SlideShare a Scribd company logo
1 of 121
Download to read offline
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Lecture 9:
Microbial Diversity
BIS 002C
Biodiversity & the Tree of Life
Spring 2016
Prof. Jonathan Eisen
1
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Where we are going and where we have been
• Previous Lecture:
!8: The Tree of Life II
• Current Lecture:
!9: Microbial Diversity
• Next Lecture:
!10: The Not Quite a Tree Tree of Life
2
Lectures 9-13 Microbial Diversity
• The Tree of Life is mostly microbial
• Diverse methods are available for studying microbial
diversity
• Most of the diversity of microbial life is poorly
characterized
• The Tree of Life is not actually a tree
• The biological diversity (form, function, etc) seen in
microbes is immense
• Microbes run (kind of) the planet
• Microbial interactions (with each other and non-
microbes) also help run the planet
3
Lectures 9
• The Tree of Life is mostly microbial
• Diverse methods are available for studying microbial
diversity
• Most of the diversity of microbial life is poorly
characterized
• The Tree of Life is not actually a tree
• The biological diversity (form, function, etc) seen in
microbes is immense
• Microbes run (kind of) the planet
• Microbial interactions (with each other and non-
microbes) also help run the planet
4
Lectures 10
• The Tree of Life is mostly microbial
• Diverse methods are available for studying microbial
diversity
• Most of the diversity of microbial life is poorly
characterized
• The Tree of Life is not actually a tree
• The biological diversity (form, function, etc) seen in
microbes is immense
• Microbes run (kind of) the planet
• Microbial interactions (with each other and non-
microbes) also help run the planet
5
Lecture 11
• The Tree of Life is mostly microbial
• Diverse methods are available for studying microbial
diversity
• Most of the diversity of microbial life is poorly
characterized
• The Tree of Life is not actually a tree
• The biological diversity (form, function, etc) seen in
microbes is immense
• Microbes run (kind of) the planet
• Microbial interactions (with each other and non-
microbes) also help run the planet
6
Lectures 12-13
• The Tree of Life is mostly microbial
• Diverse methods are available for studying microbial
diversity
• Most of the diversity of microbial life is poorly
characterized
• The Tree of Life is not actually a tree
• The biological diversity (form, function, etc) seen in
microbes is immense
• Microbes run (kind of) the planet
• Microbial interactions (with each other and non-
microbes) also help run the planet
7
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Lecture 9: Microbial Diversity
• The Tree of Life is mostly microbial
• Diverse methods are available for studying
microbial diversity
• Most of the diversity of microbial life is
poorly characterized
8
Unrooted Tree of Life (from ~ 2004)
9
adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
10adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
P
Plants

Two Weeks
Unrooted Tree of Life (from ~ 2004)
11adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
F
Fungi
One Week
P
Unrooted Tree of Life (from ~ 2004)
12adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
A
Animals
Two Weeks
P
Unrooted Tree of Life (from ~ 2004)
13adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
1.5 Weeks
Unrooted Tree of Life (from ~ 2004)
Unrooted Tree of Life
14adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
1.5 Weeks
Mostly Microbes
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
The Bacteria and Archaea via Textbook v.10
15
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Eukaryotic Groups via Textbook v.10
16
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2014
Eukaryote Groups - More Detail
1717
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Microbial Diversity
• The Tree of Life is mostly microbial
• Diverse methods are available for studying
microbial diversity
• Most of the diversity of microbial life is
poorly characterized
18
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 20
Field Observations Are Important Tools
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
• Field studies of multicellular organisms are
of course common
• Show binoculars, butterfly nets, etc
• Field studies of microbes are also possible
but a bit more challenging
21
Field Observations Important in Microbial Studies
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
• More detail on some of these in Labs 2 and
3
22
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 !23
Culturing Microbes
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Culturing
