āˆ§ dx + Q(x, y, z)dx āˆ§ dy) .
NhaƤn xeĆ¹t. NeĆ”u Ļ‰ āˆˆ ā„¦k(Rn) vĆ“Ć¹i k ā‰„ n, thƬ dĻ‰ = 0.
Tƭnh chaƔt.
(1) d(Ļ‰1 + Ļ‰2) = dĻ‰1 + dĻ‰2, āˆ€Ļ‰1, Ļ‰2 āˆˆ ā„¦k(U).
(2) d(Ī³1 āˆ§ Ī³2) = dĪ³1 āˆ§ Ī³2 āˆ’ Ī³1 āˆ§ dĪ³2, āˆ€Ī³1, Ī³2 āˆˆ ā„¦1(U)..
(3) d(dĻ‰) = 0 , i.e. d ā—¦ d = 0 .
(4) d(Ļ•āˆ—Ļ‰) = Ļ•āˆ—(dĻ‰) , i.e. dĻ•āˆ— = Ļ•āˆ—d.
ChĆ¶Ć¹ng minh: (1) laĆø roƵ raĆøng. Do (1) ta chƦ caĆ n chĆ¶Ć¹ng minh (2) khi Ī³1 = adxi, Ī³2 = bdxj.
Ta coĆ¹
d(Ī³1 āˆ§ Ī³2) = d(adxi āˆ§ bdxj) = d(abdxi āˆ§ dxj)
= d(ab) āˆ§ dxi āˆ§ dxj = (bda + adb) āˆ§ dxi āˆ§ dxj
= bda āˆ§ dxi āˆ§ dxj + adb āˆ§ dxi āˆ§ dxj = (da āˆ§ dxi) āˆ§ bdxj āˆ’ adxi āˆ§ db āˆ§ dxj
= dĪ³1 āˆ§ Ī³2 āˆ’ Ī³1 āˆ§ Ī³2.
TrĆ¶Ć“Ć¹c khi chĆ¶Ć¹ng minh (3) ƱeĆ„ ngaĆ©n goĆÆn ta kyĆ¹ hieƤu: dxI = dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik
,
vĆ“Ć¹i I = (i1, Ā· Ā· Ā· , ik) laĆø moƤt boƤ k chƦ soĆ” thuoƤc {1, Ā· Ā· Ā· n}.
Do (1) chƦ caĆ n chĆ¶Ć¹ng minh (3) khi Ļ‰ = aIdxI. Ta coĆ¹
d(dĻ‰) = d(daI āˆ§ dxI) = d
i
āˆ‚aI
āˆ‚xi
dxi āˆ§ dxI
=
i
d
āˆ‚aI
āˆ‚xi
āˆ§ dxi āˆ§ dxI =
i
ļ£«
ļ£­
j
āˆ‚2aI
āˆ‚xjāˆ‚xi
dxj
ļ£¶
ļ£ø āˆ§ dxi āˆ§ dxI
= āˆ’
i j
āˆ‚2aI
āˆ‚xiāˆ‚xj
dxi āˆ§ dxj āˆ§ dxI ( do dxi āˆ§ dxj = āˆ’dxj āˆ§ dxi)
= āˆ’d(dĻ‰) (thay ƱoĆ„i vai troĆøi, j)
VaƤy 2d(dĻ‰) = 0, suy ra (3).
CuƵng vaƤy chƦ caĆ n kieĆ„m tra (4) khi Ļ‰ = aIdxI āˆˆ ā„¦k(V ). Ta coĆ¹
d(Ļ•āˆ—Ļ‰) = d(aI ā—¦ Ļ•dĻ•I) = d(aI ā—¦ Ļ•) āˆ§ dĻ•I.
Ļ•āˆ—(dĻ‰) = Ļ•āˆ—(daI āˆ§ dxI) = Ļ•āˆ—(daI) āˆ§ Ļ•āˆ—(dyI) = Ļ•āˆ—(daI) āˆ§ dĻ•I.
CaĆ n chĆ¶Ć¹ng minh d(aI ā—¦ Ļ•) = Ļ•āˆ—(daI). ƑaĆŗng thĆ¶Ć¹c ƱuĆ¹ng laĆø do:
Ļ•āˆ—
(daI) = Ļ•āˆ—
ļ£«
ļ£­
j
āˆ‚aI
āˆ‚xj
dxj
ļ£¶
ļ£ø =
j
āˆ‚aI ā—¦ Ļ•
āˆ‚xj
dĻ•j =
j
āˆ‚aI ā—¦ Ļ•
āˆ‚xj
(
i
āˆ‚Ļ•j
āˆ‚ui
dui) = d(aIā—¦Ļ•).
III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 37
VaƤy caĆ¹c tĆ­nh chaĆ”t treĆ¢n ƱaƵ ƱƶƓĆÆc chĆ¶Ć¹ng minh.
NhaƤn xeĆ¹t. Do (4) toaĆ¹n tƶƻ d khoĆ¢ng phuĆÆ thuoƤc heƤ toĆÆa ƱoƤ.
3. BOƅ ƑEƀ POINCAREĆ™Ć¹
3.1 DaĆÆng ƱoĆ¹ vaĆø daĆÆng khĆ“Ć¹p. Cho daĆÆng vi phaĆ¢n Ļ‰ āˆˆ ā„¦k(U).
Ļ‰ goĆÆi laĆø ƱoĆ¹ng treĆ¢n U neĆ”uu dĻ‰ = 0 treĆ¢n U.
Ļ‰ goĆÆi laĆø khĆ“Ć¹p treĆ¢n U neĆ”uu toĆ n taĆÆi Ī· āˆˆ ā„¦kāˆ’1(U) sao cho Ļ‰ = dĪ·.
NhaƤn xeĆ¹t. NeĆ”u Ļ‰ khĆ“Ć¹p, thƬ Ļ‰ ƱoĆ¹ng vƬ d(dĪ·) = 0.
VĆ­ duĆÆ sau chƦ ra daĆÆng ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p: Ļ‰(x, y) =
ydx āˆ’ xdy
x2 + y2
āˆˆ ā„¦1
(R2
 0).
DaĆÆng Ļ‰ laĆø ƱoĆ¹ng, vƬ dĻ‰ =
x2 āˆ’ y2
(x2 + y2)2
dy āˆ§ dx āˆ’
y2 āˆ’ x2
(x2 + y2)2
dx āˆ§ dy = 0.
Nhƶng Ļ‰ khoĆ¢ng khĆ“Ć¹p. ThaƤt vaƤy, giaĆ» sƶƻ toĆ n taĆÆi haĆøm f āˆˆ ā„¦0(R2  0), Ļ‰ = df.
GoĆÆi Ļ•(t) = (sin t, cos t). Khi ƱoĆ¹
Ļ•āˆ—
Ļ‰ = Ļ•āˆ—
(df) = d(Ļ•āˆ—
f) = d(f ā—¦ Ļ•) = (f ā—¦ Ļ•) dt.
MaĆ«t khaĆ¹c Ļ•āˆ—Ļ‰ =
cos td(sin t) āˆ’ sin td(cos t)
sin2
t + cos2 t
= dt . VaƤy (f ā—¦ Ļ•) (t) ā‰” 1.
Suy ra f ā—¦ Ļ•(t) = t+ const. ƑieĆ u naĆøy voĆ¢ lyĆ¹ vƬ f ā—¦ Ļ• laĆø haĆøm coĆ¹ chu kyĆø ĆÆ 2Ļ€.
Khi moƤt daĆÆng Pfaff Ļ‰ = a1dx1 + Ā· Ā· Ā· + andxn āˆˆ ā„¦1(U), toĆ n taĆÆi haĆøm f āˆˆ ā„¦0(U) thoĆ»a
df = Ļ‰, thƬ f ƱƶƓĆÆc goĆÆi laĆø moƤt tĆ­ch phaĆ¢n ƱaĆ u cuĆ»a Ļ‰.
NoĆ¹i moƤt caĆ¹ch khaĆ¹c f thoĆ»a heƤ phƶƓng trƬnh vi phaĆ¢n ƱaĆÆo haĆøm rieĆ¢ng caĆ”p moƤt
āˆ‚f
āˆ‚x1
= a1, Ā· Ā· Ā· ,
āˆ‚f
āˆ‚xn
= an.
VaƤy neĆ”u Ļ‰ coĆ¹ tĆ­ch phaĆ¢n ƱaĆ u (= khaĆ» tĆ­ch = khĆ“Ć¹p), thƬ dĻ‰ = 0, i.e. caĆ¹c haĆøm a1, Ā· Ā· Ā· , an
thoĆ»a heƤ thĆ¶Ć¹c
āˆ‚aj
āˆ‚xi
=
āˆ‚ai
āˆ‚xj
vĆ“Ć¹i moĆÆi i, j = 1, Ā· Ā· Ā· , n.
TĆ­nh chaĆ”t hƬnh hoĆÆc cuĆ»a taƤp nhieĆ u khi quyeĆ”t Ć±Ć²nh baĆøi toaĆ¹n giaƵi tĆ­ch. MoƤt daĆÆng ƱoĆ¹ng
cuƵng laĆø khĆ“Ć¹p treĆ¢n U, khi taƤp U coĆ¹ tĆ­nh chaĆ”t hƬnh hoĆÆc sau:
3.2 TaƤp co ruĆ¹t ƱƶƓĆÆc. TaƤp con U trong Rn goĆÆi laĆø co ruĆ¹t ƱƶƓĆÆc veĆ  moƤt ƱieĆ„m x0 āˆˆ U
neĆ”uu toĆ n taĆÆi moƤt aĆ¹nh xaĆÆ lĆ“Ć¹p C1
h : U Ɨ [0, 1] ā†’ U, (x, t) ā†’ h(x, t)
sao cho: h(x, 0) = x0 vaĆø h(x, 1) = x, āˆ€x āˆˆ U.
VĆ­ duĆÆ. Sau ƱaĆ¢y laĆø moƤt soĆ” lĆ“Ć¹p taƤp co ruĆ¹t quan troĆÆng:
III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 38
TaƤp loĆ i: taƤp U goĆÆi laĆø loĆ i neĆ”uu āˆ€x, y āˆˆ U ƱoaĆÆn [x, y] = {x + t(y āˆ’ x) : t āˆˆ [0, 1]} āŠ‚ U.
ChaĆŗng haĆÆn Rn, hƬnh caĆ u, hƬnh hoƤp laĆø caĆ¹c taƤp loĆ i.
TaƤp hƬnh sao: taƤp U goĆÆi laĆø hƬnh sao neĆ”uu āˆƒx0 āˆˆ U : āˆ€x āˆˆ U, [x0, x] āŠ‚ U.
Trong caĆ¹c vĆ­ duĆÆ treĆ¢n aĆ¹nh xaĆÆ h(x, t) = x0 + t(x āˆ’ x0) thoĆ»a Ć‘Ć²nh nghĆ³a 3.2.
BaĆøi taƤp: RoƵ raĆøng laĆø taƤp loĆ i laĆø taƤp hƬnh sao. TƬm vĆ­ duĆÆ taƤp hƬnh sao khoĆ¢ng loĆ i, taƤp co
ruĆ¹t ƱƶƓĆÆc khoĆ¢ng hƬnh sao.
3.3 Ć‘Ć²nh lyĆ¹ (BoĆ„ ƱeĆ  PoincareĆ¹). GiaĆ» sƶƻ U laĆø taƤp mĆ“Ć» trong Rn, vaĆø U co ruĆ¹t ƱƶƓĆÆc. Khi
ƱoĆ¹ moĆÆi daĆÆng ƱoĆ¹ng treĆ¢n U laĆø khĆ“Ć¹p, i.e.
Ļ‰ āˆˆ ā„¦k
(U), dĻ‰ = 0 ā‡” āˆƒĪ· āˆˆ ā„¦kāˆ’1
(U), Ļ‰ = dĪ·.
ChĆ¶Ć¹ng minh: GoĆÆi Jt : U ā†’ U Ɨ [0, 1], Jt(x) = (x, t). Cho k = 1, 2, Ā· Ā· Ā· . TrĆ¶Ć“Ć¹c heĆ”t ta
xaĆ¢y dƶĆÆng aĆ¹nh xaĆÆ tuyeĆ”n tĆ­nh K : ā„¦k(U Ɨ [0, 1]) ā†’ ā„¦kāˆ’1(U), thoaĆ»
(āˆ—) Kd + dK = Jāˆ—
1 āˆ’ Jāˆ—
0
MoĆ£i phaĆ n tƶƻ cuĆ»a ā„¦k(U Ɨ [0, 1]) laĆø toĆ„ng caĆ¹c daĆÆng coĆ¹ moƤt trong hai daĆÆng sau:
(1) a(x, t)dxI hay (2) b(x, t)dt āˆ§ dxJ , vĆ“Ć¹i I = (i1, Ā· Ā· Ā· , ik), J = (j1, Ā· Ā· Ā· , jkāˆ’1).
VƬ vaƤy chƦ caĆ n Ć±Ć²nh nghĆ³a K cho tƶĆøng daĆÆng coĆ¹ daĆÆng treĆ¢n. Ta Ć±Ć²nh nghĆ³a
K(a(x, t)dxI) = 0
K(b(x, t)dt āˆ§ dxJ ) =
1
0
b(x, t)dt dxJ
KieĆ„m tra ƱieĆ u kieƤn (āˆ—) vĆ“Ć¹i daĆÆng (1):
(Kd + dK)(adxI) = K(da āˆ§ dxI) + d(0) = (
1
0
āˆ‚a
āˆ‚t
dt)dxI
= (a(x, 1) āˆ’ a(x, 0)dxI = (Jāˆ—
1 āˆ’ Jāˆ—
0 )(adxI).
KieĆ„m tra ƱieĆ u kieƤn (āˆ—) vĆ“Ć¹i daĆÆng (2):
(Kd + dK)(bdt āˆ§ dxJ ) = K(db āˆ§ dt āˆ§ dxJ ) + d((
1
0
bdt) āˆ§ dxJ )
= K(
i
āˆ‚b
āˆ‚xi
dxi āˆ§ dt āˆ§ dxJ ) + d((
1
0
bdt) āˆ§ dxJ )
= āˆ’
1
0
(
i
āˆ‚b
āˆ‚xi
)dt āˆ§ dxi āˆ§ dxJ + d((
1
0
bdt) āˆ§ dxJ )
= āˆ’d((
1
0
bdt) āˆ§ dxJ ) + d((
1
0
bdt) āˆ§ dxJ ) = 0.
(Jāˆ—
1 āˆ’ Jāˆ—
0 )(bdt āˆ§ dxJ ) = b(x, 1)d(1) āˆ§ dxJ āˆ’ b(x, 0)d(0) āˆ§ dxJ = 0.
BaĆ¢y giĆ“ĆøƵ cho h : U Ɨ [0, 1] ā†’ U laĆø aĆ¹nh xaĆÆ co ruĆ¹t veĆ  x0. GiaĆ» sƶƻ Ļ‰ āˆˆ ā„¦k(U) ƱoĆ¹ng, i.e.
dĻ‰ = 0. Ta chĆ¶Ć¹ng minh Ī· = Khāˆ—Ļ‰ laĆø (k āˆ’ 1)-daĆÆng thoaĆ» dĪ· = Ļ‰.
Do (āˆ—) ta coĆ¹
(Kd + dK)hāˆ—Ļ‰ = (Jāˆ—
1 āˆ’ Jāˆ—
0 )hāˆ—Ļ‰.
ā‡” Kdhāˆ—Ļ‰ + dKhāˆ—Ļ‰ = (h ā—¦ J1)āˆ—Ļ‰ āˆ’ (h ā—¦ J0)āˆ—Ļ‰.
ā‡” Khāˆ—dĻ‰ + dKhāˆ—Ļ‰ = (idU )āˆ—Ļ‰ āˆ’ (x0)āˆ—Ļ‰.
ā‡” 0 + dKhāˆ—Ļ‰ = Ļ‰ + 0.
III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 39
VaƤy Ī· = Khāˆ—Ļ‰ laĆø daĆÆng caĆ n tƬm.
HeƤ quĆ»a. NeĆ”u U laĆø taƤp mĆ“Ć» co ruĆ¹t ƱƶƓĆÆc, Ļ‰1, Ļ‰2 āˆˆ ā„¦k(U), vaĆø dĻ‰1 = dĻ‰2, thƬ toĆ n taĆÆi
Ī· āˆˆ ā„¦kāˆ’1 sao cho dĪ· = Ļ‰1 āˆ’ Ļ‰2.
VĆ­ duĆÆ. TaƤp R2  0 laĆø khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc vƬ toĆ n taĆÆi daĆÆng vi phaĆ¢n ƱoĆ¹ng maĆø khoĆ¢ng khĆ“Ć¹p
treĆ¢n ƱoĆ¹ (xem vĆ­ duĆÆ Ć“Ć» 3.1).
NhaƤn xeĆ¹t. TƶĆø heƤ quĆ»a treĆ¢n, ta thaĆ”y Ī· thoaĆ» boĆ„ ƱeĆ  PoincareĆ¹ laĆø khoĆ¢ng duy nhaĆ”t.
CoĆ¹ theĆ„ dƶĆÆa vaĆøo chĆ¶Ć¹ng minh cuĆ»a Ć±Ć²nh lyĆ¹ ƱeĆ„ xaĆ¢y dƶĆÆng Ī· ƱeĆ„ dĪ· = Ļ‰: Ī· = Khāˆ—Ļ‰.
VĆ­ duĆÆ. Cho Ļ‰ = (x2 āˆ’ 2yz)dx + (y2 āˆ’ 2zx)dy + (z2 āˆ’ 2xy)dz āˆˆ ā„¦1(R3).
DeĆ£ kieĆ„m tra dĻ‰ = 0. ƑeĆ„ tƬm f sao cho df = Ļ‰, nhƶ sau:
CaĆ¹ch 1: VƬ R3 laĆø taƤp co ruĆ¹t veĆ  0 vĆ“Ć¹i h(x, y, z, t) = (tx, ty, tz). Theo Ć±Ć²nh nghĆ³a cuĆ»a
caĆ¹c toaĆ¹n tƶƻ, ta coĆ¹:
hāˆ—Ļ‰ = t2(x2 āˆ’ 2yz)(xdt + tdx) + t2(y2 āˆ’ 2zx)(ydt + tdy) + t2(z2 āˆ’ 2xy)(zdt + tdz).
Khāˆ—Ļ‰ =
1
0
t2
(x2
āˆ’ 2yz)xdt +
1
0
t2
(y2
āˆ’ 2zx)ydt +
1
0
t2
(z2
āˆ’ 2xy)zdt.
Suy ra f = Khāˆ—Ļ‰ =
1
3
(x3
+y3
+z3
āˆ’6xyz) laĆø moƤt tĆ­ch phaĆ¢n ƱaĆ u cuĆ»a Ļ‰, i.e. df = Ļ‰.
CaĆ¹ch 2: HaĆøm f thoaĆ» df = Ļ‰, coĆ¹ theĆ„ vieĆ”t laĆÆi
(1)
āˆ‚f
āˆ‚x
= x2 āˆ’ 2yz
(2)
āˆ‚f
āˆ‚y
= y2 āˆ’ 2zx
(3)
āˆ‚f
āˆ‚z
= z2 āˆ’ 2xy
ƑeĆ„ tƬm f, ta laĆ n lƶƓĆÆt tĆ­ch phaĆ¢n theo tƶĆøng bieĆ”n:
TƶĆø (1) suy ra f =
x3
3
āˆ’ 2xyz + Ļ•(y, z)
TƶĆø (2) suy ra
āˆ‚Ļ•
āˆ‚y
= y2
. VaƤy Ļ• =
y3
3
+ Ļˆ(z).
TƶĆø (3) suy ra
āˆ‚Ļˆ
āˆ‚z
= z2
. VaƤy Ļˆ =
z3
3
+ const.
Suy ra f =
1
3
(x3
+ y3
+ z3
) āˆ’ 2xyz+ const
(CaĆ¹ch 2 coĆ¹ theĆ„ laĆøm cho caĆ¹c mieĆ n hƬnh hoƤp).
IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n
1. ƑƒNH HƖƔƙNG
1.1 TrƶƓĆøng vector. Cho M āŠ‚ Rn
. MoƤt trƶƓĆøng vector treĆ¢n M laĆø aĆ¹nh xaĆÆ
F : M ā†’ Rn
, F(x) = (F1(x), Ā· Ā· Ā· , Fn(x))
VeĆ  maĆ«t hƬnh hoĆÆc xem trƶƓĆøng vector nhƶ hoĆÆ vector F(x) coĆ¹ ƱieĆ„m goĆ”c ƱaĆ«t taĆÆi x.
1.2 Ć‘Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆøng cong. ƑƶƓĆøng cong trĆ“n C āŠ‚ R3, goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng Ļ„ neĆ”uu
Ļ„ : C ā†’ R3 laĆø trƶƓĆøng vector lieĆ¢n tuĆÆc vaĆø tieĆ”p xuĆ¹c vĆ“Ć¹i C, i.e. Ļ„(x) tieĆ”p xuĆ¹c vĆ“Ć¹i C taĆÆi
x, vĆ“Ć¹i moĆÆi x āˆˆ C.
X
'
rrrrrā€°
t
Ļ„(x)
x
C
VĆ­ duĆÆ. ƑƶƓĆøng troĆøn ƱƓn vĆ² coĆ¹ theĆ„ tham soĆ” hoaĆ¹ bĆ“Ć»i Ļ•(t) = (cos t, sin t), t āˆˆ (0, 2Ļ€).
Khi ƱoĆ¹ trƶƓĆøng vector tieĆ”p xuĆ¹c Ļ• (t) = (āˆ’ sin t, cos t) xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim
ƱoƠng hoƠ.
1.3 Ć‘Ć²nh hĆ¶Ć“Ć¹ng maĆ«t. Cho S āŠ‚ R3 laĆø maĆ«t cong trĆ“n. Ta noĆ¹i S laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc
neĆ”uu toĆ n taĆÆi trƶƓĆøng vector phaĆ¹p lieĆ¢n tuĆÆc treĆ¢n S, i.e. toĆ n taĆÆi N : S ā†’ R3, lieĆ¢n tuĆÆc vaĆø
N(x) āŠ„ TxS, āˆ€x āˆˆ S.
Khi ƱoĆ¹ S goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p N.
sx
N(x)
f
f
f
ffw
EĀ 
Ā 
Ā 
Ā 
Ā 
S
IV.1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng. 42
VĆ­ duĆÆ.
a) MaĆ«t caĆ u laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc vaĆø coĆ¹ theĆ„ choĆÆn moƤt trong hai hĆ¶Ć“Ć¹ng: hĆ¶Ć“Ć¹ng phaĆ¹p trong
hay hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi. CuĆÆ theĆ„ khi tham soĆ” hoaĆ¹ maĆ«t caĆ u bĆ“Ć»i
Ļ•(Ļ†, Īø) = (cos Ļ† sin Īø, sin Ļ† sin Īø, cos Īø), (Ļ†, Īø) āˆˆ (0, 2Ļ€) Ɨ (0, Ļ€).
VĆ“Ć¹i tham soĆ” hoaĆ¹ ƱoĆ¹, caĆ¹c vector tieĆ”p xuĆ¹c vĆ“Ć¹i caĆ¹c ƱƶƓĆøng toĆÆa ƱoƤ laĆø
āˆ‚Ļ•
āˆ‚Ļ†
= (āˆ’ sin Ļ† sin Īø, cos Ļ† sin Īø, 0),
āˆ‚Ļ•
āˆ‚Īø
= (āˆ’ cos Ļ† cos Īø, sin Ļ† cos Īø, āˆ’ sin Īø)
DeĆ£ kieĆ„m tra hĆ¶Ć“Ć¹ng phaĆ¹p N =
āˆ‚Ļ•
āˆ‚Ļ†
Ɨ
āˆ‚Ļ•
āˆ‚Īø
laĆø hĆ¶Ć“Ć¹ng phaĆ¹p trong.
b) LaĆ¹ M ĀØobius cho ta moƤt vĆ­ duĆÆ veĆ  maĆ«t khoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc.
1.4 Ć‘Ć²nh hĆ¶Ć“Ć¹ng khoĆ¢ng gian vector.
DƶĆÆa vaĆøo trƶĆÆc quan: treĆ¢n R coĆ¹ theĆ„ Ć±Ć²nh hai hĆ¶Ć“Ć¹ng (dƶƓng neĆ”u cuĆøng hĆ¶Ć“Ć¹ng vĆ“Ć¹i chieĆ u
taĆŖng, aĆ¢m neĆ”u ngƶƓĆÆc laĆÆi). Trong R2 coĆ¹ theĆ„ Ć±Ć²nh hai hĆ¶Ć“Ć¹ng (thuaƤn hay ngƶƓĆÆc chieĆ u
kim ƱoĆ ng hoĆ ). Ta coĆ¹ Ć±Ć²nh nghĆ³a sau.
Cho V laĆø khoĆ¢ng gian vector k chieĆ u treĆ¢n R. Trong ƑaĆÆi soĆ” tuyeĆ”n tĆ­nh ta ƱaƵ bieĆ”t laĆø
neĆ”u (v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) laĆø caĆ¹c cĆ“ sĆ“Ć» cuĆ»a V , thƬ toĆ n taĆÆi ma traƤn chuyeĆ„n cĆ“
sĆ“Ć» P = (pij)kƗk sao cho wj = i pijvi.
Ta noĆ¹i (v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) cuĆøng hĆ¶Ć“Ć¹ng neĆ”uu det P  0,
(v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) ngƶƓĆÆc hĆ¶Ć“Ć¹ng neĆ”uu det P  0.
Nhƶ vaƤy treĆ¢n taƤp caĆ¹c cĆ“ sĆ“Ć» cuĆ»a V ƱƶƓĆÆc chia thaĆønh hai lĆ“Ć¹p tƶƓng ƱƶƓng, moĆ£i lĆ“Ć¹p
goĆ m caĆ¹c cĆ“ sĆ“Ć» cuĆøng hĆ¶Ć“Ć¹ng vĆ“Ć¹i nhau. LĆ“Ć¹p cuĆønh hĆ¶Ć“Ć¹ng vĆ“Ć¹i (v1, Ā· Ā· Ā· , vk) kyĆ¹ hieƤu laĆø
[v1, Ā· Ā· Ā· , vk], lĆ“Ć¹p caĆ¹c cĆ“ sĆ“ ngƶƓĆÆc hĆ¶Ć“Ć¹ng kyĆ¹ hieƤu laĆø āˆ’[v1, Ā· Ā· Ā· , vk].
KhoĆ¢ng gian V goĆÆi laĆø ƱaƵ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ neĆ”u ta choĆÆn moƤt hĆ¶Ć“Ć¹ng Āµ = [v1, Ā· Ā· Ā· , vk].
VĆ­ duĆÆ. Trong Rk cĆ“ sĆ“Ć» chĆ­nh taĆ©c xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c. Theo ngoĆ¢n ngƶƵ trƶĆÆc quan,
hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R laĆø hĆ¶Ć“Ć¹ng dƶƓng, hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R2 laĆø hĆ¶Ć“Ć¹ng ngƶƓĆÆc
chieĆ u kim ƱoĆ ng hoĆ , coĆøn hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R3 laĆø hĆ¶Ć“Ć¹ng tam dieƤn thuaƤn.
E
ā†’e1
E
ā†’e1
T
ā†’e2
$'
E
ā†’e1
T
ā†’e3
Ā 
Ā Ā 
ā†’e2
'
HĆ¶Ć“Ć¹ng chĆ­nh taĆ©c cuĆ»a R1, R2, R3
1.5 Ć‘Ć²nh hĆ¶Ć“Ć¹ng Ʊa taĆÆp. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u.
MoƤt hoĆÆ hĆ¶Ć“Ć¹ng Āµ = {Āµx : Āµx laĆø moƤt hĆ¶Ć“Ć¹ng treĆ¢n TxM, x āˆˆ M} goĆÆi laĆø tƶƓng thĆ­ch neĆ”uu
chuĆ¹ng bieĆ”n ƱoĆ„i moƤt caĆ¹ch lieĆ¢n tuĆÆc theo nghĆ³a sau: vĆ“Ć¹i moĆÆi a āˆˆ M, toĆ n taĆÆi tham soĆ” hoaĆ¹
(Ļ•, U) taĆÆi a sao cho [D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u)] = ĀµĻ•(u), vĆ“Ć¹i moĆÆi u āˆˆ U.
IV.1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng. 43
M goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc neĆ”uu toĆ n taĆÆi moƤt hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch treĆ¢n M.
M goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ neĆ”uu M Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc vaĆø hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch Āµ ƱƶƓĆÆc
choĆÆn. Khi ƱoĆ¹ moƤt tham soĆ” hoaĆ¹ nhƶ treĆ¢n goĆÆi laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ.
NhaƤn xeĆ¹t. ƑoĆ”i vĆ“Ć¹i maĆ«t cong trong R3, vieƤc xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng nhƶ Ć±Ć²nh nghĆ³a treĆ¢n tƶƓng
ƱƶƓng vĆ“Ć¹i vieƤc xaĆ¹c Ć±Ć²nh trƶƓĆøng vector phaĆ¹p lieĆ¢n tuĆÆc. Ta coĆ¹ N = D1Ļ•Ć—D2Ļ• laĆø trƶƓĆøng
phaĆ¹p vector.
1.6. HĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n bĆ“Ćø.
MeƤnh ƱeĆ . Cho M laĆø Ʊa taĆÆp khaĆ» vi coĆ¹ bĆ“Ćø āˆ‚M. NeĆ”u M Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, thƬ āˆ‚M cuƵng
Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc.
ChĆ¶Ć¹ng minh: GƦa sƶƻ O laĆø hoĆÆ tham soĆ” hoaĆ¹ cuĆ»a M xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ.
VĆ“Ć¹i moĆÆi (Ļ•, U) āˆˆ O, goĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi
ƱoĆ¹ hoĆÆ {(Ļ• ā—¦ i, iāˆ’1(U)) : (Ļ•, U) āˆˆ O, U Hk = āˆ…} laĆø hoĆÆ tham soĆ” hoaĆ¹ āˆ‚M.
VĆ“Ć¹i moĆ£i x āˆˆ āˆ‚M, vaĆø (Ļ•, U) āˆˆ O laĆø hoĆÆ tham soĆ” hoaĆ¹ taĆÆi x, Ć±Ć²nh nghĆ³a
x = [D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)], x = Ļ•(u).
Ta seƵ chĆ¶Ć¹ng minh x khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ (Ļ•, U) āˆˆ O, vaĆø do vaƤy hoĆÆ āˆ‚M,
= { x : x = Ļ•(u) āˆˆ āˆ‚M, (Ļ•, U) āˆˆ O } laĆø moƤt hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch treĆ¢n āˆ‚M.
NeĆ”u (Ļ•, U), (Ļˆ, W) āˆˆ O laĆø caĆ¹c tham soĆ” hoaĆ¹ taĆÆi x, thƬ Ļˆ = Ļ• ā—¦ h vĆ“Ć¹i det h  0. ToĆÆa
ƱoƤ thĆ¶Ć¹ k cuĆ»a h thoaĆ»:
hk(w1, Ā· Ā· Ā· , wkāˆ’1, 0) = 0, va hk(w1, Ā· Ā· Ā· , wkāˆ’1, wk)  0 khi wk  0.
Suy ra vĆ“Ć¹i w = (w1, Ā· Ā· Ā· , wkāˆ’1, 0), doĆøng cuoĆ”i cuĆ»a ma traƤn h (w) laĆø
(D1hk(w) = 0 Ā· Ā· Ā· Dkāˆ’1hk(w) = 0 Dkhk(w)  0).
Do ƱoĆ¹ det h (w) = det(h ā—¦ i) (w1, Ā· Ā· Ā· , wkāˆ’1)Dkhk(w)  0.
VaƤy det(h ā—¦ i) (w1, Ā· Ā· Ā· , wkāˆ’1)  0. MaĆø (h ā—¦ i) (w) chĆ­nh laĆø ma traƤn chuyeĆ„n cĆ“ sĆ“Ć»
D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u) sang cĆ“ sĆ“Ć» D1Ļˆ(w), Ā· Ā· Ā· , Dkāˆ’1Ļˆ(w) trong khoĆ¢ng gian Txāˆ‚M
(x = Ļˆ(w) = Ļ•(u)), neĆ¢n
[D1Ļˆ(w), Ā· Ā· Ā· , Dkāˆ’1Ļˆ(w)] = [D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)].
Do vaƤy x ƱƶƓĆÆc Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµx.
Ć‘Ć²nh nghĆ³a. Cho M laĆø Ʊa taĆÆp Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ. Khi ƱoĆ¹ treĆ¢n āˆ‚M ta xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m
sinh āˆ‚Āµ nhƶ sau:
VĆ“Ć¹i moĆÆi x āˆˆ āˆ‚M, goĆÆi (Ļ•, U) laĆø tham soĆ” hoaĆ¹ taĆÆi x cuĆ»a M xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, i.e.
Āµx = [D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u)]. Khi ƱoĆ¹ Ć±Ć²nh nghĆ³a
āˆ‚Āµx = (āˆ’1)k
[D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)].
(DaĆ”u (āˆ’1)k ƱeĆ„ thuaƤn tieƤn cho coĆ¢ng thĆ¶Ć¹c Stokes sau naĆøy)
NhaƤn xeĆ¹t. GoĆÆi Ļ• laĆø tham soĆ” hoaĆ¹ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ taĆÆi x = Ļ•(u). VƬ Txāˆ‚M laĆø khoĆ¢ng gian
IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 44
vector con cuĆ»a TxM coĆ¹ ƱoĆ”i chieĆ u 1, neĆ¢n vĆ“Ć¹i moĆ£i v āˆˆ TxM  Txāˆ‚M xaĆ»y ra moƤt trong
hai trƶƓĆøng hĆ“ĆÆp:
(1) v hĆ¶Ć“Ć¹ng vaĆøo trong M, neĆ”u v āˆˆ Ļ• (u)(Hk
+)
(2) v hĆ¶Ć“Ć¹ng ra ngoaĆøi M, neĆ”u ngƶƓĆÆc laĆÆi trƶƓĆøng hĆ“ĆÆp (1).
VeĆ  maĆ«t trƶĆÆc quan, ta nhaƤn bieĆ”t hĆ¶Ć“Ć¹ng treĆ¢n āˆ‚M laĆø hĆ¶Ć“Ć¹ng caĆ»m sinh nhƶ sau:
Cho v1, Ā· Ā· Ā· , vkāˆ’1 laĆø cĆ“ sĆ“Ć» Txāˆ‚M. Khi ƱoĆ¹ neĆ”u v āˆˆ TxM laĆø vector hĆ¶Ć“Ć¹ng vaĆøo trong M
vaĆø xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ = [v1, Ā· Ā· Ā· , vkāˆ’1, v], thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n bĆ“Ćø laĆø
āˆ‚Āµx = (āˆ’1)k
[v1, Ā· Ā· Ā· , vkāˆ’1]
s
x
EĀ 
Ā 
Ā 
v

