Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017

3,940,011 views

Published on

What is machine learning? Is UX relevant in the age of artificial intelligence (AI)? How can I take advantage of cognitive computing? Get answers to these questions and learn about the implications for your work in this session. Carol will help you understand at a basic level how these systems are built and what is required to get insights from them. Carol will present examples of how machine learning is already being used and explore the ethical challenges inherent in creating AI. You will walk away with an awareness of the weaknesses of AI and the knowledge of how these systems work.

Published in: Business, Technology, Design
  • https://www.slideshare.net/Hydemidtown/get-best-information-about-available-floorplans-in-hyde-midtown
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • $85/hr provide by Google, I am making a good salary from home $6580-$7065/week , which is amazing, under a year ago I was jobless in a horrible economy. I thank God every day I was blessed with these instructions and now it's my duty to pay it forward and share it with Everyone, Here is I started,,,,,,,, www.amazon78.com ★★★COPY THIS SITE★★
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • my buddy's friend makes $96 hourly on the internet. She has been with out artwork for five months however final month her charge emerge as $12747 really on foot on the internet for some hours HERE__ www.prizebest.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Contact Dr Raypower at urgentspellcast@gmail.com if you want to get your Husband, Wife, Boyfriend and Girlfriend back now and regain your happiness. Hi i am Laura Christ from USA I have just experience the wonders of Dr. Raypower love spell, that have been spread on the internet and worldwide, How he marvelously helped people all over the world to restored back their marriage life and get back lost lovers, and also help to win lottery. I contacted him after going through so many testimonies from different people how he help to bring back ex lover back, i told him about my husband that abandoned me about 8 months ago, and left home with all i had.. Dr Raypower only told me to smile and have a rest of mind he will handle all in just 24 hours, After the second day my husband called me, i was just so shocked, i pick the call and couldn't believe my ears, he was really begging me to forgive him and making promises on phone.. He came back home and also got me a new car just for him to proof his love for me. i was so happy and called Dr Raypower and thanked him, he only told me to share the good news all over the world .. Well if you need an effective and real spell caster contact Dr Raypower Via email: urgentspellcast@gmail.com or urgentspellcast@yahoo.com or Call or WhatsApp: +1 (424) 330-8109 and also see more reviews about him on his website: http://urgentspellcast.website2.me/ view his blog page: https://urgentpowerfullovespell.blogspot.com/
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Hello guy! Are you in a search for a good hacker in regards to fixing of a messed credit report? I recommend the Credit Repair Guru pro (CRG) and you can get in touch at any time ASAP via Email at: CREDITREPAIRGURU4 AT GMAIL DOT COM or Phone/WhatsApp: +1 419 642 1141 for a perfect and permanent hack. My name is Doris from Atlanta. Couples of months back I fell behind in taking care of some bills and that was as result of some illness, my credit score was dropped as some negatives items raided my credit cards. No matter how hard I tried in handling my current financial situation, my old charges, late payments, overdrafts and a bankruptcy hunted me and frustrated my living. Two weeks ago in a cousin’s weeding ceremony I ran into an old friend whom I shared what I was going through with and he introduced me to CRG. He encouraged me to work with them as they are the best option as he said. I got in touch with the online help service who I explained my credit reports issues to and how urgently I need their service and he promised to help as he said ‘’My goal, Our dream''. He explained the whole hacking process (His transparency and confidence triggered me) and we got started. Three days after the process begun, I saw the changes on my credit report as promised. My FICO score is increased to 780s, the bankruptcy and other negative items on my credit report are all gone. In summery, they are true genus as their name implies. I’m currently writing from my new comfortable business office and I feel great, my appreciations to CRG and team at large, you guys are great and indeed with a high level of a top notch hacking skills. Once again, my name is Doris Gary and on behalf of my family I say a big THANKS to you guys.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017

  1. AI and Machine Learning Demystified Carol Smith @carologic Midwest UX 2017, Cincinnati, Ohio October 13, 2017
  2. AI is when Machines – Exhibit intelligence – Perceive their environment – Take actions/make decision to maximize chance of success at a goal NAO’s New Job as “Connie” the concierge at Hilton Hotels https://developer.softbankrobotics.com/us-en/showcase/nao-ibm-create-new-hilton-concierge
  3. AI and ML Demystified / @carologic / MWUX2017 In the extreme… Google Search for “movies with AI” Copyrights as labeled.