• More On This in Lectures 11-12
• Some in Labs 2-3
24
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
DNA Sequencing
• All cellular organisms have genomes made up
of DNA
• All cellular organisms transcribe DNA into
RNA and then translate RNA into protein
• Sequencing involves reading the string of
letters in DNA, RNA or protein
• Sequencing is usually done on DNA
• Sequencing gets cheaper and faster VERY
fast
• Sequencing is very useful is studying
microbial diversity
25
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 26
Sequencing Has Gone Crazy
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
rRNA Sequencing for Phylogenetic Analysis
27
rRNA rRNArRNA
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
R ACUCCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
F ACUCCAGGUAUCGAUCG
C ACCCCAGCUCUCGCUCG
W ACCCCAGCUCUGGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
C ACCCCAGCUCUCGCUCG
EukaryotesBacteria ?????Archaea
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Clicker
28
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Which of the following is NOT a reason that
analysis of rRNA is useful for inferring a Tree
of Life
A: rRNAs are universal homologies
B: rRNAs can be sequenced
C: rRNAs are transcribed from DNA
D: rRNAs have functional roles in ribosomes
E: rRNAs don't vary between species
29
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Which of the following is NOT a reason that
analysis of rRNA is useful for inferring a Tree
of Life
A: rRNAs are universal homologies
B: rRNAs can be sequenced
C: rRNAs are transcribed from DNA
D: rRNAs have functional roles in ribosomes
E: rRNAs don't vary between species
30
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Genome Sequencing Improves Phylogenetic Analysis
31
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
EukaryotesBacteria ?????Archaea
DNA DNADNA
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Genome Sequencing Has Many Other Uses
32
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
DNA DNADNA
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Genome Sequencing Has Many Other Uses
33
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
DNA DNADNA
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Some Discussion of this in Lecture 10
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
2002 Most Genomes from a Few Groups
34
Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
2002-2007: TIGR Tree of Life Project
35
Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
Naomi
Ward
Karen
Nelson
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
2007-2014: Genomic Encyclopedia
36
Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
2007-2014: Genomic Encyclopedia
37
Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
BUT …
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Microbial Diversity
• The Tree of Life is mostly microbial
• Diverse methods are available for studying
microbial diversity
• Most of the diversity of microbial life is
poorly characterized
38
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Great Plate Count Anomaly
39
<<<<
Culturing Observation
CountCount
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Great Plate Count Anomaly
39
<<<<
Culturing Observation
CountCount
http://www.google.com/url?
sa=i&rct=j&q=&esrc=s&source=images&c
d=&docid=rLu5sL207WlE1M&tbnid=CRLQ
YP7d9d_TcM:&ved=0CAUQjRw&url=http
%3A%2F%2Fwww.biol.unt.edu
%2F~jajohnson
%2FDNA_sequencing_process&ei=hFu7U_
TyCtOqsQSu9YGwBg&psig=AFQjCNG-8EB
dEljE7-
yHFG2KPuBZt8kIPw&ust=14048739512114
24
DNA
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
rRNA Sequencing from Environmental Samples
40
rRNA rRNArRNA
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
R ACUCCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
F ACUCCAGGUAUCGAUCG
C ACCCCAGCUCUCGCUCG
W ACCCCAGCUCUGGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
C ACCCCAGCUCUCGCUCG
EukaryotesBacteria ?????Archaea
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Metagenomics Improves Phylogenetic Resolution
41
metagenomics
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
R ACUCCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
F ACUCCAGGUAUCGAUCG
C ACCCCAGCUCUCGCUCG
W ACCCCAGCUCUGGCUCG
EukaryotesBacteria Archaea
Jo
Handelsman
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Metagenomics Has Many Other Purposes
42
metagenomics
ACUGC
ACCUAU
CGUUCG
ACUCC
AGCUAU
CGAUCG
ACCCC
AGCUCU
CGCUCG
Taxa Characters
S ACUGCACCUAUCGUUCG
R ACUCCACCUAUCGUUCG
E ACUCCAGCUAUCGAUCG
F ACUCCAGGUAUCGAUCG
C ACCCCAGCUCUCGCUCG
W ACCCCAGCUCUGGCUCG
inputs of fixed carbon or nitrogen from external sources. As with
Leptospirillum group I, both Leptospirillum group II and III have the