'
Ā©
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
ChaĆŗng haĆÆn, neĆ”u Hk Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n āˆ‚Hk = Rkāˆ’1 Ɨ 0
truĆøng vĆ“Ć¹i hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c treĆ¢n Rkāˆ’1 neĆ”u k chaĆ¼n, vaĆø ngƶƓĆÆc vĆ“Ć¹i hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c ƱoĆ¹
neƔu k leƻ.
VĆ­ duĆÆ. TrƶĆÆc quan hĆ“n nƶƵƵa:
NeĆ”u mieĆ n M trong R2 Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c hay laĆø maĆ«t cong trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng
phaĆ¹p N, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n ƱƶƓĆøng cong āˆ‚M laĆø hĆ¶Ć“Ć¹ng ā€˜Ć±i doĆÆc theo ƱoĆ¹ mieĆ n Ć“Ć»
phĆ­a traĆ¹iā€™.
NeĆ”u M laĆø mieĆ n trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n maĆ«t cong
āˆ‚M laĆø hĆ¶Ć“Ć¹ng ā€˜phaĆ¹p tuyeĆ”n ngoaĆøiā€™.
2. TƍCH PHAƂN DAƏNG VI PHAƂN
TrĆ¶Ć“Ć¹c heĆ”t laĆø moƤt vaĆøi gĆ“ĆÆi yĆ¹ cho vieƤc xaĆ¢y ƱƶĆÆng tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng vector hay cuĆ»a
daĆÆng vi phaĆ¢n.
Cho F = (F1, F2, F3) laĆø moƤt trƶƓĆøng vector trong R3.
ā€¢ VĆ“Ć¹i v āˆˆ R3 laĆø vector goĆ”c taĆÆi x, giaĆ¹ trĆ² WF (x)(v) = F(x), v , goĆÆi laĆø coĆ¢ng cuĆ»a
F(x) doĆÆc theo v.
Ta coĆ¹ 1-daĆÆng vi phaĆ¢n tƶƓng Ć¶Ć¹ng: WF = F1dx1 + F2dx2 + F3dx3.
Cho C laĆø moƤt ƱƶƓĆøng cong Ć±Ć²nh hĆ¶Ć“Ć¹ng trong R3. Ta caĆ n xaĆ¢y ƱƶĆÆng tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng
F doĆÆc theo C, hay laĆø tĆ­ch phaĆ¢n cuĆ»a daĆÆng vi phaĆ¢n WF treĆ¢n C:
C
WF =
C
F1dx1 + F2dx2 + F3dx3.
ā€¢ VĆ“Ć¹i v1, v2 āˆˆ R3 laĆø caĆ¹c vector goĆ”c taĆÆi x, giaĆ¹ trĆ² Ļ‰F (x)(v1, v2) = F(x), v1 Ɨ v2 ,
goĆÆi laĆø thoĆ¢ng lƶƓĆÆng cuĆ»a F(x) qua maĆ«t bƬnh haĆønh āˆ†S taĆÆo bĆ“Ć»i v1, v2.
Ta coĆ¹ 2-daĆÆng vi phaĆ¢n tƶƓng Ć¶Ć¹ng Ļ‰F = F1dx2 āˆ§ dx3 + F2dx3 āˆ§ dx1 + F3dx1 āˆ§ dx2.
IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 45
Cho S laĆø maĆ«t Ć±Ć²nh hĆ¶Ć“Ć¹ng trong R3. Ta caĆ n khaĆ¹i nieƤm tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng vector F
qua maĆ«t S, hay laĆø tĆ­ch phaĆ¢n cuĆ»a daĆÆng vi phaĆ¢n Ļ‰F treĆ¢n S:
S
Ļ‰F =
S
F1dx2 āˆ§ dx3 + F2dx3 āˆ§ dx1 + F3dx1 āˆ§ dx2
2.1 Ć‘Ć²nh nghĆ³a. Cho U laĆø taƤp mĆ“Ć» Rk, vaĆø Ļ‰ āˆˆ ā„¦k(U).
Khi ƱoĆ¹ Ļ‰ = f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk. Ć‘Ć²nh nghĆ³a
U
Ļ‰ =
U
f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk =
U
f(u)du1 Ā· Ā· Ā· duk.
neĆ”u tĆ­ch phaĆ¢n veĆ” phaĆ»i toĆ n taĆÆi.
2.2 TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ trong
Rn. Cho Ļ‰ āˆˆ ā„¦k(V ), vĆ“i V laĆø taƤp mĆ“Ć» chĆ¶Ć¹a M. Sau ƱaĆ¢y ta xaĆ¢y dƶĆÆng tĆ­ch phaĆ¢n cuĆ»a
daĆÆng Ļ‰ treĆ¢n M (coĆøn goĆÆi laĆø tĆ­ch phaĆ¢n loaĆÆi 2)
M
Ļ‰
NeĆ”u M = Ļ•(U) vĆ“Ć¹i (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, thƬ Ć±Ć²nh nghĆ³a
M
Ļ‰ =
U
Ļ•āˆ—
Ļ‰.
TrƶƓĆøng hĆ“ĆÆp toĆ„ng quaĆ¹t, khi M cho bĆ“Ć»i moƤt hoĆÆ tham soĆ” hoaĆ¹ O = {(Ļ•i, Ui) : i āˆˆ I} xaĆ¹c
Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, ta duĆøng kyƵ thuaƤt phaĆ¢n hoaĆÆch ƱƓn vĆ². GoĆÆi Ī˜ = {Īøi : i āˆˆ I} laĆø phaĆ¢n
hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i O. Ć‘Ć²nh nghĆ³a
M
Ļ‰ =
iāˆˆI Ļ•i(Ui)
ĪøiĻ‰ =
iāˆˆI Ui
Ļ•āˆ—
i (ĪøiĻ‰) ,
vĆ“Ć¹i giaĆ» thieĆ”t veĆ” phaĆ»i toĆ n taĆÆi. ChaĆŗng haĆÆn khi M compact vaĆø Ļ‰ lieĆ¢n tuĆÆc.
Khi k = 1, tĆ­ch phaĆ¢n coĆ¹ daĆÆng
M i
Fidxi, vaĆø goĆÆi laĆø tĆ­ch phaĆ¢n ƱƶƓĆøng.
Khi k = 2, tĆ­ch phaĆ¢n coĆ¹ daĆÆng
M ij
Fijdxi āˆ§ dxj, vaĆø goĆÆi laĆø tĆ­ch phaĆ¢n maĆ«t.
NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a treĆ¢n khoĆ¢ng phuĆÆ thuoƤc caĆ¹ch choĆÆn hoĆÆ tham soĆ” xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ
vaĆø phaĆ¢n hoaĆÆch ƱƓn vĆ².
ChĆ¶Ć¹ng minh: Khi hai tham soĆ” hoĆ¹a (Ļ•, U) vaĆø (Ļˆ, W), cuĆøng xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹n Āµ, ta coĆ¹
Ļˆ = Ļ• ā—¦ h, vĆ“Ć¹i h laĆø vi phoĆ¢i coĆ¹ det Jh  0. NeĆ”u Ļ•āˆ—Ļ‰ = f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk, thƬ
hāˆ—(f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk) = hāˆ—Ļ•āˆ—Ļ‰ = (Ļ• ā—¦ h)āˆ—Ļ‰ = Ļˆāˆ—Ļ‰.
Theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n, ta coĆ¹
U
Ļ•āˆ—
Ļ‰ =
U
f =
W
f ā—¦ ā—¦h det Jh =
W
hāˆ—
(f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk) =
W
Ļˆāˆ—
Ļ‰.
VaƤy Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh cuĆøng hĆ¶Ć“Ć¹ng.
NeĆ”u Ī˜ = {Īøj : j āˆˆ J} laĆø moƤt phaĆ¢n hoaĆÆch ƱƓn vĆ² khaĆ¹c cuĆ»a M. Khi ƱoĆ¹
j M
ĪøjĻ‰ =
j M
(
i
Īøi)ĪøjĻ‰ =
i,j M
ĪøiĪøjĻ‰ =
i,j M
ĪøjĪøiĻ‰ =
i M
(
j
Īøj)ĪøiĻ‰
i M
ĪøiĻ‰.
IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 46
VaƤy Ć±Ć²nh nghĆ³a cuƵng khoĆ¢ng phuĆÆ thuoƤc phaĆ¢n hoaĆÆch ƱƓn vĆ².
2.3 TĆ­nh chaĆ”t. Cho M laĆø Ʊa taĆÆp k chieĆ u Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ trong taƤp mĆ“Ć» V . Khi ƱoĆ¹
(1)
M
: ā„¦k
(V ) ā†’ R laĆø tuyeĆ”n tĆ­nh.
(2)
M
Ļ‰ = āˆ’
āˆ’M
Ļ‰ , vĆ“Ć¹i kyĆ¹ hieƤu āˆ’M ƱeĆ„ chƦ M Ć±Ć²nh hĆ¶Ć“Ć¹ng āˆ’Āµ.
ChĆ¶Ć¹ng minh: (1) suy tƶĆø tĆ­nh tuyeĆ”n tĆ­nh cuĆ»a Ui
vaĆø Ļ•āˆ—
i .
(2) XeĆ¹t pheĆ¹p ƱoĆ„i bieĆ”n h(u1, Ā· Ā· Ā· , uk) = (āˆ’u1, Ā· Ā· Ā· , uk). Khi ƱoĆ¹ det h = āˆ’1. NeĆ”u
(Ļ•, U) laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, thƬ (Ļ• ā—¦ h, hāˆ’1(U)) laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh
hĆ¶Ć“Ć¹ngāˆ’Āµ. TƶĆø ƱoĆ¹ suy ra vĆ“Ć¹i moĆÆi phaĆ¢n hoaĆÆch ƱƓn vĆ² Ī˜ phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ tham soĆ” hoaĆ¹,
ta coĆ¹
āˆ’M
Ļ‰ =
ĪøāˆˆĪ˜ hāˆ’1(U)
(Ļ• ā—¦ h)āˆ—
ĪøĻ‰ =
ĪøāˆˆĪ˜
(āˆ’
U
Ļ•āˆ—
ĪøĻ‰) = āˆ’
M
Ļ‰.
VĆ­ duĆÆ.
a) Cho C laĆø ƱƶƓĆøng cong trĆ“n, cho bĆ“Ć»i tham soĆ” hoĆ¹a Ļ• : I ā†’ Rn, Ć±Ć²nh hĆ¶Ć“Ć¹ng theo chieĆ u
taĆŖng cuĆ»a tham soĆ”. Khi ƱoĆ¹
C i
Fidxi =
I i
Fi ā—¦ Ļ•dĻ•i =
I
(
i
Fi ā—¦ Ļ•(t)Ļ•i(t))dt.
ChaĆŗng haĆÆn, neĆ”u ƱƶƓĆøng troĆøn ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ , thƬ
x2+y2=1
ydx āˆ’ xdy
x2 + y2
=
2Ļ€
0
sin td(cos t) āˆ’ cos td(sin t)
cos2 t + sin2
t
= āˆ’
2Ļ€
0
dt = āˆ’2Ļ€.
b) Cho S laĆø maĆ«t caĆ u ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p trong, thƬ vĆ“Ć¹i tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh
hĆ¶Ć“Ć¹ng tƶƓng Ć¶Ć¹ng, ta coĆ¹
S
xdy āˆ§ dz =
[0,2Ļ€]Ɨ[0,Ļ€]
cos Ļ† sin Īød(sin Ļ† sin Īø) āˆ§ d(cos Īø)
=
[0,2Ļ€]Ɨ[0,Ļ€]
cos Ļ† sin Īø(cos Ļ† sin ĪødĻ† + sin Ļ† cos ĪødĪø) āˆ§ d(āˆ’ sin ĪødĪø)
=
[0,2Ļ€]Ɨ[0,Ļ€]
āˆ’ cos2
Ļ† sin3
ĪødĻ† āˆ§ dĪø =?
2.4 Quan heƤ giƶƵa tĆ­ch phaĆ¢n loaĆÆi 1 vaĆø loaĆÆi 2.
Cho F = (P, Q, R) laĆø trƶƓĆøng vector lĆ“Ć¹p C1 treĆ¢n moƤt taƤp mĆ“Ć» V āŠ‚ R3.
(1) Cho C āŠ‚ V laĆø ƱƶƓĆøng cong kĆ­n, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn vĆ²
T = (cos Ī±, cos Ī², cos Ī³). Khi ƱoĆ¹
C
Pdx + Qdy + Rdz =
C
 F, T  dl =
C
(P cos Ī± + Q cos Ī² + R cos Ī³)dl.
(2) Cho S āŠ‚ V laĆø maĆ«t trĆ“n, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng phaĆ¹p vector ƱƓn vĆ² N =
(cos Ī±, cos Ī², cos Ī³). Khi ƱoĆ¹
S
Pdyāˆ§dz+Qdzāˆ§dx+Rdxāˆ§dy =
S
 F, N  dS =
S
(P cos Ī±+Q cos Ī²+R cos Ī³)dS.
IV.3 CoĆ¢ng thƶc Stokes 47
ChĆ¶Ć¹ng minh: Nhƶ phaĆ n gĆ“ĆÆi yĆ¹ ƱaĆ u tieĆ”t, ta coĆ¹:
(1) VĆ“Ć¹i moĆ£i v āˆˆ R3, goĆÆi T laĆø vector chƦ phƶƓng ƱƓn vĆ² cuĆ»a v. Khi ƱoĆ¹ 1-daĆÆng
WF (v) = F, v  , coĆ¹
BieĆ„u dieĆ£n 1: WF = Pdx + Qdy + Rdz.
BieĆ„u dieĆ£n 2: WF (v) = F, T  v = F, T  dl(v).
VaƤy neĆ”u C laĆø ƱƶƓĆøng cong trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn vĆ² T,
thƬ
C
WF =
C
 F, T  dl.
TƶĆø ƱoĆ¹ suy ra (1).
(2) VĆ“Ć¹i v1, v2 āˆˆ R3, goĆÆi N laĆø vector ƱƓn vĆ² chƦ phƶƓng v1 Ɨ v2. Khi ƱoĆ¹ 2-daĆÆng vi
phaĆ¢n Ļ‰F (v1, v2) = F, v1 Ɨ v2 , coĆ¹
BieĆ„u dieĆ£n 1: Ļ‰F = Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy.
BieĆ„u dieĆ£n 2: Ļ‰F (v1, v2) = F, N  v1 Ɨ v2 = F, N  dS(v1, v2).
VaƤy neĆ”u S laĆø maĆ«t cong Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector phaĆ¹p ƱƓn vĆ² N, thƬ
S
Ļ‰F =  F, N  dS.
TƶĆø ƱoĆ¹ suy ra (2).
3. COƂNG THƖƙC STOKES
3.1 Ć‘Ć²nh lyĆ¹ (CoĆ¢ng thĆ¶Ć¹c Stokes). Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u, Ć±Ć²nh hĆ¶Ć“Ć¹ng, compact
trong taƤp mĆ“Ć» V āŠ‚ Rn, vĆ“Ć¹i bĆ“Ćø āˆ‚M Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh. Khi ƱoĆ¹
M
dĻ‰ =
āˆ‚M
Ļ‰, āˆ€Ļ‰ āˆˆ ā„¦kāˆ’1
(V ).
ChĆ¶Ć¹ng minh: GiaĆ» sƶƻ M Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ vaĆø āˆ‚Āµ laĆø hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n āˆ‚M. Cho
{(Ļ•i, Ui) : i āˆˆ I} laĆø tham soĆ” hoaĆ¹ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ cuĆ»a M. KhoĆ¢ng giaĆ»m toĆ„ng quaĆ¹t, giaĆ» sƶƻ
Ui chĆ¶Ć¹a trong moƤt hƬnh hoƤp Ai.
GoĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi ƱoĆ¹ hoĆÆ {(Ļ•i ā—¦i, iāˆ’1(Ui)) :
i āˆˆ I }, vĆ“Ć¹i I = {i āˆˆ I : Ui āˆ© āˆ‚Hk = āˆ…}, laĆø hoĆÆ tham soĆ” hoaĆ¹ āˆ‚M Ć±Ć²nh hĆ¶Ć“Ć¹ng (āˆ’1)kāˆ‚Āµ.
NeĆ”u {Īøi : i āˆˆ I} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ Ć±aƵ cho, thƬ
M
dĻ‰ =
M
d(
iāˆˆI
ĪøiĻ‰) =
iāˆˆI Ļ•i(Uiāˆ©Hk)
dĪøiĻ‰.
āˆ‚M
Ļ‰ =
āˆ‚M
(
iāˆˆI
ĪøiĻ‰) =
iāˆˆI Ļ•i(Uiāˆ©āˆ‚Hk)
ĪøiĻ‰.
ƑeĆ„ cho goĆÆn, ƱaĆ«t Ļ• = Ļ•i, U = Ui, A = Ai = [Ī±1, Ī²1] Ɨ Ā· Ā· Ā· Ɨ [Ī±k, Ī²k]. Ta caĆ n chĆ¶Ć¹ng
minh:
(1) NeĆ”u U āˆ© āˆ‚Hk = āˆ…, i.e. i āˆˆ I  I , thƬ
Ļ•(U)
dĻ‰ = 0.
(2) NeĆ”u U āˆ© āˆ‚Hk = āˆ…, i.e. i āˆˆ I , thƬ
Ļ•(Uāˆ©Hk)
dĻ‰ = (āˆ’1)k
Ļ•(Uāˆ©āˆ‚Hk)
Ļ‰.
IV.3 CoĆ¢ng thƶc Stokes 48
GoĆÆi Ļ•āˆ—Ļ‰ =
k
j=1
aj(u1, Ā· Ā· Ā· , uk)du1 āˆ§ Ā· Ā· Ā· āˆ§ duj āˆ§ Ā· Ā· Ā· āˆ§ duk āˆˆ ā„¦kāˆ’1
(U).
Khi ƱoĆ¹ xem Ļ•āˆ—Ļ‰ āˆˆ ā„¦kāˆ’1(A) baĆØng caĆ¹ch ƱaĆ«t aj(u) = 0 khi u āˆˆ U. Ta coĆ¹
(Ļ• ā—¦ i)āˆ—Ļ‰ = ak(u1, Ā· Ā· Ā· , ukāˆ’1, 0)du1 āˆ§ Ā· Ā· Ā· āˆ§ dukāˆ’1.
Ļ•āˆ—(dĻ‰) =
k
j=1
daj āˆ§ du1 āˆ§ Ā· Ā· Ā· duj Ā· Ā· Ā· āˆ§ duk
=
k
j=1
(āˆ’1)jāˆ’1 āˆ‚aj
āˆ‚uj
du1 āˆ§ Ā· Ā· Ā· āˆ§ duk.
ƑoĆ”i vĆ“Ć¹i trƶƓĆøng hĆ“ĆÆp (1), ta coĆ¹
Ļ•(U)
dĻ‰ =
U
Ļ•āˆ—
(dĻ‰) =
A
k
j=1
(āˆ’1)jāˆ’1 āˆ‚aj
āˆ‚uj
du1 āˆ§ Ā· Ā· Ā· āˆ§ duk
=
j l=j
[Ī±l,Ī²l]
(aj(Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· ) āˆ’ aj(Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· ))du1 Ā· Ā· Ā· duj Ā· Ā· Ā· duk
= 0.
(ƑaĆŗng thĆ¶Ć¹c thĆ¶Ć¹ ba suy tƶĆø coĆ¢ng thĆ¶Ć¹c Fubini vaĆø coĆ¢ng thĆ¶Ć¹c Newton-Leibniz, ƱaĆŗng thĆ¶Ć¹c
cuoĆ”i laĆø do (u1, Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· , uk), (u1, Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· , uk) āˆˆ U neĆ¢n caĆ¹c giaĆ¹ trĆ² cuĆ»a aj taĆÆi
ƱoĆ¹ trieƤt tieĆ¢u).
ƑoĆ”i vĆ“Ć¹i trƶƓĆøng hĆ“ĆÆp (2), ta coĆ¹
Ļ•(Uāˆ©Hk)
dĻ‰ =
Uāˆ©Hk
k
j=1
(āˆ’1)jāˆ’1 āˆ‚aj
āˆ‚uj
du1 āˆ§ Ā· Ā· Ā· āˆ§ duk
=
Aāˆ©Hk
k
j=1
(āˆ’1)jāˆ’1 āˆ‚aj
āˆ‚uj
du1 āˆ§ Ā· Ā· Ā· āˆ§ duk
=
j
(āˆ’1)jāˆ’1
(
[Ī±1,Ī²1]ƗĀ·Ā·Ā·Ć—[0,Ī²k]
āˆ‚aj
āˆ‚uj
du1 āˆ§ Ā· Ā· Ā· āˆ§ duk).
Khi j = k,
[Ī±j,Ī²j]
āˆ‚aj
āˆ‚uj
duj = aj(u1, Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· , uk) āˆ’ aj(u1, Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· , uk) = 0.
Khi j = k,
[0,Ī²k]
āˆ‚ak
āˆ‚uk
duk = ak(u1, Ā· Ā· Ā· , Ī²k) āˆ’ ak(u1, Ā· Ā· Ā· , 0) = āˆ’ak(u1, Ā· Ā· Ā· , 0).
VaƤy theo coĆ¢ng thĆ¶Ć¹c Fubini, ta coĆ¹
Ļ•(Uāˆ©Hk)
dĻ‰ = (āˆ’1)k
j=k
[Ī±j,Ī²j]
ak(u1, Ā· Ā· Ā· , 0)du1 Ā· Ā· Ā· dukāˆ’1.
MaĆ«t khaĆ¹c
Ļ•(Uāˆ©āˆ‚Hk)
Ļ‰ =
Aāˆ©Rkāˆ’1Ɨ0
ak(u1, Ā· Ā· Ā· , 0)du1 Ā· Ā· Ā· dukāˆ’1.
TƶĆø ƱoĆ¹ suy ra coĆ¢ng thĆ¶Ć¹c caĆ n chĆ¶Ć¹ng minh.
ChuĆ¹ yĆ¹. NeĆ”u M khoĆ¢ng compact coĆ¢ng thĆ¶Ć¹c khoĆ¢ng ƱuĆ¹ng. ChaĆŗng haĆÆn, M laĆø khoaĆ»ng mĆ“Ć»
IV.3 CoĆ¢ng thƶc Stokes 49
trong R, Ļ‰(x) = xdx.
3.2 CaĆ¹c coĆ¢ng thĆ¶Ć¹c coĆ„ ƱieĆ„n. Sau ƱaĆ¢y laĆø caĆ¹c heƤ quĆ»a cuĆ»a Ć±Ć²nh lyĆ¹ treĆ¢n:
CoĆ¢ng thĆ¶Ć¹c Newton-Leibniz. Cho V laĆø taƤp mĆ“Ć» trong Rn, F : V ā†’ R thuoƤc lĆ“Ć¹p C1
vaĆø Ļ• : [a, b] ā†’ V laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong trĆ“n. Khi ƱoĆ¹
Ļ•([a,b])
dF = F(Ļ•(b)) āˆ’ F(Ļ•(a)).
CoĆ¢ng thĆ¶Ć¹c Green. Cho D āŠ‚ R2 laĆø mieĆ n compact, coĆ¹ bĆ“Ćø C = āˆ‚D Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc
chieĆ u kim ƱoĆ ng hoĆ . Cho P, Q laĆø caĆ¹c haĆøm lĆ“Ć¹p C1 treĆ¢n taƤp mĆ“Ć» chĆ¶Ć¹a D. Khi ƱoĆ¹
D
(
āˆ‚Q
āˆ‚x
āˆ’
āˆ‚P
āˆ‚y
)dxdy =
C
Pdx + Qdy.
CoĆ¢ng thĆ¶Ć¹c Stokes coĆ„ ƱieĆ„n. Cho S āŠ‚ R3 laĆø maĆ«t cong trĆ“n Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p N, coĆ¹ bĆ“Ćø
āˆ‚S = C laĆø ƱƶƓĆøng cong kĆ­n Ć±Ć²nh hĆ¶Ć“Ć¹ng sao cho mieĆ n phĆ­a traĆ¹i. Cho P, Q, R caĆ¹c haĆøm
lĆ“Ć¹p C1 treĆ¢n moƤt taƤp mĆ“Ć» chĆ¶Ć¹a S. Khi ƱoĆ¹
S
(
āˆ‚Q
āˆ‚x
āˆ’
āˆ‚P
āˆ‚y
)dxāˆ§dy+(
āˆ‚R
āˆ‚y
āˆ’
āˆ‚Q
āˆ‚z
)dyāˆ§dz+(
āˆ‚P
āˆ‚z
āˆ’
āˆ‚R
āˆ‚x
)dzāˆ§dx =
C
Pdx+Qdy+Rdz.
CoĆ¢ng thĆ¶Ć¹c Gauss-Ostrogradski. Cho V āŠ‚ R3 laĆø mieĆ n compact, coĆ¹ bĆ“ĆøƵ āˆ‚V = S laĆø maĆ«t
trĆ“n Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi. Cho P, Q, R laĆø caĆ¹c haĆøm lĆ“Ć¹p C1 treĆ¢n moƤt mieĆ n mĆ“Ć» chĆ¶Ć¹a
V . Khi ƱoĆ¹
V
(
āˆ‚P
āˆ‚x
+
āˆ‚Q
āˆ‚y
+
āˆ‚R
āˆ‚z
)dxdydz =
S
Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy.
VĆ­ duĆÆ.
a) DieƤn tĆ­ch mieĆ n D giĆ“Ć¹i haĆÆn bĆ“Ć»i ƱƶƓĆøng cong kĆ­n C trong R2:
D
dxdy =
C
xdy = āˆ’
C
ydx =
1
2 C
(xdy āˆ’ ydx).
b) TheĆ„ tĆ­ch mieĆ n V giĆ“Ć¹i haĆÆn bĆ“Ć»i maĆ«t cong kĆ­n S trong R3:
V
dxdydz =
S
xdy āˆ§ dz =
S
ydz āˆ§ dx =
S
zdx āˆ§ dy
=
1
3
(
S
xdy āˆ§ dz +
S
ydz āˆ§ dx +
S
zdx āˆ§ dy)
3.3 MeƤnh ƱeĆ . GƦa sƶƻ U laĆø taƤp mĆ“Ć», co ruĆ¹t ƱƶƓĆÆc trong Rn. Cho Ļ‰ =
n
i=1
aidxi āˆˆ ā„¦1
(U).
Khi ƱoĆ¹ caĆ¹c ƱieĆ u sau tƶƓng ƱƶƓng:
(1) Ļ‰ laĆø khĆ“Ć¹p, i.e. toĆ n taĆÆi f āˆˆ C1(U), sao cho df = Ļ‰.
(2) Ļ‰ laĆø ƱoĆ¹ng, i.e. dĻ‰ = 0.
IV.3 CoĆ¢ng thƶc Stokes 50
(3)
āˆ‚ai
āˆ‚xi
=
āˆ‚ai
āˆ‚xj
, vĆ“Ć¹i moĆÆi i, j.
(4)
C
Ļ‰ = 0, vĆ“Ć¹i moĆÆi ƱƶƓĆøng cong kĆ­n C āŠ‚ U.
ChĆ¶Ć¹ng minh: Suy tƶĆø boĆ„ ƱeĆ  PoincareĆ¹ vaĆø coĆ¢ng thĆ¶Ć¹c Stokes. (BaĆøi taƤp)
VĆ­ duĆÆ. TaƤp R2  {0} khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc vƬ treĆ¢n ƱoĆ¹ coĆ¹ daĆÆng
xdy āˆ’ ydx
x2 + y2
ƱoĆ¹ng, nhƶng
tĆ­ch phaĆ¢n treĆ¢n ƱƶƓĆøng troĆøn laĆø 2Ļ€ = 0.
BaĆøi taƤp: ChĆ¶Ć¹ng minh Rn  {0} khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc baĆØng caĆ¹ch xeĆ¹t daĆÆng
n
i=1
(āˆ’1)i xi
x n/2
dx1 āˆ§ Ā· Ā· Ā· dxi Ā· Ā· Ā· āˆ§ dxn.
(trong ƱoĆ¹ kyĆ¹ hieƤu dxi ƱeĆ„ chƦ dxi khoĆ¢ng coĆ¹ maĆ«t trong bieĆ„u thĆ¶Ć¹c.)
3.4 Ɩƙng duĆÆng vaĆøo giaĆ»i tĆ­ch vector.
CaĆ¹c toaĆ¹n tƶƻ grad, rot, div: Trong R3 vĆ“Ć¹i cĆ“ sĆ“Ć» chĆ­nh taĆ©c e1, e2, e3 vaĆø U laĆø taƤp mĆ“Ć»
trong R3.
KyĆ¹ hieƤu āˆ‡ =
āˆ‚
āˆ‚x1
e1 +
āˆ‚
āˆ‚x2
e2 +
āˆ‚
āˆ‚x3
e3, goĆÆi laĆø toaĆ¹n tƶƻ nabla.
Cho f : U ā†’ R laĆø haĆøm khaĆ» vi. TrƶƓĆøng gradient cuĆ»a f, ƱƶƓĆÆc Ć±Ć²nh nghĆ³a:
grad f = āˆ‡f =
āˆ‚f
āˆ‚x1
e1 +
āˆ‚f
āˆ‚x2
e2 +
āˆ‚f
āˆ‚x3
e3.
Cho F = F1e1 + F2e2 + F3e3 laĆø trƶƓĆøng vector khaĆ» vi treĆ¢n U. TrƶƓĆøng xoaĆ©n cuĆ»a F,
ƱƶƓĆÆc kyĆ¹ hieƤu vaĆø Ć±Ć²nh nghĆ³a
rot F = āˆ‡ Ɨ F =
e1 e2 e3
āˆ‚
āˆ‚x1
āˆ‚
āˆ‚x2
āˆ‚
āˆ‚x3
F1 F2 F3
HaĆøm nguoĆ n cuĆ»a trƶƓĆøng F, ƱƶƓĆÆc kyĆ¹ hieƤu vaĆø Ć±Ć²nh nghĆ³a:
div F = āˆ‡, F =
āˆ‚F1
āˆ‚x1
+
āˆ‚F2
āˆ‚x2
+
āˆ‚F3
āˆ‚x3
.
Quan heƤ vĆ“Ć¹i toaĆ¹n tƶƻ vi phaĆ¢n. Ć‘Ć²nh nghĆ³a caĆ¹c ƱaĆŗng caĆ”u:
h1 : X (U) ā†’ ā„¦1(U), h2(F1e1 + F2e2 + F3e3) = F1dx1 + F2dx2 + F3dx3.
h2 : X (U) ā†’ ā„¦2(U), h2(F1e1+F2e2+F3e3) = F1dx2āˆ§dx3+F2dx3āˆ§dx1+F3dx1āˆ§dx2.
h3 : Cāˆž(U) ā†’ ā„¦3(U), h3(f) = fdx1 āˆ§ dx2 āˆ§ dx3.
IV.3 CoĆ¢ng thƶc Stokes 51
Khi ƱoĆ¹ bieĆ„u ƱoĆ  sau giao hoaĆ¹n
Cāˆž(U)
grad
ā†’ X (U)
rot
ā†’ X (U)
div
ā†’ Cāˆž(U)
ā†“ id ā†“ h1 ā†“ h2 ā†“ h3
ā„¦0(U)
d
ā†’ ā„¦1(U)
d
ā†’ ā„¦2(U)
d
ā†’ ā„¦3(U)
nghĆ³a laĆø ta coĆ¹: h1 ā—¦ grad = d ā—¦ id, h2 ā—¦ rot = d ā—¦ h1, h3 ā—¦ div = d ā—¦ h2.
ChĆ¶Ć¹ng minh: Xem nhƶ baĆøi taƤp
HeƤ quĆ»a. TƶĆø d ā—¦ d = 0, suy ra rot ā—¦ grad = 0, div ā—¦ rot = 0.
3.5 CoĆ¢ng thĆ¶Ć¹c Stokes cho tĆ­ch phaĆ¢n loaĆÆi 1. Cho F laĆø moƤt trƶƓĆøng vector khaĆ» vi trong
R3.
(1) GiaĆ» sƶƻ S laĆø maĆ«t cong compact trong R3, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector phaĆ¹p ƱƓn vĆ²
N, coĆ¹ bĆ“Ćø āˆ‚S = C laĆø ƱƶƓĆøng cong Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn
vĆ² T sao cho mieĆ n S naĆØm phĆ­a traĆ¹i. Khi ƱoĆ¹
C
 F, T  dl =
S
 rot F, N  dS.
(2) GiaĆ» sƶƻ V laĆø mieĆ n giĆ“Ć¹i noƤi trong R3 coĆ¹ bĆ“Ćø āˆ‚V = S laĆø maĆ«t cong Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i
trƶƓĆøng vector phaĆ¹p ƱƓn vĆ² N hĆ¶Ć“Ć¹ng ra phĆ­a ngoaĆøi. Khi ƱoĆ¹
S
 F, N  dS =
V
div FdV.
ChĆ¶Ć¹ng minh: Suy tƶĆø coĆ¢ng thĆ¶Ć¹c Stokes vaĆø moĆ”i quan heƤ giƶƵa tĆ­ch phaĆ¢n loaĆÆi 1 vaĆø loaĆÆi 2.
53
BĀµi tƋp giĀ¶i tƝch 3
1 BĀµi tƋp tich phĀ©n phĆ“ thuĆ©c tham sĆØ
1. TƝnh cĀøc giĆ­i hĀ¹n
1) lim
tā†’0
1
āˆ’1
āˆš
x2 + t2dx 2) lim
tā†’0
1+t
t
dx
1 + x2 + t2
3) lim
nā†’āˆž
1
0
dx
1 + (1 + x/n)n
4) lim
tā†’0
1+t
t
ln(x + |t|)
ln(x2 + |t2|
5) lim
tā†’0
1
0
x
t2
eāˆ’x2/t2
dx 6) lim
tā†’āˆž
Ļ€/2
0
eāˆ’t sin x
dx.
2. KhĀ¶o sĀøt tƝnh liĀŖn tĆ“c cƱa hĀµm I(t) =
1
0
tf(x)
x2 + t2
, trong Ā®Ć£ hĀµm f(x) liĀŖn tĆ“c
vĀµ d-Ā¬ng trĀŖn Ā®oĀ¹n [0, 1].
3.
1) TƗm Ā®Ā¹o hĀµm cƱa cĀøc tƝch phĀ©n eliptic
E(t) =
Ļ€/2
0
1 āˆ’ t2 sin2
xdx F(t) =
Ļ€/2
0
dx
1 āˆ’ t2 sin2
x
dx.
2) HĀ·y biƓu diƔn E , F qua cĀøc hĀµm E, F.
3) ChĆøng minh rĀ»nh E thĆ”a ph-Ā¬ng trƗnh vi phĀ©n
E (t) +
1
t
E (t) +
1
1 āˆ’ t2
E(t) = 0.
4. GiĀ¶ sƶ hĀµm f(x, y) cĆ£ cĀøc Ā®Ā¹o hĀµm riĀŖng liĀŖn tĆ“c. TƝnh I (t) nƕu
1) I(t) =
t
0
f(x + t, x āˆ’ t)dx 2) I(t) =
t2
0
x+t
xāˆ’t
sin(x2
+ y2
āˆ’ t2
)dy dx.
5. ChĆøng minh rĀ»ng hĀµm Bessel vĆ­i cĀøc chƘ sĆØ nguyĀŖn
In(t) =
1
Ļ€
Ļ€
0
cos(nx āˆ’ t sin x)dx,
54
thĆ”a mĀ·n ph-Ā¬ng trƗnh Bessel
t2
y + ty + (t2
āˆ’ n2
)y = 0.
6. Cho hĀµm Ļ•(x) thuĆ©c lĆ­p C1
) trĀŖn Ā®oĀ¹n [0, a] vĀµ I(t) =
t
0
Ļ•(x)dx
āˆš
t āˆ’ x
. ChĆøng
minh rĀ»ng, vĆ­i mƤi t āˆˆ (0, a) ta cĆ£
I (t) =
t
0
Ļ•(x)dx
āˆš
t āˆ’ x
+
Ļ•(0)
āˆš
t
.
7. BĀ»ng cĀøch lƊy Ā®Ā¹o hĀµm theo tham sĆØ, hĀ·y tƝnh
1) I(t) =
Ļ€/2
0
ln(t2
sin2
x + cos2
x)dx 2) I(t) =
Ļ€
0
ln(1 āˆ’ 2t cos x + t2
)dx.
8. ChĆøng tĆ” rĀ»ng, hĀµm I(t) =
āˆž
0
cos x
1 + (x + t)2
dx. khĀ¶ vi liĀŖn tĆ“c trĀŖn R.
9. ChĆøng minh cĀ«ng thĆøc Frulanhi
āˆž
0
f(ax) āˆ’ f(bx)
x
dx = f(0) ln
b
a
, (a  0, b  0),
trong Ā®Ć£ f(x) lĀµ hĀµm liĀŖn tĆ“c vĀµ tƝch phĀ©n
āˆž
a
f(x)
x
cĆ£ nghƜa vĆ­i mƤi a  0.
10. XƐt tƝch phĀ©n Dirichlet D(t) =
āˆž
0
sin(tx)
x
dx. ChĆøng minh rĀ»ng
1) D(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [a, b] khĀ«ng chĆøa 0.
2) D(t) hĆ©i tĆ“ khĀ«ng Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [a, b] chĆøa 0.
11. XƐt tƝch phĀ©n I(t) =
āˆž
0
eāˆ’tx sin x
x
dx. ChĆøng minh rĀ»ng
1) I(t) liĀŖn tĆ“c trĀŖn [0, āˆž)
2) I(t) khĀ¶ vi vĀµ I (t) = āˆ’
1
1 + t2
.
3) I(t) = āˆ’ arctan(t) +
Ļ€
2
.
4) D(1) = I(0) = lim
tā†’0
I(t) =
Ļ€
2
, trong Ā®Ć£ D(t) lĀµ tƝch phĀ©n Dirichlet.
55
12. ChĆøng minh rĀ»ng D(t) =
āˆž
0
sin(tx)
x
dx =
Ļ€
2
sgnt.
13. BĀ»ng cĀøch lƊy Ā®Ā¹o hĀµm theo tham sĆØ, hĀ·y tƝnh
1)I(t) =
āˆž
0
eāˆ’tx2
āˆ’ eāˆ’sx2
x
dx, (t, s  0) 2) I(t) =
āˆž
0
eāˆ’tx
āˆ’ eāˆ’sx
x
2
dx, (t, s  0)
3)I(t) =
1
0
ln(1 āˆ’ t2
x2
)
x2
āˆš
1 āˆ’ x2
dx, (|t| ā‰¤ 1) 4)I(t) =
āˆž
0
eāˆ’ax
āˆ’ eāˆ’bx
x
sin txdx, (a, b  0).
14. Sƶ dĆ“ng tƝch phĀ©n Dirichlet vĀµ cĀ«ng thĆøc Frulanhi Ā®Ć“ tƗm giĀø trƞ cƱa cĀøc tƝch
phĀ©n sau
1)
āˆž
0
sin ax cos bx
x
dx 2)
āˆž
0
sin ax sin bx
x
dx 3)
āˆž
0
sin4
ax
x2
4)
1
0
sin3
ax
x
dx, (|t| ā‰¤ 1) 5)
āˆž
0
sin ax
x
2
dx 6)
āˆž
0
sin4
ax āˆ’ sin4
bx
x
dx.
15. Sƶ dĆ“ng cĀøc tƝch phĀ©n Euler Ā®Ć“ tƝnh cĀøc tƝch phĀ©n sau
1)
a
0
x2
āˆš
a2 āˆ’ x2dx, (a  0) 2)
āˆž
0
4
āˆš
x
(1 + x)2
dx 3)
āˆž
0
dx
1 + x3
4)
1
0
dx
n
āˆš
1 āˆ’ xn
dx, (n  1) 5)
Ļ€/2
0
sin6
x cos4
xdx 6)
āˆž
0
x2n
eāˆ’x2
dx.
16. HĀ·y biƓu diƔn cĀøc tƝch phĀ©n sau qua cĀøc tƝch phĀ©n Euler
1)
āˆž
0
xmāˆ’1
1 + xn
(n  0) 2)
āˆž
0
xm
(a + bxn)p
dx (a, b, n  0) 3)
āˆž
0
xm
eāˆ’xn dx
4)
Ļ€/2
0
tann
xdx 5)
āˆž
0
xp
eāˆ’ax
ln xdx (a  0) 6)
āˆž
0
ln2
x
1 + x4
dx.
17. ChĆøng minh cĀøc cĀ«ng thĆøc Euler (Ī»  0, p  0, āˆ’Ļ€/2  Ī±  Ļ€/2).
1)
āˆž
0
xpāˆ’1
eāˆ’Ī»x cosĪ±
cos(Ī»x sin Ī±)dx =
Ī“(p)
Ī»p
cos Ī±p.
2)
āˆž
0
xpāˆ’1
eāˆ’Ī»x cos Ī±
sin(Ī»x sin Ī±)dx =
Ī“(p)
Ī»p
sin Ī±p.
BaĆøi taƤp 56
II. TĆ­ch phaĆ¢n haĆøm treĆ¢n Ʊa taĆÆp
1. Cho f : Rn
ā†’ Rm. ChĆ¶Ć¹ng minh f khaĆ» vi lĆ“Ć¹p Cp khi vaĆø chƦ khi ƱoĆ  thĆ² f laĆø Ʊa
taĆÆp khaĆ» vi lĆ“Ć¹p Cp trong Rn Ɨ Rm.
2. Cho F : Rn ā†’ Rm laĆø aĆ¹nh xaĆÆ khaĆ» vi. GoĆÆi M laĆø taƤp con cuĆ»a Rm cho bĆ“Ć»i heƤ
phƶƓng trƬnh F(x) = 0. ChĆ¶Ć¹ng minh neĆ”u rank F (x) = m vĆ“Ć¹i moĆÆi x āˆˆ M, thƬ
M laĆø Ʊa taĆÆp khaĆ» vi n āˆ’ m chieĆ u.
3. Cho Ī± : (a, b) ā†’ R2 laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong trĆ“n, Ī±(t) = (x(t), y(t)) vaĆø
y(t)  0. ChĆ¶Ć¹ng minh maĆ«t troĆøn xoay cho bĆ“Ć»i tham soĆ” hoaĆ¹:
Ļ†(t, Īø) = (x(t), y(t) cos Īø, y(t) sin Īø), (t, Īø) āˆˆ (a, b) Ɨ (0, 2Ļ€),
laĆø moƤt Ʊa taĆÆp khaĆ» vi trong R3.
ChĆ¶Ć¹ng minh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ laĆø vuoĆ¢ng goĆ¹c vĆ“Ć¹i nhau. TƬm vector phaĆ¹p vaĆø
maĆ«t phaĆŗng tieĆ”p xuĆ¹c.
Aƙp duĆÆng: haƵy tham soĆ” hoaĆ¹ maĆ«t truĆÆ, caĆ u, xuyeĆ”n.
4. Cho Ī± : (a, b) ā†’ R2 laĆø tham soĆ” hoaĆ¹ moƤt ƱƶƓĆøng cong trĆ“n vaĆø p = (p1, p2, p3) āˆˆ R3
vĆ“Ć¹i p3 = 0. ChĆ¶Ć¹ng minh maĆ«t noĆ¹n cho bĆ“Ć»i tham soĆ” hoaĆ¹:
Ļ†(t, s) = (1 āˆ’ s)p + s(Ī±(t), 0), (t, s) āˆˆ (a, b) Ɨ (0, 1),
laĆø Ʊa taĆÆp khaĆ» vi trong R3. XaĆ¹c Ć±Ć²nh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ, vector phaĆ¹p, maĆ«t
phaĆŗng tieĆ”p xuĆ¹c.
5. KieĆ„m tra caĆ¹c taƤp cho bĆ“Ć»i caĆ¹c phƶƓng trƬnh hay tham soĆ” sau laĆø Ʊa taĆÆp khoĆ¢ng.
Trong R2: a) x = a(1 āˆ’ sin t), y = a(1 āˆ’ cos t) b) x = t2, y = t3.
Trong R3: a) x = a cos t, y = a sin t, z = bt (a, b laĆø caĆ¹ haĆØng soĆ” dƶƓng)
b) x =
āˆš
2 cos 2t, y = sin 2t, z = sin 2t
c)
x2
a2
+
y2
b2
+
z2
c2
= 1 d)
x2
a2
+
y2
b2
āˆ’
z2
c2
= Ā±1 e)
x2
a2
+
y2
b2
āˆ’ z = 1
f) x = (b + a cos Īø) cos Ļ•, y = (b + a cos Īø) sin Ļ•, z = a sin Īø
g) x2 + y2 = z2
y2 = ax
h) x2 + y2 = a2
x + y + z = 0
TƬm phƶƓng trƬnh ƱƶƓĆøng thaĆŗng hay maĆ«t phaĆŗng tieĆ”p xuĆ¹c cho caĆ¹c Ʊa taĆÆp treĆ¢n.
6. KieĆ„m tra caĆ¹c phƶƓng trƬnh vaĆø baĆ”t phƶƓng trƬnh sau xaĆ¹c Ć±Ć²nh Ʊa taĆÆp coĆ¹ bĆ“Ćø trong
R3:
a) x2 + y2 + z2 = 1, z ā‰„ 0 b) x2 + y2 ā‰¤ a2, x + y + z = 0
c) x2 + y2 + z2 ā‰¤ a2, x + z = 0 d) z2 ā‰¤ y2 + x2, z = a.
7. ChĆ¶Ć¹ng minh trong R3, maĆ«t caĆ u x2 + y2 + z2 = a2 khoĆ¢ng theĆ„ cho bĆ“Ć»i moƤt tham
soĆ” hoaĆ¹, nhƶng coĆ¹ theĆ„ cho bĆ“Ć»i hai tham soĆ” hoaĆ¹.
8. XaĆ¹c Ć±Ć²nh phƶƓng trƬnh cuĆ»a khoĆ¢ng gian tieĆ”p xuĆ¹c taĆÆi (x0, f(x0)) cho Ʊa taĆÆp Ć“Ć» baĆøi
taƤp 1.
BaĆøi taƤp 57
9. PhaĆ¹c hoĆÆa caĆ¹c maĆ«t, roĆ i xaĆ¹c Ć±Ć²nh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ, vector phaĆ¹p, khoĆ¢ng gian
tieĆ”p xuĆ¹c cuĆ»a caĆ¹c maĆ«t cho bĆ“Ć»i tham soĆ” hoaĆ¹::
a) Ļ•(t, Īø) = (t cos Īø, t sin Īø, Īø). (maĆ«t Helicoid).
b) Ļ•(t, Īø) = ((1 + t cos Īø
2 ) cos Īø, (1 + t cos Īø
2 ) sin Īø, t sin Īø
2), |t| 
1
4
, Īø āˆˆ (0, 2Ļ€).
(laĆ¹ M ĀØobius)
10. XeĆ¹t Ʊa taĆÆp M cho Ć“Ć» baĆøi taƤp 2. GoĆÆi F = (F1, Ā· Ā· Ā· , Fm).
a) ChĆ¶Ć¹ng minh khi ƱoĆ¹ khoĆ¢ng gian tieĆ”p xuĆ¹c cuĆ»a M laĆø
TxM = ker F (x) = {v āˆˆ Rn
:  grad F1(x), v = Ā· Ā· Ā· = grad Fm(x), v = 0 }.
b) Cho f : Rn ā†’ R. ChĆ¶Ć¹ng minh neĆ”u f ƱaĆÆt cƶĆÆc trĆ² vĆ“Ć¹i ƱieĆ u kieƤn x āˆˆ M = {x :
g(x) = 0} taĆÆi a, thƬ toĆ n taĆÆi Ī»1, Ā· Ā· Ā· , Ī»m āˆˆ R, sao cho
grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a).
11. XeĆ¹t cƶĆÆc trĆ² haĆøm:
a) f(x, y) = ax + by, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1.
b) f(x, y, z) = x āˆ’ 2y + 2z, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 + z2 = 1.
c) f(x, y, z) = x2 + y2 + z2, vĆ“Ć¹i ƱieĆ u kieƤn
x2
a2
+
y2
b2
+
z2
c2
= 1 (a  b  c  0).
d) f(x, y, z) = xyz, vĆ“Ć¹i caĆ¹c ƱieĆ u kieƤn: x2 + y2 + z2 = 1, x + y + z = 0.
e) f(x, y, z) = x + y + z, vĆ“Ć¹i caĆ¹c ƱieĆ u kieƤn: x2 + y2 = 2, x + z = 1.
12. XeĆ¹t cƶĆÆc trĆ² caĆ¹c haĆøm:
a) f(x, y, z) = x2 + y2 + z2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 āˆ’ 2 ā‰¤ z ā‰¤ 0.
b) f(x, y, z) = x2 + 2y2 + 3z2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 + z2 ā‰¤ 100.
13. TƬm theĆ„ tĆ­ch lĆ“Ć¹n nhaĆ”t cuĆ»a caĆ¹c hƬnh hoƤp chƶƵ nhaƤt vĆ“Ć¹i ƱieĆ u kieƤn dieƤn tĆ­ch maĆ«t laĆø
10m2.
14. ChĆ¶Ć¹ng minh trung bƬnh hƬnh hoĆÆc khoĆ¢ng lĆ“Ć¹n hĆ“n trung bƬnh soĆ” hoĆÆc, i.e.
(a1 Ā· Ā· Ā· an)
1
n ā‰¤
1
n
(a1 + Ā· Ā· Ā· + an), (a1, Ā· Ā· Ā· , an  0)
15. ChĆ¶Ć¹ng minh baĆ”t ƱaĆŗng thĆ¶Ć¹c
x + y
2
n
ā‰¤
xn + yn
2
, (x, y  0, n āˆˆ N).
(HD: XeĆ¹t cƶĆÆc trĆ² f(x, y) =
xn + yn
2
, vĆ“Ć¹i ƱieĆ u kieƤn x + y = s).
16. ChĆ¶Ć¹ng minh baĆ”t ƱaĆŗng thĆ¶Ć¹c H ĀØolder:
n
i=1
aixi ā‰¤ (
n
i=1
ap
i )
1
p (
n
i=1
xq
i )
1
q , neƔu xi, ai  0,
1
p
+
1
q
= 1 (p, q  0).
BaĆøi taƤp 58
Suy ra baĆ”t ƱaĆŗng thĆ¶Ć¹c Milkovski:
n
i=1
|ai + xi|p
)
1
p ā‰¤ (
n
i=1
|ai|p
)
1
p + (
n
i=1
|xi|q
)
1
q
HD: |a + x|p = |a + x||a + x|
p
q ā‰¤ |a||a + x|
1
q + |x||a + x|
p
q .
17. ChĆ¶Ć¹ng minh cƶĆÆc trĆ² haĆøm f(x, y) = ax2 + 2bxy + cy2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1,
ƱaĆÆt taĆÆi caĆ¹c vector rieĆ¢ng cuĆ»a ma traƤn a b
b c
.
18. ToĆ„ng quaĆ¹t baĆøi taƤp treĆ¢n. Cho A laĆø ma traƤn thƶĆÆc, ƱoĆ”i xĆ¶Ć¹ng caĆ”p n. Ć‘Ć²nh nghĆ³a
f(x) = Ax, x = txAx, x āˆˆ Rn. ChĆ¶Ć¹ng minh neĆ”u v āˆˆ Rn, v = 1: f(v) =
max{f(x) : x = 1}, thƬ Av = Ī»v. Suy ra moĆÆi matraƤn ƱoĆ”i xĆ¶Ć¹ng ƱeĆ u coĆ¹ giaĆ¹ trĆ²
rieĆ¢ng thƶĆÆc.
19. Cho u, v āˆˆ R3. ChĆ¶Ć¹ng minh
u Ɨ v = ( u 2
v 2
āˆ’  u, v )
1
2 = dieƤn tĆ­ch hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i u, v
Suy ra caĆ¹c toĆÆa ƱoƤ cuĆ»a u Ɨ v theo caĆ¹c toĆÆa ƱoƤ cuĆ»a u, v.
20. Cho h : Rn ā†’ Rn, h(x) = Ī»x, vaĆø P laĆø hƬnh bƬnh haĆønh k chieĆ u trong Rn. TƬm
moĆ”i quan heƤ giƶƵa caĆ¹c theĆ„ tĆ­ch k chieĆ u Vk(P) vaĆø Vk(h(P)).
21. TĆ­nh caĆ¹c tĆ­ch phaĆ¢n ƱƶƓĆøng:
a)
C
y2
dl, C laĆø cung cycloid x = a(t āˆ’ sin t), y = a(1 āˆ’ cos t), 0 ā‰¤ t ā‰¤ 2Ļ€.
b)
C
xdl, C laĆø phaĆ n ƱƶƓĆøng loga coĆ¹ phƶƓng trƬnh trong toĆÆa ƱoƤ cƶĆÆc: r = akĻ•, r ā‰¤
a.
c)
C
zdl, C laĆø cung xoaĆ©n x = t cos t, y = t sin t, z = t, 0 ā‰¤ t ā‰¤ T.
d)
C
x2
dl, C laĆø cung troĆøn x2 + y2 + z2 = 1, x + y + z = 0
(HD: DƶĆÆa vaĆøo tĆ­nh ƱoĆ”i xĆ¶Ć¹ng cuĆ»a caĆ¹c bieĆ”n)
22. TĆ­nh caĆ¹c tĆ­ch phaĆ¢n maĆ«t:
a)
S
zdS, S laĆø maĆ«t x = u cos v, y = u sin v, z = v, 0  u  a, 0  v  2Ļ€.
b)
S
zdS, S laĆø phaĆ n maĆ«t noĆ¹n z = x2 + y2 giĆ“Ć¹i haĆÆn bĆ“Ć»i truĆÆ x2 + z2 ā‰¤ 2az.
c)
S
(x + y + z)dS, S laĆø nƶƻa maĆ«t caĆ u x2 + y2 + z2 = a2, z ā‰„ 0.
23. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c Poisson
x2+y2+z2=1
f(ax + by + cz)dS = 2Ļ€
1
āˆ’1
f(u a2 + b2 + c2)du.
(HD: DuĆøng pheĆ¹p quay vaĆø ƱeĆ„ yĆ¹ pheĆ¹p quay baĆ»o toaĆøn ƱieƤn tĆ­ch)
BaĆøi taƤp 59
24. TĆ­nh ƱoƤ daĆøi caĆ¹c ƱƶƓĆøng cong tham soĆ” hoaĆ¹:
a) Ī±(t) = (a cos bt, a sin bt, ct), t āˆˆ [0, h]
b) Ī±(t) = (t cos bt, t sin bt, ct), t āˆˆ [0, h]
25. Cho f : U ā†’ R laĆø haĆøm khaĆ» vi treĆ¢n taƤp mĆ“Ć» U āŠ‚ Rn. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c
tƭnh theƄ tƭch n chieƠu
Vn(graphf) =
U
1 +
n
i=1
(
āˆ‚f
āˆ‚xi
)2
1
2
Aƙp duĆÆng tĆ­nh ƱoƤ daĆøi Ellip vaĆø dieƤn tĆ­ch maĆ«t Ellipsoid.
26. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c tĆ­nh ƱieƤn tĆ­ch cho maĆ«t troĆøn xoay Ć“Ć» baĆøi taƤp 3:
SĻ† = 2Ļ€
b
a
y(t)(x (t)2
+ y (t)2
)
1
2 dt
Aƙp duĆÆng tĆ­nh dieƤn tĆ­ch maĆ«t Ellipsoid vaĆø maĆ«t xuyeĆ”n.
27. VieĆ”t coĆ¢ng thĆ¶Ć¹c tĆ­nh dieƤn tĆ­ch maĆ«t noĆ¹n cho Ć“Ć» baĆøi taƤp 4. NeĆ¢u moƤt vĆ­ duĆÆ cuĆÆ theĆ„.
III. DaĆÆng vi phaĆ¢n.
1. Cho (x, y) = f(r, Ļ•) = (r cos Ļ•, r sin Ļ•). TĆ­nh fāˆ—(dx), fāˆ—(dy), fāˆ—(dx āˆ§ dy).
2. Cho (x, y, z) = f(r, Ļ•, Īø) = (Ļ cos Ļ• sin Īø, Ļ sin Ļ• sin Īø, Ļ cos Īø). TĆ­nh
fāˆ—
(dx), fāˆ—
(dy), fāˆ—
(dz), fāˆ—
(dxāˆ§dy), fāˆ—
(dyāˆ§dz), fāˆ—
(dzāˆ§dx), fāˆ—
(dxāˆ§dyāˆ§dz).
3. Cho f : Rn ā†’ Rm vā€¦ g : Rm ā†’ Rp laĆø caĆ¹c aĆ¹nh xaĆÆ khaĆ» vi. ChĆ¶Ć¹ng minh
(g ā—¦ f)āˆ— = fāˆ— ā—¦ gāˆ—.
4. Cho f : Rn ā†’ Rm khaĆ» vi vaĆø rank f (x)  k vĆ“Ć¹i moĆÆi x āˆˆ Rn. ChĆ¶Ć¹ng minh khi
ƱoĆ¹ fāˆ—Ļ‰ = 0 vĆ“Ć¹i moĆÆi Ļ‰ āˆˆ ā„¦k(Rm).
5. TĆ­nh dĻ‰ caĆ¹c daĆÆng vi phaĆ¢n trong trong R3 sau
a) Ļ‰ = xdx + ydz b) Ļ‰ = sin xdx + ydy + exydz c) Ļ‰ = exydx āˆ§ dz
d) Ļ‰ = xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy.
6. TƬm (n āˆ’ 1)-daĆÆng vi phaĆ¢n Ļ‰ trong Rn sao cho dĻ‰ = dx1 āˆ§ Ā· Ā· Ā· āˆ§ dxn.
7. GiaĆ» sƶƻ Ļ‰1 vā€¦ Ļ‰2 laĆø caĆ¹c 1-daĆÆng ƱoĆ¹ng. ChĆ¶Ć¹ng minh Ļ‰1 āˆ§ Ļ‰2 laĆø daĆÆng ƱoĆ¹ng.
8. ChĆ¶Ć¹ng minh daĆÆng Ļ‰(x, y, z) =
1
r3
(xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy),
vĆ“Ć¹i r2 = x2 + y2 + z2, laĆø ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p trong R3  {0}.
BaĆøi taƤp 60
9. Cho daĆÆng vi phaĆ¢n Ļ‰ =
n
i=1
ai(x)dxi trong caĆ u mĆ“Ć» taĆ¢m a cuĆ»a Rn. GiaĆ» sƶƻ Ļ‰ ƱoĆ¹ng.
ChĆ¶Ć¹ng minh ƱeĆ„ tƬm haĆøm f sao cho df = Ļ‰ coĆ¹ theĆ„ duĆøng caĆ¹c coĆ¢ng thĆ¶Ć¹c sau:
a) f(x) =
n
i=1
1
0
ai(a + t(x āˆ’ a))dt xi.
b) f(x) =
x1
Ī±1
a1(x1, Ā· Ā· Ā· , xn)dx1+
x2
Ī±2
a2(Ī±1, x2, Ā· Ā· Ā· , xn)dx2+Ā· Ā· Ā·+
xn
Ī±n
an(Ī±1, Ī±2, Ā· Ā· Ā· , xn)dxn.
trong ƱoĆ¹ a = (Ī±1, Ā· Ā· Ā· , Ī±n)
10. KieĆ„m tra tĆ­nh ƱoĆ¹ng cuĆ»a daĆÆng Ļ‰, roĆ i tƬm tĆ­ch phaĆ¢n ƱaĆ u khi
a) Ļ‰ = (x4+4xy3)dx+(6x2y2āˆ’5y4)dy b) Ļ‰ = (x+sin y)dx+(x cos y+sin y)dy
c) Ļ‰ = ex cos ydx āˆ’ ex sin ydy d) Ļ‰ = (x2 + 2xy āˆ’ y2)dx + (x2 āˆ’ 2xy āˆ’ y2)dy
e) Ļ‰ = a(x)dx + b(y)dy + c(z)dz, trong ƱoĆ¹ a, b, c laĆø caĆ¹c haĆøm khaĆ» vi treĆ¢n R.
f) Ļ‰ = a(x2 + y2 + z2)(xdx + ydy + zdz), trong ƱoĆ¹ a laĆø haĆøm khaĆ» vi treĆ¢n R.
11. XaĆ¹c Ć±Ć²nh Ī± ƱeĆ„ daĆÆng vi phaĆ¢n sau laĆø ƱoĆ¹ng, roĆ i tƬm tĆ­ch phaĆ¢n ƱaĆ u
Ļ‰ =
x3 āˆ’ 3xy2
(x2 + y2)Ī±
dx +
3x2y āˆ’ y3
(x2 + y2)Ī±
dy.
12. XaĆ¹c Ć±Ć²nh haĆøm Ļ• : R ā†’ R, Ļ•(0) = 0, sao cho daĆÆng sau laĆø ƱoĆ¹ng
Ļ‰ = (1 + x2
)Ļ•(x)dx āˆ’ 2xyĻ•(x)dy āˆ’ 3zdz.
TƬm tĆ­ch phaĆ¢n ƱaĆ u.
IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n
1. ChĆ¶Ć¹ng minh moƤt ƱƶƓĆøng hay maĆ«t lieĆ¢n thoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, thƬ coĆ¹ theĆ„ Ć±Ć²nh
ƱuĆ¹ng 2 hĆ¶Ć“Ć¹ng. MoƤt ƱƶƓĆøng hay maĆ«t coĆ¹ d thaĆønh phaĆ n lieĆ¢n thoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc,
thƬ coĆ¹ theĆ„ Ć±Ć²nh bao nhieĆ¢u hĆ¶Ć“Ć¹ng?
2. NeĆ¢u vĆ­ duĆÆ Ć±a taĆÆp coĆ¹ bĆ“Ćø khoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, nhƶng bĆ“Ćø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc.
3. TĆ­nh
C
ydx + zdy + xdz, vĆ“Ć¹i C laĆø ƱƶƓĆøng xoaĆ©n x = a cos t, y = a sin t, z =
bt, 0 ā‰¤ t ā‰¤ 2Ļ€, Ć±Ć²nh hĆ¶Ć“Ć¹ng (a, 0, 0) ƱeĆ”n (a, 0, 2Ļ€b).
4. TĆ­nh
C
(x + y)dx āˆ’ (x āˆ’ y)dy
x2 + y2
, khi:
a) C laĆø ƱƶƓĆøng troĆøn ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ .
b) C ƱƶƓĆøng cong kĆ­n khoĆ¢ng qua (0, 0).
BaĆøi taƤp 61
5. Cho Ī± : [a, b] ā†’ R2  {0} laĆø moƤt tuyeĆ”n. GiaĆ» sƶƻ
Ī±(t) = (x(t), y(t)) = (r(t) cos Īø(t), r(t) sin Īø(t)) vĆ“Ć¹i x, y, r, Īø laĆø caĆ¹c haĆøm khaĆ» vi.
a) ChĆ¶Ć¹ng minh Īø (t) =
āˆ’y(t)x (t) + x(t)y (t)
x2(t) + y2(t)
.
b) XeĆ¹t Ļ‰ =
āˆ’ydx + xdy
x2 + y2
. ChĆ¶Ć¹ng minh Ļ‰ ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p.
c) Ć‘Ć²nh nghĆ³a chƦ soĆ” voĆøng quay cuĆ»a Ī± quanh 0:
I(Ī±, 0) =
1
2Ļ€ Ī±
Ļ‰ =
b
a
āˆ’y(t)x (t) + x(t)y (t)
x2(t) + y2(t)
dt
TĆ­nh chƦ soĆ” treĆ¢n khi Ī±(t) = (a cos kt, a sin kt), t āˆˆ [0, 2Ļ€].
6. TĆ­nh
C
(y2
āˆ’ z2
)dx + (z2
āˆ’ x2
)dy + (x2
āˆ’ y2
)dz,
trong ƱoĆ¹ C laĆø chu vi tam giaĆ¹c caĆ u: x2 + y2 + z2 = 1, x, y, z ā‰„ 0, Ć±Ć²nh hĆ¶Ć“Ć¹ng
caĆ»m sinh hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi maĆ«t caĆ u..
7. Cho S laĆø ƱoĆ  thĆ² haĆøm z = x2 + y2 + 1, (x, y) āˆˆ (0, 1)2. HaƵy xaĆ¹c Ć±Ć²nh moƤt hĆ¶Ć“Ć¹ng
cho S roĆ i tĆ­nh
S
ydy āˆ§ dz + xzdx āˆ§ dz
8. TĆ­nh tĆ­ch phaĆ¢n Ʊo goĆ¹c khoĆ”i cuĆ»a maĆ«t S ƱoĆ”i vĆ“Ć¹i goĆ”c 0:
S
xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy
(x2 + y2 + z2)3/2
trong trƶƓĆøng hĆ“ĆÆp S laĆø: a) MaĆ«t caĆ u. b) Nƶƻa maĆ«t caĆ u. c) MoƤt phaĆ n taĆ¹m maĆ«t caĆ u.
9. Trong R3, cho S : 4x2 + y2 + 4z2 = 4, y ā‰„ 0.
a) PhaĆ¹c hoĆÆa S vaĆø āˆ‚S.
b) Tham soĆ” hoaĆ¹ S bĆ“Ć»i Ļ•(u, v) = (u, 2(1 āˆ’ u2 āˆ’ v2)
1
2 , v). XaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng cho
bĆ“Ć»i tham soĆ” Ļ•.
c) Cho Ļ‰ = ydx + 3xdz. TĆ­nh
āˆ‚S
Ļ‰ vaĆø
S
dĻ‰.
10. Aƙp duĆÆng coĆ¢ng thĆ¶Ć¹c Green, tĆ­nh: I =
C
xy2
dy āˆ’ x2
ydx, vĆ“Ć¹i C : x2 + y2 = a2
Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ .
11. Aƙp duĆÆng coĆ¢ng thĆ¶Ć¹c Green, tĆ­nh dieƤn tĆ­ch hƬnh giĆ“Ć¹i haĆÆn bĆ“Ć»i ƱƶƓĆøng cong trong R2
cho bƓƻi phƶƓng trƬnh
x
a
n
+
y
b
n
= 1. (a, b, n  0).
12. Cho I =
C
xdx + ydy + zdz,
vĆ“Ć¹i C laĆø ƱƶƓĆøng troĆøn: x2 + y2 + z2 = a2, x + y + z = 0, vĆ“Ć¹i Ć±Ć²nh hĆ¶Ć“Ć¹ng tƶĆÆ choĆÆn.
a) TĆ­nh trƶĆÆc tieĆ”p I. b) DuĆøng coĆ¢ng thĆ¶Ć¹c Stokes tĆ­nh I.
Giai tich 3
Giai tich 3
Giai tich 3