  4. “Most people working in AI have a healthy skepticism for the idea of the singularity. We know how hard it is to get even a little intelligence into a machine, let alone enough to achieve recursive self- improvement.” – Toby Walsh http://www.wired.co.uk/article/elon-musk- artificial-intelligence-scaremongering
  5. Remember: “We can unplug the machines!” Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  6. AI and ML Demystified / @carologic / MWUX2017 Cognitive computers are • Made with algorithms • Knowledgeable ONLY about what taught • Control ONLY what we give them control of • Aware of nuances and can continue to learn more
  7. AI and ML Demystified / @carologic / MWUX2017 Cognitive computers (algorithms) can… • Do very boring work for you • Often make better, more consistent decisions than humans • Be efficient, won’t get tired Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  8. AI and ML Demystified / @carologic / MWUX2017 Exhibit intelligence - transfer human concepts and relationships Photo by sunlightfoundation https://www.flickr.com/photos/sunlightfoundation/2385174105
  9. AI and ML Demystified / @carologic / MWUX2017 Dependent on Experts • Subject Matter Experts (SME’s) Availability – Lawyers – Machinists – Insurance adjusters – Physicians • Usually not experienced in machine learning – Need close collaboration with those making algorithms
  10. AI and ML Demystified / @carologic / MWUX2017 Number Five “Needs Input” Short Circuit (1986 film) - Ally Sheedy and Number Five https://en.wikipedia.org/wiki/Short_Circuit_(1986_film)
  11. AI and ML Demystified / @carologic / MWUX2017 Content is annotated by experts Image created by Angela Swindell, Visual Designer, Watson Knowledge Studio
  12. AI and ML Demystified / @carologic / MWUX2017 AI is taxonomies and ontologies coming to life (NOT like humans learn) Photo: https://commons.wikimedia.org/wiki/File:Baby_Boy_Oliver.jpg
  13. Enormous amount of work.
  14. Only as good as data and time spent improving it Biased based on what it taught
  15. AI and ML Demystified / @carologic / MWUX2017 Creating an AI requires • Algorithms • Documents • Ground truth (annotation) • Teaching • Iteration • Repeat
  16. AI and ML Demystified / @carologic / MWUX2017 Supervised (by a human) Machine Learning Watson Knowledge Studio https://www.ibm.com/us-en/marketplace/supervised-machine-learning
  17. AI and ML Demystified / @carologic / MWUX2017 Knowledge and Accuracy • How important is accuracy? • Consider a reverse card sorting exercise Image: Gerry Gaffney. (2000) What is Card Sorting? Usability Techniques Series, Information & Design. http://www.infodesign.com.au/usabilityresources/design/cardsorting.asp
  18. AI and ML Demystified / @carologic / MWUX2017 Across industries – priority of accuracy varies Higher Priority 90-99%+ Lower Priority 60-89% accuracy is acceptable
  19. AI and ML Demystified / @carologic / MWUX2017 Goal is saving time Machine learning creates more highly trained specialists Not an “all knowing” being
  20. AI and ML Demystified / @carologic / MWUX2017 Cancer Burden in Sub-Saharan Africa Risk of getting cancer and Risk of Dying ~same The Cancer Atlas http://canceratlas.cancer.org/the-burden/
  21. AI and ML Demystified / @carologic / MWUX2017 What if we could reduce the burden? • Bring taxonomies and ontologies to life • Broaden access to evidence based medicine • More informed treatment decisions
  22. AI and ML Demystified / @carologic / MWUX2017 AI actions for success • Example: Healthcare – AI analyzes data (treatment options, similar patients) – Goal: Provide quick, evidence based options – Physician selects treatment for patients based on situation • AI success is helping physician (not replacing)
  23. AI and ML Demystified / @carologic / MWUX2017 Examples of AI and Cognitive Computing
  24. AI and ML Demystified / @carologic / MWUX2017 Consider for each example • What intelligence does the system need? • What is the AI perceiving in their environment? • What actions are taken to maximize chance of success at goal?
