Terry Taewoong Um (terry.t.um@gmail.com)
University of Waterloo
Department of Electrical & Computer Engineering
Terry T. Um
UNDERSTANDING BLACK-BOX PRED
-ICTION VIA INFLUENCE FUNCTIONS
1
TODAY’S PAPER
Terry Taewoong Um (terry.t.um@gmail.com)
ICML2017 best paper
https://youtu.be/0w9fLX_T6tY
QUESTIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• How can we explain the predictions of a black-box model?
• Why did the system make this prediction?
• How can we explain where the model came from?
• What would happen if the values of a training point where
slightly changed?
INTERPRETATION OF DL RESULTS
Terry Taewoong Um (terry.t.um@gmail.com)
• Retrieving images that maximally activate a neuron [Girshick et al. 2014]
• Finding the most influential part from the image [Zhou et al. 2016]
• Learning a simpler model around a test point [Ribeiro et al. 2016]
But, they assumed a
fixed model
 My NN is a function
of training inputs
INFLUENCE OF A TRAINING POINT
Terry Taewoong Um (terry.t.um@gmail.com)
• What is the influence of a training example for
the model (or for the loss of a test example)?
Optimal model param. :
Model param. by training w/o z :
Model param. by upweighting z :
without z == (𝜖 = −
1
𝑛
)
• The influence of upweighting z on the parameters 𝜃
INFLUENCE OF A TRAINING POINT
• Influence vs. Euclidean distance
INFLUENCE OF A TRAINING POINT
Terry Taewoong Um (terry.t.um@gmail.com)
• The influence of upweighting z on the parameters 𝜃
• The influence of upweighting z on the loss at a test point
PERTURBING A TRAINING POINT
Terry Taewoong Um (terry.t.um@gmail.com)
• Move 𝜖 mass from 𝑧 to 𝑧 𝛿
• If x is continuous and 𝛿 is small
• The effect of 𝑧  𝑧 𝛿 on the loss at a test point
SUMMARY
Terry Taewoong Um (terry.t.um@gmail.com)
• The influence of 𝑧  𝑧 𝛿 on the loss at a test point
• The influence of upweighting z on the parameters 𝜃
• The influence of upweighting z on the loss at a test point
EXAMPLE
Terry Taewoong Um (terry.t.um@gmail.com)
• The influence of upweighting z
• In logistic regression,
• Test : 7, Train : 7 (green), 1 (red)
SEVERAL PROBLEMS
Terry Taewoong Um (terry.t.um@gmail.com)
• Calculation of
 Use Hessian-vector products (HVPs)

precompute 𝑠𝑡𝑒𝑠𝑡 by optimizing
or sampling-based approximation
SEVERAL PROBLEMS
Terry Taewoong Um (terry.t.um@gmail.com)
• What if is non-convex, so H < 0
 Assuming that is a local minimum point, define a quadratic loss
Then calculate using the above
 empirically working!
• Influence function vs. retraining
SEVERAL PROBLEMS
Terry Taewoong Um (terry.t.um@gmail.com)
• What if is non-differentiable?
e.g.) hinge loss
 Use a differentiable variation of the hinge loss
APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• Understanding model behavior
APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• Adversarial examples
c.f.) The effect of 𝑧  𝑧 𝛿 on the loss at a test point
APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• Debugging domain mismatch
APPLICATIONS
Terry Taewoong Um (terry.t.um@gmail.com)
• Fixing mislabeled examples

Understanding Black-box Predictions via Influence Functions (2017)

  • 1.
    Terry Taewoong Um(terry.t.um@gmail.com) University of Waterloo Department of Electrical & Computer Engineering Terry T. Um UNDERSTANDING BLACK-BOX PRED -ICTION VIA INFLUENCE FUNCTIONS 1
  • 2.
    TODAY’S PAPER Terry TaewoongUm (terry.t.um@gmail.com) ICML2017 best paper https://youtu.be/0w9fLX_T6tY
  • 3.
    QUESTIONS Terry Taewoong Um(terry.t.um@gmail.com) • How can we explain the predictions of a black-box model? • Why did the system make this prediction? • How can we explain where the model came from? • What would happen if the values of a training point where slightly changed?
  • 4.
    INTERPRETATION OF DLRESULTS Terry Taewoong Um (terry.t.um@gmail.com) • Retrieving images that maximally activate a neuron [Girshick et al. 2014] • Finding the most influential part from the image [Zhou et al. 2016] • Learning a simpler model around a test point [Ribeiro et al. 2016] But, they assumed a fixed model  My NN is a function of training inputs
  • 5.
    INFLUENCE OF ATRAINING POINT Terry Taewoong Um (terry.t.um@gmail.com) • What is the influence of a training example for the model (or for the loss of a test example)? Optimal model param. : Model param. by training w/o z : Model param. by upweighting z : without z == (𝜖 = − 1 𝑛 ) • The influence of upweighting z on the parameters 𝜃
  • 6.
    INFLUENCE OF ATRAINING POINT • Influence vs. Euclidean distance
  • 7.
    INFLUENCE OF ATRAINING POINT Terry Taewoong Um (terry.t.um@gmail.com) • The influence of upweighting z on the parameters 𝜃 • The influence of upweighting z on the loss at a test point
  • 8.
    PERTURBING A TRAININGPOINT Terry Taewoong Um (terry.t.um@gmail.com) • Move 𝜖 mass from 𝑧 to 𝑧 𝛿 • If x is continuous and 𝛿 is small • The effect of 𝑧  𝑧 𝛿 on the loss at a test point
  • 9.
    SUMMARY Terry Taewoong Um(terry.t.um@gmail.com) • The influence of 𝑧  𝑧 𝛿 on the loss at a test point • The influence of upweighting z on the parameters 𝜃 • The influence of upweighting z on the loss at a test point
  • 10.
    EXAMPLE Terry Taewoong Um(terry.t.um@gmail.com) • The influence of upweighting z • In logistic regression, • Test : 7, Train : 7 (green), 1 (red)
  • 11.
    SEVERAL PROBLEMS Terry TaewoongUm (terry.t.um@gmail.com) • Calculation of  Use Hessian-vector products (HVPs)  precompute 𝑠𝑡𝑒𝑠𝑡 by optimizing or sampling-based approximation
  • 12.
    SEVERAL PROBLEMS Terry TaewoongUm (terry.t.um@gmail.com) • What if is non-convex, so H < 0  Assuming that is a local minimum point, define a quadratic loss Then calculate using the above  empirically working! • Influence function vs. retraining
  • 13.
    SEVERAL PROBLEMS Terry TaewoongUm (terry.t.um@gmail.com) • What if is non-differentiable? e.g.) hinge loss  Use a differentiable variation of the hinge loss
  • 14.
    APPLICATIONS Terry Taewoong Um(terry.t.um@gmail.com) • Understanding model behavior
  • 15.
    APPLICATIONS Terry Taewoong Um(terry.t.um@gmail.com) • Adversarial examples c.f.) The effect of 𝑧  𝑧 𝛿 on the loss at a test point
  • 16.
    APPLICATIONS Terry Taewoong Um(terry.t.um@gmail.com) • Debugging domain mismatch
  • 17.
    APPLICATIONS Terry Taewoong Um(terry.t.um@gmail.com) • Fixing mislabeled examples