More Related Content

What's hot

Tichphan mathvn.com-transitung
Tichphan mathvn.com-transitungTichphan mathvn.com-transitung
Tichphan mathvn.com-transitungQuyen Le
Ā 
Tong hop kien thuc on thi dai hoc mon toan
Tong hop kien thuc on thi dai hoc mon toanTong hop kien thuc on thi dai hoc mon toan
Tong hop kien thuc on thi dai hoc mon toanHįŗ£i Finiks Huį»³nh
Ā 
Giao trinhgiaithuat18
Giao trinhgiaithuat18Giao trinhgiaithuat18
Giao trinhgiaithuat18Phi Phi
Ā 
Bt toi uu hoa
Bt toi uu hoaBt toi uu hoa
Bt toi uu hoaThien Le
Ā 
Cd bptdaiso
Cd bptdaisoCd bptdaiso
Cd bptdaisotonyjony
Ā 
Phuong phap ham so
Phuong phap ham soPhuong phap ham so
Phuong phap ham sophongmathbmt
Ā 
Bai giang phuong trinh dao ham rieng
Bai giang phuong trinh dao ham riengBai giang phuong trinh dao ham rieng
Bai giang phuong trinh dao ham riengDĘ°Ę”ng TĆŗ
Ā 
Ptvt
PtvtPtvt
PtvttAlan4
Ā 
Chuyen de nguyen ham tich phan
Chuyen de nguyen ham   tich phanChuyen de nguyen ham   tich phan
Chuyen de nguyen ham tich phanQuoc Nguyen
Ā 

What's hot (12)

Tichphan mathvn.com-transitung
Tichphan mathvn.com-transitungTichphan mathvn.com-transitung
Tichphan mathvn.com-transitung
Ā 
Bgxlth clc chuong_i-ii _ tin hieu lien tuc_sv
Bgxlth clc chuong_i-ii _ tin hieu lien tuc_svBgxlth clc chuong_i-ii _ tin hieu lien tuc_sv
Bgxlth clc chuong_i-ii _ tin hieu lien tuc_sv
Ā 
Tong hop kien thuc on thi dai hoc mon toan
Tong hop kien thuc on thi dai hoc mon toanTong hop kien thuc on thi dai hoc mon toan
Tong hop kien thuc on thi dai hoc mon toan
Ā 
Giao trinhgiaithuat18
Giao trinhgiaithuat18Giao trinhgiaithuat18
Giao trinhgiaithuat18
Ā 
Giai tich 2
Giai tich 2Giai tich 2
Giai tich 2
Ā 
Bt toi uu hoa
Bt toi uu hoaBt toi uu hoa
Bt toi uu hoa
Ā 
Pt Va Hpt
Pt Va HptPt Va Hpt
Pt Va Hpt
Ā 
Cd bptdaiso
Cd bptdaisoCd bptdaiso
Cd bptdaiso
Ā 
Phuong phap ham so
Phuong phap ham soPhuong phap ham so
Phuong phap ham so
Ā 
Bai giang phuong trinh dao ham rieng
Bai giang phuong trinh dao ham riengBai giang phuong trinh dao ham rieng
Bai giang phuong trinh dao ham rieng
Ā 
Ptvt
PtvtPtvt
Ptvt
Ā 
Chuyen de nguyen ham tich phan
Chuyen de nguyen ham   tich phanChuyen de nguyen ham   tich phan
Chuyen de nguyen ham tich phan
Ā 

Viewers also liked

Vocal projection - Speak louder without effort
Vocal projection - Speak louder without effortVocal projection - Speak louder without effort
Vocal projection - Speak louder without effortGameligit
Ā 
Bai tap toan cao cap tap 2 nguyen dinh tri
Bai tap toan cao cap tap 2   nguyen dinh triBai tap toan cao cap tap 2   nguyen dinh tri
Bai tap toan cao cap tap 2 nguyen dinh triInformatics and Maths
Ā 
Kaizen MLM - Wor(l)d Tecnology mCell 5G
Kaizen MLM - Wor(l)d Tecnology mCell 5GKaizen MLM - Wor(l)d Tecnology mCell 5G
Kaizen MLM - Wor(l)d Tecnology mCell 5GPablo Prieto
Ā 
Deadline, February 2016: Conferences & Special Issues for Computer Science &...
Deadline, February 2016:  Conferences & Special Issues for Computer Science &...Deadline, February 2016:  Conferences & Special Issues for Computer Science &...
Deadline, February 2016: Conferences & Special Issues for Computer Science &...Imed Bouchrika
Ā 
C++ for beginners......masters 2007
C++ for beginners......masters 2007C++ for beginners......masters 2007
C++ for beginners......masters 2007Informatics and Maths
Ā 
Toan t1 chuong 8-1_tich_phanhailop_4
Toan t1   chuong 8-1_tich_phanhailop_4Toan t1   chuong 8-1_tich_phanhailop_4
Toan t1 chuong 8-1_tich_phanhailop_4Informatics and Maths
Ā 
How do you envision the city of the future?
How do you envision the city of the future?How do you envision the city of the future?
How do you envision the city of the future?Khotso Koetle
Ā 
Slide colombia Apertura
Slide colombia AperturaSlide colombia Apertura
Slide colombia AperturaPablo Prieto
Ā 
content_whitepaper_simplifying_payroll_hr
content_whitepaper_simplifying_payroll_hrcontent_whitepaper_simplifying_payroll_hr
content_whitepaper_simplifying_payroll_hrRochelle A Blee
Ā 

Viewers also liked (20)

Vocal projection - Speak louder without effort
Vocal projection - Speak louder without effortVocal projection - Speak louder without effort
Vocal projection - Speak louder without effort
Ā 
Bai tap toan cao cap tap 2 nguyen dinh tri
Bai tap toan cao cap tap 2   nguyen dinh triBai tap toan cao cap tap 2   nguyen dinh tri
Bai tap toan cao cap tap 2 nguyen dinh tri
Ā 
Toan a2 bai giang
Toan a2   bai giangToan a2   bai giang
Toan a2 bai giang
Ā 
Chuong 09 thua ke
Chuong 09 thua keChuong 09 thua ke
Chuong 09 thua ke
Ā 
7 truong dien tu
7 truong dien tu7 truong dien tu
7 truong dien tu
Ā 
Kaizen MLM - Wor(l)d Tecnology mCell 5G
Kaizen MLM - Wor(l)d Tecnology mCell 5GKaizen MLM - Wor(l)d Tecnology mCell 5G
Kaizen MLM - Wor(l)d Tecnology mCell 5G
Ā 
Kebijakan pp jadi
Kebijakan pp jadiKebijakan pp jadi
Kebijakan pp jadi
Ā 
Chuong 08 tai dinh nghia
Chuong 08 tai dinh nghiaChuong 08 tai dinh nghia
Chuong 08 tai dinh nghia
Ā 
Cygwin guide
Cygwin guideCygwin guide
Cygwin guide
Ā 
6 vat lieu tu
6 vat lieu tu6 vat lieu tu
6 vat lieu tu
Ā 
Deadline, February 2016: Conferences & Special Issues for Computer Science &...
Deadline, February 2016:  Conferences & Special Issues for Computer Science &...Deadline, February 2016:  Conferences & Special Issues for Computer Science &...
Deadline, February 2016: Conferences & Special Issues for Computer Science &...
Ā 
C++ for beginners......masters 2007
C++ for beginners......masters 2007C++ for beginners......masters 2007
C++ for beginners......masters 2007
Ā 
Toan t1 chuong 8-1_tich_phanhailop_4
Toan t1   chuong 8-1_tich_phanhailop_4Toan t1   chuong 8-1_tich_phanhailop_4
Toan t1 chuong 8-1_tich_phanhailop_4
Ā 
Chuong 01 mo dau
Chuong 01 mo dauChuong 01 mo dau
Chuong 01 mo dau
Ā 
Ngon ngu lap_trinh_c__
Ngon ngu lap_trinh_c__Ngon ngu lap_trinh_c__
Ngon ngu lap_trinh_c__
Ā 
Tin hoc can ban bai tap
Tin hoc can ban   bai tapTin hoc can ban   bai tap
Tin hoc can ban bai tap
Ā 
How do you envision the city of the future?
How do you envision the city of the future?How do you envision the city of the future?
How do you envision the city of the future?
Ā 
Slide colombia Apertura
Slide colombia AperturaSlide colombia Apertura
Slide colombia Apertura
Ā 
Slide xac suat thong ke
Slide   xac suat thong keSlide   xac suat thong ke
Slide xac suat thong ke
Ā 
content_whitepaper_simplifying_payroll_hr
content_whitepaper_simplifying_payroll_hrcontent_whitepaper_simplifying_payroll_hr
content_whitepaper_simplifying_payroll_hr
Ā 

Similar to Giai tich 3

PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...
PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...
PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...Dį»‹ch vį»„ viįŗæt bĆ i trį»n gĆ³i ZALO: 0909232620
Ā 
Chde hamsobac4
Chde hamsobac4Chde hamsobac4
Chde hamsobac4vanthuan1982
Ā 
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802baolanchi
Ā 
Chuyen de he pt
Chuyen de he ptChuyen de he pt
Chuyen de he ptTam Ho Hai
Ā 
Nguyen ham va tich phan
Nguyen ham va tich phanNguyen ham va tich phan
Nguyen ham va tich phanVcoi Vit
Ā 
1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thivanthuan1982
Ā 
1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thivanthuan1982
Ā 
Pt bpt-mu-loga-phan1
Pt bpt-mu-loga-phan1Pt bpt-mu-loga-phan1
Pt bpt-mu-loga-phan1thoang thoang
Ā 
11 phuong phap giai pth
11 phuong phap giai pth11 phuong phap giai pth
11 phuong phap giai pthPhuc Nguyen
Ā 
Cac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungCac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungljmonking
Ā 
Tichphan mathvn.com-transitung
Tichphan mathvn.com-transitungTichphan mathvn.com-transitung
Tichphan mathvn.com-transitungHuynh ICT
Ā 
Bt gioi han_ham_so_6893
Bt gioi han_ham_so_6893Bt gioi han_ham_so_6893
Bt gioi han_ham_so_6893irisgk10
Ā 
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nTĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nLong Nguyen
Ā 
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nTĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nLong Nguyen
Ā 
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...DV ViĆŖĢt LuĆ¢Ģ£n văn luanvanmaster.com ZALO 0973287149
Ā 
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43lovestem
Ā 

Similar to Giai tich 3 (20)

bdt dua ve mot bien
bdt dua ve mot bienbdt dua ve mot bien
bdt dua ve mot bien
Ā 
PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...
PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...
PhĘ°Ę”ng phĆ”p nį»­a nhĆ³m n āˆ’lįŗ§n tĆ­ch hį»£p trĆŖn khĆ“ng gian Banach X - Gį»­i miį»…n phĆ­ ...
Ā 
Chde hamsobac4
Chde hamsobac4Chde hamsobac4
Chde hamsobac4
Ā 
Hambac4
Hambac4Hambac4
Hambac4
Ā 
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Ā 
Chuyen de he pt
Chuyen de he ptChuyen de he pt
Chuyen de he pt
Ā 
Nguyen ham va tich phan
Nguyen ham va tich phanNguyen ham va tich phan
Nguyen ham va tich phan
Ā 
1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi
Ā 
1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi1.3 bien luan_pt_bang_do_thi
1.3 bien luan_pt_bang_do_thi
Ā 
Pt bpt-mu-loga-phan1
Pt bpt-mu-loga-phan1Pt bpt-mu-loga-phan1
Pt bpt-mu-loga-phan1
Ā 
Chude1
Chude1Chude1
Chude1
Ā 
11 phuong phap giai pth
11 phuong phap giai pth11 phuong phap giai pth
11 phuong phap giai pth
Ā 
Cac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungCac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dung
Ā 
chuyen de tich phan on thi dai hoc
chuyen de tich phan on thi dai hocchuyen de tich phan on thi dai hoc
chuyen de tich phan on thi dai hoc
Ā 
Tichphan mathvn.com-transitung
Tichphan mathvn.com-transitungTichphan mathvn.com-transitung
Tichphan mathvn.com-transitung
Ā 
Bt gioi han_ham_so_6893
Bt gioi han_ham_so_6893Bt gioi han_ham_so_6893
Bt gioi han_ham_so_6893
Ā 
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nTĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
Ā 
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”nTĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
TĆ³m tįŗÆt chĘ°Ę”ng trƬnh toĆ”n
Ā 
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...
Khįŗ£o sĆ”t nghi m cį»§a cĆ”c phĘ°Ę”ng trƬnh sinh b i đįŗ”o hĆ m vĆ  nguyĆŖn hĆ m Cį»§a m t đ...
Ā 
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43
TĆ­ch phĆ¢n-3-PhĘ°Ę”ng phĆ”p biįŗæn đį»•i sį»‘-pages-30-43
Ā 