  25. AI and ML Demystified / @carologic / MWUX2017 Strategic Games • 1997 Chess, IBM • 2016 Go, Google • Intelligence? • Perception? • Action/Decision? Floor goban, 2007, By Goban1 https://commons.wikimedia.org/wiki/File:FloorGoban.JPG
  26. AI and ML Demystified / @carologic / MWUX2017 Understanding human speech • Watson developed for quiz show Jeopardy! • Won against champions in 2011 for $1 million Video: “IBM's Watson Supercomputer Destroys Humans in Jeopardy! Engadget” https://www.youtube.com/watch?v=WFR3lOm_xhE Watson definition: https://en.wikipedia.org/wiki/Watson_(computer)
  27. AI and ML Demystified / @carologic / MWUX2017 Decision Making: Self Driving (autonomous) vehicles Junior, a robotic Volkswagen Passat, in a parking lot at Stanford University 24 October 2009, By: Steve Jurvetson https://en.wikipedia.org/wiki/File:Hands-free_Driving.jpg
  28. AI and ML Demystified / @carologic / MWUX2017 Image Recognition – Google Photos Carol’s search for “cats” on her Google Photos account.
  29. AI and ML Demystified / @carologic / MWUX2017 Sound recognition: Labeling of birdsongs “Comparison of machine learning methods applied to birdsong element classification” by David Nicholson. Proceedings of the 15th Python in Science Conference (SCIPY 2016). http://conference.scipy.org/proceedings/scipy2016/pdfs/david_nicholson.pdf Photo by Gallo71 (Own work) [Public domain], via Wikimedia Commons https://commons.wikimedia.org/wiki/File%3ARbruni.JPG
  30. AI and ML Demystified / @carologic / MWUX2017 Analyzing Text: Personality of @carologic (not quite) Personality Insights applied to @Carologic on Twitter IBM Watson Developer Cloud: https://personality-insights-livedemo.mybluemix.net/
  31. AI and ML Demystified / @carologic / MWUX2017 Automating Repetitive Work • Automated Radiologist highlights possible issues • Radiologist confirms IBM’s Automated Radiologist Can Read Images and Medical Records, MIT Technology Review https://www.technologyreview.com/s/600706/ibms-automated-radiologist-can-read-images-and-medical-records/
  32. AI and ML Demystified / @carologic / MWUX2017 88,000 retina images • Watson knows what a healthy eye looks like • Glaucoma is the second leading cause of blindness worldwide –50% of cases go undetected Seeing is preventing. https://twitter.com/IBMWatson/status/844545761740292096
  33. AI and ML Demystified / @carologic / MWUX2017 Chatbots for Easy ordering • Order via text, email, Facebook Messenger or with a Slackbot • Cognitive pieces: –Speech-to-text –Chat –API’s in backend Story: http://www.businesswire.com/news/home/20161025006273/en/Staples%E2%80%99-%E2%80%9CEasy- Button%E2%80%9D-Life-IBM-Watson Photo: Easy Button from Staples: http://www.staples.com/Staples-Easy-Button/product_606396
  34. AI and ML Demystified / @carologic / MWUX2017 Chatbots – not really AI, yet • Mapping Q & A –Expected language –Appropriate automated responses –When to escalate to a human Images: https://www.pexels.com/photo/close-up-of-mobile-phone-248512/ https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E https://www.ibm.com/watson/developercloud/doc/conversation/index.html
  35. AI and ML Demystified / @carologic / MWUX2017 Optical character recognition (OCR) • Used to be AI • Now considered routine computing Portable scanner and OCR (video) https://en.wikipedia.org/wiki/File:Portable_scanner_and_OCR_(video).webm
  36. AI and ML Demystified / @carologic / MWUX2017 Ethics in Design for AI
  37. Humans teach what we feel is important… teach them to share our values. Super knowing - not super doing Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  38. AI and ML Demystified / @carologic / MWUX2017 How might we… • build systems that have ethical and moral foundation?’ • that are transparent to users? • teach mercy and justice of law? • extend and advance healthcare? • increase safety in dangerous work? Inspired by Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  39. Trust machines just as much as a well-trained human?
