The document provides an introduction to deep learning and how to compute gradients in deep learning models. It discusses machine learning concepts like training models on data to learn patterns, supervised learning tasks like image classification, and optimization techniques like stochastic gradient descent. It then explains how to compute gradients using backpropagation in deep multi-layer neural networks, allowing models to be trained on large datasets. Key steps like the chain rule and backpropagation of errors from the final layer back through the network are outlined.