Giai tich 3

  • 1. TRƖƔƘNG ƑAƏI HOƏC ƑAƘ LAƏT KHOA TOAƙN - TIN HOƏC TAƏ LEƂ LƔƏI - ƑOƃ NGUYEƂN SƔN GIAƛI TƍCH 3 (GiaĆ¹o TrƬnh) -- Lƶu haĆønh noƤi boƤ -- ƑaĆø LaĆÆt 2008
  • 2. GiaĆ»i TĆ­ch 3 TaĆÆ LeĆ¢ LĆ“ĆÆi - ƑoĆ£ NguyeĆ¢n SĆ“n MuĆÆc luĆÆc ChƶƓng I. TĆ­ch phaĆ¢n phuĆÆ thuoƤc tham soĆ” 1. TĆ­ch phaĆ¢n phuĆÆ thuoƤc tham soĆ” ................................ 4 2. TĆ­ch phaĆ¢n suy roƤng phuĆÆ thuoƤc tham soĆ” ....................... 9 3. CaĆ¹c tĆ­ch phaĆ¢n Euler ........................................ 14 ChƶƓng II. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp 1. Ƒa taĆÆp khaĆ» vi trong Rn ..................................... 19 2. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp ............................... 24 ChƶƓng III. DaĆÆng vi phaĆ¢n 1. DaĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng ........................... 31 2. DaĆÆng vi phaĆ¢n .............................................. 33 3. BoĆ„ ƱeĆ  PoincareĆ¹ ............................................ 37 ChƶƓng IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n 1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng ................................................ 41 2. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n .................................... 44 3. CoĆ¢ng thĆ¶Ć¹c Stokes .......................................... 47 BaĆøi taƤp. ......................................................... 53
  • 3.
  • 4. 4 I. TƝch phĀ©n phĆ“ thuĆ©c tham sĆØ 1 TƝch phĀ©n phĆ“ thuĆ©c tham sĆØ 1.1 Ā§Ćžnh nghƜa Ā§Ćžnh nghƜa 1. XƐt hĀµm f(x, t) = f(x1, . . ., xn, t1, . . . , tm) xĀøc Ā®Ćžnh trĀŖn miƒn X Ɨ T āŠ‚ Rn Ɨ Rm . GiĀ¶ sƶ X Ā®o Ā®-Ć®c (Jordan) vĀµ vĆ­i mƧi giĀø trƞ cƱa t āˆˆ T cĆØ Ā®Ćžnh, hĀµm f(x, t) khĀ¶ tƝch theo x trĀŖn X. Khi Ā®Ć£ tƝch phĀ©n I(t) = X f(x, t)dx (1) lĀµ hĀµm theo biƕn t = (t1, . . ., tm), gƤi lĀµ tƝch phĀ©n phĆ“ thuĆ©c tham sĆØ vĆ­i m tham sĆØ t1, . . ., tm. 1.2 TƝnh liĀŖn tĆ“c Ā§Ćžnh lĆ½ 1. Nƕu f(x, t) liĀŖn tĆ“c trĀŖn X Ɨ T āŠ‚ Rn Ɨ Rm , Ć« Ā®Ā©y X, T lĀµ cĀøc tƋp compact, thƗ tƝch phĀ©n I(t) = X f(x, t)dx liĀŖn tĆ“c trĀŖn T. ChĆøng minh. CĆØ Ā®Ćžnh t0 āˆˆ T. Ta sƏ chĆøng minh vĆ­i mƤi > 0, tĆ„n tĀ¹i Ī“ > 0 sao cho vĆ­i mƤi t āˆˆ T, d(t, t0) < Ī“ ta cĆ£ | I(t) āˆ’ I(t0) |< . TƵ Ā®Ćžnh nghƜa suy ra | I(t) āˆ’ I(t0) |= X (f(x, t) āˆ’ f(x, t0))dx ā‰¤ X | f(x, t) āˆ’ f(x, t0) | dx. Do f liĀŖn tĆ“c trĀŖn compact nĀŖn liĀŖn tĆ“c Ā®Ć’u trĀŖn Ā®Ć£, tĆøc lĀµ tĆ„n tĀ¹i Ī“ > 0 sao cho | f(x , t ) āˆ’ f(x, t) |< v(X) vĆ­i mƤi (x, t), (x , t ) āˆˆ X Ɨ T, d((x , t ), (x, t)) < Ī“. TƵ Ā®Ć£, vĆ­i d(t, t0) < Ī“ ta cĆ£ | I(t) āˆ’ I(t0) |< v(X) v(X) = .
  • 5. 5 2 VƝ dĆ“. 1) Ta cĆ£ lim tā†’0 1 āˆ’1 āˆš x2 + t2dx = 1 āˆ’1 |x|dx = 1 vƗ hĀµm āˆš x2 + t2 liĀŖn tĆ“c trĀŖn [āˆ’1, 1] Ɨ [āˆ’ , ]. 2) KhĀ¶o sĀøt tƝnh liĀŖn tĆ“c tĀ¹i Ā®iƓm (0, 0) cƱa hĀµm f(x, t) = xtāˆ’2 eāˆ’x2tāˆ’2 nƕu t = 0 0 nƕu t = 0 . Nƕu f(x, t) liĀŖn tĆ“c tĀ¹i (0, 0), thƗ f(x, t) liĀŖn tĆ“c trĀŖn [0, 1] Ɨ [āˆ’ , ]. Khi Ā®Ć£, tƝch phĀ©n I(t) = 1 0 f(x, t)dx liĀŖn tĆ“c trĀŖn [āˆ’ , ] . Nh-ng ta cĆ£ lim tā†’0 I(t) = lim tā†’0 1 0 xtāˆ’2 eāˆ’x2tāˆ’2 = āˆ’ 1 2 lim tā†’0 1 0 eāˆ’x2tāˆ’2 d(āˆ’x2 tāˆ’2 ) = āˆ’ 1 2 lim tā†’0 (eāˆ’tāˆ’2 āˆ’ 1) = 1 2 = 0 = I(0). VƋy, hĀµm f(x, t) khĀ«ng liĀŖn tĆ“c tĀ¹i (0, 0). Sau Ā®Ā©y chĆ³ng ta sƏ khĀ¶o sĀøt mĆ©t tƦng quĀøt hĆ£a cƱa Ā§Ćžnh lĆ½ 1 trong tr-ĆŖng hĆ®p X = [a, b]. Ā§Ćžnh lĆ½ 2. Cho f(x, t) liĀŖn tĆ“c trĀŖn [a, b] Ɨ T, vĆ­i T lĀµ tƋp compact vĀµ a(t), b(t) lĀµ hai hĀµm liĀŖn tĆ“c trĀŖn T sao cho a(t), b(t) āˆˆ [a, b] vĆ­i mƤi t āˆˆ T. Khi Ā®Ć£, tƝch phĀ©n I(t) = b(t) a(t) f(x, t)dx liĀŖn tĆ“c trĀŖn T. ChĆøng minh. Do f liĀŖn tĆ“c trĀŖn tƋp compact nĀŖn giĆ­i nĆ©i, tĆøc lĀµ tĆ„n tĀ¹i M > 0 sao cho | f(x, y) |ā‰¤ M vĆ­i mƤi (x, t) āˆˆ [a, b] Ɨ T. CĆØ Ā®Ćžnh t0 āˆˆ T ta cĆ£: | I(t) āˆ’ I(t0) |= a(t0) a(t) f(x, t)dx + b(t) b(t0) f(x, t)dx + b(t0) a(t0) [f(x, t) āˆ’ f(x, t0)]dx ā‰¤ a(t0) a(t) f(x, t)dx + b(t) b(t0) f(x, t)dx + b(t0) a(t0) (f(x, t) āˆ’ f(x, t0))dx ā‰¤ M | a(t) āˆ’ a(t0) | +M | b(t) āˆ’ b(t0) | + b(t0) a(t0) | f(x, t) āˆ’ f(x, t0) | dx.
  • 6. 6 KhĀ¼ng Ā®Ćžnh suy ra tƵ tƝnh liĀŖn tĆ“c cƱa a(t), b(t) vĀµ Ā§Ćžnh lĆ½ 1. 2 VƝ dĆ“. Do hĀµm 1 1 + x2 + t2 liĀŖn tĆ“c trĀŖn [0, 1] Ɨ [āˆ’ , ] vĀµ cĀøc hĀµm Ī±(t) = t, Ī²(t) = cos t liĀŖn tĆ“c trĀŖn [āˆ’ , ], ta cĆ£ lim tā†’0 cost t dx 1 + x2 + t2 dx = 1 0 dx 1 + x2 = Ļ€ 4 . 1.3 TƝnh khĀ¶ vi. Ā§Ćžnh lĆ½ 3. Nƕu f(x, t) vĀµ cĀøc Ā®Ā¹o hĀµm riĀŖng āˆ‚f āˆ‚ti (x, t), i = 1, . . ., m, liĀŖn tĆ“c trĀŖn X Ɨ T āŠ‚ Rn Ɨ Rm , Ć« Ā®Ā©y X, T lĀµ cĀøc tƋp compact, thƗ tƝch phĀ©n I(t) = X f(x, t)dx khĀ¶ vi trĀŖn o T vĀµ vĆ­i mƧi i ta cĆ£: āˆ‚I āˆ‚ti (t) = X āˆ‚f āˆ‚ti (x, t)dx. ChĆøng minh. VĆ­i mƧi t0 āˆˆ o T cĆØ Ā®Ćžnh ta cĆ£: I(t0 + hiei) āˆ’ I(t0) hi = X f(x, t0 + hiei) āˆ’ f(x, t0) hi dx. trong Ā®Ć£ ei lĀµ cĀ¬ sĆ« chƝnh tĀ¾c cƱa Rm . Āøp dĆ“ng Ā®Ćžnh lĆ½ giĀø trƞ trung bƗnh cho hĀµm 1 biƕn ta cĆ£: f(x, t0 + hiei) āˆ’ f(x, t0) = āˆ‚f āˆ‚ti (x, t0 + Īøihiei)hi, 0 < Īøi < 1 Khi Ā®Ć£ : I(t0 + hiei) āˆ’ I(t0) hi āˆ’ X āˆ‚f āˆ‚ti (x, t0)dx = X [ āˆ‚f āˆ‚ti (x, t0 + Īøihiei) āˆ’ āˆ‚f āˆ‚ti (x, t0)]dx
  • 7. 7 Sƶ dĆ“ng tƝnh liĀŖn tĆ“c cƱa āˆ‚f āˆ‚ti (x, t) trĀŖn compact X ƗT vĀµ lĆ½ luƋn nh- trong chĆøng minh Ā§Ćžnh lĆ½ 1 suy ra āˆ‚I āˆ‚ti (t0) = lim hiā†’0 I(t0 + hiei) āˆ’ I(t0) hi = X āˆ‚f āˆ‚ti (x, t)dx. TƝnh liĀŖn tĆ“c cƱa āˆ‚I āˆ‚ti (t) trĀŖn T suy ra tƵ Ā§Ćžnh lĆ½ 1 2 VƝ dĆ“. XƐt I(t) = Ļ€/2 0 1 cos x ln 1 + t cos x 1 āˆ’ t cos x dx, t āˆˆ (āˆ’1, 1). Ta cĆ£ cĀøc hĀµm f(x, t) = ļ£± ļ£² ļ£³ 1 cos x ln 1 + t cos x 1 āˆ’ t cos x nƕu x = Ļ€/2 2t nƕu x = Ļ€/2 āˆ‚f āˆ‚t (x, t) = 2 1 āˆ’ t2 cos2 x , liĀŖn tĆ“c trĀŖn [0, Ļ€/2] Ɨ [āˆ’1 + , 1 āˆ’ ]. VƋy, theo Ā®Ćžnh lĆ½ trĀŖn I (t) = 2 Ļ€/2 0 dx 1 āˆ’ t2 cos2 x = 2 āˆž 0 du 1 āˆ’ t2 + u2 = Ļ€ āˆš 1 āˆ’ t2 . TƵ Ā®Ć£, I(t) = Ļ€ arcsin t + C. VƗ I(0) = 0, nĀŖn C = 0. VƋy, I(t) = Ļ€ arcsin t. Ā§Ćžnh lĆ½ 4. Nƕu f(x, t) vĀµ cĀøc Ā®Ā¹o hĀµm riĀŖng āˆ‚f āˆ‚ti (x, t), i = 1, . . . , m, liĀŖn tĆ“c trĀŖn [a, b] Ɨ T, Ć« Ā®Ā©y T lĀµ tƋp compact trong Rm , Ī±(t), Ī²(t) khĀ¶ vi trĀŖn T vĀµ Ī±(t), Ī²(t) āˆˆ [a, b] vĆ­i mƤi t āˆˆ T, thƗ tƝch phĀ©n I(t) = b(t) a(t) f(x, t)dx khĀ¶ vi trĀŖn o T vĀµ vĆ­i mƧi i ta cĆ£: āˆ‚I āˆ‚ti (t) = Ī²(t) Ī±(t) āˆ‚f āˆ‚ti (x, t)dx + f(Ī²(t), t) āˆ‚Ī² āˆ‚ti (t) āˆ’ f(Ī±(t), t) āˆ‚Ī± āˆ‚ti (t).
  • 8. 8 ChĆøng minh. XƐt hĀµm m + 2 biƕn F(t, u, v) = v u f(x, t)dx, (t, u, v) āˆˆ D = T Ɨ [a, b] Ɨ [a, b]. Ta sƏ chƘ ra rĀ»ng F(t, u, v) lĀµ hĀµm khĀ¶ vi. VĆ­i mƧi u, v cĆØ Ā®Ćžnh, tƵ Ā§Ćžnh lĆ½ 3, suy ra āˆ‚F āˆ‚ti (t, u, v) = v u āˆ‚f āˆ‚ti (x, t)dx. Vƕ phĀ¶i cƱa Ā®Ā¼ng thĆøc trĀŖn Ā®-Ć®c xem nh- lĀµ tich phĀ©n phĆ“ thuĆ©c cĀøc tham sĆØ t, u, v. HĀµm āˆ‚f āˆ‚ti (x, t) xem nh- lĀµ hĀµm theo cĀøc biƕn x, t, u, v liĀŖn tĆ“c trĀŖn [a, b]Ɨ D. TƵ Ā§Ćžnh lĆ½ 2, vĆ­i a(t, u, v) = u, b(t, u, v) = v, suy ra āˆ‚F āˆ‚ti (t, u, v) lĀµ hĀµm liĀŖn tĆ“c trĀŖn D. NgoĀµi ra ta cƟn cĆ£ āˆ‚F āˆ‚u (t, u, v) = āˆ’f(u, t) vĀµ āˆ‚F āˆ‚v (t, u, v) = f(v, t) Ā®Ć’u lĀµ nhĆ·ng hĀµm liĀŖn tĆ“c trĀŖn D. VƋy, hĀµm F(t, u, v) khĀ¶ vi. HĀµm I(t) Ā®-Ć®c xem nh- lĀµ hĀµm hĆ®p I(t) = F(t, Ī±(t), Ī²(t)). TƵ Ā®Ć£ , hĀµm I(t) khĀ¶ vi vĀµ āˆ‚I āˆ‚ti (t) = āˆ‚F āˆ‚ti (t, Ī±(t), Ī²(t)) + āˆ‚F āˆ‚u (t, Ī±(t), Ī²(t)) āˆ‚Ī± āˆ‚ti (t) + āˆ‚F āˆ‚v (t, Ī±(t), Ī²(t)) āˆ‚Ī² āˆ‚ti (t) = Ī²(t) Ī±(t) āˆ‚f āˆ‚ti (x, t)dx + f(Ī²(t), t) āˆ‚Ī² āˆ‚ti (t) āˆ’ f(Ī±(t), t) āˆ‚Ī± āˆ‚ti (t). 2 VƝ dĆ“. XƐt tƝch phĀ©n I(t) = sin t t etx dx. Theo Ā§Ćžnh lĆ½ trĀŖn, hĀµm I(t) khĀ¶ vi vĀµ I (t) = sin t t xetx dx + et sin t cos t āˆ’ et2 .
  • 9. 9 2 TƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ 2.1 CĀøc Ā®Ćžnh nghƜa Ā§Ćžnh nghƜa 2. GiĀ¶ sƶ hĀµm f(x, t) xĀøc Ā®Ćžnh trĀŖn [a, āˆž) Ɨ T, T āŠ‚ R, sao cho vĆ­i mƧi t āˆˆ T cĆØ Ā®Ćžnh , hĀµm f(x, t) khĀ¶ tƝch trĀŖn [a, b], vĆ­i mƤi b > a. TƝch phĀ©n I(t) = āˆž a f(x, t)dx (1), gƤi lĀµ tƝch phĀ©n suy rĆ©ng loĀ¹i 1 phĆ“ thuĆ©c tham sĆØ. TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“ tĀ¹i t0 nƕuu tƝch phĀ©n āˆž a f(x, t0)dx hĀ«i tĆ“, tĆøc lĀµ tĆ„n tĀ¹i lim bā†’āˆž b a f(x, t0)dx = I(t0) hĆ·u hĀ¹n. TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“ trĀŖn T nƕuu hĆ©i tĆ“ tĀ¹i mƤi Ā®iƓm cƱa T, tĆøc lĀµ āˆ€ > 0, āˆ€t āˆˆ T, āˆƒa0( , t) > a, sao cho āˆ€b ā‰„ a0 =ā‡’ āˆž b f(x, t) < . TƝch phĀ©n (1) gƤi lĀµ hĆ©i tĆ“ Ā®Ć’u trĀŖn T nƕuu āˆ€ > 0, āˆƒa0( ) > a, sao cho āˆ€b ā‰„ a0, āˆ€t āˆˆ T =ā‡’ āˆž b f(x, t) < . Ā§Ćžnh nghƜa 3. GiĀ¶ sƶ hĀµm f(x, t) xĀøc Ā®Ćžnh trĀŖn [a, b) Ɨ T, T āŠ‚ R, sao cho vĆ­i mƧi t āˆˆ T cĆØ Ā®Ćžnh , hĀµm f(x, t) khĀ¶ tƝch trĀŖn mƧi Ā®oĀ¹n [a, b āˆ’ Ī·], Ī· > 0 . TƝch phĀ©n J(t) = b a f(x, t)dx = lim Ī·ā†’0+ bāˆ’Ī· a f(x, t)dx, (2) gƤi lĀµ tƝch phĀ©n suy rĆ©ng loĀ¹i 2 phĆ“ thuĆ©c tham sĆØ. TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“ tĀ¹i t0 nƕuu tƝch phĀ©n b a f(x, t0)dx hĆ©i tĆ“, tĆøc lĀµ tĆ„n tĀ¹i lim Ī·ā†’0 bāˆ’Ī· a f(x, t0)dx = J(t0) hĆ·u hĀ¹n. TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“ trĀŖn T nƕuu hĆ©i tĆ“ tĀ¹i mƤi Ā®iƓm cƱa T, tĆøc lĀµ āˆ€ > 0, āˆ€t āˆˆ T, āˆƒĪ“( , t) > 0, sao cho 0 < āˆ€Ī· < Ī“ =ā‡’ b bāˆ’Ī· f(x, t) < .
  • 10. 10 TƝch phĀ©n (2) gƤi lĀµ hĆ©i tĆ“ Ā®Ć’u trĀŖn T nƕuu āˆ€ > 0, āˆƒĪ“0( ) > 0, sao cho 0 < āˆ€Ī· < Ī“, āˆ€t āˆˆ T =ā‡’ b bāˆ’Ī· f(x, t) < . ChĆ³ Ć½. 1) T-Ā¬ng tĆ¹, ta Ā®Ćžnh nghƜa I(t) = b āˆ’āˆž f(x, t)dx = lim aā†’āˆ’āˆž b a f(x, t)f(x, t), J(t) = b a f(x, t)dx = lim Ī·ā†’0+ b a+Ī· f(x, t)f(x, t), vĀµ cĆ²ng cĆ£ khĀøi niƖm hĆ©i tĆ“, hĆ©i tĆ“ Ā®Ć’u t-Ā¬ng Ćøng. 2) ViƖc khĀ¶o sĀøt tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ loĀ¹i 2 Ā®-Ć®c thĆ¹c hiƖn hoĀµn toĀµn t-Ā¬ng tĆ¹ nh- loĀ¹i 1, tƵ Ā®Ćžnh nghƜa cĀøc khĀøi niƖm Ā®Ć•n cĀøc tƝnh chƊt. Do Ā®Ć£, trong mĆ“c nĀµy, ta chƘ khĀ¶o sĀøt tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ I(t) = āˆž a f(x, t)dx. VƝ dĆ“. XƐt tƝch phĀ©n I(t) = āˆž 0 teāˆ’xt dx. Khi Ā®Ć£ a) I(t) hĆ©i tĆ“ trĀŖn (0, āˆž) vƗ āˆ€ > 0, āˆ€t āˆˆ T, āˆƒa0 = ln āˆ’t , āˆ€b > a0 =ā‡’ āˆž b teāˆ’xt = eāˆ’bt < . b) I(t) khĀ«ng hĆ©i tĆ“ Ā®Ć’u trĀŖn (0, āˆž) vƗ vĆ­i āˆˆ (0, 1), vĆ­i mƤi a0 > 0, nƕu chƤn b = a0 vĀµ t tƵ bƊt Ā®Ā¼ng thĆøc 0 < t < ln āˆ’a0 , thƗ ta cĆ£ āˆž b teāˆ’xt = eāˆ’bt > . c) I(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn Tr = [r, āˆž), vĆ­i r > 0. ThƋt vƋy, ta cĆ£ āˆ€ > 0, āˆƒa0 = ln āˆ’r , āˆ€b ā‰„ a0, āˆ€t āˆˆ Tr =ā‡’ āˆž b teāˆ’xt = eāˆ’bt < eāˆ’a0r < .
  • 11. 11 2.2 MĆ©t sĆØ tiĀŖu chuƈn hĆ©i tĆ“ Ā®Ć’u Ā§Ćžnh lĆ½ 5. (TiĀŖu chuƈn Cauchy) TƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T khi vĀµ chƘ khi āˆ€ > 0, āˆƒa0( ) > a, sao cho āˆ€b1, b2 ā‰„ a0, āˆ€t āˆˆ T =ā‡’ b2 b1 f(x, t) < . (āˆ—) ChĆøng minh. GiĀ¶ sƶ I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T. Khi Ā®Ć£, Ā§iƒu kiƖn (āˆ—) suy ra tƵ bƊt Ā®Ā¼ng thĆøc b2 b1 f(x, t) ā‰¤ āˆž b1 f(x, t) + āˆž b2 f(x, t) Ng-Ć®c lĀ¹i, vĆ­i t cĆØ Ā®Ćžnh, Ā®iƒu kiƖn (āˆ—) suy ra I(t) hĆ©i tĆ“. Trong (āˆ—), cho b2 ā†’ 0, suy ra I(t hĆ©i tĆ“ Ā®Ć’u theo Ā®Ćžnh nghƜa. 2 Ā§Ćžnh lĆ½ 6. (TiĀŖu chuƈn Weierstrass) GiĀ¶ sƶ (1) tĆ„n tĀ¹i hĀµm Ļ•(x) sao cho |f(x, t)| ā‰¤ Ļ•(x), āˆ€x ā‰„ a, āˆ€t āˆˆ T, (2) tƝch phĀ©n āˆž a Ļ•(x)dx hĆ©i tĆ“. Khi Ā®Ć£, tƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T. ChĆøng minh. Theo tiĀŖu chuƈn Cauchy Ā®ĆØi vĆ­i tƝch phĀ©n suy rĆ©ng hĆ©i tĆ“, vĆ­i mƤi > 0, tĆ„n tĀ¹i a0 sao cho b2 b1 Ļ•(x) < , āˆ€b1, b2 ā‰„ a0. Suy ra, b2 b1 f(x, t) ā‰¤ b2 b1 |f(x, t)| ā‰¤ b2 b1 Ļ•(x) < . Theo Ā§Ćžnh lĆ½ 5, tƝch phĀ©n I(t) hĆ©i tĆ“ Ā®Ć’u. 2 Ā§Ć“ khĀ¶o sĀøt tƝnh chƊt cƱa tƝch phĀ©n suy rĆ©ng phĆ“ thuĆ©c tham sĆØ hĆ©i tĆ“ Ā®Ć’u, chĆ³ng ta thiƕt lƋp mĆØi quan hƖ giĆ·a nĆ£ vĀµ dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u.
  • 12. 12 MƖnh Ā®Ć’ 1. GiĀ¶ sƶ tƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn T vĀµ (an), vĆ­i an > a. lĀµ dĀ·y sĆØ sao cho lim nā†’āˆž an = āˆž. Khi Ā®Ć£, dĀ·y hĀµm In(t) = an a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u tĆ­i hĀµm sĆØ I(t) trĀŖn T. ChĆøng minh. Do I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ trĀŖn T nĀŖn dĀ·y hĀµm (In(t)) hĆ©i tĆ“ tĆ­i I(t) trĀŖn T. VƗ I(t) hĆ©i tĆ“ Ā®Ć’u nĀŖn vĆ­i mƤi > 0, tĆ„n tĀ¹i a0 sao cho āˆž b f(x, t) < , āˆ€b > a0, āˆ€t āˆˆ T. VƗ lim nā†’āˆž an = āˆž nĀŖn tĆ„n tĀ¹i N > 0 sao cho vĆ­i mƤi n ā‰„ N, ta cĆ£ an ā‰„ b. VƋy, ta cĆ£ |In(t) āˆ’ I(t)| = an a f(x, t) āˆ’ āˆž a f(x, t) = āˆž an f(x, t) < , vĆ­i mƤi n ā‰„ N, vĆ­i mƤi t āˆˆ T. TƵ Ā®Ć£, In(t) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t) trĀŖn T. 2 2.2.1 TƝnh liĀŖn tĆ“c Ā§Ćžnh lĆ½ 7. Nƕu hĀµm f(x, t) liĀŖn tĆ“c trĀŖn [a, āˆž) Ɨ [c, d] vĀµ tƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ trĀŖn trĀŖn [c, d], thƗ I(t) liĀŖn tĆ“c trĀŖn [c, d]. ChĆøng minh. GƤi (an), vĆ­i an > a. lĀµ dĀ·y sĆØ sao cho lim nā†’āˆž an = āˆž vĀµ xƐt dĀ·y hĀµm In(t) = an a f(x, t)dx, t āˆˆ [c, d]. VĆ­i mƧi n cĆØ Ā®Ćžnh, theo Ā§Ćžnh lĆ½ 1, hĀµm In(t) liĀŖn tĆ“c trĀŖn [c, d]. Theo mƖnh Ā®Ć’ 1, dĀ·y hĀµm (In(t)) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t). Theo Ā®Ćžnh lĆ½ vƒ tƝnh liĀŖn tĆ“c cƱa dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u, I(t) liĀŖn tĆ“c trĀŖn [c, d]. 2
  • 13. 13 2.2.2 TƝnh khĀ¶ vi Ā§Ćžnh lĆ½ 8. GiĀ¶ sƶ (a) HĀµm f(x, t) liĀŖn tĆ“c vĀµ cĆ£ Ā®Ā¹o hĀµm riĀŖng āˆ‚f āˆ‚t (x, t) liĀŖn tĆ“c trĀŖn [a, āˆž)Ɨ[c, d]. (b) TƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ trĀŖn [c, d]. (c) TƝch phĀ©n āˆž a āˆ‚f āˆ‚t (x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d]. Khi Ā®Ć£, hĀµm I(t) khĀ¶ vi trĀŖn [c, d] vĀµ ta cĆ£ cĀ«ng thĆøc I (t) = āˆž a āˆ‚f āˆ‚t (x, t)dx. ChĆøng minh. XƐt dĀ·y hĀµm In(t) = a+n a f(x, t)dx, t āˆˆ [c, d]. VĆ­i mƧi n, theo Ā§Ćžnh lĆ½ 3, hĀµm In(t) khĀ¶ vi trĀŖn [c, d] vĀµ In(t) = a+n a āˆ‚f āˆ‚t (x, t)dx, t āˆˆ [c, d]. Ta cĆ£ limIn(t) = I(t) vĀµ limIn(t) = āˆž a āˆ‚f āˆ‚t (x, t)dx. Theo mƖnh Ā®Ć’ 1, dĀ·y hĀµm In(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d]. Theo Ā®Ćžnh lĆ½ vƒ tƝnh khĀ¶ vi cƱa dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u, I(t) khĀ¶ vi trĀŖn [c, d] vĀµ I (t) = lim nā†’āˆž In(t) = lim nā†’āˆž In(t) = āˆž a āˆ‚f āˆ‚t (x, t)dx. 2 2.2.3 TƝnh khĀ¶ tƝch Ā§Ćžnh lĆ½ 9. GiĀ¶ sƶ hĀµm f(x, t) liĀŖn tĆ“c trĀŖn [a, āˆž) Ɨ [c, d] vĀµ tƝch phĀ©n I(t) = āˆž a f(x, t)dx hĆ©i tĆ“ Ā®Ć’u trĀŖn [c, d]. Khi Ā®Ć£, hĀµm I(t) khĀ¶ tƝch trĀŖn [c, d] vĀµ ta cĆ£ cĀ«ng thĆøc d c I(t)dt = d c āˆž a f(x, t)dx dt = āˆž a d c f(x, t)dt dx
  • 14. 14 ChĆøng minh. Theo Ā§Ćžnh lĆ½ 7, I(t) lĀµ hĀµm liĀŖn tĆ“c trĀŖn [c, d], do Ā®Ć£ khĀ¶ tƝch. XƐt dĀ·y hĀµm In(t) = a+n a f(x, t)dx, t āˆˆ [c, d]. VĆ­i mƧi n cĆØ Ā®Ćžnh, theo Ā§Ćžnh lĆ½ 1, hĀµm In(t) liĀŖn tĆ“c trĀŖn [c, d]. Theo mƖnh Ā®Ć’ 1, dĀ·y hĀµm (In(t)) hĆ©i tĆ“ Ā®Ć’u tĆ­i I(t) trĀŖn [c, d]. Theo Ā®Ćžnh lĆ½ vƒ tƝnh khĀ¶ tƝch cƱa dĀ·y hĀµm hĆ©i tĆ“ Ā®Ć’u, ta cĆ£ d c I(t)dt = d c lim nā†’āˆž In(t) dt = lim nā†’āˆž d c In(t)dt = lim nā†’āˆž d c a+n a f(x, t)dx dt = lim nā†’āˆž a+n a d c f(x, t)dx dt = āˆž a d c f(x, t)dt . 2 3 CĀøc tƝch phĀ©n Euler 3.1 TƝch phĀ©n Euler loĀ¹i 1 3.1.1 Ā§Ćžnh nghƜa TƝch phĀ©n Euler loĀ¹i 1 hay hĀµm Beta lĀµ tƝch phĀ©n phĆ“ thuĆ©c 2 tham sĆØ dĀ¹ng B(p, q) = 1 0 xpāˆ’1 (1 āˆ’ x)qāˆ’1 dx, p > 0, q > 0. 3.1.2 CĀøc tƝnh chƊt cuĀ¶ hĀµm Beta 1) SĆ¹ hĆ©i tĆ“. Ta phĀ©n tƝch B(p, q) thĀµnh hai tƝch phĀ©n B(p, q) = 1/2 0 xpāˆ’1 (1 āˆ’ x)qāˆ’1 dx + 1 1/2 xpāˆ’1 (1 āˆ’ x)qāˆ’1 dx = B1(p, q) + B2(p, q).
  • 15. 15 TƝch phĀ©n B1 hĆ©i tĆ“ nƕu p > 0 vĀµ phĀ©n kĆŗ nƕu p ā‰¤ 0. Ā§iƒu nĀµy suy ra tƵ xpāˆ’1 (1 āˆ’ x)qāˆ’1 ā‰¤ Mqxpāˆ’1 , Mq = max 0ā‰¤xā‰¤1/2 (1 āˆ’ x)qāˆ’1 xpāˆ’1 (1 āˆ’ x)qāˆ’1 ā‰„ mqxpāˆ’1 , mq = min 0ā‰¤xā‰¤1/2 (1 āˆ’ x)qāˆ’1 . T-Ā¬ng tĆ¹, tƝch phĀ©n B2 hĆ©i tĆ“ nƕu q > 0 vĀµ phĀ©n kĆŗ nƕu q ā‰¤ 0. Nh- vƋy hĀµm B(p, q) xĀøc Ā®Ćžnh vĆ­i mƤi p > 0, q > 0. 2) SĆ¹ hĆ©i tĆ“ Ā®Ć’u. TƝch phĀ©n B(p, q) hĆ©i tĆ“ Ā®Ć’u trĀŖn chĆ· nhƋt [p0, p1] Ɨ [q0, q1], trong Ā®Ć£, 0 < p0 < p1, 0 < q0 < q1. Ā§iƒu nĀµy suy ra tƵ Ā®Āønh giĀø xpāˆ’1 (1 āˆ’ x)qāˆ’1 ā‰¤ xp0āˆ’1 (1 āˆ’ x)q0āˆ’1 , āˆ€x āˆˆ (0, 1), p ā‰„ p0, q ā‰„ q0, vĀµ sau Ā®Ć£ sƶ dĆ“ng tiĀŖu chuƈn Weierstrass. 3) TƝnh liĀŖn tĆ“c. HĀµm B(p, q) liĀŖn tĆ“c trĀŖn miƒn xĀøc Ā®Ćžnh cƱa nĆ£. ThƋt vƋy, vĆ­i mƤi (p, q), p > 0, q > 0, tƝch phĀ©n B(p, q) hĆ©i Ā®Ć’u trĀŖn [pāˆ’ , p+ ]Ɨ[qāˆ’ ,q+ ], do Ā®Ć£ liĀŖn tĆ“c trĀŖn miƒn nĀµy. 4) TƝnh Ā®ĆØi xĆøng. BĀ»ng cĀøch Ā®Ć„i biƕn x = 1 āˆ’ t, ta Ā®-Ć®c B(p, q) = B(q, p). 5) CĀ«ng thĆøc truy hĆ„i. BĀ»ng cĀøch lƊy tƝch phĀ©n tƵng phƇn tƵ tƝch phĀ©n B(p, q) ta Ā®-Ć®c B(p + 1, q + 1) = q p + q + 1 B(p + 1, q) = q p + q + 1 B(p, q + 1). Ā§Ć†c biƖt, nƕu m, n lĀµ cĀøc sĆØ tĆ¹ nhiĀŖn, thƗ Āøp dĆ“ng liĀŖn tiƕp cĀ«ng thĆøc trĀŖn, ta cĆ£ B(1, 1) = 1 B(p + 1, 1) = 1 p + 1 B(p + 1, n) = n! (p + n)(p + n āˆ’ 1) Ā· Ā· Ā· (p + 1) B(m, n) = (n āˆ’ 1)!(m āˆ’ 1)! (m + n āˆ’ 1)! .
  • 16. 16 3.2 TƝch phĀ©n Euler loĀ¹i 2 3.2.1 Ā§Ćžnh nghƜa TƝch phĀ©n Euler loĀ¹i 2 hay hĀµm Gamma lĀµ tƝch phĀ©n phĆ“ thuĆ©c tham sĆØ dĀ¹ng Ī“(p) = āˆž 0 xpāˆ’1 eāˆ’x dx, p > 0. 3.2.2 CĀøc tƝnh chƊt cuĀ¶ hĀµm Gamma 1) SĆ¹ hĆ©i tĆ“. Ta phĀ©n tƝch B(p, q) thĀµnh hai tƝch phĀ©n Ī“(p) = 1 0 xpāˆ’1 eāˆ’x dx + āˆž 1 xpāˆ’1 eāˆ’x dx = Ī“1(p) + Ī“2(p). TƝch phĀ©n Ī“1(p) hĆ©i tĆ“ khi p > 0. Ā§iƒu nĀµy suy ra tƵ xpāˆ’1 eāˆ’x ā‰¤ xpāˆ’1 , āˆ€x āˆˆ (0, 1]. TƝch phĀ©n Ī“2(p) hĆ©i tĆ“ khi p > 0. Ā§iƒu nĀµy suy ra tƵ lim xā†’āˆž xpāˆ’1 eāˆ’x 1 xp+1 = lim xā†’āˆž = x2p ex = 0, vĀµ āˆž 1 1 xp+1 < āˆž. Suy ra, tƝch phĀ©n Ī“(p) = āˆž 0 xpāˆ’1 eāˆ’x dx hĆ©i tĆ“ khi p > 0. 2) SĆ¹ hĆ©i tĆ“ Ā®Ć’u. TƝch phĀ©n Ī“1(p) hĆ©i tĆ“ Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [p0.p1], vĆ­i p1 > p0 > 0. Ā§iƒu nĀµy suy ra tƵ xpāˆ’1 eāˆ’x ā‰¤ xp0āˆ’1 (0 < x ā‰¤ 1) 1 0 xp0āˆ’1 < āˆž, xpāˆ’1 eāˆ’x ā‰¤ xp1āˆ’1 eāˆ’x , (1 ā‰¤ x < āˆž), āˆž 1 xp0āˆ’1 eāˆ’x < āˆž. 3) TƝnh liĀŖn tĆ“c. TƵ tƝnh hĆ©i tĆ“ Ā®Ć’u suy ra hĀµm Ī“(p) liĀŖn tĆ“c trĀŖn miƒn xĀøc Ā®Ćžnh cƱa nĆ£.
  • 17. 17 4) CĀ«ng thĆøc truy hĆ„i. BĀ»ng cĀøch tƝch phĀ©n tƵng phƇn, ta cĆ£ Ī“(p + 1) = āˆž 0 xp eāˆ’x dx = lim bā†’āˆž xp eāˆ’x b 0 + p b 0 xpāˆ’1 eāˆ’x dx = pĪ“(p). Nƕu n lĀµ sĆØ tĆ¹ nhiĀŖn, thƗ Āøp dĆ“ng liĀŖn tiƕp cĀ«ng thĆøc trĀŖn, ta cĆ£ Ī“(p + n) = (n + p āˆ’ 1)(n + p āˆ’ 2) Ā· Ā· Ā· pĪ“(p). NĆ£i riĀŖng, Ī“(1) = 1, Ī“(n + 1) = n!, Ī“(1/2) = āˆž 0 eāˆ’x āˆš x dx = 2 āˆž 0 eāˆ’x2 dx = āˆš Ļ€. 5) LiĀŖn hƖ vĆ­i hĀµm Beta. BĀ»ng phƐp Ā®Ć¦i biƕn x = ty, t > 0, ta cĆ£ Ī“(p) tp = āˆž 0 ypāˆ’1 eāˆ’ty dy. Thay p bĆ«i p + q vĀµ t bĆ«i t + 1 ta Ā®-Ć®c Ī“(p + q) (1 + t)p+q = āˆž 0 yp+qāˆ’1 eāˆ’(1+t)y dy. NhĀ©n hai vƕ cƱa Ā®Ā¼ng thĆøc trĀŖn vĆ­i tpāˆ’1 rĆ„i lƊy tƝch phĀ©n theo t tƵ 0 Ā®Ć•n āˆž ta Ā®-Ć®c Ī“(p + q) āˆž 0 tpāˆ’1 (1 + t)p+q dy = āˆž 0 āˆž 0 tpāˆ’1 eāˆ’ty yp+qāˆ’1 eāˆ’y dy dt. Ā§Ć¦i biƕn x = t 1 + t , ta Ā®-Ć®c B(p, q) = āˆž 0 tpāˆ’1 (1 + t)p+q . MƆt khĀøc, cĆ£ thƓ Ā®Ć¦i thĆø tĆ¹ tƝch phĀ©n Ć« vƕ phĀ¶i (hĀ·y kiƓm chĆøng Ā®iƒu nĀµy nh- bĀµi tƋp). TƵ Ā®Ć£ Ī“(p + q)B(p, q) = āˆž 0 āˆž 0 tpāˆ’1 eāˆ’ty yp+qāˆ’1 eāˆ’ty dt dy = āˆž 0 yp+qāˆ’1 eāˆ’y Ī“(p) yp dy = Ī“(a) āˆž 0 yqāˆ’1 eāˆ’y dy = Ī“(p)Ī“(q). VƋy. ta cĆ£ cĀ«ng thĆøc B(p, q) = Ī“(p)Ī“(q) Ī“(p + q) .
  • 18.
  • 19. II. TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp khaĆ» vi 1. ƑA TAƏP KHAƛ VI TRONG Rn 1.1 ƑƶƓĆøng cong. TaƤp con C āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø ƱƶƓĆøng cong trĆ“n lĆ“Ć¹p Cp(p ā‰„ 1) neĆ”uu moĆÆi x āˆˆ C, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, khoaĆ»ng mĆ“Ć» I āŠ‚ R, vaĆø Ļ• : I ā†’ Rn thuoƤc lĆ“Ć¹p Cp, Ļ•(t) = (x1(t), Ā· Ā· Ā· , xn(t)), sao cho: (1) Ļ• : I ā†’ C āˆ© V laĆø 1-1. (2) Ļ• (t) = (x1(t), Ā· Ā· Ā· , xn(t)) = 0, vĆ“Ć¹i moĆÆi t āˆˆ I. Khi ƱoĆ¹ (Ļ•, I) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a C taĆÆi x. s t0 E Ļ• s x0 "! # Vector Ļ• (t) goĆÆi laĆø vector tieĆ”p xuĆ¹c cuĆ»a C taĆÆi x. Ta coĆ¹ phƶƓng trƬnh tham soĆ” cuĆ»a ƱƶƓĆøng thaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i C taĆÆi Ļ•(t0): x = Ļ•(t0) + sĻ• (t0), s āˆˆ R VĆ­ duĆÆ. Trong R2. a) ƑƶƓĆøng troĆøn coĆ¹ theĆ„ cho bĆ“Ć»i tham soĆ” hoaĆ¹: x = a cos t, y = a sin t, t āˆˆ [0, 2Ļ€). b) Tham soĆ” hoaĆ¹: x = a cos t, y = a sin t, z = bt, t āˆˆ (0, H), moĆ¢ taĆ» ƱƶƓĆøng xoaĆ©n. BaĆøi taƤp: VieĆ”t cuĆÆ theĆ„ phƶƓng trƬnh tieĆ”p tuyeĆ”n khi n = 2 hay n = 3. NhaƤn xeĆ¹t. ƑieĆ u kieƤn Ļ• (t) = 0 baĆ»o ƱaĆ»m cho ƱƶƓĆøng cong khoĆ¢ng coĆ¹ goĆ¹c hay ƱieĆ„m luĆøi. ChaĆŗng haĆÆn, neĆ”u Ļ•(t) = (t3, t2) thƬ ƱƶƓĆøng cong coĆ¹ ƱieĆ„m luĆøi taĆÆi (0, 0), coĆøn Ļ•(t) = (t3, |t|3), thƬ ƱƶƓĆøng cong coĆ¹ ƱieĆ„m goĆ¹c taĆÆi (0, 0). 1.2 MaĆ«t cong. TaƤp con S āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø maĆ«t cong trĆ“n lĆ“Ć¹p Cp (p ā‰„ 1) neĆ”uu moĆÆi x āˆˆ S, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ R2, vaĆø Ļ• : U ā†’ Rn thuoƤc lĆ“Ć¹p Cp, Ļ•(u, v) = (x1(u, v), Ā· Ā· Ā· , xn(u, v)), sao cho: (1) Ļ• : U ā†’ S āˆ© V laĆø 1-1. (2) rank Ļ• (u, v) = 2, i.e. D1Ļ•(u, v), D2Ļ•(u, v) ƱoƤc laƤp tuyeĆ”n tĆ­nh, āˆ€(u, v) āˆˆ U. Khi ƱoĆ¹ (Ļ•, U) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a S taĆÆi x. Khi coĆ” Ć±Ć²nh moƤt bieĆ”n u hay v, Ļ• cho caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ. CaĆ¹c vector D1Ļ•(u, v), D2Ļ•(u, v) goĆÆi laĆø caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a S taĆÆi Ļ•(u, v). Ta coĆ¹ phƶƓng trƬnh tham soĆ” cuĆ»a maĆ«t phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u0, v0): x = Ļ•(u0, v0) + sD1Ļ• (u0, v0) + tD2Ļ•(u0, v0), (s, t) āˆˆ R2