  40. AI and ML Demystified / @carologic / MWUX2017 Guiding Principles – Ethical AI • Purpose – Aid humans, not replace them – Symbiotic relationship “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  41. AI and ML Demystified / @carologic / MWUX2017 Transparency • How was AI taught? • What data was used? • Humans remain in control of the system “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  42. AI and ML Demystified / @carologic / MWUX2017 Skills • Built with people in the industry • Human workers trained how to use tools to their advantage “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  43. AI and ML Demystified / @carologic / MWUX2017 Regulations • Almost everyone agrees they are necessary • Who will create regulations? • Enforce?
  44. “We often have no way of knowing when and why people are biased.” - Sandra Wachter Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  45. AI and ML Demystified / @carologic / MWUX2017 The EU General Data Protection Regulation (GDPR) • Framework for transparency rights and safeguards against automated decision-making • Right to contest a completely automated decision if it has legal or other significant effects on them Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  46. AI and ML Demystified / @carologic / MWUX2017 Regulations take forever • Humans and algorithms aren’t without bias • ML has potential to make less biased decisions • Algorithms trained with biased data pick up and replicate biases, and develop new ones Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  47. AI and ML Demystified / @carologic / MWUX2017 How do we evolve the practice of UX to deal with the new issues these technologies bring and the new information that is created?
  48. AI and ML Demystified / @carologic / MWUX2017 Take Responsibility • Create a code of conduct – What do you value? – What lines won’t your AI cross? • Make your AI transparent – How was it made and what does it do? – How do you reduce bias? • Keep humans in control
  49. AI and ML Demystified / @carologic / MWUX2017 Don’t fear AI - Explore AI Try the tools Pair with others IBM Watson Developer Tools (free trials): https://console.ng.bluemix.net/catalog/?category=watson
  50. AI and ML Demystified / @carologic / MWUX2017 Go forth and create ethical AI’s • Purpose: Intelligence and actions to maximize success • Transparency: Code of Conduct • Skills: How will humans learn to use it?
  51. AI and ML Demystified / @carologic / MWUX2017 Contact Carol LinkedIn: https://www.linkedin.com/in/caroljsmith Twitter - @Carologic: https://twitter.com/carologic Slides on Slideshare: https://www.slideshare.net/carologic
  52. AI and ML Demystified / @carologic / MWUX2017 Additional Information and Resources
  53. AI and ML Demystified / @carologic / MWUX2017 Watson is a cognitive technology that can think like a human. • Understand • Analyze and interpret all kinds of data • Unstructured text, images, audio and video • Reason • Understand the personality, tone, and emotion of content • Learn • Grow the subject matter expertise in your apps and systems • Interact • Create chat bots that can engage in dialog https://www.ibm.com/watson/
  54. AI and ML Demystified / @carologic / MWUX2017 More on Strategic Games Graphic, Science Magazine: http://www.sciencemag.org/news/2016/03/update-why-week-s- man-versus-machine-go-match-doesn-t-matter-and-what-does
  55. AI and ML Demystified / @carologic / MWUX2017 The Job Question • Make new economies and opportunities – potentially: –Create jobs –Entire new fields • Some jobs will be lost –What can we do to mitigate this? Jobs that no longer exist The Lector http://www.ranker.com/list/jobs-that-no-longer-exist/coy-jandreau
  56. AI and ML Demystified / @carologic / MWUX2017 Tone Analyzer - Watson IBM Watson Developer Cloud, Tone Analyzer https://tone-analyzer-demo.mybluemix.net/
  57. AI and ML Demystified / @carologic / MWUX2017 Optimist’s guide to the robot apocalypse - @sarahfkessler “The optimist’s guide to the robot apocalypse” by Sarah Kessler. March 09, 2017. QZ. @sarahfkessler https://qz.com/904285/the-optimists-guide-to-the-robot-apocalypse/
