Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Data scientists, data engineers, and data businesspeople are critical to leveraging data in any organization. A common complaint from data science managers is that data scientists invest time prototyping algorithms, and throw them over a proverbial fence to engineers to implement, only to find the algorithms must be rebuilt from scratch to scale. This is a symptom of a broader ailment -- that data teams are often designed as functional silos without proper communication and planning.
This talk outlines a framework to build and organize a data team that produces better results, minimizes wasted effort among team members, and ships great data products.
Login to see the comments