  • 20. II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 20 s E ā†’u T ā†’v U E Ļ• sx EĀ  Ā  Ā  Ā  Ā  S V TrƶƓĆøng hĆ“ĆÆp n = 3, N(u, v) = D1Ļ•(u, v) Ɨ D2Ļ•(u, v) = (A(u, v), B(u, v), C(u, v)), laĆø vector vuoĆ¢ng goĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u, v). Khi ƱoĆ¹ phƶƓng trƬnh toĆ„ng quaĆ¹t cuĆ»a maĆ«t phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i S taĆÆi Ļ•(u0, v0) = (x0, y0, z0): A(u0, v0)(x āˆ’ x0) + B(u0, v0)(y āˆ’ y0) + C(u0, v0)(z āˆ’ z0) = 0 BaĆøi taƤp: XaĆ¹c Ć±Ć²nh toĆÆa ƱoƤ vector phaĆ¹p qua caĆ¹c ƱaĆÆo haĆøm rieĆ¢ng cuĆ»a Ļ•. VĆ­ duĆÆ. Trong R3. a) Tham soĆ” hoaĆ¹ maĆ«t caĆ u: x = a cos Ļ† sin Īø, y = a sin Ļ† sin Īø, z = a cos Īø, (Ļ†, Īø) āˆˆ (0, 2Ļ€) Ɨ (0, Ļ€) b) Tham soĆ” hoaĆ¹ maĆ«t xuyeĆ”n: x = (a+b cos Ļ†) sin Īø, y = (a+b sin Ļ†) sin Īø, z = b sin Ļ†, (Ļ†, Īø) āˆˆ (0, 2Ļ€)Ɨ(0, 2Ļ€), (0 b a) BaĆøi taƤp: VieĆ”t phƶƓng trƬnh maĆ«t phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i caĆ¹c maĆ«t treĆ¢n. BaĆ¢y giĆ“Ćø, ta toĆ„ng quaĆ¹t hoaĆ¹ caĆ¹c khaĆ¹i nieƤm treĆ¢n. 1.3 Ƒa taĆÆp. TaƤp con M āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø Ʊa taĆÆp k chieĆ u lĆ“Ć¹p Cp (p ā‰„ 1) neĆ”uu moĆÆi x āˆˆ M, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ Rk, vaĆø Ļ• : U ā†’ Rn thuoƤc lĆ“Ć¹p Cp, sao cho: (M1) Ļ• : U ā†’ M āˆ© V laĆø 1-1. (M2) rank Ļ• (u) = k, i.e. D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u) ƱoƤc laƤp tuyeĆ”n tĆ­nh, vĆ“Ć¹i moĆÆi u āˆˆ U. Khi ƱoĆ¹ (Ļ•, U) ƱƶƓĆÆc goĆÆi laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x. Khi coĆ” Ć±Ć²nh k āˆ’ 1 bieĆ”n trong caĆ¹c bieĆ”n, Ļ• cho caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ. CaĆ¹c vector D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u) goĆÆi laĆø caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a M taĆÆi Ļ•(u). Ta coĆ¹ phƶƓng trƬnh tham soĆ” cuĆ»a k- phaĆŗng tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi Ļ•(u0): x = Ļ•(u0) + t1D1Ļ•(u0 + Ā· Ā· Ā· + tkDkĻ•(u0), (t1, Ā· Ā· Ā· , tk) āˆˆ Rk 1.4 Cho Ʊa taĆÆp bĆ“Ć»i heƤ phƶƓng trƬnh. Cho taƤp mĆ“Ć» V āŠ‚ Rn vaĆø caĆ¹c haĆøm lĆ“Ć¹p Cp F1, Ā· Ā· Ā· , Fm : V ā†’ R. XeĆ¹t taƤp cho bĆ“Ć»i heƤ phƶƓng trƬnh M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0}
  • 21. II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 21 GiaĆ» sƶƻ rank (DF1, Ā· Ā· Ā· , DFm)(x) = m, āˆ€x āˆˆ M. Khi ƱoĆ¹ M laĆø Ʊa taĆÆp khaĆ»Ćø vi, n āˆ’ m chieĆ u, lĆ“Ć¹p Cp. ChĆ¶Ć¹ng minh: ƑaĆ«t k = n āˆ’ m. KyĆ¹ hieƤu x = (x , y) āˆˆ Rk Ɨ Rm = Rn, vaĆø F = (F1, Ā· Ā· Ā· , Fm). VĆ“Ć¹i moĆ£i a āˆˆ M, baĆØng pheĆ¹p hoaĆ¹n vĆ² toĆÆa ƱoƤ, coĆ¹ theĆ„ giaĆ» thieĆ”t det āˆ‚F āˆ‚y (a) = 0. Theo Ć±Ć²nh lyĆ¹ haĆøm aĆ„Ć n, Ć“Ć» laĆ¢n caƤn V cuĆ»a a = (a , b), ta coĆ¹ M āˆ© V = {(x , y) āˆˆ V : F(x , y) = 0} = {(x , y) āˆˆ V : y = g(x )}, vĆ“Ć¹i g laĆø haĆøm lĆ“Ć¹p Cp Ć“Ć» moƤt laĆ¢n caƤn U cuĆ»a a . VaƤy Ļ• : U ā†’ Rn, Ļ•(x ) = (x , g(x )) laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi a. VĆ­ duĆÆ. Trong R3. a) MaĆ«t caĆ u S2 cho bĆ“Ć»i phƶƓng trƬnh: F(x, y, z) = x2 + y2 + z2 āˆ’ 1 = 0. DeĆ£ kieĆ„m tra F (x, y, z) = (2x, 2y, 2z) = (0, 0, 0) treĆ¢n S2. VaƤy S2 laĆø Ʊa taĆÆp khaĆ» vi 2 chieĆ u (= maĆ«t cong trĆ“n). b) ƑƶƓĆøng troĆøn C cho bĆ“Ć»i heƤ phƶƓng trƬnh sau laĆø Ʊa taĆÆp 1 chieĆ u F1(x, y, z) = x2 + y2 + z2 āˆ’ 1 = 0 F2(x, y, z) = x + y + z = 0 NhaƤn xeĆ¹t. NeĆ”u (Ļˆ, W) laĆø tham soĆ” hoaĆ¹ khaĆ¹c cuĆ»a M taĆÆi x, thƬ toĆ n taĆÆi caĆ¹c laĆ¢n caƤn W , U cuĆ»a Ļˆāˆ’1(x), Ļ•āˆ’1(x) tƶƓng Ć¶Ć¹ng sao cho treĆ¢n W ta coĆ¹ Ļˆ = Ļ• ā—¦ h, trong ƱoĆ¹ h = Ļ•āˆ’1 ā—¦ Ļˆ : W ā†’ U laĆø vi phoĆ¢i, i.e. song aĆ¹nh vaĆø hāˆ’1 khaĆ» vi. ChĆ¶Ć¹ng minh: RoƵƵ raĆøng h = Ļ•āˆ’1 ā—¦Ļˆ laĆø song aĆ¹nh tƶĆø Ļˆāˆ’1(Ļˆ(W)āˆ©Ļ•(U)) leĆ¢n Ļ•āˆ’1(Ļˆ(W)āˆ© Ļ•(U)). Ta caĆ n chĆ¶Ć¹ng minh h thuoƤc lĆ“Ć¹p Cp. Do rank DĻ• = k, hoaĆ¹n vĆ² toĆÆa ƱoƤ, coĆ¹ theĆ„ giaĆ» thieĆ”t k doĆøng ƱaĆ u cuĆ»a DĻ•(u) laĆø ƱoƤc laƤp tuyeĆ”n tĆ­nh khi u thuoƤc moƤt laĆ¢n caƤn U cuĆ»a ƱieĆ„m Ʊang xeĆ¹t, i.e. D(Ļ•1, Ā· Ā· Ā· , Ļ•k) D(u1, Ā· Ā· Ā· , uk) = 0 treĆ¢n U . KyĆ¹ hieƤu x = (x , y) āˆˆ Rk Ɨ Rnāˆ’k. GoĆÆi i : Rk ā†’ Rk Ɨ Rnāˆ’k laĆø pheĆ¹p nhuĆ¹ng i(u) = (u, 0), vaĆø p = Rk Ɨ Rnāˆ’k ā†’ Rk laĆø pheĆ¹p chieĆ”u p(x , y) = x . ƑaĆ«t Ī¦(u, y) = (Ļ•(u), y). TƶĆø giaĆ» thieĆ”t det DĪ¦ = D(Ļ•1, Ā· Ā· Ā· , Ļ•k) D(u1, Ā· Ā· Ā· , uk) = 0. Theo Ć±Ć²nh lyĆ¹ haĆøm ngƶƓĆÆc, toĆ n taĆÆi Ī¦āˆ’1 āˆˆ Cp Ć±Ć²a phƶƓng. Ta coĆ¹ h = Ļ•āˆ’1 ā—¦ Ļˆ = (Ī¦ ā—¦ i)āˆ’1 ā—¦ Ļˆ = p ā—¦ Ī¦āˆ’1 ā—¦ Ļˆ. CaĆ¹c haĆøm thaĆønh phaĆ n laĆø thuoƤc lĆ“Ć¹p Cp, neĆ¢n h thuoƤc lĆ“Ć¹p Cp. 1.5 KhoĆ¢ng gian tieĆ”p xuĆ¹c. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u vaĆø x0 āˆˆ M. Cho Ī³ : (āˆ’ , ) ā†’ M laĆø ƱƶƓĆøng cong lĆ“Ć¹p C1 treĆ¢n M, Ī³(0) = x0. Khi ƱoĆ¹ Ī³ (0) ƱƶƓĆÆc goĆÆi laĆø vector tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0. TaƤp moĆÆi vector tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0 ƱƶƓĆÆc goĆÆi laĆø khoĆ¢ng gian tieĆ”p xuĆ¹c vĆ“Ć¹i M taĆÆi x0 vaĆø kyĆ¹ hieƤu Tx0 M. NeĆ”u (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x0 = Ļ•(u0), thƬ Tx0 M = {v āˆˆ Rn : v = t1D1Ļ•(u0) + Ā· Ā· Ā· + tkDkĻ•(u0), t1, Ā· Ā· Ā· , tk āˆˆ R} = ImDĻ•(u0).
  • 22. II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 22 NeĆ”u M cho bĆ“Ć»i heƤ phƶƓng trƬnh F1 = Ā· Ā· Ā· = Fm = 0, taĆÆi laĆ¢n caƤn x0, thƬ Tx0 M = {v āˆˆ Rn : v āŠ„ grad Fi(x0), i = 1, Ā· Ā· Ā· , m}. VieĆ”t moƤt caĆ¹ch khaĆ¹c Tx0 M cho bĆ“Ć»i heƤ phƶƓng trƬnh v āˆˆ Rn : grad F1(x0), v = Ā· Ā· Ā· = grad Fm(x0), v = 0 BaĆøi taƤp: TƬm phƶƓng trƬnh khoĆ¢ng gian tieĆ”p xuĆ¹c cho S2 vaĆø C Ć“Ć» vĆ­ duĆÆ treĆ¢n. 1.6 Ƒa taĆÆp coĆ¹ bĆ“Ćø. Ta seƵ duĆøng caĆ¹c kyĆ¹ hieƤu: Hk = {x = (x1, Ā· Ā· Ā· , xk) āˆˆ Rk : xk ā‰„ 0} vaĆø goĆÆi laĆø nƶƻa khoĆ¢ng gian cuĆ»a Rk, āˆ‚Hk = {x āˆˆ Hk : xk = 0} = Rkāˆ’1 Ɨ 0 vaĆø goĆÆi laĆø bĆ“Ćø cuĆ»a Hk, Hk + = {x āˆˆ Hk : xk 0} vaĆø goĆÆi laĆø phĆ­a trong cuĆ»a Hk. TaƤp con M āŠ‚ Rn ƱƶƓĆÆc goĆÆi laĆø Ʊa taĆÆp k chieĆ u lĆ“Ć¹p Cp coĆ¹ bĆ“Ćø neĆ”uu moĆÆi x āˆˆ M, toĆ n taĆÆi laĆ¢n caƤn mĆ“Ć» V āŠ‚ Rn cuĆ»a x, taƤp mĆ“Ć» U āŠ‚ Rk, vaĆø Ļ• : U ā†’ Rn thuoƤc lĆ“Ć¹p Cp, sao cho: (M1) Ļ• : U āˆ© Hk ā†’ M āˆ© V laĆø 1-1. (M2) rank Ļ• (u) = k, vĆ“Ć¹i moĆÆi u āˆˆ U. Khi ƱoĆ¹ caĆ¹c ƱieĆ„m x = Ļ•(u), u āˆˆ U, ƱƶƓĆÆc phaĆ¢n thaĆønh 2 loaĆÆi: ƑieĆ„m trong cuĆ»a M , neĆ”u u āˆˆ Hk +. ƑieĆ„m bĆ“Ćø cuĆ»a M , neĆ”u u āˆˆ āˆ‚Hk. KyĆ¹ hieƤu āˆ‚M = {x āˆˆ M : x laĆø ƱieĆ„m bĆ“Ćø cuĆ»a M}, vaĆø goĆÆi laĆø bĆ“Ćø cuĆ»a M . NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a ƱieĆ„m trong vaĆø ƱieĆ„m bieĆ¢n khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹. s E Rkāˆ’1 Txk U Hk E Ļ• s x EĀ  Ā  Ā  M V Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  MeƤnh ƱeĆ . Cho taƤp mĆ“Ć» V āŠ‚ Rn vaĆø caĆ¹c haĆøm lĆ“Ć¹p Cp, F1, Ā· Ā· Ā· , Fm, Fm+1 : V ā†’ R. XeĆ¹t caĆ¹c taƤp cho bĆ“Ć»i heƤ phƶƓng trƬnh vaĆø baĆ”t phƶƓng trƬnh M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0, Fm+1(x) ā‰„ 0} āˆ‚M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = Fm+1(x) = 0} GiaĆ» sƶƻ rank (DF1, Ā· Ā· Ā· , DFm)(x) = m, āˆ€x āˆˆ M, vaĆø rank (DF1, Ā· Ā· Ā· , DFm+1)(x) = m + 1, āˆ€x āˆˆ āˆ‚M. Khi ƱoĆ¹ M laĆø Ʊa taĆÆp khaĆ»Ćø vi, n āˆ’ m chieĆ u, lĆ“Ć¹p Cp, coĆ¹ bĆ“Ćø āˆ‚M. ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ 1.4 VĆ­ duĆÆ. Trong R3 hƬnh caĆ u ƱoĆ¹ng B cho bĆ“Ć»i baĆ”t phƶƓng trƬnh: x2 + y2 + z2 ā‰¤ 1, laĆø Ʊa
  • 23. II.1. Ƒa taĆÆp khaĆ» vi trong Rn. 23 taĆÆp 3 chieĆ u coĆ¹ bĆ“Ćø laĆø maĆ«t caĆ u āˆ‚B cho bĆ“Ć»i: x2 + y2 + z2 = 1. MeƤnh ƱeĆ . Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u. Khi ƱoĆ¹: (1) āˆ‚M laĆø Ʊa taĆÆp khaĆ» vi k āˆ’ 1 chieĆ u khoĆ¢ng bĆ“Ćø, i.e. āˆ‚(āˆ‚M) = āˆ…. (2) NeĆ”u x āˆˆ āˆ‚M, thƬ Txāˆ‚M laĆø khoĆ¢ng gian con k āˆ’ 1 chieĆ u cuĆ»a TxM. ChĆ¶Ć¹ng minh: GoĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi ƱoĆ¹ deĆ£ thaĆ”y neĆ”u (Ļ•, U) laĆø tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x vaĆø x āˆˆ āˆ‚M, thƬ (Ļ•ā—¦i, iāˆ’1(U)) laĆø tham soĆ” hoaĆ¹ cuĆ»a āˆ‚M taĆÆi x. VĆ“Ć¹i tham soĆ” hoaĆ¹ ƱoĆ¹ x laĆø ƱieĆ„m trong cuĆ»a āˆ‚M. VaƤy āˆ‚(āˆ‚M) = āˆ…. HĆ“n nƶƵa Txāˆ‚M laĆø khoĆ¢ng gian sinh bĆ“Ć»i D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u) neĆ¢n laĆø khoĆ¢ng gian con k āˆ’ 1 chieĆ u cuĆ»a TxM. 1.7 Ɩƙng duĆÆng vaĆøo baĆøi toaĆ¹n cƶĆÆc trĆ² ƱieĆ u kieƤn. Cho F = (F1, Ā· Ā· Ā· , Fm) : V ā†’ Rm, thuoƤc lĆ“Ć¹p C1 treĆ¢n taƤp mĆ“Ć» V āŠ‚ Rn. GoĆÆi M = {x āˆˆ V : F1(x) = Ā· Ā· Ā· = Fm(x) = 0}, vaĆø giaĆ» thieĆ”t rank F (x) = m, āˆ€x āˆˆ M. Cho f : V ā†’ R, thuoƤc lĆ“Ć¹p C1. BaĆøi toaĆ¹n: TƬm cƶĆÆc trĆ² cuĆ»a haĆøm haĆÆn cheĆ” f|M . NoĆ¹i caĆ¹ch khaĆ¹c laĆø tƬm cƶĆÆc trĆ² cuĆ»a f vĆ“Ć¹i ƱieĆ u kieƤn raĆøng buoƤc F1 = Ā· Ā· Ā· = Fm = 0. NhaƤn xeĆ¹t. VƬ M laĆø Ʊa taĆÆp, neĆ¢n vĆ“Ć¹i moĆ£i a āˆˆ M toĆ n taĆÆi tham soĆ” hoaĆ¹ (Ļ•, U) cuĆ»a M taĆÆi a, vĆ“Ć¹i a = Ļ•(b). ƑieĆ u kieƤn caĆ n. NeĆ”u f ƱaĆÆt cƶĆÆc trĆ² vĆ“Ć¹i raĆøng buoƤc F1 = Ā· Ā· Ā· = Fm = 0, taĆÆi a, thƬ grad f(a) āŠ„ TaM, i.e. toĆ n taĆÆi Ī»1, Ā· Ā· Ā· , Ī»m āˆˆ R, sao cho grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a) ChĆ¶Ć¹ng minh: Theo nhaƤn xeĆ¹t treĆ¢n, roƵ raĆøng f|M ƱaĆÆt cƶĆÆc trĆ² taĆÆi a tƶƓng ƱƶƓng vĆ“Ć¹i f ā—¦ Ļ• ƱaĆÆt cƶĆÆc trĆ² taĆÆi b. Suy ra (f ā—¦ Ļ•) (b) = f (a)Ļ• (b) = 0. VaƤy grad f(a), v = 0, āˆ€v āˆˆ ImĻ• (b) = TaM, i.e. grad f(a) āŠ„ TaM. Do rank (grad F1(a), Ā· Ā· Ā· , grad Fm(a)) = m = codimTaM, neĆ¢n grad f(a) thuoƤc khoĆ¢ng gian sinh bĆ“Ć»i grad F1(a), Ā· Ā· Ā· , grad Fm(a). PhƶƓng phaĆ¹p nhaĆ¢n tƶƻ hoaĆ¹ Lagrange. TƶĆø keĆ”t quĆ»a treĆ¢n, ƱeĆ„ tƬm ƱieĆ„m nghi ngĆ“Ćø cƶĆÆc trĆ² cuĆ»a f vĆ“Ć¹i ƱieĆ u kieƤn F1 = Ā· Ā· Ā· = Fm = 0, ta laƤp haĆøm Lagrange L(x, Ī») = f(x) āˆ’ Ī»1F1(x) āˆ’ Ā· Ā· Ā· āˆ’ Ī»mFm(x), x āˆˆ V, Ī» = (Ī»1, Ā· Ā· Ā· , Ī»m) āˆˆ Rm NeĆ”u a laĆø cƶĆÆc trĆ² ƱieĆ u kieƤn, thƬ toĆ n taĆÆi Ī» āˆˆ Rm, sao cho (a, Ī») laĆø nghieƤm heƤ ļ£± ļ£“ļ£“ļ£“ļ£“ļ£“ļ£² ļ£“ļ£“ļ£“ļ£“ļ£“ļ£³ āˆ‚L āˆ‚x (x, Ī») = 0 F1(x) = 0 ... Fm(x) = 0 VĆ­ duĆÆ. XeĆ¹t cƶĆÆc trĆ² f(x, y, z) = x + y + z, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1, x + z = 1. TrĆ¶Ć“Ć¹c heĆ”t, ta thaĆ”y ƱieĆ u kieƤn raĆøng buoƤc xaĆ¹c Ć±Ć²nh moƤt Ʊa taĆÆp (Ellip E).
  • 24. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 24 LaƤp haĆøm Lagrange L(x, y, z, Ī»1, Ī»2) = x + y + z āˆ’ Ī»1(x2 + y2 āˆ’ 1) āˆ’ Ī»2(x + z āˆ’ 1). GiaĆ»i heƤ phƶƓng trƬnh ļ£± ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£² ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£“ļ£³ āˆ‚L āˆ‚x = 1 āˆ’ 2Ī»1x āˆ’Ī»2 = 0 āˆ‚L āˆ‚y = 1 āˆ’ 2Ī»1y = 0 āˆ‚L āˆ‚z = 1 āˆ’Ī»2 = 0 x2 + y2 āˆ’ 1 = 0 x + z āˆ’ 1 = 0 Ta coĆ¹ caĆ¹c ƱieĆ„m nghi ngĆ“Ćø cƶĆÆc trĆ² laĆø (0, Ā±1, 1). Do taƤp ƱieĆ u kieƤn compact, neĆ¢n f phaĆ»i ƱaĆÆt max, min treĆ¢n taƤp ƱoĆ¹. HĆ“n nƶƵa, caĆ¹c ƱieĆ„m cƶĆÆc trĆ² ƱoĆ¹ phaĆ»i laĆø moƤt trong caĆ¹c ƱieĆ„m nghi ngĆ“Ćø cƶĆÆc trĆ². VaƤy max f|E = max{f(0, 1, 1) = 1, f(0, āˆ’1, 1) = 0} = f(0, 1, 1) = 1, min f|E = min{f(0, 1, 1) = 1, f(0, āˆ’1, 1) = 0} = f(0, āˆ’1, 1) = 0 Trong trƶƓĆøng hĆ“ĆÆp taƤp ƱieĆ u kieƤn khoĆ¢ng compact, ta coĆ¹ theĆ„ sƶƻ duĆÆng keĆ”t quĆ»a sau: ƑieĆ u kieƤn ƱuĆ». GiaĆ» sƶƻ f, F1, Ā· Ā· Ā· , Fm thuoƤc lĆ“Ć¹p C2, vaĆø grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a), i.e. āˆ‚L āˆ‚x (a, Ī») = 0. ƑaĆ«t HxL(x, a) laĆø Hessian cuĆ»a haĆøm Lagrange L theo bieĆ”n x. Khi ƱoĆ¹ NeĆ”u HxL(a, Ī»)|TaM xaĆ¹c Ć±Ć²nh dƶƓng, thƬ f|M ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi a. NeĆ”u HxL(a, Ī»)|TaM xaĆ¹c Ć±Ć²nh aĆ¢m, thƬ f|M ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi a. NeĆ”u HxL(a, Ī»)|TaM khoĆ¢ng xaĆ¹c Ć±Ć²nh daĆ”u, thƬ f|M khoĆ¢ng ƱaĆÆt cƶĆÆc trĆ² taĆÆi a. ChĆ¶Ć¹ng minh: VĆ“Ć¹i caĆ¹c kyĆ¹ hieƤu Ć“Ć» phaĆ n treĆ¢n, baĆøi toaĆ¹n tƬm cƶĆÆc trĆ² cuĆ»a f|M tƶƓng ƱƶƓng baĆøi toaĆ¹n tƬm cƶĆÆc trĆ² cuĆ»a fā—¦Ļ•. Do f (a)Ļ• (b) = 0, tĆ­nh ƱaĆÆo haĆøm caĆ”p 2, ta coĆ¹ H(fā—¦Ļ•)(a)(h) = Hf(a)(Ļ• (b)h) (BaĆøi taƤp). Do Fi ā—¦ Ļ• = 0, ta coĆ¹ H(Fi ā—¦ Ļ•) = 0 vaĆø theo tĆ­nh toaĆ¹n treĆ¢n H(Fi ā—¦ Ļ•)(b)(h) = HFi(a)(Ļ• (b)(h). Suy ra HxL(a, Ī»)|TaM = H(f ā—¦ Ļ•)(b)|TaM . TƶĆø ƱieĆ u kieƤn ƱuĆ» cuĆ»a baĆøi toaĆ¹n cƶĆÆc trĆ² Ć±Ć²a phƶƓng ta coĆ¹ keĆ”t quĆ»a. . VĆ­ duĆÆ. Cho k āˆˆ N vaĆø a āˆˆ R. TƬm cƶĆÆc trĆ² f(x1, Ā· Ā· Ā· , xn) = xk 1 + Ā· Ā· Ā· + xk n, vĆ“Ć¹i raĆøng buoƤc x1 + Ā· Ā· Ā· + xn = an. 2. TƍCH PHAƂN HAƘM SOƁ TREƂN ƑA TAƏP 2.1 ƑoƤ daĆøi, dieƤn tĆ­ch, theĆ„ tĆ­ch trong R3. Trong R3, coĆ¹ trang bĆ² tĆ­ch voĆ¢ hĆ¶Ć“Ć¹ng Euclid Ā·, Ā· , neĆ¢n coĆ¹ khaĆ¹i nieƤm ƱoƤ daĆøi vaĆø vuoĆ¢ng goĆ¹c. ƑoƤ daĆøi vector T = (xt, yt, zt): T = x2 t + y2 t + z2 t
  • 25. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 25 DieƤn tĆ­ch hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i u = (xu, yu, zu), v = (xv, yv, zv): dt(u, v) = u vāŠ„ = u Ɨ v = u 2 u, v v, u v 2 1 2 = u 2 v 2 āˆ’ | u, v |2. trong ƱoĆ¹ v = v + vāŠ„ laĆø phaĆ¢n tĆ­ch: v laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c v leĆ¢n u, vāŠ„ āŠ„ u. ChĆ¶Ć¹ng minh: Ta coĆ¹ v = Ī±u, vāŠ„, u = 0. Suy ra u, u u, v v, u v, v = u, u u, v + u, vāŠ„ v, u v, v + v, vāŠ„ = u, u Ī± u, u v, u Ī± v, u + u, u 0 v, u vāŠ„ 2 = u 2 vāŠ„ 2 TƶĆø ƱoĆ¹ suy ra coĆ¢ng thĆ¶Ć¹c treĆ¢n TheĆ„ tĆ­ch khoĆ”i bƬnh haĆønh taĆÆo bĆ“Ć»i u, v, w āˆˆ R3: tt(u, v, w) = dt(u, v) wāŠ„ = | u Ɨ v, w | = | det(u, v, w)| = u, u u, v u, w v, u v, v v, w w, u w, v w, w 1 2 trong ƱoĆ¹ w = w +wāŠ„ laĆø phaĆ¢n tĆ­ch: w laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c w leĆ¢n maĆ«t phaĆŗng sinh bĆ“Ć»i u, v. Ā¢ Ā¢ Ā¢ Ā¢Ā¢w E u ĀØĀØĀØB v TwāŠ„ ĀØĀØĀØ Ā¢ Ā¢ Ā¢ Ā¢Ā¢ ĀØĀØĀØĀ¢ Ā¢ Ā¢ Ā¢Ā¢ Ā¢ Ā¢ Ā¢ Ā¢Ā¢ ĀØĀØĀØ ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ coĆ¢ng thĆ¶Ć¹c cho dieƤn tĆ­ch. (BaĆøi taƤp) 2.2 TheĆ„ tĆ­ch k chieĆ u trong Rn. Trong Rn coĆ¹ trang bĆ² tĆ­ch voĆ¢ hĆ¶Ć“Ć¹ng Euclid. TheĆ„ tĆ­ch k chieĆ u cuĆ»a hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i v1, Ā· Ā· Ā· , vk āˆˆ Rn, ƱƶƓĆÆc Ć±Ć²nh nghĆ³a qui naĆÆp theo k: V1(v1) = v1 , Vk(v1, Ā· Ā· Ā· , vk) = Vkāˆ’1(v1, Ā· Ā· Ā· , vkāˆ’1) vāŠ„ k trong ƱoĆ¹ vk = vk +vāŠ„ k laĆø phaĆ¢n tĆ­ch: vk laĆø hƬnh chieĆ”u vuoĆ¢ng goĆ¹c cuĆ»a vk leĆ¢n khoĆ¢ng gian sinh bĆ“Ć»i v1, Ā· Ā· Ā· , vkāˆ’1. CoĆ¢ng thĆ¶Ć¹c tĆ­nh. GoĆÆi G(v1, Ā· Ā· Ā· , vk) = ( vi, vj )1ā‰¤i,jā‰¤k laĆø ma traƤn Gramm. Khi ƱoĆ¹ Vk(v1, Ā· Ā· Ā· , vk) = det G(v1, Ā· Ā· Ā· , vk)
  • 26. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 26 ChĆ¶Ć¹ng minh: TƶƓng tƶĆÆ coĆ¢ng thĆ¶Ć¹c cho dieƤn tĆ­ch (BaĆøi taƤp). 2.3 PhaĆ n tƶƻ ƱoƤ daĆøi - ƑoƤ daĆøi ƱƶƓĆøng cong. Cho C āŠ‚ R3 laĆø ƱƶƓĆøng cong cho bĆ“Ć»i tham soĆ” hoaĆ¹ Ļ• : I ā†’ R3 , Ļ•(t) = (x(t), y(t), z(t)) Ta caĆ n tĆ­nh ƱoƤ daĆøi l(C) cuĆ»a ƱƶƓĆøng cong. PhaĆ¢n hoaĆÆch I thaĆønh caĆ¹c ƱoaĆÆn con Ii = [ti, ti + āˆ†ti]. Khi ƱoĆ¹ l(C) = i l(Ļ•(Ii)). Khi āˆ†ti beĆ¹, thƬ l(Ļ•(Ii)) āˆ¼ l(Ļ• (ti)āˆ†ti) = Ļ• (ti) āˆ†ti. Ć‘Ć²nh nghĆ³a phaĆ n tƶƻ ƱoƤ daĆøi : dl = Ļ• (t) dt = x 2 t + y 2 t + z 2 t dt Ć‘Ć²nh nghĆ³a ƱoƤ daĆøi cuĆ»a C: l(C) = C dl = I x 2 t + y 2 t + z 2 t dt 2.4 PhaĆ n tƶƻ dieƤn tĆ­ch - DieƤn tĆ­ch maĆ«t. Cho S āŠ‚ R3 laĆø maĆ«t cong cho bĆ“Ć»i tham soĆ” hoaĆ¹ Ļ• : U ā†’ R3 , Ļ•(u, v) = (x(u, v), y(u, v), z(u, v)) Ta caĆ n tĆ­nh dieƤn tĆ­ch cuĆ»a maĆ«t S. GƦa sƶƻ U coĆ¹ theĆ„ phaĆ¢n hoaĆÆch bĆ“Ć»i caĆ¹c hƬnh chƶƵ nhaƤt beĆ¹ Ui = [ui, ui+āˆ†ui]Ɨ[vi, vi+āˆ†vi]. Khi ƱoĆ¹ dt(S) = i dt(Ļ•(Ui)). Khi āˆ†ui, āˆ†vi beĆ¹, thƬ dt(Ļ•(Ui)) āˆ¼ dt(D1Ļ•(ui, vi)āˆ†ui, D2Ļ•(ui, vi)āˆ†vi). Ć‘Ć²nh nghĆ³a phaĆ n tƶƻ dieƤn tĆ­ch : dS = dt(D1Ļ•, D2Ļ•)dudv = EG āˆ’ F2dudv, trong ƱoĆ¹ E = D1Ļ• 2 = xu 2 + yu 2 + zu 2 G = D2Ļ• 2 = xv 2 + yv 2 + zv 2 F = D1Ļ•, D2Ļ• = xuxv + yuyv + zuzv Khi ƱoĆ¹ Ć±Ć²nh nghĆ³a dieƤn tĆ­ch cuĆ»a S : dt(S) = S dS = U EG āˆ’ F2dudv 2.5 PhaĆ n tƶƻ theĆ„ tĆ­ch - TheĆ„ tĆ­ch hƬnh khoĆ”i. Cho H laĆø hƬnh khoĆ”i cho bĆ“Ć»i tham soĆ” hoaĆ¹ Ļ• : A ā†’ R3 , Ļ•(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) ƑeĆ„ tĆ­nh theĆ„ tĆ­ch H, baĆØng laƤp luaƤn tƶƓng tƶĆÆ nhƶ caĆ¹c phaĆ n treĆ¢n, ta coĆ¹ caĆ¹c Ć±Ć²nh nghĆ³a: PhaĆ n tƶƻ theĆ„ tĆ­ch: dV = tt(D1Ļ•, D2Ļ•, D3Ļ•)dudvdw = | det JĻ•|dudvdw TheĆ„ tĆ­ch H: V (H) = H dV = A | det JĻ•|dudvdw. BaĆ¢y giĆ“Ćø ta toĆ„ng quaĆ¹t hoaĆ¹ caĆ¹c khaĆ¹i nieƤm treĆ¢n.
  • 27. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 27 2.6 PhaĆ n tƶƻ theĆ„ tĆ­ch treĆ¢n Ʊa taĆÆp. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u. PhaĆ n tƶƻ theĆ„ tĆ­ch treĆ¢n M laĆø aĆ¹nh xaĆÆ dV : M x ā†’ dV (x) = theĆ„ tĆ­ch k chieĆ u haĆÆn cheĆ” treĆ¢n TxM. GiaĆ»Ćø sƶƻ (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ cuĆ»a M taĆÆi x = Ļ•(u1, Ā· Ā· Ā· , uk). Khi ƱoĆ¹ dV (x)(D1Ļ•(x)āˆ†u1, Ā· Ā· Ā· , DkĻ•(x)āˆ†uk) = Vk(D1Ļ•(x), Ā· Ā· Ā· , DkĻ•(x))āˆ†u1 Ā· Ā· Ā· āˆ†uk VaƤy neĆ”u ƱaĆ«t GĻ• = ( DiĻ•, DjĻ• )1ā‰¤i,jā‰¤k, thƬ qua tham soĆ” hoĆ¹a dV = det GĻ• du1 Ā· Ā· Ā· duk 2.6 TĆ­ch phaĆ¢n haĆøm treĆ¢n Ʊa taĆÆp. Cho f : M ā†’ R laĆø haĆøm treĆ¢n Ʊa taĆÆp khaĆ» vi k chieĆ u. Sau ƱaĆ¢y ta xaĆ¢y dƶĆÆng tĆ­ch phaĆ¢n cuĆ»a f treĆ¢n M (coĆøn goĆÆi laĆø tĆ­ch phaĆ¢n loaĆÆi 1) M fdV NeĆ”u M = Ļ•(U) vĆ“Ć¹i (Ļ•, U) laĆø tham soĆ” hoĆ¹a, thƬ Ć±Ć²nh nghĆ³a M fdV = U f ā—¦ Ļ• det GĻ•, trong ƱoĆ¹ GĻ• = ( DiĻ•, DjĻ• )1ā‰¤i,jā‰¤k. Khi k = 1 tĆ­ch phaĆ¢n treĆ¢n goĆÆi laĆø tĆ­ch phaĆ¢n ƱƶƓĆøng vaĆø kyĆ¹ hieƤu M fdl. Khi k = 2 tĆ­ch phaĆ¢n treĆ¢n goĆÆi laĆø tĆ­ch phaĆ¢n maĆ«t vaĆø kyĆ¹ hieƤu M fdS. TrƶƓĆøng hĆ“ĆÆp toĆ„ng quaĆ¹t, khi M cho bĆ“Ć»i nhieĆ u tham soĆ” hoĆ¹a, ngƶƓĆøi ta duĆøng kyƵ thuĆÆaĆ¢t phaĆ¢n hoaĆÆch ƱƓn vĆ² sau ƱaĆ¢y ƱeĆ„ ā€˜daĆ¹nā€™ caĆ¹c tĆ­ch phaĆ¢n treĆ¢n tƶĆøng tham soĆ” hoaĆ¹. Cho O = {(Ļ•i, Ui) : i āˆˆ I} laĆø hoĆÆ caĆ¹c tham soĆ” hoaĆ¹ M. HoĆÆ Ī˜ = {Īøi : i āˆˆ I} goĆÆi laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ O neĆ”uu caĆ¹c ƱieĆ u sau thoĆ»a vĆ“Ć¹i moĆÆi i āˆˆ I: (P1) Īøi : M ā†’ [0, 1] lieĆ¢n tuĆÆc. (P2) suppĪøi = {x āˆˆ M : Īø(x) = 0} laĆø taƤp compact. (P3) suppĪøi āŠ‚ Ļ•i(Ui). (P4) MoĆÆi x āˆˆ M, toĆ n taĆÆi laĆ¢n caƤn V cuĆ»a x, sao cho chƦ coĆ¹ hƶƵu haĆÆn chƦ soĆ” i āˆˆ I Īøi = 0 treĆ¢n V . (P5) iāˆˆI Īøi(x) = 1, āˆ€x āˆˆ M. TĆ­nh chaĆ”t (P4) goĆÆi laĆø tĆ­nh hƶƵu haĆÆn Ć±Ć²a phƶƓng cuĆ»a hoĆÆ {supp Īøi, i āˆˆ I}. Do tĆ­nh chaĆ”t naĆøy toĆ„ng Ć“Ć» (P5) laĆø toĆ„ng hƶƵu haĆÆn vĆ“Ć¹i moĆÆi x. Ć‘Ć²nh lyĆ¹. VĆ“Ć¹i moĆÆi hoĆÆ O caĆ¹c tham soĆ” hoaĆ¹ cuĆ»a Ʊa taĆÆp M, toĆ n taĆÆi hoĆÆ phaĆ¢n hoaĆÆch ƱƓn vĆ² phuĆø hĆ“ĆÆp vĆ“Ć¹i O. ChĆ¶Ć¹ng minh: GƦa sƶƻ M compact, k chieĆ u. VĆ“Ć¹i moĆÆi x āˆˆ M, toĆ n taĆÆi (Ļ•x, Ux) āˆˆ O laĆø tham soĆ” hoaĆ¹ taĆÆi x. GoĆÆi Bx āŠƒ Ux laĆø moƤt hƬnh caĆ u taĆ¢n Ļ•āˆ’1 x (x). GƦa sƶƻ Bx = B(a, r). HaĆøm gx : Rk ā†’ R ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau gx(u) = ļ£± ļ£“ļ£² ļ£“ļ£³ e āˆ’ 1 r2āˆ’ uāˆ’a 2 , neĆ”u u āˆ’ a ā‰¤ r 0 , neĆ”u u āˆ’ a r.
  • 28. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 28 Khi ƱoĆ¹ gx āˆˆ Cāˆž (baĆøi taƤp). ƑaĆ«t Ėœgx(y) = gx(Ļ•āˆ’1 x (y)), neĆ”u y āˆˆ Ļ•x(Ux), vaĆøĆø Ėœgx(y) = 0, neĆ”u y āˆˆ Ļ•x(Ux). Khi ƱoĆ¹ Ėœgx lieĆ¢n tuĆÆc treĆ¢n M. VƬ M compact, toĆ n taĆÆi hƶƵu haĆÆn x1, Ā· Ā· Ā· , xN āˆˆ M, sao cho Ļ•x1 (Bx1 ), Ā· Ā· Ā· Ļ•xN (BxN ) phuĆ» M ƑaĆ«t Īøi = Ėœgxi Ėœgx1 + Ā· Ā· Ā· + ĖœgxN . Khi ƱoĆ¹ hoĆÆ {Īøi : i = 1, Ā· Ā· Ā· N} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² caĆ n tƬm. Khi M khoĆ¢ng compact, toĆ n taĆÆi hoĆÆ Ć±eĆ”m ƱƶƓĆÆc caĆ¹c taƤp Ļ•x(Bx), hƶƵu haĆÆn Ć±Ć²a phƶƓng phuĆ» M. LaƤp luaƤn tƶƓng tƶĆÆ nhƶ treĆ¢n coĆ¹ theĆ„ xaĆ¢y dƶĆÆng phaĆ¢n hoaĆÆch ƱƓn vĆ² trong trƶƓĆøng hĆ“ĆÆp naĆøy. GƦa sƶƻ Ʊa taĆÆp M ƱƶƓĆÆc tham soĆ” hoaĆ¹ bĆ“Ć»i hoĆÆ O = {(Ļ•i, Ui) : i āˆˆ I}. Theo Ć±Ć²nh lyĆ¹ treĆ¢n ta coĆ¹ hoĆÆ Ī˜ = {Īøi : i āˆˆ I} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i O. Ć‘Ć²nh nghĆ³a M fdV = iāˆˆI Ļ•i(Ui) ĪøifdV (= iāˆˆI Ui Īøif ā—¦ Ļ•i det GĻ•i ). vĆ“Ć¹i gƦa thieĆ”t veĆ” phaĆ»i toĆ n taĆÆi. ChaĆŗng haĆÆn, khi M compact vaĆø f lieĆ¢n tuĆÆc. NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a treĆ¢n khoĆ¢ng phuĆÆ thuoƤc hoĆÆ tham soĆ” vaĆø phaĆ¢n hoaĆÆch ƱƓn vĆ². ChĆ¶Ć¹ng minh: Khi hai tham soĆ” hoaĆ¹ cuĆ»a M thoĆ»a Ļ•(U) = Ļˆ(W). Khi ƱoĆ¹ Ļˆ = Ļ• ā—¦ h, vĆ“Ć¹i h laĆø vi phoĆ¢i. DeĆ£ kieĆ„m tra caĆ¹c ma traƤn Gramm quan heƤ vĆ“Ć¹i nhau theo coĆ¢ng thĆ¶Ć¹c GĻˆ(w) = tJh(w)GĻ•(h(w))Jh(w). Theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n, ta coĆ¹ U f ā—¦ Ļ• det GĻ• = W f ā—¦ Ļ• ā—¦ h| det Jh| det GĻ• ā—¦ h = W f ā—¦ Ļˆ det tJhGĻ• ā—¦ h det Jh = W f ā—¦ Ļˆ det GĻˆ. VaƤy Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹. NeĆ”u Ī˜ = {Īøj : j āˆˆ J} laĆø moƤt phaĆ¢n hoaĆÆch ƱƓn vĆ² khaĆ¹c cuĆ»a M. Khi ƱoĆ¹ j M Īøjf = j M ( i Īøi)Īøjf = i,j M ĪøiĪøjf = i,j M ĪøjĪøif = i M ( j Īøj)Īøif. VaƤy Ć±Ć²nh nghĆ³a cuƵng khoĆ¢ng phuĆÆ thuoƤc phaĆ¢n hoaĆÆch ƱƓn vĆ². NhaĆ©c laĆÆi caĆ¹c coĆ¢ng thĆ¶Ć¹c tĆ­nh: Khi Ļ• : I ā†’ Rn, Ļ•(t) = (x1(t), Ā· Ā· Ā· , xn(t)) laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong C. Ta coĆ¹ C fdl = I f ā—¦ Ļ• Ļ• = I f(Ļ•(t)) (x1)2(t) + Ā· Ā· Ā· + (xn)2(t)dt. Khi Ļ• : U ā†’ R3, Ļ•(u, v) = (x(u, v), y(u, v), z(u, v)) laĆø tham soĆ” hoaĆ¹ maĆ«t S. Ta coĆ¹ S fdS = U f ā—¦ Ļ• EG āˆ’ F2, trong ƱoĆ¹ E = D1Ļ• 2 = xu 2 + yu 2 + zu 2 G = D2Ļ• 2 = xv 2 + yv 2 + zv 2 F = D1Ļ•, D2Ļ• = xuxv + yuyv + zuzv