  58. AI and ML Demystified / @carologic / MWUX2017 Additional Resources • “How IBM is Competing with Google in AI.” The Information. https://www.theinformation.com/how-ibm-is- competing-with-google-in-ai?eu=2zIDMNYNjDp7KqL4YqAXXA • “The business case for augmented intelligence” https://medium.com/cognitivebusiness/the-business-case-for- augmented-intelligence-36afa64cd675 • “Comparison of machine learning methods applied to birdsong element classification” by David Nicholson. Proceedings of the 15th Python in Science Conference (SCIPY 2016). http://conference.scipy.org/proceedings/scipy2016/pdfs/david_nicholson.pdf • “Staples’ “Easy Button” Comes to Life with IBM Watson” in Business Wire, October 25, 2016. http://www.businesswire.com/news/home/20161025006273/en/Staples%E2%80%99-%E2%80%9CEasy- Button%E2%80%9D-Life-IBM-Watson • “How Staples Is Making Its Easy Button Even Easier With A.I.” by Chris Cancialosi, Forbes. https://www.forbes.com/sites/chriscancialosi/2016/12/13/how-staples-is-making-its-easy-button-even-easier- with-a-i/#4ae66e8359ef • “Inside Intel: The Race for Faster Machine Learning” http://www.intel.com/content/www/us/en/analytics/machine-learning/the-race-for-faster-machine-learning.html
  59. AI and ML Demystified / @carologic / MWUX2017 More Resources • “Update: Why this week’s man-versus-machine Go match doesn’t matter (and what does)” by Dana Mackenzie. Science Magazine. Mar. 15, 2016 http://www.sciencemag.org/news/2016/03/update-why-week-s- man-versus-machine-go-match-doesn-t-matter-and-what-does • “For IBM’s CTO for Watson, not a lot of value in replicating the human mind in a computer.” by Frederic Lardinois (@fredericl), TechCrunch, Posted Feb 27, 2017. https://techcrunch.com/2017/02/27/for-ibms-cto-for- watson-not-a-lot-of-value-in-replicating-the-human-mind-in-a-computer/ • “Google and IBM: We Want Artificial Intelligence to Help You, Not Replace You” Most Powerful Women by Michelle Toh. Mar 02, 2017. Fortune. http://fortune.com/2017/03/02/google-ibm-artificial-intelligence/ • “Facebook scales back AI flagship after chatbots hit 70% f-AI-lure rate - 'The limitations of automation‘” by Andrew Orlowski. Feb 22, 2017. The Register https://www.theregister.co.uk/2017/02/22/facebook_ai_fail/ • “Microsoft is deleting its AI chatbot's incredibly racist tweets” by Rob Price. Mar. 24, 2016. Business Insider UK. http://www.businessinsider.com/microsoft-deletes-racist-genocidal-tweets-from-ai-chatbot-tay-2016-3 Special Thanks: Soundtrack to 'Run Lola Run', 1998 German thriller film written and directed by Tom Tykwer, and starring Franka Potente as Lola and Moritz Bleibtreu as Manni. Soundtrack by Tykwer, Johnny Klimek, and Reinhold Heil
  60. AI and ML Demystified / @carologic / MWUX2017 Even More Resources • “IBM’s Automated Radiologist Can Read Images and Medical Records” by Tom Simonite, February 4, 2016. Intelligent Machines, MIT Technology Review. https://www.technologyreview.com/s/600706/ibms-automated- radiologist-can-read-images-and-medical-records/ • “The IBM, Salesforce AI Mash-Up Could Be a Stroke of Genius” by Adam Lashinsky, Mar 07, 2017. Fortune. http://fortune.com/2017/03/07/data-sheet-ibm-salesforce/ • "Google can now tell you're not a robot with just one click" by Andy Greenberg. Dec. 3, 2014. Security: Wired. https://www.wired.com/2014/12/google-one-click-recaptcha/ • “Essentials of Machine Learning Algorithms (with Python and R Codes)” by Sunil Ray, August 10, 2015. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/ • IBM on Machine Learning https://www.ibm.com/analytics/us/en/technology/machine-learning/ • “At Davos, IBM CEO Ginni Rometty Downplays Fears of a Robot Takeover” by Claire Zillman, Jan 18, 2017. Fortune. http://fortune.com/2017/01/18/ibm-ceo-ginni-rometty-ai-davos/ • “Google and IBM: We Want Artificial Intelligence to Help You, Not Replace You” by Michelle Toh. Mar 02, 2017. Fortune. http://fortune.com/2017/03/02/google-ibm-artificial-intelligence/