  • 29. II.2 TĆ­ch phaĆ¢n haĆøm soĆ” treĆ¢n Ʊa taĆÆp. 29 VĆ­ duĆÆ. a) ƑoƤ daĆøi ƱƶƓĆøng xoaĆ©n C: x = a cos t, y = a sin t, z = bt, t āˆˆ [0, h], laĆø C dl = h 0 a2 sin2 t + a2 cos2 t + b2dt = h a2 + b2 b) ƑeĆ„ tĆ­nh dieƤn tĆ­ch maĆ«t caĆ u baĆ¹n kĆ­nh R, trĆ¶Ć“Ć¹c heĆ”t tham soĆ” hoaĆ¹, chaĆŗng haĆÆn Ļ•(Ļ†, Īø) = (R cos Ļ† sin Īø, R sin Ļ† sin Īø, R cos Īø), (Ļ†, Īø) āˆˆ U = (0, 2Ļ€) Ɨ (0, Ļ€) Khi ƱoĆ¹ caĆ¹c vector tieĆ”p xuĆ¹c cuĆ»a caĆ¹c ƱƶƓĆøng toĆÆa ƱoƤ: D1Ļ•(Ļ†, Īø) = (āˆ’R sin Ļ† sin Īø, R cos Ļ† sin Īø, 0) D2Ļ•(Ļ†, Īø) = (R cos Ļ† cos Īø, R sin Ļ† cos Īø, āˆ’R sin Īø). Suy ra E = R2 sin2 Īø, F = 0, G = R2. DieƤn tĆ­ch maĆ«t caĆ u laĆø S dS = U EG āˆ’ F2dĻ†dĪø = 2Ļ€ 0 Ļ€ 0 R2 sin ĪødĻ†dĪø = 4Ļ€R2 c) ƑeĆ„ tĆ­nh theĆ„ tĆ­ch hƬnh caĆ u baĆ¹n kĆ­nh R, coĆ¹ theĆ„ duĆøng tham soĆ” hoaĆ¹ Ļ•(r, Ļ†, Īø) = (r cos Ļ† sin Īø, r sin Ļ† sin Īø, r cos Īø), (r, Ļ†, Īø) āˆˆ U = (0, R) Ɨ (0, 2Ļ€) Ɨ (0, Ļ€) Khi ƱoĆ¹ D1Ļ•(r, Ļ†, Īø) = (cos Ļ† sin Īø, sin Ļ† sin Īø, cos Īø) D2Ļ•(r, Ļ†, Īø) = (āˆ’r sin Ļ† sin Īø, r cos Ļ† sin Īø, 0) D3Ļ•(r, Ļ†, Īø) = (r cos Ļ† cos Īø, r sin Ļ† cos Īø, āˆ’r sin Īø). TheĆ„ tĆ­ch hƬnh caĆ u laĆø B(0,R) dV = U det( DiĻ•, DjĻ• )drdĻ†dĪø = R 0 2Ļ€ 0 Ļ€ 0 1 0 0 0 r2 sin2 Īø 0 0 0 r2 drdĻ†dĪø = 4 3 Ļ€R3
  • 30.
  • 31. III. DaĆÆng vi phaĆ¢n Khi tĆ­nh tĆ­ch phaĆ¢n treĆ¢n Ʊa taĆÆp ta caĆ n moƤt ƱoĆ”i tƶƓĆÆng baĆ”t bieĆ”n vĆ“Ć¹i pheĆ¹p tham soĆ” hoaĆ¹. VĆ­ du ĆÆƱƓn giaĆ»n nhaĆ”t laĆø khi tĆ­nh tĆ­ch phaĆ¢n treĆ¢n R, theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n ta coĆ¹ b a f(x)dx = Ī² Ī± f(Ļ•(t))Ļ• (t)dt trong ƱoĆ¹ Ļ• laĆø vi phoĆ¢i tƶĆø (Ī±, Ī²) leĆ¢n (a, b). NgƶƓĆøi ta Ʊƶa vaĆøo khaĆ¹i nieƤm daĆÆng vi phaĆ¢n baƤc 1: Ļ‰ = f(x)dx vaĆø pheĆ¹p ƱoĆ„i bieĆ”n: Ļ•āˆ—Ļ‰ = f(Ļ•(t))Ļ• (t)dt. Khi ƱoĆ¹ coĆ¢ng thĆ¶Ć¹c treĆ¢n coĆ¹ theĆ„ vieĆ”t laĆÆi laĆø b a Ļ‰ = Ī² Ī± Ļ•āˆ— Ļ‰ NgoaĆøi ra daĆÆng vi phaĆ¢n cuƵng laĆø khaĆ¹i nieƤm thĆ­ch hĆ“ĆÆp ƱeĆ„Ć„ tĆ­ch phaĆ¢n trƶƓĆøng vector treĆ¢n Ʊa taĆÆp seƵ ƱƶƓĆÆc ƱeĆ  caƤp ƱeĆ”n Ć“Ć» chƶƓng sau. ChƶƓng naĆøy xeĆ¹t ƱeĆ”n caĆ¹c daĆÆng vi phaĆ¢n vaĆø caĆ¹c pheĆ¹p toaĆ¹n treĆ¢n chuĆ¹ng. 1. DAƏNG k-TUYEƁN TƍNH PHAƛN ƑOƁI XƖƙNG. 1.1. Ć‘Ć²nh nghĆ³a. Cho V laĆø khoĆ¢ng gian vector treĆ¢n R. MoƤt daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n V laĆø moƤt aĆ¹nh xaĆÆ Ļ‰ : V Ɨ Ā· Ā· Ā· Ɨ V k laĆ n ā†’ R thoĆ»a caĆ¹c ƱieĆ u kieƤn sau vĆ“Ć¹i moĆÆi v1, Ā· Ā· Ā· , vk āˆˆ V , Ī± āˆˆ R vaĆø 1 ā‰¤ i j ā‰¤ k: (A1) Ļ‰(v1, Ā· Ā· Ā· , vi + vi, Ā· Ā· Ā· , vk) = Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk) + Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk). (A2) Ļ‰(v1, Ā· Ā· Ā· , Ī±vi, Ā· Ā· Ā· , vk) = Ī±Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk). (A3) Ļ‰(v1, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vk) = āˆ’ Ļ‰(v1, Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk). NhaƤn xeĆ¹t. ƑieĆ u kieƤn (A1)(A2) coĆ¹ nghĆ³a laĆø Ļ‰ tuyeĆ”n tĆ­nh theo tƶĆøng bieĆ”n NhaƤn xeĆ¹t. ƑieĆ u kieƤn (A3) tƶƓng ƱƶƓng vĆ“Ć¹i moƤt trong caĆ¹c ƱieĆ u kieƤn sau: (A3ā€™) Ļ‰(v1, Ā· Ā· Ā· , vi Ā· Ā· Ā· , vj, Ā· Ā· Ā· , vk) = 0, neĆ”u vi = vj, vĆ“Ć¹i moĆÆi i = j. (A3ā€) Ļ‰(vĻƒ(1), Ā· Ā· Ā· , vĻƒ(k)) = (Ļƒ)Ļ‰(v1, Ā· Ā· Ā· , vk), vĆ“Ć¹i moĆÆi hoaĆ¹n vĆ² Ļƒ cuĆ»a {1, Ā· Ā· Ā· , k}, (Ļƒ) laĆø kyĆ¹ soĆ” (= sign ij(Ļƒ(j) āˆ’ Ļƒ(j))). ChĆ¶Ć¹ng minh: (A3) ā‡’ (A3ā€™): Trong bieĆ„u thĆ¶Ć¹c cuĆ»a (A3) neĆ”u vi = vj, thƬ 2Ļ‰(v1, Ā· Ā· Ā· , vi Ā· Ā· Ā· , vi, Ā· Ā· Ā· , vk) = 0. Suy ra (A3ā€™). (A3ā€™) ā‡’ (A3): Trong bieĆ„u thĆ¶Ć¹c cuĆ»a (A3ā€™) neĆ”u vi = vj = v + w, thƬ tƶĆø (A1) (A3ā€™) suy ra Ļ‰(v1, Ā· Ā· Ā· , v, Ā· Ā· Ā· , w, Ā· Ā· Ā· , vk) + Ļ‰(v1, Ā· Ā· Ā· , w, Ā· Ā· Ā· , v, Ā· Ā· Ā· , vk) = 0. (A3) ā‡’ (A3ā€): Aƙp duĆÆng moĆÆi pheĆ¹p hoaĆ¹n vĆ² laĆø hĆ“ĆÆp cuĆ»a caĆ¹c pheĆ¹p chuyeĆ„n vĆ², kyĆ¹ soĆ” moĆ£i pheĆ¹p chuyeĆ„n vĆ² laĆø āˆ’1, vaĆø kyĆ¹ soĆ” cuĆ»a hĆ“ĆÆp 2 hoaĆ¹n vĆ² baĆØng tĆ­ch kyĆ¹ soĆ” cuĆ»a 2 hoaĆ¹n vĆ² ƱoĆ¹.
  • 32. III.1. DaĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng. 32 (A3ā€) ā‡’ (A3): Aƙp duĆÆng (A3ā€) vĆ“Ć¹i Ļƒ laĆø chuyeĆ„n vĆ² i vaĆø j. VĆ­ duĆÆ. Cho F laĆø moƤt vector trong R3. Khi ƱoĆ¹: a) WF (v) = F, v , v āˆˆ R3, laĆø daĆÆng 1-tuyeĆ”n tĆ­nh treĆ¢n R3 (coĆ¢ng cuĆ»a F doĆÆc theo v) b) Ļ‰F (v1, v2) = F, v1 Ɨ v2 , v1, v2 āˆˆ R3, laĆø daĆÆng 2-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n R3 (thoĆ¢ng lƶƓĆÆng cuĆ»a F qua hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i v1, v2) c) Ć‘Ć²nh thĆ¶Ć¹c laĆø daĆÆng n-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n Rn. GiaĆ¹ trĆ² det(v1, Ā· Ā· Ā· , vn) laĆø theĆ„ tĆ­ch coĆ¹ hĆ¶Ć“Ć¹ng cuĆ»a bƬnh haĆønh taĆÆo bĆ“Ć»i v1, Ā· Ā· Ā· , vn āˆˆ Rn. 1.2 KhoĆ¢ng gian vector Ī›k(V ). KyĆ¹ hieƤu Ī›k(V ) laĆø taƤp moĆÆi daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng treĆ¢n V . TreĆ¢n taƤp naĆøy ta Ć±Ć²nh nghĆ³a 2 pheĆ¹p toaĆ¹n: (Ļ‰ + Ī³)(v1, Ā· Ā· Ā· , vk) = Ļ‰(v1, Ā· Ā· Ā· , vk) + Ī³(v1, Ā· Ā· Ā· , vk) (Ī±Ļ‰)(v1, Ā· Ā· Ā· , vk) = Ī±Ļ‰(v1, Ā· Ā· Ā· , vk) , vĆ“Ć¹i Ļ‰, Ī³ āˆˆ Ī›k(V ), Ī± āˆˆ R. DeĆ£ thaĆ”y (Ī›k(V ), +, Ā·) laĆø khoĆ¢ng gian vector treĆ¢n R. VĆ­ duĆÆ. a) Ī›1(V ) chĆ­nh laĆø khoĆ¢ng gian ƱoĆ”i ngaĆ£u cuĆ»a V , i.e. Ī›1(V ) = V āˆ— = L(V, R). b) Cho Ļ•1, Ļ•2 āˆˆ V āˆ—. Ć‘Ć²nh nghĆ³a daĆÆng 2-tuyeĆ”n tĆ­nh: Ļ•1 āˆ§ Ļ•2 : V Ɨ V ā†’ R, (Ļ•1 āˆ§ Ļ•2)(v1, v2) = Ļ•1(v1)Ļ•2(v2) āˆ’ Ļ•2(v1)Ļ•1(v2) = det Ļ•1(v1) Ļ•1(v2) Ļ•2(v1) Ļ•2(v2) VeĆ  maĆ«t hƬnh hoĆÆc giaĆ¹ trĆ² treĆ¢n chĆ­nh laĆø dieƤn tĆ­ch coĆ¹ hĆ¶Ć“Ć¹ng cuĆ»a hƬnh bƬnh haĆønh trong R2 taĆÆo bĆ“Ć»i Ļ•(v1), Ļ•(v2), trong ƱoĆ¹ Ļ• = (Ļ•1, Ļ•2) : V ā†’ R2. 1.3 TĆ­ch ngoaĆÆi. Cho Ļ•1, Ā· Ā· Ā· , Ļ•k āˆˆ V āˆ—. TĆ­ch ngoaĆÆi cuĆ»a caĆ¹c daĆÆng treĆ¢n laĆø moƤt k-daĆÆng Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k āˆˆ Ī›k(V ), ƱƶƓĆÆc Ć±Ć²nh nghĆ³a: Ļ•1āˆ§Ā· Ā· Ā·āˆ§Ļ•k(v1, Ā· Ā· Ā· , vk) = Ļƒ (Ļƒ)Ļ•Ļƒ(1)(v1) Ā· Ā· Ā· Ļ•Ļƒ(k)(vk) = det(Ļ•i(vj)), v1, Ā· Ā· Ā· , vk āˆˆ V, i.e. Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k = Ļƒ (Ļƒ)Ļ•Ļƒ(1) āŠ— Ā· Ā· Ā· āŠ— Ļ•Ļƒ(k). TĆ­nh chaĆ”t. VĆ“Ć¹i moĆÆi Ļ•1, Ā· Ā· Ā· , Ļ•k, Ļ•i āˆˆ Ī›1(V ), Ī±, Ī² āˆˆ R vaĆø i = 1, Ā· Ā· Ā· , k, (1) Ļ•1 āˆ§Ā· Ā· Ā·āˆ§(Ī±Ļ•i +Ī²Ļ•i)āˆ§Ā· Ā· Ā·āˆ§Ļ•k = Ī±Ļ•1 āˆ§Ā· Ā· Ā·āˆ§Ļ•i āˆ§Ā· Ā· Ā·āˆ§Ļ•k +Ī²Ļ•1 āˆ§Ā· Ā· Ā·āˆ§Ļ•i āˆ§Ā· Ā· Ā·āˆ§Ļ•k. (2) Ļ•Ļƒ(1) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•Ļƒ(k) = (Ļƒ)Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k, vĆ“Ć¹i Ļƒ laĆø hoaĆ¹n vĆ². ChĆ¶Ć¹ng minh: Suy tƶĆø tĆ­nh chaĆ”t cuĆ»a Ć±Ć²nh thĆ¶Ć¹c. 1.4 BieĆ„u dieĆ£n daĆÆng k-tuyeĆ”n tĆ­nh phaĆ»n ƱoĆ”i xĆ¶Ć¹ng. Cho V laĆø moƤt khoĆ¢ng gian vector treĆ¢n R. GiaĆ» sƶƻ Ļ•1, Ā· Ā· Ā· , Ļ•n laĆø moƤt cĆ“ sĆ“Ć» cuĆ»a V āˆ—. Khi ƱoĆ¹ moƤt cĆ“ sĆ“Ć» cuĆ»a Ī›k(V ) laĆø heƤ {Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik , 1 ā‰¤ i1 Ā· Ā· Ā· ik ā‰¤ n}. Nhƶ vaƤy moĆÆi Ļ‰ āˆˆ Ī›k(V ) coĆ¹ bieĆ„u dieĆ£n duy nhaĆ”t dĆ¶Ć“Ć¹i daĆÆng Ļ‰ = 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n ai1Ā·Ā·Ā·ik Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik
  • 33. III.2 DaĆÆng vi phaĆ¢n. 33 vaĆø dim Ī›k(V ) = Ck n = n! (n āˆ’ k)!k! . ChĆ¶Ć¹ng minh: GoĆÆi {Ļ•1, Ā· Ā· Ā· , Ļ•n} laĆø cĆ“ sĆ“Ć» ƱoĆ”i ngaĆ£u cuĆ»a {e1, Ā· Ā· Ā· , en}, i.e. Ļ•i(ej) = Ī“ij (delta Kronecker). Cho Ļ‰ āˆˆ Ī›k(V ). Cho v1, Ā· Ā· Ā· , vk āˆˆ V . Khi ƱoĆ¹ v1 = i1 Ļ•i1 (v1)ei1 , Ā· Ā· Ā· , vk = ik Ļ•ik (vk)eik , Ļ‰(v1, Ā· Ā· Ā· , vk) = Ļ‰( i1 Ļ•i1 (v1)ei1 , Ā· Ā· Ā· , ik Ļ•ik (vk)eik ) = i1,Ā·Ā·Ā· ,ik Ļ•i1 (v1) Ā· Ā· Ā· Ļ•ik (vk)Ļ‰(ei1 , Ā· Ā· Ā· , eik ) = i1Ā·Ā·Ā·ik Ļƒ Ļ•iĻƒ(1) (v1) Ā· Ā· Ā· Ļ•iĻƒ(k) (vk) (Ļƒ)Ļ‰(ei1, Ā· Ā· Ā· , eik ) = i1Ā·Ā·Ā·ik Ļ‰(ei1 , Ā· Ā· Ā· , eik )Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik (v1, Ā· Ā· Ā· , vk) VaƤy heƤ {Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik , 1 ā‰¤ i1 Ā· Ā· Ā· ik ā‰¤ n} laĆø heƤ sinh. ƑeĆ„ chĆ¶Ć¹ng minh tĆ­nh ƱoƤc laƤp tuyeĆ”n tĆ­nh, trĆ¶Ć“Ć¹c heĆ”t nhaƤn xeĆ¹t laĆø Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik (ej1 , Ā· Ā· Ā· , ejk ) = 1 neĆ”u (i1, Ā· Ā· Ā· , ik) = (j1, Ā· Ā· Ā· , jk) 0 neĆ”u (i1, Ā· Ā· Ā· , ik) = (j1, Ā· Ā· Ā· , jk) Suy ra neĆ”u toĆ„ hĆ“ĆÆp tuyeĆ”n tĆ­nh Ļ‰ = i1Ā·Ā·Ā·ik ai1Ā·ik Ļ•i1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•ik = 0, thƬ theo nhaƤn xeĆ¹t treĆ¢n Ļ‰(ei1 , Ā· Ā· Ā· , eik ) = ai1Ā·Ā·Ā·ik = 0. ƑaĆ«c bieƤt: Ī›k(V ) = 0, khi k n, Ī›n(V ) coĆ¹ soĆ” chieĆ u laĆø Cn n = 1, vaĆø moĆÆi Ļ‰ āˆˆ Ī›n(V ) coĆ¹ bieĆ„u dieĆ£n Ļ‰ = aĻ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•n, vĆ“Ć¹i a āˆˆ R . 2. DAƏNG VI PHAƂN 2.1 Ć‘Ć²nh nghĆ³a. Cho U laĆø taƤp mĆ“Ć» trong Rn. MoƤt daĆÆng vi phaĆ¢n baƤc k hay k-daĆÆng vi phaĆ¢n treĆ¢n U laĆø moƤt aĆ¹nh xaĆÆ Ļ‰ : U ā†’ Ī›k (Rn ). DaĆÆng vi phaĆ¢n Ļ‰ goĆÆi laĆø thuoƤc lĆ“Ć¹p Cp neĆ”u aĆ¹nh xaĆÆ treĆ¢n thuoƤc lĆ“Ć¹p Cp. KyĆ¹ hieƤu ā„¦k p(U) laĆø taƤp moĆÆi k-daĆÆng vi phaĆ¢n lĆ“Ć¹p Cp treĆ¢n U, vaĆø ā„¦k(U) = ā„¦k āˆž(U). DeĆ£ thaĆ”y ā„¦k p(U) coĆ¹ caĆ”u truĆ¹c khoĆ¢ng gian vector. VĆ­ duĆÆ. Cho U āŠ‚ R3 vaĆø F : U ā†’ R3 laĆø moƤt trƶƓĆøng vector. Khi ƱoĆ¹ caĆ¹c daĆÆng vi phaĆ¢n sau ƱƶƓĆÆc duĆøng ƱeĆ„ ƱaĆ¹nh giaĆ¹ thoĆ¢ng lƶƓĆÆng cuĆ»a F doĆÆc theo moƤt ƱƶƓĆøng hay qua moƤt maĆ«t a) WF : U ā†’ Ī›1(R3), WF (x, y, z)(v) = F(x, y, z), v b) Ļ‰F : U ā†’ Ī›2(R3), Ļ‰(x, y, z)(v1, v2) = F(x, y, z), v1 Ɨ v2 .
  • 34. III.2 DaĆÆng vi phaĆ¢n. 34 Cho f : U ā†’ R laĆø haĆøm lĆ“Ć¹p Cp+1. Khi ƱoĆ¹ vĆ“Ć¹i moĆÆi x āˆˆ U, f (x) : Rn ā†’ R laĆø daĆÆng tuyeĆ”n tĆ­nh. Ta Ć±Ć²nh nghĆ³a vi phaĆ¢n cuĆ»a f laĆø 1-daĆÆng vi phaĆ¢n df : U ā†’ Ī›1 (Rn ), x ā†’ df(x) = f (x). XeĆ¹t haĆøm toĆÆa ƱoƤ thĆ¶Ć¹ i xi : Rn ā†’ R, (x1, Ā· Ā· Ā· , xn) ā†’ xi. Ta coĆ¹ dxi(x)(v) = xi(x)v = vi, v = (v1, Ā· Ā· Ā· , vn) āˆˆ Rn . VaƤy df(x)(v) = f (x)v = āˆ‚f āˆ‚x1 (x)v1 + Ā· Ā· Ā· + āˆ‚f āˆ‚xn (x)vn = āˆ‚f āˆ‚x1 (x)dx1(x)(v) + Ā· Ā· Ā· + āˆ‚f āˆ‚xn (x)dxn(x)(v). Hay laĆø df = n i=1 āˆ‚f āˆ‚xi dxi. 2.2 BieĆ„u dieĆ£n daĆÆng vi phaĆ¢n. TĆ­ch ngoaĆÆi cuĆ»a caĆ¹c 1-vi phaĆ¢n Ļ•1, Ā· Ā· Ā· , Ļ•k āˆˆ ā„¦1(U): (Ļ•1 āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k)(x) = Ļ•1(x) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•k(x), x āˆˆ U, laĆø moƤt k-daĆÆng vi phaĆ¢n treĆ¢n U. Do caĆ¹c 1-daĆÆng dx1, Ā· Ā· Ā· , dxn laĆø moƤt cĆ“ sĆ“Ć» cuĆ»a ā„¦1(U), neĆ¢n caĆ¹c k-daĆÆng vi phaĆ¢n treĆ¢n U coĆ¹ bieĆ„u dieĆ£n duy nhaĆ”t dĆ¶Ć“Ć¹i daĆÆng Ļ‰ = 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n ai1Ā·Ā·Ā·ik dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik , trong ƱoĆ¹ ai1Ā·Ā·Ā·ik laĆø caĆ¹c haĆøm treĆ¢n U vaĆø thuoƤc lĆ“Ć¹p Cp neĆ”u Ļ‰ laĆø daĆÆng lĆ“Ć¹p Cp. VĆ­ duĆÆ. NeĆ”u U āŠ‚ R3, thƬ ta thƶƓĆøng kyĆ¹ hieƤu caĆ¹c toĆÆa ƱoƤ laĆø (x, y, z). Khi ƱoĆ¹ CaĆ¹c 0-daĆÆng vi phaĆ¢n chĆ­nh laĆø caĆ¹c haĆøm f : U ā†’ R. CaĆ¹c 1-daĆÆng vi phaĆ¢n coĆøn goĆÆi laĆø daĆÆng Pfaff vaĆø coĆ¹ bieĆ„u dieĆ£n Pdx + Qdy + Rdz . CaĆ¹c 2-daĆÆng vi phaĆ¢n coĆ¹ bieĆ„u dieĆ£n Adx āˆ§ dy + Bdy āˆ§ dz + Cdz āˆ§ dx . CaĆ¹c 3-daĆÆng vi phaĆ¢n coĆ¹ bieĆ„u dieĆ£n fdx āˆ§ dy āˆ§ dz . BaĆøi taƤp: Cho U āŠ‚ R3 vaĆø F : U ā†’ R3, F = (P, Q, R). ChĆ¶Ć¹ng minh caĆ¹c daĆÆng vi phaĆ¢n cho Ć“Ć» vĆ­ duĆÆ 2.1 coĆ¹ bieĆ„u dieĆ£n a) WF = Pdx + Qdy + Rdz b) Ļ‰F = Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy . 2.3 ToaĆ¹n tƶƻ ƱoĆ„i bieĆ”n. Cho U, V laĆø caĆ¹c taƤp mĆ“Ć» trong Rm, Rn tƶƓng Ć¶Ć¹ng. GiaĆ» sƶƻ Ļ• : U ā†’ V, u = (u1, Ā· Ā· Ā· , um) ā†’ x = (Ļ•1(u), Ā· Ā· Ā· , Ļ•n(u)) laĆø aĆ¹nh xaĆÆ khaĆ» vi. Khi ƱoĆ¹ toaĆ¹n tƶƻ ƱoĆ„i bieĆ”n Ļ•āˆ— : ā„¦k (V ) ā†’ ā„¦k (U), Ļ‰ ā†’ Ļ•āˆ— Ļ‰ ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau Ļ‰ = 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n ai1Ā·Ā·Ā·ik (x)dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik , Ļ•āˆ—Ļ‰(u) = 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n ai1Ā·Ā·Ā·ik (Ļ•(u))dĻ•i1 āˆ§ Ā· Ā· Ā· āˆ§ dĻ•ik .
  • 35. III.2 DaĆÆng vi phaĆ¢n. 35 VĆ­ duĆÆ. a) Cho Ļ• : R ā†’ R2, Ļ•(t) = (x = cos t, y = sin t) vaĆø Ļ‰(x, y) = xdy āˆ’ ydx. Khi ƱoĆ¹ Ļ•āˆ—Ļ‰(t) = cos td(sin t) āˆ’ sin td(cos t) = dt. b) Cho Ļ• : R2 ā†’ R2, Ļ•(r, Īø) = (x = r cos Īø, y = r sin Īø) vā€¦ Ļ‰(x, y) = dx āˆ§ dy. Khi ƱoĆ¹ Ļ•āˆ—Ļ‰(r, Īø) = d(r cos Īø) āˆ§ d(r sin Īø) = (cos Īødr āˆ’ r sin ĪødĪø) āˆ§ (sin Īødr + r cos ĪødĪø) = rdr āˆ§ dĪø (do dr āˆ§ dr = dĪø āˆ§ dĪø = 0, dĪø āˆ§ dr = āˆ’dr āˆ§ dĪø). TĆ­nh chaĆ”t. (1) Ļ•āˆ—(Ļ‰1 + Ļ‰2) = Ļ•āˆ—(Ļ‰1) + Ļ•āˆ—(Ļ‰2), Ļ‰1, Ļ‰2 āˆˆ ā„¦k(V ). (2) Ļ•āˆ—(Ī³1 āˆ§ Ā· Ā· Ā· āˆ§ Ī³k) = Ļ•āˆ—(Ī³1) āˆ§ Ā· Ā· Ā· āˆ§ Ļ•āˆ—(Ī³k), Ī³1, Ā· Ā· Ā· , Ī³k āˆˆ ā„¦1(V ). (3) Ļ•āˆ—(dxi) = dĻ•i = m j=1 āˆ‚Ļ•i āˆ‚uj duj. ChĆ¶Ć¹ng minh: Xem nhƶ baĆøi taƤp. BaĆøi taƤp: Cho Ļ• : Rn ā†’ Rn khaĆ» vi. ChĆ¶Ć¹ng minh Ļ•āˆ— (f(x)dx1 āˆ§ Ā· Ā· Ā· āˆ§ dxn) = f(Ļ•(u)) det Ļ• (u)du1 āˆ§ Ā· Ā· Ā· āˆ§ dun. NhaƤn xeĆ¹t. CoĆ¹ theĆ„ Ć±Ć²nh nghĆ³a toaĆ¹n tƶƻ ƱoĆ„i bieĆ”n khoĆ¢ng qua bieĆ„u dieĆ£n treĆ¢n toĆÆa ƱoƤ (i.e. Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc heƤ toĆÆa ƱoƤ) nhƶ sau Ļ•āˆ— Ļ‰(u)(v1, Ā· Ā· Ā· , vk) = Ļ‰(Ļ•(u))(Ļ• (u)v1, Ā· Ā· Ā· , Ļ• (u)vk). 2.4 ToaĆ¹n tƶƻ vi phaĆ¢n. VĆ“Ć¹i moĆ£i k āˆˆ N, toaĆ¹n tƶƻ vi phaĆ¢n ƱƶƓĆÆc Ć±Ć²nh nghĆ³a nhƶ sau d : ā„¦k (U) ā†’ ā„¦k+1 (U), d( 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n ai1Ā·Ā·Ā·ik dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik ) = 1ā‰¤i1Ā·Ā·Ā·ikā‰¤n dai1Ā·Ā·Ā·ik āˆ§ dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik . VĆ­ duĆÆ. VĆ“Ć¹i n = 2, kyĆ¹ hieƤu toĆÆa ƱoƤ laĆø (x, y). Khi ƱoĆ¹ d (Pdx + Qdy) = dP āˆ§ dx + dQ āˆ§ dy = āˆ‚P āˆ‚x dx + āˆ‚P āˆ‚y dy āˆ§ dx + āˆ‚Q āˆ‚x dx + āˆ‚Q āˆ‚y dy āˆ§ dy = āˆ‚Q āˆ‚x āˆ’ āˆ‚P āˆ‚y dx āˆ§ dy (ƱeĆ„ yĆ¹ laĆø dx āˆ§ dx = dy āˆ§ dy = 0, dy āˆ§ dx = āˆ’dx āˆ§ dy). Trong R3 cho daĆÆng vi phaĆ¢n Ļ‰(x, y, z) = sin xydx + ex2+ydy + arctgxdz.
  • 36. III.2 DaĆÆng vi phaĆ¢n. 36 Khi ƱoĆ¹ dĻ‰ = (d sin xy) āˆ§ dx + d(ex2+y) āˆ§ dy + d(arctgx) āˆ§ dz = (y cos xydx + x cos xydy) āˆ§ dx + (2xex2+ydx + ex2+ydy) āˆ§ dy + 1 1 + x2 dx āˆ§ dz = (2xex2+y āˆ’ x cos xy)dx āˆ§ dy āˆ’ 1 1 + x2 dz āˆ§ dx. BaĆøi taƤp: TĆ­nh d (P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz), vaĆø d (P(x, y, z)dx āˆ§ dz + Q(x, y, z)dz āˆ§ dx + Q(x, y, z)dx āˆ§ dy) . NhaƤn xeĆ¹t. NeĆ”u Ļ‰ āˆˆ ā„¦k(Rn) vĆ“Ć¹i k ā‰„ n, thƬ dĻ‰ = 0. TĆ­nh chaĆ”t. (1) d(Ļ‰1 + Ļ‰2) = dĻ‰1 + dĻ‰2, āˆ€Ļ‰1, Ļ‰2 āˆˆ ā„¦k(U). (2) d(Ī³1 āˆ§ Ī³2) = dĪ³1 āˆ§ Ī³2 āˆ’ Ī³1 āˆ§ dĪ³2, āˆ€Ī³1, Ī³2 āˆˆ ā„¦1(U).. (3) d(dĻ‰) = 0 , i.e. d ā—¦ d = 0 . (4) d(Ļ•āˆ—Ļ‰) = Ļ•āˆ—(dĻ‰) , i.e. dĻ•āˆ— = Ļ•āˆ—d. ChĆ¶Ć¹ng minh: (1) laĆø roƵ raĆøng. Do (1) ta chƦ caĆ n chĆ¶Ć¹ng minh (2) khi Ī³1 = adxi, Ī³2 = bdxj. Ta coĆ¹ d(Ī³1 āˆ§ Ī³2) = d(adxi āˆ§ bdxj) = d(abdxi āˆ§ dxj) = d(ab) āˆ§ dxi āˆ§ dxj = (bda + adb) āˆ§ dxi āˆ§ dxj = bda āˆ§ dxi āˆ§ dxj + adb āˆ§ dxi āˆ§ dxj = (da āˆ§ dxi) āˆ§ bdxj āˆ’ adxi āˆ§ db āˆ§ dxj = dĪ³1 āˆ§ Ī³2 āˆ’ Ī³1 āˆ§ Ī³2. TrĆ¶Ć“Ć¹c khi chĆ¶Ć¹ng minh (3) ƱeĆ„ ngaĆ©n goĆÆn ta kyĆ¹ hieƤu: dxI = dxi1 āˆ§ Ā· Ā· Ā· āˆ§ dxik , vĆ“Ć¹i I = (i1, Ā· Ā· Ā· , ik) laĆø moƤt boƤ k chƦ soĆ” thuoƤc {1, Ā· Ā· Ā· n}. Do (1) chƦ caĆ n chĆ¶Ć¹ng minh (3) khi Ļ‰ = aIdxI. Ta coĆ¹ d(dĻ‰) = d(daI āˆ§ dxI) = d i āˆ‚aI āˆ‚xi dxi āˆ§ dxI = i d āˆ‚aI āˆ‚xi āˆ§ dxi āˆ§ dxI = i ļ£« ļ£­ j āˆ‚2aI āˆ‚xjāˆ‚xi dxj ļ£¶ ļ£ø āˆ§ dxi āˆ§ dxI = āˆ’ i j āˆ‚2aI āˆ‚xiāˆ‚xj dxi āˆ§ dxj āˆ§ dxI ( do dxi āˆ§ dxj = āˆ’dxj āˆ§ dxi) = āˆ’d(dĻ‰) (thay ƱoĆ„i vai troĆøi, j) VaƤy 2d(dĻ‰) = 0, suy ra (3). CuƵng vaƤy chƦ caĆ n kieĆ„m tra (4) khi Ļ‰ = aIdxI āˆˆ ā„¦k(V ). Ta coĆ¹ d(Ļ•āˆ—Ļ‰) = d(aI ā—¦ Ļ•dĻ•I) = d(aI ā—¦ Ļ•) āˆ§ dĻ•I. Ļ•āˆ—(dĻ‰) = Ļ•āˆ—(daI āˆ§ dxI) = Ļ•āˆ—(daI) āˆ§ Ļ•āˆ—(dyI) = Ļ•āˆ—(daI) āˆ§ dĻ•I. CaĆ n chĆ¶Ć¹ng minh d(aI ā—¦ Ļ•) = Ļ•āˆ—(daI). ƑaĆŗng thĆ¶Ć¹c ƱuĆ¹ng laĆø do: Ļ•āˆ— (daI) = Ļ•āˆ— ļ£« ļ£­ j āˆ‚aI āˆ‚xj dxj ļ£¶ ļ£ø = j āˆ‚aI ā—¦ Ļ• āˆ‚xj dĻ•j = j āˆ‚aI ā—¦ Ļ• āˆ‚xj ( i āˆ‚Ļ•j āˆ‚ui dui) = d(aIā—¦Ļ•).
  • 37. III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 37 VaƤy caĆ¹c tĆ­nh chaĆ”t treĆ¢n ƱaƵ ƱƶƓĆÆc chĆ¶Ć¹ng minh. NhaƤn xeĆ¹t. Do (4) toaĆ¹n tƶƻ d khoĆ¢ng phuĆÆ thuoƤc heƤ toĆÆa ƱoƤ. 3. BOƅ ƑEƀ POINCAREĆ™Ć¹ 3.1 DaĆÆng ƱoĆ¹ vaĆø daĆÆng khĆ“Ć¹p. Cho daĆÆng vi phaĆ¢n Ļ‰ āˆˆ ā„¦k(U). Ļ‰ goĆÆi laĆø ƱoĆ¹ng treĆ¢n U neĆ”uu dĻ‰ = 0 treĆ¢n U. Ļ‰ goĆÆi laĆø khĆ“Ć¹p treĆ¢n U neĆ”uu toĆ n taĆÆi Ī· āˆˆ ā„¦kāˆ’1(U) sao cho Ļ‰ = dĪ·. NhaƤn xeĆ¹t. NeĆ”u Ļ‰ khĆ“Ć¹p, thƬ Ļ‰ ƱoĆ¹ng vƬ d(dĪ·) = 0. VĆ­ duĆÆ sau chƦ ra daĆÆng ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p: Ļ‰(x, y) = ydx āˆ’ xdy x2 + y2 āˆˆ ā„¦1 (R2 0). DaĆÆng Ļ‰ laĆø ƱoĆ¹ng, vƬ dĻ‰ = x2 āˆ’ y2 (x2 + y2)2 dy āˆ§ dx āˆ’ y2 āˆ’ x2 (x2 + y2)2 dx āˆ§ dy = 0. Nhƶng Ļ‰ khoĆ¢ng khĆ“Ć¹p. ThaƤt vaƤy, giaĆ» sƶƻ toĆ n taĆÆi haĆøm f āˆˆ ā„¦0(R2 0), Ļ‰ = df. GoĆÆi Ļ•(t) = (sin t, cos t). Khi ƱoĆ¹ Ļ•āˆ— Ļ‰ = Ļ•āˆ— (df) = d(Ļ•āˆ— f) = d(f ā—¦ Ļ•) = (f ā—¦ Ļ•) dt. MaĆ«t khaĆ¹c Ļ•āˆ—Ļ‰ = cos td(sin t) āˆ’ sin td(cos t) sin2 t + cos2 t = dt . VaƤy (f ā—¦ Ļ•) (t) ā‰” 1. Suy ra f ā—¦ Ļ•(t) = t+ const. ƑieĆ u naĆøy voĆ¢ lyĆ¹ vƬ f ā—¦ Ļ• laĆø haĆøm coĆ¹ chu kyĆø ĆÆ 2Ļ€. Khi moƤt daĆÆng Pfaff Ļ‰ = a1dx1 + Ā· Ā· Ā· + andxn āˆˆ ā„¦1(U), toĆ n taĆÆi haĆøm f āˆˆ ā„¦0(U) thoĆ»a df = Ļ‰, thƬ f ƱƶƓĆÆc goĆÆi laĆø moƤt tĆ­ch phaĆ¢n ƱaĆ u cuĆ»a Ļ‰. NoĆ¹i moƤt caĆ¹ch khaĆ¹c f thoĆ»a heƤ phƶƓng trƬnh vi phaĆ¢n ƱaĆÆo haĆøm rieĆ¢ng caĆ”p moƤt āˆ‚f āˆ‚x1 = a1, Ā· Ā· Ā· , āˆ‚f āˆ‚xn = an. VaƤy neĆ”u Ļ‰ coĆ¹ tĆ­ch phaĆ¢n ƱaĆ u (= khaĆ» tĆ­ch = khĆ“Ć¹p), thƬ dĻ‰ = 0, i.e. caĆ¹c haĆøm a1, Ā· Ā· Ā· , an thoĆ»a heƤ thĆ¶Ć¹c āˆ‚aj āˆ‚xi = āˆ‚ai āˆ‚xj vĆ“Ć¹i moĆÆi i, j = 1, Ā· Ā· Ā· , n. TĆ­nh chaĆ”t hƬnh hoĆÆc cuĆ»a taƤp nhieĆ u khi quyeĆ”t Ć±Ć²nh baĆøi toaĆ¹n giaƵi tĆ­ch. MoƤt daĆÆng ƱoĆ¹ng cuƵng laĆø khĆ“Ć¹p treĆ¢n U, khi taƤp U coĆ¹ tĆ­nh chaĆ”t hƬnh hoĆÆc sau: 3.2 TaƤp co ruĆ¹t ƱƶƓĆÆc. TaƤp con U trong Rn goĆÆi laĆø co ruĆ¹t ƱƶƓĆÆc veĆ  moƤt ƱieĆ„m x0 āˆˆ U neĆ”uu toĆ n taĆÆi moƤt aĆ¹nh xaĆÆ lĆ“Ć¹p C1 h : U Ɨ [0, 1] ā†’ U, (x, t) ā†’ h(x, t) sao cho: h(x, 0) = x0 vaĆø h(x, 1) = x, āˆ€x āˆˆ U. VĆ­ duĆÆ. Sau ƱaĆ¢y laĆø moƤt soĆ” lĆ“Ć¹p taƤp co ruĆ¹t quan troĆÆng:
  • 38. III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 38 TaƤp loĆ i: taƤp U goĆÆi laĆø loĆ i neĆ”uu āˆ€x, y āˆˆ U ƱoaĆÆn [x, y] = {x + t(y āˆ’ x) : t āˆˆ [0, 1]} āŠ‚ U. ChaĆŗng haĆÆn Rn, hƬnh caĆ u, hƬnh hoƤp laĆø caĆ¹c taƤp loĆ i. TaƤp hƬnh sao: taƤp U goĆÆi laĆø hƬnh sao neĆ”uu āˆƒx0 āˆˆ U : āˆ€x āˆˆ U, [x0, x] āŠ‚ U. Trong caĆ¹c vĆ­ duĆÆ treĆ¢n aĆ¹nh xaĆÆ h(x, t) = x0 + t(x āˆ’ x0) thoĆ»a Ć‘Ć²nh nghĆ³a 3.2. BaĆøi taƤp: RoƵ raĆøng laĆø taƤp loĆ i laĆø taƤp hƬnh sao. TƬm vĆ­ duĆÆ taƤp hƬnh sao khoĆ¢ng loĆ i, taƤp co ruĆ¹t ƱƶƓĆÆc khoĆ¢ng hƬnh sao. 3.3 Ć‘Ć²nh lyĆ¹ (BoĆ„ ƱeĆ  PoincareĆ¹). GiaĆ» sƶƻ U laĆø taƤp mĆ“Ć» trong Rn, vaĆø U co ruĆ¹t ƱƶƓĆÆc. Khi ƱoĆ¹ moĆÆi daĆÆng ƱoĆ¹ng treĆ¢n U laĆø khĆ“Ć¹p, i.e. Ļ‰ āˆˆ ā„¦k (U), dĻ‰ = 0 ā‡” āˆƒĪ· āˆˆ ā„¦kāˆ’1 (U), Ļ‰ = dĪ·. ChĆ¶Ć¹ng minh: GoĆÆi Jt : U ā†’ U Ɨ [0, 1], Jt(x) = (x, t). Cho k = 1, 2, Ā· Ā· Ā· . TrĆ¶Ć“Ć¹c heĆ”t ta xaĆ¢y dƶĆÆng aĆ¹nh xaĆÆ tuyeĆ”n tĆ­nh K : ā„¦k(U Ɨ [0, 1]) ā†’ ā„¦kāˆ’1(U), thoaĆ» (āˆ—) Kd + dK = Jāˆ— 1 āˆ’ Jāˆ— 0 MoĆ£i phaĆ n tƶƻ cuĆ»a ā„¦k(U Ɨ [0, 1]) laĆø toĆ„ng caĆ¹c daĆÆng coĆ¹ moƤt trong hai daĆÆng sau: (1) a(x, t)dxI hay (2) b(x, t)dt āˆ§ dxJ , vĆ“Ć¹i I = (i1, Ā· Ā· Ā· , ik), J = (j1, Ā· Ā· Ā· , jkāˆ’1). VƬ vaƤy chƦ caĆ n Ć±Ć²nh nghĆ³a K cho tƶĆøng daĆÆng coĆ¹ daĆÆng treĆ¢n. Ta Ć±Ć²nh nghĆ³a K(a(x, t)dxI) = 0 K(b(x, t)dt āˆ§ dxJ ) = 1 0 b(x, t)dt dxJ KieĆ„m tra ƱieĆ u kieƤn (āˆ—) vĆ“Ć¹i daĆÆng (1): (Kd + dK)(adxI) = K(da āˆ§ dxI) + d(0) = ( 1 0 āˆ‚a āˆ‚t dt)dxI = (a(x, 1) āˆ’ a(x, 0)dxI = (Jāˆ— 1 āˆ’ Jāˆ— 0 )(adxI). KieĆ„m tra ƱieĆ u kieƤn (āˆ—) vĆ“Ć¹i daĆÆng (2): (Kd + dK)(bdt āˆ§ dxJ ) = K(db āˆ§ dt āˆ§ dxJ ) + d(( 1 0 bdt) āˆ§ dxJ ) = K( i āˆ‚b āˆ‚xi dxi āˆ§ dt āˆ§ dxJ ) + d(( 1 0 bdt) āˆ§ dxJ ) = āˆ’ 1 0 ( i āˆ‚b āˆ‚xi )dt āˆ§ dxi āˆ§ dxJ + d(( 1 0 bdt) āˆ§ dxJ ) = āˆ’d(( 1 0 bdt) āˆ§ dxJ ) + d(( 1 0 bdt) āˆ§ dxJ ) = 0. (Jāˆ— 1 āˆ’ Jāˆ— 0 )(bdt āˆ§ dxJ ) = b(x, 1)d(1) āˆ§ dxJ āˆ’ b(x, 0)d(0) āˆ§ dxJ = 0. BaĆ¢y giĆ“ĆøƵ cho h : U Ɨ [0, 1] ā†’ U laĆø aĆ¹nh xaĆÆ co ruĆ¹t veĆ  x0. GiaĆ» sƶƻ Ļ‰ āˆˆ ā„¦k(U) ƱoĆ¹ng, i.e. dĻ‰ = 0. Ta chĆ¶Ć¹ng minh Ī· = Khāˆ—Ļ‰ laĆø (k āˆ’ 1)-daĆÆng thoaĆ» dĪ· = Ļ‰. Do (āˆ—) ta coĆ¹ (Kd + dK)hāˆ—Ļ‰ = (Jāˆ— 1 āˆ’ Jāˆ— 0 )hāˆ—Ļ‰. ā‡” Kdhāˆ—Ļ‰ + dKhāˆ—Ļ‰ = (h ā—¦ J1)āˆ—Ļ‰ āˆ’ (h ā—¦ J0)āˆ—Ļ‰. ā‡” Khāˆ—dĻ‰ + dKhāˆ—Ļ‰ = (idU )āˆ—Ļ‰ āˆ’ (x0)āˆ—Ļ‰. ā‡” 0 + dKhāˆ—Ļ‰ = Ļ‰ + 0.