  61. AI and ML Demystified / @carologic / MWUX2017 Yes, even more resources • Video: “IBM Watson Knowledge Studio: Teach Watson about your unstructured data” https://www.youtube.com/watch?v=caIdJjtvX1s&t=6s • “The optimist’s guide to the robot apocalypse” by Sarah Kessler, @sarahfkessler. March 09, 2017. QZ. https://qz.com/904285/the-optimists-guide-to-the-robot-apocalypse/ • “AI Influencers 2017: Top 30 people in AI you should follow on Twitter" by Trips Reddy @tripsy, Senior Content Manager, IBM Watson . February 10, 2017 https://www.ibm.com/blogs/watson/2017/02/ai- influencers-2017-top-25-people-ai-follow-twitter/ • “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding-principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/ • "Transparency and Trust in the Cognitive Era" January 17, 2017 Written by: IBM THINK Blog https://www.ibm.com/blogs/think/2017/01/ibm-cognitive-principles/ • "Ethics and Artificial Intelligence: The Moral Compass of a Machine“ by Kris Hammond, April 13, 2016. Recode. http://www.recode.net/2016/4/13/11644890/ethics-and-artificial-intelligence-the-moral-compass-of-a- machine
  62. AI and ML Demystified / @carologic / MWUX2017 Last bit: I promise • "The importance of human innovation in A.I. ethics" by John C. Havens. Oct. 03, 2015 http://mashable.com/2015/10/03/ethics-artificial-intelligence/#yljsShvAFsqy • "Me, Myself and AI" Fjordnet Limited 2017 - Accenture Digital. https://trends.fjordnet.com/trends/me-myself-ai • "Testing AI concepts in user research" By Chris Butler, Mar 2, 2017. https://uxdesign.cc/testing-ai- concepts-in-user-research-b742a9a92e55#.58jtc7nzo • "CMU prof says computers that can 'see' soon will permeate our lives“ by Aaron Aupperlee. March 16, 2017. http://triblive.com/news/adminpage/12080408-74/cmu-prof-says-computers-that-can- see-soon-will-permeate-our-lives • “The business case for augmented intelligence” by Nancy Pearson, VP Marketing, IBM Cognitive. https://medium.com/cognitivebusiness/the-business-case-for-augmented-intelligence- 36afa64cd675#.qqzvunakw
  63. AI and ML Demystified / @carologic / MWUX2017 Definition: Artificial Intelligence • Artificial intelligence (AI) is intelligence exhibited by machines. • In computer science, an ideal "intelligent" machine is a flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal.[1] Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".[2] • Capabilities currently classified as AI include successfully understanding human speech,[4] competing at a high level in strategic game systems (such as Chess and Go[5]), self-driving cars, and interpreting complex data. Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Intelligent_agents-1
  64. AI and ML Demystified / @carologic / MWUX2017 Definition: The Singularity • If research into Strong AI produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to recursive self-improvement.[245] The new intelligence could thus increase exponentially and dramatically surpass humans. Science fiction writer Vernor Vinge named this scenario "singularity".[246] Technological singularity is when accelerating progress in technologies will cause a runaway effect wherein artificial intelligence will exceed human intellectual capacity and control, thus radically changing or even ending civilization. Because the capabilities of such an intelligence may be impossible to comprehend, the technological singularity is an occurrence beyond which events are unpredictable or even unfathomable.[246] • Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and predicts that the singularity will occur in 2045.[246] Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Intelligent_agents-1
  65. AI and ML Demystified / @carologic / MWUX2017 Definition: Machine Learning • Ability for system to take basic knowledge (does not mean simple or non-complex) and apply that knowledge to new data • Raises ability to discover new information. Find unknowns in data. • https://en.wikipedia.org/wiki/Machine_learning More Definitions: • Algorithm: a process or set of rules to be followed in calculations or other problem- solving operations, especially by a computer. https://en.wikipedia.org/wiki/Algorithm • Natural Language Processing (NLP): https://en.wikipedia.org/wiki/Natural_language_processing

×