  • 39. III.3 BoĆ„ ƱeĆ  PoincareĆ¹ 39 VaƤy Ī· = Khāˆ—Ļ‰ laĆø daĆÆng caĆ n tƬm. HeƤ quĆ»a. NeĆ”u U laĆø taƤp mĆ“Ć» co ruĆ¹t ƱƶƓĆÆc, Ļ‰1, Ļ‰2 āˆˆ ā„¦k(U), vaĆø dĻ‰1 = dĻ‰2, thƬ toĆ n taĆÆi Ī· āˆˆ ā„¦kāˆ’1 sao cho dĪ· = Ļ‰1 āˆ’ Ļ‰2. VĆ­ duĆÆ. TaƤp R2 0 laĆø khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc vƬ toĆ n taĆÆi daĆÆng vi phaĆ¢n ƱoĆ¹ng maĆø khoĆ¢ng khĆ“Ć¹p treĆ¢n ƱoĆ¹ (xem vĆ­ duĆÆ Ć“Ć» 3.1). NhaƤn xeĆ¹t. TƶĆø heƤ quĆ»a treĆ¢n, ta thaĆ”y Ī· thoaĆ» boĆ„ ƱeĆ  PoincareĆ¹ laĆø khoĆ¢ng duy nhaĆ”t. CoĆ¹ theĆ„ dƶĆÆa vaĆøo chĆ¶Ć¹ng minh cuĆ»a Ć±Ć²nh lyĆ¹ ƱeĆ„ xaĆ¢y dƶĆÆng Ī· ƱeĆ„ dĪ· = Ļ‰: Ī· = Khāˆ—Ļ‰. VĆ­ duĆÆ. Cho Ļ‰ = (x2 āˆ’ 2yz)dx + (y2 āˆ’ 2zx)dy + (z2 āˆ’ 2xy)dz āˆˆ ā„¦1(R3). DeĆ£ kieĆ„m tra dĻ‰ = 0. ƑeĆ„ tƬm f sao cho df = Ļ‰, nhƶ sau: CaĆ¹ch 1: VƬ R3 laĆø taƤp co ruĆ¹t veĆ  0 vĆ“Ć¹i h(x, y, z, t) = (tx, ty, tz). Theo Ć±Ć²nh nghĆ³a cuĆ»a caĆ¹c toaĆ¹n tƶƻ, ta coĆ¹: hāˆ—Ļ‰ = t2(x2 āˆ’ 2yz)(xdt + tdx) + t2(y2 āˆ’ 2zx)(ydt + tdy) + t2(z2 āˆ’ 2xy)(zdt + tdz). Khāˆ—Ļ‰ = 1 0 t2 (x2 āˆ’ 2yz)xdt + 1 0 t2 (y2 āˆ’ 2zx)ydt + 1 0 t2 (z2 āˆ’ 2xy)zdt. Suy ra f = Khāˆ—Ļ‰ = 1 3 (x3 +y3 +z3 āˆ’6xyz) laĆø moƤt tĆ­ch phaĆ¢n ƱaĆ u cuĆ»a Ļ‰, i.e. df = Ļ‰. CaĆ¹ch 2: HaĆøm f thoaĆ» df = Ļ‰, coĆ¹ theĆ„ vieĆ”t laĆÆi (1) āˆ‚f āˆ‚x = x2 āˆ’ 2yz (2) āˆ‚f āˆ‚y = y2 āˆ’ 2zx (3) āˆ‚f āˆ‚z = z2 āˆ’ 2xy ƑeĆ„ tƬm f, ta laĆ n lƶƓĆÆt tĆ­ch phaĆ¢n theo tƶĆøng bieĆ”n: TƶĆø (1) suy ra f = x3 3 āˆ’ 2xyz + Ļ•(y, z) TƶĆø (2) suy ra āˆ‚Ļ• āˆ‚y = y2 . VaƤy Ļ• = y3 3 + Ļˆ(z). TƶĆø (3) suy ra āˆ‚Ļˆ āˆ‚z = z2 . VaƤy Ļˆ = z3 3 + const. Suy ra f = 1 3 (x3 + y3 + z3 ) āˆ’ 2xyz+ const (CaĆ¹ch 2 coĆ¹ theĆ„ laĆøm cho caĆ¹c mieĆ n hƬnh hoƤp).
  • 40.
  • 41. IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n 1. ƑƒNH HƖƔƙNG 1.1 TrƶƓĆøng vector. Cho M āŠ‚ Rn . MoƤt trƶƓĆøng vector treĆ¢n M laĆø aĆ¹nh xaĆÆ F : M ā†’ Rn , F(x) = (F1(x), Ā· Ā· Ā· , Fn(x)) VeĆ  maĆ«t hƬnh hoĆÆc xem trƶƓĆøng vector nhƶ hoĆÆ vector F(x) coĆ¹ ƱieĆ„m goĆ”c ƱaĆ«t taĆÆi x. 1.2 Ć‘Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆøng cong. ƑƶƓĆøng cong trĆ“n C āŠ‚ R3, goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng Ļ„ neĆ”uu Ļ„ : C ā†’ R3 laĆø trƶƓĆøng vector lieĆ¢n tuĆÆc vaĆø tieĆ”p xuĆ¹c vĆ“Ć¹i C, i.e. Ļ„(x) tieĆ”p xuĆ¹c vĆ“Ć¹i C taĆÆi x, vĆ“Ć¹i moĆÆi x āˆˆ C. X ' rrrrrā€° t Ļ„(x) x C VĆ­ duĆÆ. ƑƶƓĆøng troĆøn ƱƓn vĆ² coĆ¹ theĆ„ tham soĆ” hoaĆ¹ bĆ“Ć»i Ļ•(t) = (cos t, sin t), t āˆˆ (0, 2Ļ€). Khi ƱoĆ¹ trƶƓĆøng vector tieĆ”p xuĆ¹c Ļ• (t) = (āˆ’ sin t, cos t) xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ . 1.3 Ć‘Ć²nh hĆ¶Ć“Ć¹ng maĆ«t. Cho S āŠ‚ R3 laĆø maĆ«t cong trĆ“n. Ta noĆ¹i S laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc neĆ”uu toĆ n taĆÆi trƶƓĆøng vector phaĆ¹p lieĆ¢n tuĆÆc treĆ¢n S, i.e. toĆ n taĆÆi N : S ā†’ R3, lieĆ¢n tuĆÆc vaĆø N(x) āŠ„ TxS, āˆ€x āˆˆ S. Khi ƱoĆ¹ S goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p N. sx N(x) f f f ffw EĀ  Ā  Ā  Ā  Ā  S
  • 42. IV.1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng. 42 VĆ­ duĆÆ. a) MaĆ«t caĆ u laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc vaĆø coĆ¹ theĆ„ choĆÆn moƤt trong hai hĆ¶Ć“Ć¹ng: hĆ¶Ć“Ć¹ng phaĆ¹p trong hay hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi. CuĆÆ theĆ„ khi tham soĆ” hoaĆ¹ maĆ«t caĆ u bĆ“Ć»i Ļ•(Ļ†, Īø) = (cos Ļ† sin Īø, sin Ļ† sin Īø, cos Īø), (Ļ†, Īø) āˆˆ (0, 2Ļ€) Ɨ (0, Ļ€). VĆ“Ć¹i tham soĆ” hoaĆ¹ ƱoĆ¹, caĆ¹c vector tieĆ”p xuĆ¹c vĆ“Ć¹i caĆ¹c ƱƶƓĆøng toĆÆa ƱoƤ laĆø āˆ‚Ļ• āˆ‚Ļ† = (āˆ’ sin Ļ† sin Īø, cos Ļ† sin Īø, 0), āˆ‚Ļ• āˆ‚Īø = (āˆ’ cos Ļ† cos Īø, sin Ļ† cos Īø, āˆ’ sin Īø) DeĆ£ kieĆ„m tra hĆ¶Ć“Ć¹ng phaĆ¹p N = āˆ‚Ļ• āˆ‚Ļ† Ɨ āˆ‚Ļ• āˆ‚Īø laĆø hĆ¶Ć“Ć¹ng phaĆ¹p trong. b) LaĆ¹ M ĀØobius cho ta moƤt vĆ­ duĆÆ veĆ  maĆ«t khoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc. 1.4 Ć‘Ć²nh hĆ¶Ć“Ć¹ng khoĆ¢ng gian vector. DƶĆÆa vaĆøo trƶĆÆc quan: treĆ¢n R coĆ¹ theĆ„ Ć±Ć²nh hai hĆ¶Ć“Ć¹ng (dƶƓng neĆ”u cuĆøng hĆ¶Ć“Ć¹ng vĆ“Ć¹i chieĆ u taĆŖng, aĆ¢m neĆ”u ngƶƓĆÆc laĆÆi). Trong R2 coĆ¹ theĆ„ Ć±Ć²nh hai hĆ¶Ć“Ć¹ng (thuaƤn hay ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ ). Ta coĆ¹ Ć±Ć²nh nghĆ³a sau. Cho V laĆø khoĆ¢ng gian vector k chieĆ u treĆ¢n R. Trong ƑaĆÆi soĆ” tuyeĆ”n tĆ­nh ta ƱaƵ bieĆ”t laĆø neĆ”u (v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) laĆø caĆ¹c cĆ“ sĆ“Ć» cuĆ»a V , thƬ toĆ n taĆÆi ma traƤn chuyeĆ„n cĆ“ sĆ“Ć» P = (pij)kƗk sao cho wj = i pijvi. Ta noĆ¹i (v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) cuĆøng hĆ¶Ć“Ć¹ng neĆ”uu det P 0, (v1, Ā· Ā· Ā· , vk) vaĆø (w1, Ā· Ā· Ā· , wk) ngƶƓĆÆc hĆ¶Ć“Ć¹ng neĆ”uu det P 0. Nhƶ vaƤy treĆ¢n taƤp caĆ¹c cĆ“ sĆ“Ć» cuĆ»a V ƱƶƓĆÆc chia thaĆønh hai lĆ“Ć¹p tƶƓng ƱƶƓng, moĆ£i lĆ“Ć¹p goĆ m caĆ¹c cĆ“ sĆ“Ć» cuĆøng hĆ¶Ć“Ć¹ng vĆ“Ć¹i nhau. LĆ“Ć¹p cuĆønh hĆ¶Ć“Ć¹ng vĆ“Ć¹i (v1, Ā· Ā· Ā· , vk) kyĆ¹ hieƤu laĆø [v1, Ā· Ā· Ā· , vk], lĆ“Ć¹p caĆ¹c cĆ“ sĆ“ ngƶƓĆÆc hĆ¶Ć“Ć¹ng kyĆ¹ hieƤu laĆø āˆ’[v1, Ā· Ā· Ā· , vk]. KhoĆ¢ng gian V goĆÆi laĆø ƱaƵ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ neĆ”u ta choĆÆn moƤt hĆ¶Ć“Ć¹ng Āµ = [v1, Ā· Ā· Ā· , vk]. VĆ­ duĆÆ. Trong Rk cĆ“ sĆ“Ć» chĆ­nh taĆ©c xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c. Theo ngoĆ¢n ngƶƵ trƶĆÆc quan, hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R laĆø hĆ¶Ć“Ć¹ng dƶƓng, hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R2 laĆø hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ , coĆøn hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c trong R3 laĆø hĆ¶Ć“Ć¹ng tam dieƤn thuaƤn. E ā†’e1 E ā†’e1 T ā†’e2 $' E ā†’e1 T ā†’e3 Ā  Ā Ā  ā†’e2 ' HĆ¶Ć“Ć¹ng chĆ­nh taĆ©c cuĆ»a R1, R2, R3 1.5 Ć‘Ć²nh hĆ¶Ć“Ć¹ng Ʊa taĆÆp. Cho M āŠ‚ Rn laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u. MoƤt hoĆÆ hĆ¶Ć“Ć¹ng Āµ = {Āµx : Āµx laĆø moƤt hĆ¶Ć“Ć¹ng treĆ¢n TxM, x āˆˆ M} goĆÆi laĆø tƶƓng thĆ­ch neĆ”uu chuĆ¹ng bieĆ”n ƱoĆ„i moƤt caĆ¹ch lieĆ¢n tuĆÆc theo nghĆ³a sau: vĆ“Ć¹i moĆÆi a āˆˆ M, toĆ n taĆÆi tham soĆ” hoaĆ¹ (Ļ•, U) taĆÆi a sao cho [D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u)] = ĀµĻ•(u), vĆ“Ć¹i moĆÆi u āˆˆ U.
  • 43. IV.1. Ć‘Ć²nh hĆ¶Ć“Ć¹ng. 43 M goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc neĆ”uu toĆ n taĆÆi moƤt hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch treĆ¢n M. M goĆÆi laĆø Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ neĆ”uu M Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc vaĆø hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch Āµ ƱƶƓĆÆc choĆÆn. Khi ƱoĆ¹ moƤt tham soĆ” hoaĆ¹ nhƶ treĆ¢n goĆÆi laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ. NhaƤn xeĆ¹t. ƑoĆ”i vĆ“Ć¹i maĆ«t cong trong R3, vieƤc xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng nhƶ Ć±Ć²nh nghĆ³a treĆ¢n tƶƓng ƱƶƓng vĆ“Ć¹i vieƤc xaĆ¹c Ć±Ć²nh trƶƓĆøng vector phaĆ¹p lieĆ¢n tuĆÆc. Ta coĆ¹ N = D1Ļ•Ć—D2Ļ• laĆø trƶƓĆøng phaĆ¹p vector. 1.6. HĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n bĆ“Ćø. MeƤnh ƱeĆ . Cho M laĆø Ʊa taĆÆp khaĆ» vi coĆ¹ bĆ“Ćø āˆ‚M. NeĆ”u M Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, thƬ āˆ‚M cuƵng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc. ChĆ¶Ć¹ng minh: GƦa sƶƻ O laĆø hoĆÆ tham soĆ” hoaĆ¹ cuĆ»a M xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ. VĆ“Ć¹i moĆÆi (Ļ•, U) āˆˆ O, goĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi ƱoĆ¹ hoĆÆ {(Ļ• ā—¦ i, iāˆ’1(U)) : (Ļ•, U) āˆˆ O, U Hk = āˆ…} laĆø hoĆÆ tham soĆ” hoaĆ¹ āˆ‚M. VĆ“Ć¹i moĆ£i x āˆˆ āˆ‚M, vaĆø (Ļ•, U) āˆˆ O laĆø hoĆÆ tham soĆ” hoaĆ¹ taĆÆi x, Ć±Ć²nh nghĆ³a x = [D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)], x = Ļ•(u). Ta seƵ chĆ¶Ć¹ng minh x khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ (Ļ•, U) āˆˆ O, vaĆø do vaƤy hoĆÆ āˆ‚M, = { x : x = Ļ•(u) āˆˆ āˆ‚M, (Ļ•, U) āˆˆ O } laĆø moƤt hoĆÆ hĆ¶Ć“Ć¹ng tƶƓng thĆ­ch treĆ¢n āˆ‚M. NeĆ”u (Ļ•, U), (Ļˆ, W) āˆˆ O laĆø caĆ¹c tham soĆ” hoaĆ¹ taĆÆi x, thƬ Ļˆ = Ļ• ā—¦ h vĆ“Ć¹i det h 0. ToĆÆa ƱoƤ thĆ¶Ć¹ k cuĆ»a h thoaĆ»: hk(w1, Ā· Ā· Ā· , wkāˆ’1, 0) = 0, va hk(w1, Ā· Ā· Ā· , wkāˆ’1, wk) 0 khi wk 0. Suy ra vĆ“Ć¹i w = (w1, Ā· Ā· Ā· , wkāˆ’1, 0), doĆøng cuoĆ”i cuĆ»a ma traƤn h (w) laĆø (D1hk(w) = 0 Ā· Ā· Ā· Dkāˆ’1hk(w) = 0 Dkhk(w) 0). Do ƱoĆ¹ det h (w) = det(h ā—¦ i) (w1, Ā· Ā· Ā· , wkāˆ’1)Dkhk(w) 0. VaƤy det(h ā—¦ i) (w1, Ā· Ā· Ā· , wkāˆ’1) 0. MaĆø (h ā—¦ i) (w) chĆ­nh laĆø ma traƤn chuyeĆ„n cĆ“ sĆ“Ć» D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u) sang cĆ“ sĆ“Ć» D1Ļˆ(w), Ā· Ā· Ā· , Dkāˆ’1Ļˆ(w) trong khoĆ¢ng gian Txāˆ‚M (x = Ļˆ(w) = Ļ•(u)), neĆ¢n [D1Ļˆ(w), Ā· Ā· Ā· , Dkāˆ’1Ļˆ(w)] = [D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)]. Do vaƤy x ƱƶƓĆÆc Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµx. Ć‘Ć²nh nghĆ³a. Cho M laĆø Ʊa taĆÆp Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ. Khi ƱoĆ¹ treĆ¢n āˆ‚M ta xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh āˆ‚Āµ nhƶ sau: VĆ“Ć¹i moĆÆi x āˆˆ āˆ‚M, goĆÆi (Ļ•, U) laĆø tham soĆ” hoaĆ¹ taĆÆi x cuĆ»a M xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, i.e. Āµx = [D1Ļ•(u), Ā· Ā· Ā· , DkĻ•(u)]. Khi ƱoĆ¹ Ć±Ć²nh nghĆ³a āˆ‚Āµx = (āˆ’1)k [D1Ļ•(u), Ā· Ā· Ā· , Dkāˆ’1Ļ•(u)]. (DaĆ”u (āˆ’1)k ƱeĆ„ thuaƤn tieƤn cho coĆ¢ng thĆ¶Ć¹c Stokes sau naĆøy) NhaƤn xeĆ¹t. GoĆÆi Ļ• laĆø tham soĆ” hoaĆ¹ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ taĆÆi x = Ļ•(u). VƬ Txāˆ‚M laĆø khoĆ¢ng gian
  • 44. IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 44 vector con cuĆ»a TxM coĆ¹ ƱoĆ”i chieĆ u 1, neĆ¢n vĆ“Ć¹i moĆ£i v āˆˆ TxM Txāˆ‚M xaĆ»y ra moƤt trong hai trƶƓĆøng hĆ“ĆÆp: (1) v hĆ¶Ć“Ć¹ng vaĆøo trong M, neĆ”u v āˆˆ Ļ• (u)(Hk +) (2) v hĆ¶Ć“Ć¹ng ra ngoaĆøi M, neĆ”u ngƶƓĆÆc laĆÆi trƶƓĆøng hĆ“ĆÆp (1). VeĆ  maĆ«t trƶĆÆc quan, ta nhaƤn bieĆ”t hĆ¶Ć“Ć¹ng treĆ¢n āˆ‚M laĆø hĆ¶Ć“Ć¹ng caĆ»m sinh nhƶ sau: Cho v1, Ā· Ā· Ā· , vkāˆ’1 laĆø cĆ“ sĆ“Ć» Txāˆ‚M. Khi ƱoĆ¹ neĆ”u v āˆˆ TxM laĆø vector hĆ¶Ć“Ć¹ng vaĆøo trong M vaĆø xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ = [v1, Ā· Ā· Ā· , vkāˆ’1, v], thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n bĆ“Ćø laĆø āˆ‚Āµx = (āˆ’1)k [v1, Ā· Ā· Ā· , vkāˆ’1] s x EĀ  Ā  Ā  v ' Ā© Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ChaĆŗng haĆÆn, neĆ”u Hk Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n āˆ‚Hk = Rkāˆ’1 Ɨ 0 truĆøng vĆ“Ć¹i hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c treĆ¢n Rkāˆ’1 neĆ”u k chaĆ¼n, vaĆø ngƶƓĆÆc vĆ“Ć¹i hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c ƱoĆ¹ neĆ”u k leĆ». VĆ­ duĆÆ. TrƶĆÆc quan hĆ“n nƶƵƵa: NeĆ”u mieĆ n M trong R2 Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c hay laĆø maĆ«t cong trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p N, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n ƱƶƓĆøng cong āˆ‚M laĆø hĆ¶Ć“Ć¹ng ā€˜Ć±i doĆÆc theo ƱoĆ¹ mieĆ n Ć“Ć» phĆ­a traĆ¹iā€™. NeĆ”u M laĆø mieĆ n trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng chĆ­nh taĆ©c, thƬ hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n maĆ«t cong āˆ‚M laĆø hĆ¶Ć“Ć¹ng ā€˜phaĆ¹p tuyeĆ”n ngoaĆøiā€™. 2. TƍCH PHAƂN DAƏNG VI PHAƂN TrĆ¶Ć“Ć¹c heĆ”t laĆø moƤt vaĆøi gĆ“ĆÆi yĆ¹ cho vieƤc xaĆ¢y ƱƶĆÆng tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng vector hay cuĆ»a daĆÆng vi phaĆ¢n. Cho F = (F1, F2, F3) laĆø moƤt trƶƓĆøng vector trong R3. ā€¢ VĆ“Ć¹i v āˆˆ R3 laĆø vector goĆ”c taĆÆi x, giaĆ¹ trĆ² WF (x)(v) = F(x), v , goĆÆi laĆø coĆ¢ng cuĆ»a F(x) doĆÆc theo v. Ta coĆ¹ 1-daĆÆng vi phaĆ¢n tƶƓng Ć¶Ć¹ng: WF = F1dx1 + F2dx2 + F3dx3. Cho C laĆø moƤt ƱƶƓĆøng cong Ć±Ć²nh hĆ¶Ć“Ć¹ng trong R3. Ta caĆ n xaĆ¢y ƱƶĆÆng tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng F doĆÆc theo C, hay laĆø tĆ­ch phaĆ¢n cuĆ»a daĆÆng vi phaĆ¢n WF treĆ¢n C: C WF = C F1dx1 + F2dx2 + F3dx3. ā€¢ VĆ“Ć¹i v1, v2 āˆˆ R3 laĆø caĆ¹c vector goĆ”c taĆÆi x, giaĆ¹ trĆ² Ļ‰F (x)(v1, v2) = F(x), v1 Ɨ v2 , goĆÆi laĆø thoĆ¢ng lƶƓĆÆng cuĆ»a F(x) qua maĆ«t bƬnh haĆønh āˆ†S taĆÆo bĆ“Ć»i v1, v2. Ta coĆ¹ 2-daĆÆng vi phaĆ¢n tƶƓng Ć¶Ć¹ng Ļ‰F = F1dx2 āˆ§ dx3 + F2dx3 āˆ§ dx1 + F3dx1 āˆ§ dx2.
  • 45. IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 45 Cho S laĆø maĆ«t Ć±Ć²nh hĆ¶Ć“Ć¹ng trong R3. Ta caĆ n khaĆ¹i nieƤm tĆ­ch phaĆ¢n cuĆ»a trƶƓĆøng vector F qua maĆ«t S, hay laĆø tĆ­ch phaĆ¢n cuĆ»a daĆÆng vi phaĆ¢n Ļ‰F treĆ¢n S: S Ļ‰F = S F1dx2 āˆ§ dx3 + F2dx3 āˆ§ dx1 + F3dx1 āˆ§ dx2 2.1 Ć‘Ć²nh nghĆ³a. Cho U laĆø taƤp mĆ“Ć» Rk, vaĆø Ļ‰ āˆˆ ā„¦k(U). Khi ƱoĆ¹ Ļ‰ = f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk. Ć‘Ć²nh nghĆ³a U Ļ‰ = U f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk = U f(u)du1 Ā· Ā· Ā· duk. neĆ”u tĆ­ch phaĆ¢n veĆ” phaĆ»i toĆ n taĆÆi. 2.2 TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ trong Rn. Cho Ļ‰ āˆˆ ā„¦k(V ), vĆ“i V laĆø taƤp mĆ“Ć» chĆ¶Ć¹a M. Sau ƱaĆ¢y ta xaĆ¢y dƶĆÆng tĆ­ch phaĆ¢n cuĆ»a daĆÆng Ļ‰ treĆ¢n M (coĆøn goĆÆi laĆø tĆ­ch phaĆ¢n loaĆÆi 2) M Ļ‰ NeĆ”u M = Ļ•(U) vĆ“Ć¹i (Ļ•, U) laĆø moƤt tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, thƬ Ć±Ć²nh nghĆ³a M Ļ‰ = U Ļ•āˆ— Ļ‰. TrƶƓĆøng hĆ“ĆÆp toĆ„ng quaĆ¹t, khi M cho bĆ“Ć»i moƤt hoĆÆ tham soĆ” hoaĆ¹ O = {(Ļ•i, Ui) : i āˆˆ I} xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, ta duĆøng kyƵ thuaƤt phaĆ¢n hoaĆÆch ƱƓn vĆ². GoĆÆi Ī˜ = {Īøi : i āˆˆ I} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² cuĆ»a M phuĆø hĆ“ĆÆp vĆ“Ć¹i O. Ć‘Ć²nh nghĆ³a M Ļ‰ = iāˆˆI Ļ•i(Ui) ĪøiĻ‰ = iāˆˆI Ui Ļ•āˆ— i (ĪøiĻ‰) , vĆ“Ć¹i giaĆ» thieĆ”t veĆ” phaĆ»i toĆ n taĆÆi. ChaĆŗng haĆÆn khi M compact vaĆø Ļ‰ lieĆ¢n tuĆÆc. Khi k = 1, tĆ­ch phaĆ¢n coĆ¹ daĆÆng M i Fidxi, vaĆø goĆÆi laĆø tĆ­ch phaĆ¢n ƱƶƓĆøng. Khi k = 2, tĆ­ch phaĆ¢n coĆ¹ daĆÆng M ij Fijdxi āˆ§ dxj, vaĆø goĆÆi laĆø tĆ­ch phaĆ¢n maĆ«t. NhaƤn xeĆ¹t. Ć‘Ć²nh nghĆ³a treĆ¢n khoĆ¢ng phuĆÆ thuoƤc caĆ¹ch choĆÆn hoĆÆ tham soĆ” xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ vaĆø phaĆ¢n hoaĆÆch ƱƓn vĆ². ChĆ¶Ć¹ng minh: Khi hai tham soĆ” hoĆ¹a (Ļ•, U) vaĆø (Ļˆ, W), cuĆøng xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹n Āµ, ta coĆ¹ Ļˆ = Ļ• ā—¦ h, vĆ“Ć¹i h laĆø vi phoĆ¢i coĆ¹ det Jh 0. NeĆ”u Ļ•āˆ—Ļ‰ = f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk, thƬ hāˆ—(f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk) = hāˆ—Ļ•āˆ—Ļ‰ = (Ļ• ā—¦ h)āˆ—Ļ‰ = Ļˆāˆ—Ļ‰. Theo coĆ¢ng thĆ¶Ć¹c ƱoĆ„i bieĆ”n, ta coĆ¹ U Ļ•āˆ— Ļ‰ = U f = W f ā—¦ ā—¦h det Jh = W hāˆ— (f(u)du1 āˆ§ Ā· Ā· Ā· āˆ§ duk) = W Ļˆāˆ— Ļ‰. VaƤy Ć±Ć²nh nghĆ³a khoĆ¢ng phuĆÆ thuoƤc tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh cuĆøng hĆ¶Ć“Ć¹ng. NeĆ”u Ī˜ = {Īøj : j āˆˆ J} laĆø moƤt phaĆ¢n hoaĆÆch ƱƓn vĆ² khaĆ¹c cuĆ»a M. Khi ƱoĆ¹ j M ĪøjĻ‰ = j M ( i Īøi)ĪøjĻ‰ = i,j M ĪøiĪøjĻ‰ = i,j M ĪøjĪøiĻ‰ = i M ( j Īøj)ĪøiĻ‰ i M ĪøiĻ‰.
  • 46. IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n. 46 VaƤy Ć±Ć²nh nghĆ³a cuƵng khoĆ¢ng phuĆÆ thuoƤc phaĆ¢n hoaĆÆch ƱƓn vĆ². 2.3 TĆ­nh chaĆ”t. Cho M laĆø Ʊa taĆÆp k chieĆ u Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ trong taƤp mĆ“Ć» V . Khi ƱoĆ¹ (1) M : ā„¦k (V ) ā†’ R laĆø tuyeĆ”n tĆ­nh. (2) M Ļ‰ = āˆ’ āˆ’M Ļ‰ , vĆ“Ć¹i kyĆ¹ hieƤu āˆ’M ƱeĆ„ chƦ M Ć±Ć²nh hĆ¶Ć“Ć¹ng āˆ’Āµ. ChĆ¶Ć¹ng minh: (1) suy tƶĆø tĆ­nh tuyeĆ”n tĆ­nh cuĆ»a Ui vaĆø Ļ•āˆ— i . (2) XeĆ¹t pheĆ¹p ƱoĆ„i bieĆ”n h(u1, Ā· Ā· Ā· , uk) = (āˆ’u1, Ā· Ā· Ā· , uk). Khi ƱoĆ¹ det h = āˆ’1. NeĆ”u (Ļ•, U) laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ, thƬ (Ļ• ā—¦ h, hāˆ’1(U)) laĆø tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ngāˆ’Āµ. TƶĆø ƱoĆ¹ suy ra vĆ“Ć¹i moĆÆi phaĆ¢n hoaĆÆch ƱƓn vĆ² Ī˜ phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ tham soĆ” hoaĆ¹, ta coĆ¹ āˆ’M Ļ‰ = ĪøāˆˆĪ˜ hāˆ’1(U) (Ļ• ā—¦ h)āˆ— ĪøĻ‰ = ĪøāˆˆĪ˜ (āˆ’ U Ļ•āˆ— ĪøĻ‰) = āˆ’ M Ļ‰. VĆ­ duĆÆ. a) Cho C laĆø ƱƶƓĆøng cong trĆ“n, cho bĆ“Ć»i tham soĆ” hoĆ¹a Ļ• : I ā†’ Rn, Ć±Ć²nh hĆ¶Ć“Ć¹ng theo chieĆ u taĆŖng cuĆ»a tham soĆ”. Khi ƱoĆ¹ C i Fidxi = I i Fi ā—¦ Ļ•dĻ•i = I ( i Fi ā—¦ Ļ•(t)Ļ•i(t))dt. ChaĆŗng haĆÆn, neĆ”u ƱƶƓĆøng troĆøn ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ , thƬ x2+y2=1 ydx āˆ’ xdy x2 + y2 = 2Ļ€ 0 sin td(cos t) āˆ’ cos td(sin t) cos2 t + sin2 t = āˆ’ 2Ļ€ 0 dt = āˆ’2Ļ€. b) Cho S laĆø maĆ«t caĆ u ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p trong, thƬ vĆ“Ć¹i tham soĆ” hoaĆ¹ xaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng tƶƓng Ć¶Ć¹ng, ta coĆ¹ S xdy āˆ§ dz = [0,2Ļ€]Ɨ[0,Ļ€] cos Ļ† sin Īød(sin Ļ† sin Īø) āˆ§ d(cos Īø) = [0,2Ļ€]Ɨ[0,Ļ€] cos Ļ† sin Īø(cos Ļ† sin ĪødĻ† + sin Ļ† cos ĪødĪø) āˆ§ d(āˆ’ sin ĪødĪø) = [0,2Ļ€]Ɨ[0,Ļ€] āˆ’ cos2 Ļ† sin3 ĪødĻ† āˆ§ dĪø =? 2.4 Quan heƤ giƶƵa tĆ­ch phaĆ¢n loaĆÆi 1 vaĆø loaĆÆi 2. Cho F = (P, Q, R) laĆø trƶƓĆøng vector lĆ“Ć¹p C1 treĆ¢n moƤt taƤp mĆ“Ć» V āŠ‚ R3. (1) Cho C āŠ‚ V laĆø ƱƶƓĆøng cong kĆ­n, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn vĆ² T = (cos Ī±, cos Ī², cos Ī³). Khi ƱoĆ¹ C Pdx + Qdy + Rdz = C F, T dl = C (P cos Ī± + Q cos Ī² + R cos Ī³)dl. (2) Cho S āŠ‚ V laĆø maĆ«t trĆ“n, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng phaĆ¹p vector ƱƓn vĆ² N = (cos Ī±, cos Ī², cos Ī³). Khi ƱoĆ¹ S Pdyāˆ§dz+Qdzāˆ§dx+Rdxāˆ§dy = S F, N dS = S (P cos Ī±+Q cos Ī²+R cos Ī³)dS.
  • 47. IV.3 CoĆ¢ng thƶc Stokes 47 ChĆ¶Ć¹ng minh: Nhƶ phaĆ n gĆ“ĆÆi yĆ¹ ƱaĆ u tieĆ”t, ta coĆ¹: (1) VĆ“Ć¹i moĆ£i v āˆˆ R3, goĆÆi T laĆø vector chƦ phƶƓng ƱƓn vĆ² cuĆ»a v. Khi ƱoĆ¹ 1-daĆÆng WF (v) = F, v , coĆ¹ BieĆ„u dieĆ£n 1: WF = Pdx + Qdy + Rdz. BieĆ„u dieĆ£n 2: WF (v) = F, T v = F, T dl(v). VaƤy neĆ”u C laĆø ƱƶƓĆøng cong trong R3 Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn vĆ² T, thƬ C WF = C F, T dl. TƶĆø ƱoĆ¹ suy ra (1). (2) VĆ“Ć¹i v1, v2 āˆˆ R3, goĆÆi N laĆø vector ƱƓn vĆ² chƦ phƶƓng v1 Ɨ v2. Khi ƱoĆ¹ 2-daĆÆng vi phaĆ¢n Ļ‰F (v1, v2) = F, v1 Ɨ v2 , coĆ¹ BieĆ„u dieĆ£n 1: Ļ‰F = Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy. BieĆ„u dieĆ£n 2: Ļ‰F (v1, v2) = F, N v1 Ɨ v2 = F, N dS(v1, v2). VaƤy neĆ”u S laĆø maĆ«t cong Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector phaĆ¹p ƱƓn vĆ² N, thƬ S Ļ‰F = F, N dS. TƶĆø ƱoĆ¹ suy ra (2). 3. COƂNG THƖƙC STOKES 3.1 Ć‘Ć²nh lyĆ¹ (CoĆ¢ng thĆ¶Ć¹c Stokes). Cho M laĆø Ʊa taĆÆp khaĆ» vi k chieĆ u, Ć±Ć²nh hĆ¶Ć“Ć¹ng, compact trong taƤp mĆ“Ć» V āŠ‚ Rn, vĆ“Ć¹i bĆ“Ćø āˆ‚M Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh. Khi ƱoĆ¹ M dĻ‰ = āˆ‚M Ļ‰, āˆ€Ļ‰ āˆˆ ā„¦kāˆ’1 (V ). ChĆ¶Ć¹ng minh: GiaĆ» sƶƻ M Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ vaĆø āˆ‚Āµ laĆø hĆ¶Ć“Ć¹ng caĆ»m sinh treĆ¢n āˆ‚M. Cho {(Ļ•i, Ui) : i āˆˆ I} laĆø tham soĆ” hoaĆ¹ Ć±Ć²nh hĆ¶Ć“Ć¹ng Āµ cuĆ»a M. KhoĆ¢ng giaĆ»m toĆ„ng quaĆ¹t, giaĆ» sƶƻ Ui chĆ¶Ć¹a trong moƤt hƬnh hoƤp Ai. GoĆÆi i : Rkāˆ’1 ā†’ Rk, i(u1, Ā· Ā· Ā· , ukāˆ’1) = (u1, Ā· Ā· Ā· , ukāˆ’1, 0). Khi ƱoĆ¹ hoĆÆ {(Ļ•i ā—¦i, iāˆ’1(Ui)) : i āˆˆ I }, vĆ“Ć¹i I = {i āˆˆ I : Ui āˆ© āˆ‚Hk = āˆ…}, laĆø hoĆÆ tham soĆ” hoaĆ¹ āˆ‚M Ć±Ć²nh hĆ¶Ć“Ć¹ng (āˆ’1)kāˆ‚Āµ. NeĆ”u {Īøi : i āˆˆ I} laĆø phaĆ¢n hoaĆÆch ƱƓn vĆ² phuĆø hĆ“ĆÆp vĆ“Ć¹i hoĆÆ Ć±aƵ cho, thƬ M dĻ‰ = M d( iāˆˆI ĪøiĻ‰) = iāˆˆI Ļ•i(Uiāˆ©Hk) dĪøiĻ‰. āˆ‚M Ļ‰ = āˆ‚M ( iāˆˆI ĪøiĻ‰) = iāˆˆI Ļ•i(Uiāˆ©āˆ‚Hk) ĪøiĻ‰. ƑeĆ„ cho goĆÆn, ƱaĆ«t Ļ• = Ļ•i, U = Ui, A = Ai = [Ī±1, Ī²1] Ɨ Ā· Ā· Ā· Ɨ [Ī±k, Ī²k]. Ta caĆ n chĆ¶Ć¹ng minh: (1) NeĆ”u U āˆ© āˆ‚Hk = āˆ…, i.e. i āˆˆ I I , thƬ Ļ•(U) dĻ‰ = 0. (2) NeĆ”u U āˆ© āˆ‚Hk = āˆ…, i.e. i āˆˆ I , thƬ Ļ•(Uāˆ©Hk) dĻ‰ = (āˆ’1)k Ļ•(Uāˆ©āˆ‚Hk) Ļ‰.
  • 48. IV.3 CoĆ¢ng thƶc Stokes 48 GoĆÆi Ļ•āˆ—Ļ‰ = k j=1 aj(u1, Ā· Ā· Ā· , uk)du1 āˆ§ Ā· Ā· Ā· āˆ§ duj āˆ§ Ā· Ā· Ā· āˆ§ duk āˆˆ ā„¦kāˆ’1 (U). Khi ƱoĆ¹ xem Ļ•āˆ—Ļ‰ āˆˆ ā„¦kāˆ’1(A) baĆØng caĆ¹ch ƱaĆ«t aj(u) = 0 khi u āˆˆ U. Ta coĆ¹ (Ļ• ā—¦ i)āˆ—Ļ‰ = ak(u1, Ā· Ā· Ā· , ukāˆ’1, 0)du1 āˆ§ Ā· Ā· Ā· āˆ§ dukāˆ’1. Ļ•āˆ—(dĻ‰) = k j=1 daj āˆ§ du1 āˆ§ Ā· Ā· Ā· duj Ā· Ā· Ā· āˆ§ duk = k j=1 (āˆ’1)jāˆ’1 āˆ‚aj āˆ‚uj du1 āˆ§ Ā· Ā· Ā· āˆ§ duk. ƑoĆ”i vĆ“Ć¹i trƶƓĆøng hĆ“ĆÆp (1), ta coĆ¹ Ļ•(U) dĻ‰ = U Ļ•āˆ— (dĻ‰) = A k j=1 (āˆ’1)jāˆ’1 āˆ‚aj āˆ‚uj du1 āˆ§ Ā· Ā· Ā· āˆ§ duk = j l=j [Ī±l,Ī²l] (aj(Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· ) āˆ’ aj(Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· ))du1 Ā· Ā· Ā· duj Ā· Ā· Ā· duk = 0. (ƑaĆŗng thĆ¶Ć¹c thĆ¶Ć¹ ba suy tƶĆø coĆ¢ng thĆ¶Ć¹c Fubini vaĆø coĆ¢ng thĆ¶Ć¹c Newton-Leibniz, ƱaĆŗng thĆ¶Ć¹c cuoĆ”i laĆø do (u1, Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· , uk), (u1, Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· , uk) āˆˆ U neĆ¢n caĆ¹c giaĆ¹ trĆ² cuĆ»a aj taĆÆi ƱoĆ¹ trieƤt tieĆ¢u). ƑoĆ”i vĆ“Ć¹i trƶƓĆøng hĆ“ĆÆp (2), ta coĆ¹ Ļ•(Uāˆ©Hk) dĻ‰ = Uāˆ©Hk k j=1 (āˆ’1)jāˆ’1 āˆ‚aj āˆ‚uj du1 āˆ§ Ā· Ā· Ā· āˆ§ duk = Aāˆ©Hk k j=1 (āˆ’1)jāˆ’1 āˆ‚aj āˆ‚uj du1 āˆ§ Ā· Ā· Ā· āˆ§ duk = j (āˆ’1)jāˆ’1 ( [Ī±1,Ī²1]ƗĀ·Ā·Ā·Ć—[0,Ī²k] āˆ‚aj āˆ‚uj du1 āˆ§ Ā· Ā· Ā· āˆ§ duk). Khi j = k, [Ī±j,Ī²j] āˆ‚aj āˆ‚uj duj = aj(u1, Ā· Ā· Ā· , Ī²j, Ā· Ā· Ā· , uk) āˆ’ aj(u1, Ā· Ā· Ā· , Ī±j, Ā· Ā· Ā· , uk) = 0. Khi j = k, [0,Ī²k] āˆ‚ak āˆ‚uk duk = ak(u1, Ā· Ā· Ā· , Ī²k) āˆ’ ak(u1, Ā· Ā· Ā· , 0) = āˆ’ak(u1, Ā· Ā· Ā· , 0). VaƤy theo coĆ¢ng thĆ¶Ć¹c Fubini, ta coĆ¹ Ļ•(Uāˆ©Hk) dĻ‰ = (āˆ’1)k j=k [Ī±j,Ī²j] ak(u1, Ā· Ā· Ā· , 0)du1 Ā· Ā· Ā· dukāˆ’1. MaĆ«t khaĆ¹c Ļ•(Uāˆ©āˆ‚Hk) Ļ‰ = Aāˆ©Rkāˆ’1Ɨ0 ak(u1, Ā· Ā· Ā· , 0)du1 Ā· Ā· Ā· dukāˆ’1. TƶĆø ƱoĆ¹ suy ra coĆ¢ng thĆ¶Ć¹c caĆ n chĆ¶Ć¹ng minh. ChuĆ¹ yĆ¹. NeĆ”u M khoĆ¢ng compact coĆ¢ng thĆ¶Ć¹c khoĆ¢ng ƱuĆ¹ng. ChaĆŗng haĆÆn, M laĆø khoaĆ»ng mĆ“Ć»
  • 49. IV.3 CoĆ¢ng thƶc Stokes 49 trong R, Ļ‰(x) = xdx. 3.2 CaĆ¹c coĆ¢ng thĆ¶Ć¹c coĆ„ ƱieĆ„n. Sau ƱaĆ¢y laĆø caĆ¹c heƤ quĆ»a cuĆ»a Ć±Ć²nh lyĆ¹ treĆ¢n: CoĆ¢ng thĆ¶Ć¹c Newton-Leibniz. Cho V laĆø taƤp mĆ“Ć» trong Rn, F : V ā†’ R thuoƤc lĆ“Ć¹p C1 vaĆø Ļ• : [a, b] ā†’ V laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong trĆ“n. Khi ƱoĆ¹ Ļ•([a,b]) dF = F(Ļ•(b)) āˆ’ F(Ļ•(a)). CoĆ¢ng thĆ¶Ć¹c Green. Cho D āŠ‚ R2 laĆø mieĆ n compact, coĆ¹ bĆ“Ćø C = āˆ‚D Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ . Cho P, Q laĆø caĆ¹c haĆøm lĆ“Ć¹p C1 treĆ¢n taƤp mĆ“Ć» chĆ¶Ć¹a D. Khi ƱoĆ¹ D ( āˆ‚Q āˆ‚x āˆ’ āˆ‚P āˆ‚y )dxdy = C Pdx + Qdy. CoĆ¢ng thĆ¶Ć¹c Stokes coĆ„ ƱieĆ„n. Cho S āŠ‚ R3 laĆø maĆ«t cong trĆ“n Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p N, coĆ¹ bĆ“Ćø āˆ‚S = C laĆø ƱƶƓĆøng cong kĆ­n Ć±Ć²nh hĆ¶Ć“Ć¹ng sao cho mieĆ n phĆ­a traĆ¹i. Cho P, Q, R caĆ¹c haĆøm lĆ“Ć¹p C1 treĆ¢n moƤt taƤp mĆ“Ć» chĆ¶Ć¹a S. Khi ƱoĆ¹ S ( āˆ‚Q āˆ‚x āˆ’ āˆ‚P āˆ‚y )dxāˆ§dy+( āˆ‚R āˆ‚y āˆ’ āˆ‚Q āˆ‚z )dyāˆ§dz+( āˆ‚P āˆ‚z āˆ’ āˆ‚R āˆ‚x )dzāˆ§dx = C Pdx+Qdy+Rdz. CoĆ¢ng thĆ¶Ć¹c Gauss-Ostrogradski. Cho V āŠ‚ R3 laĆø mieĆ n compact, coĆ¹ bĆ“ĆøƵ āˆ‚V = S laĆø maĆ«t trĆ“n Ć±Ć²nh hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi. Cho P, Q, R laĆø caĆ¹c haĆøm lĆ“Ć¹p C1 treĆ¢n moƤt mieĆ n mĆ“Ć» chĆ¶Ć¹a V . Khi ƱoĆ¹ V ( āˆ‚P āˆ‚x + āˆ‚Q āˆ‚y + āˆ‚R āˆ‚z )dxdydz = S Pdy āˆ§ dz + Qdz āˆ§ dx + Rdx āˆ§ dy. VĆ­ duĆÆ. a) DieƤn tĆ­ch mieĆ n D giĆ“Ć¹i haĆÆn bĆ“Ć»i ƱƶƓĆøng cong kĆ­n C trong R2: D dxdy = C xdy = āˆ’ C ydx = 1 2 C (xdy āˆ’ ydx). b) TheĆ„ tĆ­ch mieĆ n V giĆ“Ć¹i haĆÆn bĆ“Ć»i maĆ«t cong kĆ­n S trong R3: V dxdydz = S xdy āˆ§ dz = S ydz āˆ§ dx = S zdx āˆ§ dy = 1 3 ( S xdy āˆ§ dz + S ydz āˆ§ dx + S zdx āˆ§ dy) 3.3 MeƤnh ƱeĆ . GƦa sƶƻ U laĆø taƤp mĆ“Ć», co ruĆ¹t ƱƶƓĆÆc trong Rn. Cho Ļ‰ = n i=1 aidxi āˆˆ ā„¦1 (U). Khi ƱoĆ¹ caĆ¹c ƱieĆ u sau tƶƓng ƱƶƓng: (1) Ļ‰ laĆø khĆ“Ć¹p, i.e. toĆ n taĆÆi f āˆˆ C1(U), sao cho df = Ļ‰. (2) Ļ‰ laĆø ƱoĆ¹ng, i.e. dĻ‰ = 0.
  • 50. IV.3 CoĆ¢ng thƶc Stokes 50 (3) āˆ‚ai āˆ‚xi = āˆ‚ai āˆ‚xj , vĆ“Ć¹i moĆÆi i, j. (4) C Ļ‰ = 0, vĆ“Ć¹i moĆÆi ƱƶƓĆøng cong kĆ­n C āŠ‚ U. ChĆ¶Ć¹ng minh: Suy tƶĆø boĆ„ ƱeĆ  PoincareĆ¹ vaĆø coĆ¢ng thĆ¶Ć¹c Stokes. (BaĆøi taƤp) VĆ­ duĆÆ. TaƤp R2 {0} khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc vƬ treĆ¢n ƱoĆ¹ coĆ¹ daĆÆng xdy āˆ’ ydx x2 + y2 ƱoĆ¹ng, nhƶng tĆ­ch phaĆ¢n treĆ¢n ƱƶƓĆøng troĆøn laĆø 2Ļ€ = 0. BaĆøi taƤp: ChĆ¶Ć¹ng minh Rn {0} khoĆ¢ng co ruĆ¹t ƱƶƓĆÆc baĆØng caĆ¹ch xeĆ¹t daĆÆng n i=1 (āˆ’1)i xi x n/2 dx1 āˆ§ Ā· Ā· Ā· dxi Ā· Ā· Ā· āˆ§ dxn. (trong ƱoĆ¹ kyĆ¹ hieƤu dxi ƱeĆ„ chƦ dxi khoĆ¢ng coĆ¹ maĆ«t trong bieĆ„u thĆ¶Ć¹c.) 3.4 Ɩƙng duĆÆng vaĆøo giaĆ»i tĆ­ch vector. CaĆ¹c toaĆ¹n tƶƻ grad, rot, div: Trong R3 vĆ“Ć¹i cĆ“ sĆ“Ć» chĆ­nh taĆ©c e1, e2, e3 vaĆø U laĆø taƤp mĆ“Ć» trong R3. KyĆ¹ hieƤu āˆ‡ = āˆ‚ āˆ‚x1 e1 + āˆ‚ āˆ‚x2 e2 + āˆ‚ āˆ‚x3 e3, goĆÆi laĆø toaĆ¹n tƶƻ nabla. Cho f : U ā†’ R laĆø haĆøm khaĆ» vi. TrƶƓĆøng gradient cuĆ»a f, ƱƶƓĆÆc Ć±Ć²nh nghĆ³a: grad f = āˆ‡f = āˆ‚f āˆ‚x1 e1 + āˆ‚f āˆ‚x2 e2 + āˆ‚f āˆ‚x3 e3. Cho F = F1e1 + F2e2 + F3e3 laĆø trƶƓĆøng vector khaĆ» vi treĆ¢n U. TrƶƓĆøng xoaĆ©n cuĆ»a F, ƱƶƓĆÆc kyĆ¹ hieƤu vaĆø Ć±Ć²nh nghĆ³a rot F = āˆ‡ Ɨ F = e1 e2 e3 āˆ‚ āˆ‚x1 āˆ‚ āˆ‚x2 āˆ‚ āˆ‚x3 F1 F2 F3 HaĆøm nguoĆ n cuĆ»a trƶƓĆøng F, ƱƶƓĆÆc kyĆ¹ hieƤu vaĆø Ć±Ć²nh nghĆ³a: div F = āˆ‡, F = āˆ‚F1 āˆ‚x1 + āˆ‚F2 āˆ‚x2 + āˆ‚F3 āˆ‚x3 . Quan heƤ vĆ“Ć¹i toaĆ¹n tƶƻ vi phaĆ¢n. Ć‘Ć²nh nghĆ³a caĆ¹c ƱaĆŗng caĆ”u: h1 : X (U) ā†’ ā„¦1(U), h2(F1e1 + F2e2 + F3e3) = F1dx1 + F2dx2 + F3dx3. h2 : X (U) ā†’ ā„¦2(U), h2(F1e1+F2e2+F3e3) = F1dx2āˆ§dx3+F2dx3āˆ§dx1+F3dx1āˆ§dx2. h3 : Cāˆž(U) ā†’ ā„¦3(U), h3(f) = fdx1 āˆ§ dx2 āˆ§ dx3.
  • 51. IV.3 CoĆ¢ng thƶc Stokes 51 Khi ƱoĆ¹ bieĆ„u ƱoĆ  sau giao hoaĆ¹n Cāˆž(U) grad ā†’ X (U) rot ā†’ X (U) div ā†’ Cāˆž(U) ā†“ id ā†“ h1 ā†“ h2 ā†“ h3 ā„¦0(U) d ā†’ ā„¦1(U) d ā†’ ā„¦2(U) d ā†’ ā„¦3(U) nghĆ³a laĆø ta coĆ¹: h1 ā—¦ grad = d ā—¦ id, h2 ā—¦ rot = d ā—¦ h1, h3 ā—¦ div = d ā—¦ h2. ChĆ¶Ć¹ng minh: Xem nhƶ baĆøi taƤp HeƤ quĆ»a. TƶĆø d ā—¦ d = 0, suy ra rot ā—¦ grad = 0, div ā—¦ rot = 0. 3.5 CoĆ¢ng thĆ¶Ć¹c Stokes cho tĆ­ch phaĆ¢n loaĆÆi 1. Cho F laĆø moƤt trƶƓĆøng vector khaĆ» vi trong R3. (1) GiaĆ» sƶƻ S laĆø maĆ«t cong compact trong R3, Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector phaĆ¹p ƱƓn vĆ² N, coĆ¹ bĆ“Ćø āˆ‚S = C laĆø ƱƶƓĆøng cong Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh bĆ“Ć»i trƶƓĆøng vector tieĆ”p xuĆ¹c ƱƓn vĆ² T sao cho mieĆ n S naĆØm phĆ­a traĆ¹i. Khi ƱoĆ¹ C F, T dl = S rot F, N dS. (2) GiaĆ» sƶƻ V laĆø mieĆ n giĆ“Ć¹i noƤi trong R3 coĆ¹ bĆ“Ćø āˆ‚V = S laĆø maĆ«t cong Ć±Ć²nh hĆ¶Ć“Ć¹ng bĆ“Ć»i trƶƓĆøng vector phaĆ¹p ƱƓn vĆ² N hĆ¶Ć“Ć¹ng ra phĆ­a ngoaĆøi. Khi ƱoĆ¹ S F, N dS = V div FdV. ChĆ¶Ć¹ng minh: Suy tƶĆø coĆ¢ng thĆ¶Ć¹c Stokes vaĆø moĆ”i quan heƤ giƶƵa tĆ­ch phaĆ¢n loaĆÆi 1 vaĆø loaĆÆi 2.
  • 52.
  • 53. 53 BĀµi tƋp giĀ¶i tƝch 3 1 BĀµi tƋp tich phĀ©n phĆ“ thuĆ©c tham sĆØ 1. TƝnh cĀøc giĆ­i hĀ¹n 1) lim tā†’0 1 āˆ’1 āˆš x2 + t2dx 2) lim tā†’0 1+t t dx 1 + x2 + t2 3) lim nā†’āˆž 1 0 dx 1 + (1 + x/n)n 4) lim tā†’0 1+t t ln(x + |t|) ln(x2 + |t2| 5) lim tā†’0 1 0 x t2 eāˆ’x2/t2 dx 6) lim tā†’āˆž Ļ€/2 0 eāˆ’t sin x dx. 2. KhĀ¶o sĀøt tƝnh liĀŖn tĆ“c cƱa hĀµm I(t) = 1 0 tf(x) x2 + t2 , trong Ā®Ć£ hĀµm f(x) liĀŖn tĆ“c vĀµ d-Ā¬ng trĀŖn Ā®oĀ¹n [0, 1]. 3. 1) TƗm Ā®Ā¹o hĀµm cƱa cĀøc tƝch phĀ©n eliptic E(t) = Ļ€/2 0 1 āˆ’ t2 sin2 xdx F(t) = Ļ€/2 0 dx 1 āˆ’ t2 sin2 x dx. 2) HĀ·y biƓu diƔn E , F qua cĀøc hĀµm E, F. 3) ChĆøng minh rĀ»nh E thĆ”a ph-Ā¬ng trƗnh vi phĀ©n E (t) + 1 t E (t) + 1 1 āˆ’ t2 E(t) = 0. 4. GiĀ¶ sƶ hĀµm f(x, y) cĆ£ cĀøc Ā®Ā¹o hĀµm riĀŖng liĀŖn tĆ“c. TƝnh I (t) nƕu 1) I(t) = t 0 f(x + t, x āˆ’ t)dx 2) I(t) = t2 0 x+t xāˆ’t sin(x2 + y2 āˆ’ t2 )dy dx. 5. ChĆøng minh rĀ»ng hĀµm Bessel vĆ­i cĀøc chƘ sĆØ nguyĀŖn In(t) = 1 Ļ€ Ļ€ 0 cos(nx āˆ’ t sin x)dx,
  • 54. 54 thĆ”a mĀ·n ph-Ā¬ng trƗnh Bessel t2 y + ty + (t2 āˆ’ n2 )y = 0. 6. Cho hĀµm Ļ•(x) thuĆ©c lĆ­p C1 ) trĀŖn Ā®oĀ¹n [0, a] vĀµ I(t) = t 0 Ļ•(x)dx āˆš t āˆ’ x . ChĆøng minh rĀ»ng, vĆ­i mƤi t āˆˆ (0, a) ta cĆ£ I (t) = t 0 Ļ•(x)dx āˆš t āˆ’ x + Ļ•(0) āˆš t . 7. BĀ»ng cĀøch lƊy Ā®Ā¹o hĀµm theo tham sĆØ, hĀ·y tƝnh 1) I(t) = Ļ€/2 0 ln(t2 sin2 x + cos2 x)dx 2) I(t) = Ļ€ 0 ln(1 āˆ’ 2t cos x + t2 )dx. 8. ChĆøng tĆ” rĀ»ng, hĀµm I(t) = āˆž 0 cos x 1 + (x + t)2 dx. khĀ¶ vi liĀŖn tĆ“c trĀŖn R. 9. ChĆøng minh cĀ«ng thĆøc Frulanhi āˆž 0 f(ax) āˆ’ f(bx) x dx = f(0) ln b a , (a 0, b 0), trong Ā®Ć£ f(x) lĀµ hĀµm liĀŖn tĆ“c vĀµ tƝch phĀ©n āˆž a f(x) x cĆ£ nghƜa vĆ­i mƤi a 0. 10. XƐt tƝch phĀ©n Dirichlet D(t) = āˆž 0 sin(tx) x dx. ChĆøng minh rĀ»ng 1) D(t) hĆ©i tĆ“ Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [a, b] khĀ«ng chĆøa 0. 2) D(t) hĆ©i tĆ“ khĀ«ng Ā®Ć’u trĀŖn mƧi Ā®oĀ¹n [a, b] chĆøa 0. 11. XƐt tƝch phĀ©n I(t) = āˆž 0 eāˆ’tx sin x x dx. ChĆøng minh rĀ»ng 1) I(t) liĀŖn tĆ“c trĀŖn [0, āˆž) 2) I(t) khĀ¶ vi vĀµ I (t) = āˆ’ 1 1 + t2 . 3) I(t) = āˆ’ arctan(t) + Ļ€ 2 . 4) D(1) = I(0) = lim tā†’0 I(t) = Ļ€ 2 , trong Ā®Ć£ D(t) lĀµ tƝch phĀ©n Dirichlet.
  • 55. 55 12. ChĆøng minh rĀ»ng D(t) = āˆž 0 sin(tx) x dx = Ļ€ 2 sgnt. 13. BĀ»ng cĀøch lƊy Ā®Ā¹o hĀµm theo tham sĆØ, hĀ·y tƝnh 1)I(t) = āˆž 0 eāˆ’tx2 āˆ’ eāˆ’sx2 x dx, (t, s 0) 2) I(t) = āˆž 0 eāˆ’tx āˆ’ eāˆ’sx x 2 dx, (t, s 0) 3)I(t) = 1 0 ln(1 āˆ’ t2 x2 ) x2 āˆš 1 āˆ’ x2 dx, (|t| ā‰¤ 1) 4)I(t) = āˆž 0 eāˆ’ax āˆ’ eāˆ’bx x sin txdx, (a, b 0). 14. Sƶ dĆ“ng tƝch phĀ©n Dirichlet vĀµ cĀ«ng thĆøc Frulanhi Ā®Ć“ tƗm giĀø trƞ cƱa cĀøc tƝch phĀ©n sau 1) āˆž 0 sin ax cos bx x dx 2) āˆž 0 sin ax sin bx x dx 3) āˆž 0 sin4 ax x2 4) 1 0 sin3 ax x dx, (|t| ā‰¤ 1) 5) āˆž 0 sin ax x 2 dx 6) āˆž 0 sin4 ax āˆ’ sin4 bx x dx. 15. Sƶ dĆ“ng cĀøc tƝch phĀ©n Euler Ā®Ć“ tƝnh cĀøc tƝch phĀ©n sau 1) a 0 x2 āˆš a2 āˆ’ x2dx, (a 0) 2) āˆž 0 4 āˆš x (1 + x)2 dx 3) āˆž 0 dx 1 + x3 4) 1 0 dx n āˆš 1 āˆ’ xn dx, (n 1) 5) Ļ€/2 0 sin6 x cos4 xdx 6) āˆž 0 x2n eāˆ’x2 dx. 16. HĀ·y biƓu diƔn cĀøc tƝch phĀ©n sau qua cĀøc tƝch phĀ©n Euler 1) āˆž 0 xmāˆ’1 1 + xn (n 0) 2) āˆž 0 xm (a + bxn)p dx (a, b, n 0) 3) āˆž 0 xm eāˆ’xn dx 4) Ļ€/2 0 tann xdx 5) āˆž 0 xp eāˆ’ax ln xdx (a 0) 6) āˆž 0 ln2 x 1 + x4 dx. 17. ChĆøng minh cĀøc cĀ«ng thĆøc Euler (Ī» 0, p 0, āˆ’Ļ€/2 Ī± Ļ€/2). 1) āˆž 0 xpāˆ’1 eāˆ’Ī»x cosĪ± cos(Ī»x sin Ī±)dx = Ī“(p) Ī»p cos Ī±p. 2) āˆž 0 xpāˆ’1 eāˆ’Ī»x cos Ī± sin(Ī»x sin Ī±)dx = Ī“(p) Ī»p sin Ī±p.
  • 56. BaĆøi taƤp 56 II. TĆ­ch phaĆ¢n haĆøm treĆ¢n Ʊa taĆÆp 1. Cho f : Rn ā†’ Rm. ChĆ¶Ć¹ng minh f khaĆ» vi lĆ“Ć¹p Cp khi vaĆø chƦ khi ƱoĆ  thĆ² f laĆø Ʊa taĆÆp khaĆ» vi lĆ“Ć¹p Cp trong Rn Ɨ Rm. 2. Cho F : Rn ā†’ Rm laĆø aĆ¹nh xaĆÆ khaĆ» vi. GoĆÆi M laĆø taƤp con cuĆ»a Rm cho bĆ“Ć»i heƤ phƶƓng trƬnh F(x) = 0. ChĆ¶Ć¹ng minh neĆ”u rank F (x) = m vĆ“Ć¹i moĆÆi x āˆˆ M, thƬ M laĆø Ʊa taĆÆp khaĆ» vi n āˆ’ m chieĆ u. 3. Cho Ī± : (a, b) ā†’ R2 laĆø tham soĆ” hoaĆ¹ ƱƶƓĆøng cong trĆ“n, Ī±(t) = (x(t), y(t)) vaĆø y(t) 0. ChĆ¶Ć¹ng minh maĆ«t troĆøn xoay cho bĆ“Ć»i tham soĆ” hoaĆ¹: Ļ†(t, Īø) = (x(t), y(t) cos Īø, y(t) sin Īø), (t, Īø) āˆˆ (a, b) Ɨ (0, 2Ļ€), laĆø moƤt Ʊa taĆÆp khaĆ» vi trong R3. ChĆ¶Ć¹ng minh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ laĆø vuoĆ¢ng goĆ¹c vĆ“Ć¹i nhau. TƬm vector phaĆ¹p vaĆø maĆ«t phaĆŗng tieĆ”p xuĆ¹c. Aƙp duĆÆng: haƵy tham soĆ” hoaĆ¹ maĆ«t truĆÆ, caĆ u, xuyeĆ”n. 4. Cho Ī± : (a, b) ā†’ R2 laĆø tham soĆ” hoaĆ¹ moƤt ƱƶƓĆøng cong trĆ“n vaĆø p = (p1, p2, p3) āˆˆ R3 vĆ“Ć¹i p3 = 0. ChĆ¶Ć¹ng minh maĆ«t noĆ¹n cho bĆ“Ć»i tham soĆ” hoaĆ¹: Ļ†(t, s) = (1 āˆ’ s)p + s(Ī±(t), 0), (t, s) āˆˆ (a, b) Ɨ (0, 1), laĆø Ʊa taĆÆp khaĆ» vi trong R3. XaĆ¹c Ć±Ć²nh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ, vector phaĆ¹p, maĆ«t phaĆŗng tieĆ”p xuĆ¹c. 5. KieĆ„m tra caĆ¹c taƤp cho bĆ“Ć»i caĆ¹c phƶƓng trƬnh hay tham soĆ” sau laĆø Ʊa taĆÆp khoĆ¢ng. Trong R2: a) x = a(1 āˆ’ sin t), y = a(1 āˆ’ cos t) b) x = t2, y = t3. Trong R3: a) x = a cos t, y = a sin t, z = bt (a, b laĆø caĆ¹ haĆØng soĆ” dƶƓng) b) x = āˆš 2 cos 2t, y = sin 2t, z = sin 2t c) x2 a2 + y2 b2 + z2 c2 = 1 d) x2 a2 + y2 b2 āˆ’ z2 c2 = Ā±1 e) x2 a2 + y2 b2 āˆ’ z = 1 f) x = (b + a cos Īø) cos Ļ•, y = (b + a cos Īø) sin Ļ•, z = a sin Īø g) x2 + y2 = z2 y2 = ax h) x2 + y2 = a2 x + y + z = 0 TƬm phƶƓng trƬnh ƱƶƓĆøng thaĆŗng hay maĆ«t phaĆŗng tieĆ”p xuĆ¹c cho caĆ¹c Ʊa taĆÆp treĆ¢n. 6. KieĆ„m tra caĆ¹c phƶƓng trƬnh vaĆø baĆ”t phƶƓng trƬnh sau xaĆ¹c Ć±Ć²nh Ʊa taĆÆp coĆ¹ bĆ“Ćø trong R3: a) x2 + y2 + z2 = 1, z ā‰„ 0 b) x2 + y2 ā‰¤ a2, x + y + z = 0 c) x2 + y2 + z2 ā‰¤ a2, x + z = 0 d) z2 ā‰¤ y2 + x2, z = a. 7. ChĆ¶Ć¹ng minh trong R3, maĆ«t caĆ u x2 + y2 + z2 = a2 khoĆ¢ng theĆ„ cho bĆ“Ć»i moƤt tham soĆ” hoaĆ¹, nhƶng coĆ¹ theĆ„ cho bĆ“Ć»i hai tham soĆ” hoaĆ¹. 8. XaĆ¹c Ć±Ć²nh phƶƓng trƬnh cuĆ»a khoĆ¢ng gian tieĆ”p xuĆ¹c taĆÆi (x0, f(x0)) cho Ʊa taĆÆp Ć“Ć» baĆøi taƤp 1.
  • 57. BaĆøi taƤp 57 9. PhaĆ¹c hoĆÆa caĆ¹c maĆ«t, roĆ i xaĆ¹c Ć±Ć²nh caĆ¹c ƱƶƓĆøng cong toĆÆa ƱoƤ, vector phaĆ¹p, khoĆ¢ng gian tieĆ”p xuĆ¹c cuĆ»a caĆ¹c maĆ«t cho bĆ“Ć»i tham soĆ” hoaĆ¹:: a) Ļ•(t, Īø) = (t cos Īø, t sin Īø, Īø). (maĆ«t Helicoid). b) Ļ•(t, Īø) = ((1 + t cos Īø 2 ) cos Īø, (1 + t cos Īø 2 ) sin Īø, t sin Īø 2), |t| 1 4 , Īø āˆˆ (0, 2Ļ€). (laĆ¹ M ĀØobius) 10. XeĆ¹t Ʊa taĆÆp M cho Ć“Ć» baĆøi taƤp 2. GoĆÆi F = (F1, Ā· Ā· Ā· , Fm). a) ChĆ¶Ć¹ng minh khi ƱoĆ¹ khoĆ¢ng gian tieĆ”p xuĆ¹c cuĆ»a M laĆø TxM = ker F (x) = {v āˆˆ Rn : grad F1(x), v = Ā· Ā· Ā· = grad Fm(x), v = 0 }. b) Cho f : Rn ā†’ R. ChĆ¶Ć¹ng minh neĆ”u f ƱaĆÆt cƶĆÆc trĆ² vĆ“Ć¹i ƱieĆ u kieƤn x āˆˆ M = {x : g(x) = 0} taĆÆi a, thƬ toĆ n taĆÆi Ī»1, Ā· Ā· Ā· , Ī»m āˆˆ R, sao cho grad f(a) = Ī»1grad F1(a) + Ā· Ā· Ā· + Ī»mgrad Fm(a). 11. XeĆ¹t cƶĆÆc trĆ² haĆøm: a) f(x, y) = ax + by, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1. b) f(x, y, z) = x āˆ’ 2y + 2z, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 + z2 = 1. c) f(x, y, z) = x2 + y2 + z2, vĆ“Ć¹i ƱieĆ u kieƤn x2 a2 + y2 b2 + z2 c2 = 1 (a b c 0). d) f(x, y, z) = xyz, vĆ“Ć¹i caĆ¹c ƱieĆ u kieƤn: x2 + y2 + z2 = 1, x + y + z = 0. e) f(x, y, z) = x + y + z, vĆ“Ć¹i caĆ¹c ƱieĆ u kieƤn: x2 + y2 = 2, x + z = 1. 12. XeĆ¹t cƶĆÆc trĆ² caĆ¹c haĆøm: a) f(x, y, z) = x2 + y2 + z2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 āˆ’ 2 ā‰¤ z ā‰¤ 0. b) f(x, y, z) = x2 + 2y2 + 3z2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 + z2 ā‰¤ 100. 13. TƬm theĆ„ tĆ­ch lĆ“Ć¹n nhaĆ”t cuĆ»a caĆ¹c hƬnh hoƤp chƶƵ nhaƤt vĆ“Ć¹i ƱieĆ u kieƤn dieƤn tĆ­ch maĆ«t laĆø 10m2. 14. ChĆ¶Ć¹ng minh trung bƬnh hƬnh hoĆÆc khoĆ¢ng lĆ“Ć¹n hĆ“n trung bƬnh soĆ” hoĆÆc, i.e. (a1 Ā· Ā· Ā· an) 1 n ā‰¤ 1 n (a1 + Ā· Ā· Ā· + an), (a1, Ā· Ā· Ā· , an 0) 15. ChĆ¶Ć¹ng minh baĆ”t ƱaĆŗng thĆ¶Ć¹c x + y 2 n ā‰¤ xn + yn 2 , (x, y 0, n āˆˆ N). (HD: XeĆ¹t cƶĆÆc trĆ² f(x, y) = xn + yn 2 , vĆ“Ć¹i ƱieĆ u kieƤn x + y = s). 16. ChĆ¶Ć¹ng minh baĆ”t ƱaĆŗng thĆ¶Ć¹c H ĀØolder: n i=1 aixi ā‰¤ ( n i=1 ap i ) 1 p ( n i=1 xq i ) 1 q , neĆ”u xi, ai 0, 1 p + 1 q = 1 (p, q 0).
  • 58. BaĆøi taƤp 58 Suy ra baĆ”t ƱaĆŗng thĆ¶Ć¹c Milkovski: n i=1 |ai + xi|p ) 1 p ā‰¤ ( n i=1 |ai|p ) 1 p + ( n i=1 |xi|q ) 1 q HD: |a + x|p = |a + x||a + x| p q ā‰¤ |a||a + x| 1 q + |x||a + x| p q . 17. ChĆ¶Ć¹ng minh cƶĆÆc trĆ² haĆøm f(x, y) = ax2 + 2bxy + cy2, vĆ“Ć¹i ƱieĆ u kieƤn x2 + y2 = 1, ƱaĆÆt taĆÆi caĆ¹c vector rieĆ¢ng cuĆ»a ma traƤn a b b c . 18. ToĆ„ng quaĆ¹t baĆøi taƤp treĆ¢n. Cho A laĆø ma traƤn thƶĆÆc, ƱoĆ”i xĆ¶Ć¹ng caĆ”p n. Ć‘Ć²nh nghĆ³a f(x) = Ax, x = txAx, x āˆˆ Rn. ChĆ¶Ć¹ng minh neĆ”u v āˆˆ Rn, v = 1: f(v) = max{f(x) : x = 1}, thƬ Av = Ī»v. Suy ra moĆÆi matraƤn ƱoĆ”i xĆ¶Ć¹ng ƱeĆ u coĆ¹ giaĆ¹ trĆ² rieĆ¢ng thƶĆÆc. 19. Cho u, v āˆˆ R3. ChĆ¶Ć¹ng minh u Ɨ v = ( u 2 v 2 āˆ’ u, v ) 1 2 = dieƤn tĆ­ch hƬnh bƬnh haĆønh taĆÆo bĆ“Ć»i u, v Suy ra caĆ¹c toĆÆa ƱoƤ cuĆ»a u Ɨ v theo caĆ¹c toĆÆa ƱoƤ cuĆ»a u, v. 20. Cho h : Rn ā†’ Rn, h(x) = Ī»x, vaĆø P laĆø hƬnh bƬnh haĆønh k chieĆ u trong Rn. TƬm moĆ”i quan heƤ giƶƵa caĆ¹c theĆ„ tĆ­ch k chieĆ u Vk(P) vaĆø Vk(h(P)). 21. TĆ­nh caĆ¹c tĆ­ch phaĆ¢n ƱƶƓĆøng: a) C y2 dl, C laĆø cung cycloid x = a(t āˆ’ sin t), y = a(1 āˆ’ cos t), 0 ā‰¤ t ā‰¤ 2Ļ€. b) C xdl, C laĆø phaĆ n ƱƶƓĆøng loga coĆ¹ phƶƓng trƬnh trong toĆÆa ƱoƤ cƶĆÆc: r = akĻ•, r ā‰¤ a. c) C zdl, C laĆø cung xoaĆ©n x = t cos t, y = t sin t, z = t, 0 ā‰¤ t ā‰¤ T. d) C x2 dl, C laĆø cung troĆøn x2 + y2 + z2 = 1, x + y + z = 0 (HD: DƶĆÆa vaĆøo tĆ­nh ƱoĆ”i xĆ¶Ć¹ng cuĆ»a caĆ¹c bieĆ”n) 22. TĆ­nh caĆ¹c tĆ­ch phaĆ¢n maĆ«t: a) S zdS, S laĆø maĆ«t x = u cos v, y = u sin v, z = v, 0 u a, 0 v 2Ļ€. b) S zdS, S laĆø phaĆ n maĆ«t noĆ¹n z = x2 + y2 giĆ“Ć¹i haĆÆn bĆ“Ć»i truĆÆ x2 + z2 ā‰¤ 2az. c) S (x + y + z)dS, S laĆø nƶƻa maĆ«t caĆ u x2 + y2 + z2 = a2, z ā‰„ 0. 23. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c Poisson x2+y2+z2=1 f(ax + by + cz)dS = 2Ļ€ 1 āˆ’1 f(u a2 + b2 + c2)du. (HD: DuĆøng pheĆ¹p quay vaĆø ƱeĆ„ yĆ¹ pheĆ¹p quay baĆ»o toaĆøn ƱieƤn tĆ­ch)
  • 59. BaĆøi taƤp 59 24. TĆ­nh ƱoƤ daĆøi caĆ¹c ƱƶƓĆøng cong tham soĆ” hoaĆ¹: a) Ī±(t) = (a cos bt, a sin bt, ct), t āˆˆ [0, h] b) Ī±(t) = (t cos bt, t sin bt, ct), t āˆˆ [0, h] 25. Cho f : U ā†’ R laĆø haĆøm khaĆ» vi treĆ¢n taƤp mĆ“Ć» U āŠ‚ Rn. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c tĆ­nh theĆ„ tĆ­ch n chieĆ u Vn(graphf) = U 1 + n i=1 ( āˆ‚f āˆ‚xi )2 1 2 Aƙp duĆÆng tĆ­nh ƱoƤ daĆøi Ellip vaĆø dieƤn tĆ­ch maĆ«t Ellipsoid. 26. ChĆ¶Ć¹ng minh coĆ¢ng thĆ¶Ć¹c tĆ­nh ƱieƤn tĆ­ch cho maĆ«t troĆøn xoay Ć“Ć» baĆøi taƤp 3: SĻ† = 2Ļ€ b a y(t)(x (t)2 + y (t)2 ) 1 2 dt Aƙp duĆÆng tĆ­nh dieƤn tĆ­ch maĆ«t Ellipsoid vaĆø maĆ«t xuyeĆ”n. 27. VieĆ”t coĆ¢ng thĆ¶Ć¹c tĆ­nh dieƤn tĆ­ch maĆ«t noĆ¹n cho Ć“Ć» baĆøi taƤp 4. NeĆ¢u moƤt vĆ­ duĆÆ cuĆÆ theĆ„. III. DaĆÆng vi phaĆ¢n. 1. Cho (x, y) = f(r, Ļ•) = (r cos Ļ•, r sin Ļ•). TĆ­nh fāˆ—(dx), fāˆ—(dy), fāˆ—(dx āˆ§ dy). 2. Cho (x, y, z) = f(r, Ļ•, Īø) = (Ļ cos Ļ• sin Īø, Ļ sin Ļ• sin Īø, Ļ cos Īø). TĆ­nh fāˆ— (dx), fāˆ— (dy), fāˆ— (dz), fāˆ— (dxāˆ§dy), fāˆ— (dyāˆ§dz), fāˆ— (dzāˆ§dx), fāˆ— (dxāˆ§dyāˆ§dz). 3. Cho f : Rn ā†’ Rm vā€¦ g : Rm ā†’ Rp laĆø caĆ¹c aĆ¹nh xaĆÆ khaĆ» vi. ChĆ¶Ć¹ng minh (g ā—¦ f)āˆ— = fāˆ— ā—¦ gāˆ—. 4. Cho f : Rn ā†’ Rm khaĆ» vi vaĆø rank f (x) k vĆ“Ć¹i moĆÆi x āˆˆ Rn. ChĆ¶Ć¹ng minh khi ƱoĆ¹ fāˆ—Ļ‰ = 0 vĆ“Ć¹i moĆÆi Ļ‰ āˆˆ ā„¦k(Rm). 5. TĆ­nh dĻ‰ caĆ¹c daĆÆng vi phaĆ¢n trong trong R3 sau a) Ļ‰ = xdx + ydz b) Ļ‰ = sin xdx + ydy + exydz c) Ļ‰ = exydx āˆ§ dz d) Ļ‰ = xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy. 6. TƬm (n āˆ’ 1)-daĆÆng vi phaĆ¢n Ļ‰ trong Rn sao cho dĻ‰ = dx1 āˆ§ Ā· Ā· Ā· āˆ§ dxn. 7. GiaĆ» sƶƻ Ļ‰1 vā€¦ Ļ‰2 laĆø caĆ¹c 1-daĆÆng ƱoĆ¹ng. ChĆ¶Ć¹ng minh Ļ‰1 āˆ§ Ļ‰2 laĆø daĆÆng ƱoĆ¹ng. 8. ChĆ¶Ć¹ng minh daĆÆng Ļ‰(x, y, z) = 1 r3 (xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy), vĆ“Ć¹i r2 = x2 + y2 + z2, laĆø ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p trong R3 {0}.
  • 60. BaĆøi taƤp 60 9. Cho daĆÆng vi phaĆ¢n Ļ‰ = n i=1 ai(x)dxi trong caĆ u mĆ“Ć» taĆ¢m a cuĆ»a Rn. GiaĆ» sƶƻ Ļ‰ ƱoĆ¹ng. ChĆ¶Ć¹ng minh ƱeĆ„ tƬm haĆøm f sao cho df = Ļ‰ coĆ¹ theĆ„ duĆøng caĆ¹c coĆ¢ng thĆ¶Ć¹c sau: a) f(x) = n i=1 1 0 ai(a + t(x āˆ’ a))dt xi. b) f(x) = x1 Ī±1 a1(x1, Ā· Ā· Ā· , xn)dx1+ x2 Ī±2 a2(Ī±1, x2, Ā· Ā· Ā· , xn)dx2+Ā· Ā· Ā·+ xn Ī±n an(Ī±1, Ī±2, Ā· Ā· Ā· , xn)dxn. trong ƱoĆ¹ a = (Ī±1, Ā· Ā· Ā· , Ī±n) 10. KieĆ„m tra tĆ­nh ƱoĆ¹ng cuĆ»a daĆÆng Ļ‰, roĆ i tƬm tĆ­ch phaĆ¢n ƱaĆ u khi a) Ļ‰ = (x4+4xy3)dx+(6x2y2āˆ’5y4)dy b) Ļ‰ = (x+sin y)dx+(x cos y+sin y)dy c) Ļ‰ = ex cos ydx āˆ’ ex sin ydy d) Ļ‰ = (x2 + 2xy āˆ’ y2)dx + (x2 āˆ’ 2xy āˆ’ y2)dy e) Ļ‰ = a(x)dx + b(y)dy + c(z)dz, trong ƱoĆ¹ a, b, c laĆø caĆ¹c haĆøm khaĆ» vi treĆ¢n R. f) Ļ‰ = a(x2 + y2 + z2)(xdx + ydy + zdz), trong ƱoĆ¹ a laĆø haĆøm khaĆ» vi treĆ¢n R. 11. XaĆ¹c Ć±Ć²nh Ī± ƱeĆ„ daĆÆng vi phaĆ¢n sau laĆø ƱoĆ¹ng, roĆ i tƬm tĆ­ch phaĆ¢n ƱaĆ u Ļ‰ = x3 āˆ’ 3xy2 (x2 + y2)Ī± dx + 3x2y āˆ’ y3 (x2 + y2)Ī± dy. 12. XaĆ¹c Ć±Ć²nh haĆøm Ļ• : R ā†’ R, Ļ•(0) = 0, sao cho daĆÆng sau laĆø ƱoĆ¹ng Ļ‰ = (1 + x2 )Ļ•(x)dx āˆ’ 2xyĻ•(x)dy āˆ’ 3zdz. TƬm tĆ­ch phaĆ¢n ƱaĆ u. IV. TĆ­ch phaĆ¢n daĆÆng vi phaĆ¢n 1. ChĆ¶Ć¹ng minh moƤt ƱƶƓĆøng hay maĆ«t lieĆ¢n thoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, thƬ coĆ¹ theĆ„ Ć±Ć²nh ƱuĆ¹ng 2 hĆ¶Ć“Ć¹ng. MoƤt ƱƶƓĆøng hay maĆ«t coĆ¹ d thaĆønh phaĆ n lieĆ¢n thoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, thƬ coĆ¹ theĆ„ Ć±Ć²nh bao nhieĆ¢u hĆ¶Ć“Ć¹ng? 2. NeĆ¢u vĆ­ duĆÆ Ć±a taĆÆp coĆ¹ bĆ“Ćø khoĆ¢ng Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc, nhƶng bĆ“Ćø Ć±Ć²nh hĆ¶Ć“Ć¹ng ƱƶƓĆÆc. 3. TĆ­nh C ydx + zdy + xdz, vĆ“Ć¹i C laĆø ƱƶƓĆøng xoaĆ©n x = a cos t, y = a sin t, z = bt, 0 ā‰¤ t ā‰¤ 2Ļ€, Ć±Ć²nh hĆ¶Ć“Ć¹ng (a, 0, 0) ƱeĆ”n (a, 0, 2Ļ€b). 4. TĆ­nh C (x + y)dx āˆ’ (x āˆ’ y)dy x2 + y2 , khi: a) C laĆø ƱƶƓĆøng troĆøn ƱƓn vĆ² Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ . b) C ƱƶƓĆøng cong kĆ­n khoĆ¢ng qua (0, 0).
  • 61. BaĆøi taƤp 61 5. Cho Ī± : [a, b] ā†’ R2 {0} laĆø moƤt tuyeĆ”n. GiaĆ» sƶƻ Ī±(t) = (x(t), y(t)) = (r(t) cos Īø(t), r(t) sin Īø(t)) vĆ“Ć¹i x, y, r, Īø laĆø caĆ¹c haĆøm khaĆ» vi. a) ChĆ¶Ć¹ng minh Īø (t) = āˆ’y(t)x (t) + x(t)y (t) x2(t) + y2(t) . b) XeĆ¹t Ļ‰ = āˆ’ydx + xdy x2 + y2 . ChĆ¶Ć¹ng minh Ļ‰ ƱoĆ¹ng nhƶng khoĆ¢ng khĆ“Ć¹p. c) Ć‘Ć²nh nghĆ³a chƦ soĆ” voĆøng quay cuĆ»a Ī± quanh 0: I(Ī±, 0) = 1 2Ļ€ Ī± Ļ‰ = b a āˆ’y(t)x (t) + x(t)y (t) x2(t) + y2(t) dt TĆ­nh chƦ soĆ” treĆ¢n khi Ī±(t) = (a cos kt, a sin kt), t āˆˆ [0, 2Ļ€]. 6. TĆ­nh C (y2 āˆ’ z2 )dx + (z2 āˆ’ x2 )dy + (x2 āˆ’ y2 )dz, trong ƱoĆ¹ C laĆø chu vi tam giaĆ¹c caĆ u: x2 + y2 + z2 = 1, x, y, z ā‰„ 0, Ć±Ć²nh hĆ¶Ć“Ć¹ng caĆ»m sinh hĆ¶Ć“Ć¹ng phaĆ¹p ngoaĆøi maĆ«t caĆ u.. 7. Cho S laĆø ƱoĆ  thĆ² haĆøm z = x2 + y2 + 1, (x, y) āˆˆ (0, 1)2. HaƵy xaĆ¹c Ć±Ć²nh moƤt hĆ¶Ć“Ć¹ng cho S roĆ i tĆ­nh S ydy āˆ§ dz + xzdx āˆ§ dz 8. TĆ­nh tĆ­ch phaĆ¢n Ʊo goĆ¹c khoĆ”i cuĆ»a maĆ«t S ƱoĆ”i vĆ“Ć¹i goĆ”c 0: S xdy āˆ§ dz + ydz āˆ§ dx + zdx āˆ§ dy (x2 + y2 + z2)3/2 trong trƶƓĆøng hĆ“ĆÆp S laĆø: a) MaĆ«t caĆ u. b) Nƶƻa maĆ«t caĆ u. c) MoƤt phaĆ n taĆ¹m maĆ«t caĆ u. 9. Trong R3, cho S : 4x2 + y2 + 4z2 = 4, y ā‰„ 0. a) PhaĆ¹c hoĆÆa S vaĆø āˆ‚S. b) Tham soĆ” hoaĆ¹ S bĆ“Ć»i Ļ•(u, v) = (u, 2(1 āˆ’ u2 āˆ’ v2) 1 2 , v). XaĆ¹c Ć±Ć²nh hĆ¶Ć“Ć¹ng cho bĆ“Ć»i tham soĆ” Ļ•. c) Cho Ļ‰ = ydx + 3xdz. TĆ­nh āˆ‚S Ļ‰ vaĆø S dĻ‰. 10. Aƙp duĆÆng coĆ¢ng thĆ¶Ć¹c Green, tĆ­nh: I = C xy2 dy āˆ’ x2 ydx, vĆ“Ć¹i C : x2 + y2 = a2 Ć±Ć²nh hĆ¶Ć“Ć¹ng ngƶƓĆÆc chieĆ u kim ƱoĆ ng hoĆ . 11. Aƙp duĆÆng coĆ¢ng thĆ¶Ć¹c Green, tĆ­nh dieƤn tĆ­ch hƬnh giĆ“Ć¹i haĆÆn bĆ“Ć»i ƱƶƓĆøng cong trong R2 cho bĆ“Ć»i phƶƓng trƬnh x a n + y b n = 1. (a, b, n 0). 12. Cho I = C xdx + ydy + zdz, vĆ“Ć¹i C laĆø ƱƶƓĆøng troĆøn: x2 + y2 + z2 = a2, x + y + z = 0, vĆ“Ć¹i Ć±Ć²nh hĆ¶Ć“Ć¹ng tƶĆÆ choĆÆn. a) TĆ­nh trƶĆÆc tieĆ”p I. b) DuĆøng coĆ¢ng thĆ¶Ć¹c Stokes tĆ­nh I.