genes needed to fix carbon by means of the Calvin–Benson–
Bassham cycle (using type II ribulose 1,5-bisphosphate carboxy-
lase–oxygenase). All genomes recovered from the AMD system
contain formate hydrogenlyase complexes. These, in combination
with carbon monoxide dehydrogenase, may be used for carbon
fixation via the reductive acetyl coenzyme A (acetyl-CoA) pathway
by some, or all, organisms. Given the large number of ABC-type
sugar and amino acid transporters encoded in the Ferroplasma type
Figure 4 Cell metabolic cartoons constructed from the annotation of 2,180 ORFs
identified in the Leptospirillum group II genome (63% with putative assigned function) and
1,931 ORFs in the Ferroplasma type II genome (58% with assigned function). The cell
cartoons are shown within a biofilm that is attached to the surface of an acid mine
drainage stream (viewed in cross-section). Tight coupling between ferrous iron oxidation,
pyrite dissolution and acid generation is indicated. Rubisco, ribulose 1,5-bisphosphate
carboxylase–oxygenase. THF, tetrahydrofolate.
articles
NATURE | doi:10.1038/nature02340 | www.nature.com/nature 5©2004 NaturePublishing Group
Some Discussion of this in Lecture 13
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 43
Sequencing Has Gone Crazy
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Hug et al. 2016
• Dowloaded 10,000+ genomes
from various databases
(including many I generated)
• 1000+ new genomes
• Searched these genomes for
a set universal homologous
genes (ribosomal proteins)
(based on AMPHORA)
• Aligned the sequences of
these genes between species
• Maximum likelihood tree
44
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Laura Hug
U. Waterloo
Jill Banfield
UC Berkeley
Hug et al 2016
!45
Hug et al. 2016 Tree of Life
92 Bacterial Phyla
25 Archaeal Phyla
5 Eukaryotic Supergroups
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Laura Hug
U. Waterloo
Jill Banfield
UC Berkeley
!46
Hug et al 2016Hug et al. 2016 Bacteria
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Taxa Covered in Textbook
!47
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
!48
Hug et al 2016Phyla Never Grown in the Lab
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Hug et al 2016
!49
Hug et al. 2016 Archaea and Eukaryotes
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Hug et al 2016
!50
Hug et al. 2016 Archaea Phyla Never Grown in the Lab
Hug et al. Nature Microbiology. A new view of the tree of life.
http://dx.doi.org/10.1038/nmicrobiol.2016.48
Major Groups by Evolutionary Distance
!51
The Dark Matter of Biology
!52
0.2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
gure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
oups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
hers are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
oups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
ed dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
om 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
rmat in Supplementary Dataset 2.
NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
ATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
ured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
plit into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
ve special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
re apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
pplementary Dataset 2.
E MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
ROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
0.2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
(red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
format in Supplementary Dataset 2.
NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
0.2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
(red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
format in Supplementary Dataset 2.
NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
matted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
edges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
cial taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
rent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
he complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
ntary Dataset 2.
CROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
0.2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
(red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
format in Supplementary Dataset 2.
NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
0.2
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
(red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
format in Supplementary Dataset 2.
NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
cteria
esebacteria
cteria
bacteria,Pacebacteria,Collierbacteria
eria
CandidatePhylaRadiation
cteria
esebacteria
cteria
b
bacteria,Pacebacteria,Collierbacteria
i
eria
CandidatePhylaRadiation
cteria
esebacteria
cteria
bacteria,Pacebacteria,Collierbacteria
eria
CandidatePhylaRadiation
cteria
esebacteria
cteria
b
bacteria,Pacebacteria,Collierbacteria
i
eria
CandidatePhylaRadiation
Korarchaeota
Woesearchaeota,Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri,Methanococci,Methanobacteria,Hadesarchaea,Thermococci
Archaeoglobi,Methanomicrobia,Halobacteria
Aciduliprofundum,Thermoplasmata
UnculturedThermoplasmata
Thermoplasmata
Opisthokonta,Excavata,Archaeplastida
Chromalveolata,Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria,Melainabacteria
Deinococcus-Thermus
Aquificae,CalescamantesEM19
Caldiserica,Dictyoglomi
Thermotogae
RBX-1
WOR-1
Firmicutes,Tenericutes,Armatimonadetes,Chloroflexi,Actinobacteria
Fusobacteria,Synergistetes
Unculturedbacteria(CPRIF32)
bacteria(OP9)
BRC1,Poribacteria
Aigarchaeota,Cand.Caldiarchaeumsubterraneum
Cyanobacteria,Melainabacteria
Deinococcus-Thermus
Aquificae,CalescamantesEM19
Caldiserica,Dictyoglomi
q ,q ,
Thermotogae
A ifi C
RBX-1
WOR-1
Firmicutes,Tenericutes,Armatimonadetes,Chloroflexi,Actinobacteria
Fusobacteria,Synergistetes
Unculturedbacteria(CPRIF32)
, y g, y g
bacteria(OP9)
BRC1,Poribacteria
( )
Woesearchaeota,Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri,Methanococci,Methanobacteria,Hadesarchaea,Thermococci
E43
Archaeoglobi,Methanomicrobia,Halobacteria
, , ,, , ,
Aciduliprofundum,Thermoplasmata
gg
UnculturedThermoplasmata
p ,p ,
Thermoplasmata
p
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand.Caldiarchaeumsubterraneum
C b t i M l i b t i
Opisthokonta,Excavata,Archaeplastida
Chromalveolata,Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
ArchaeaWoesearchaeota,Nanoarchaeota
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
tinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
ic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
s analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
et 2.
OLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
ature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
ple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
xonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
om this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
mplete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
Dataset 2.
OBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
e tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
erage branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
tus. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
alysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
omal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
OGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
om/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
Korarchaeota
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
Archaeoglobi, Methanomicrobia, Halobacteria
Aciduliprofundum, Thermoplasmata
Uncultured Thermoplasmata
Thermoplasmata
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
Cyanobacteria, Melainabacteria
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
Microgenomates Daviesbacteria
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Microgenomates Shapirobacteria
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Microgenomates Gottesmanbacteria
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
Thermotogae
Omnitrophica
Omnitrophica
Spirochaetes
Spirochaetes
Hydrogenedentes NKB19
Deltaproteobacteria
Epsilonproteobacteria
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
Planctomycetes
Chlamydiae
Lentisphaerae
Verrucomicrobia
Verrucomicrobia
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
Aigarchaeota, Cand. Caldiarchaeum subterraneum
Unclassified archaea
Parcubacteria
Candidate Phyla Radiation
Cyanobacteria, Melainabacteria
Deinococcus-Thermus
Aquificae, Calescamantes EM19
Caldiserica, Dictyoglomi
q ,q ,
Thermotogae
A ifi C
Omnitrophica
Omnitrophica
pp
Spirochaetes
Spirochaetes
S i h t
Hydrogenedentes NKB19
Deltaproteobacteria
H d d t N
Epsilonproteobacteria
b
TM6
Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres
Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot.
NC10, Rokubacteria, Aminicenantes, Acidobacteria
D f bD f b
, , p ,, , p ,
Planctomycetes
pp
Chlamydiae
y
Lentisphaerae
C a ydCh
Verrucomicrobia
Verrucomicrobia
pp
RBX-1
WOR-1
Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria
Fusobacteria, Synergistetes
Uncultured bacteria (CP RIF32)
, y g, y g
Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes
Fibrobacteres
Cloacamonetes
Atribacteria (OP9)
BRC1, Poribacteria
( )
Latescibacteria WS3
Gemmatimonadetes, WOR-3, TA06
b M
Elusimicrobia
Uncultured bacteria
Uncultured bacteria (CP RIF1)
O h
Dojkabacteria WS6
CPR3
Katanobacteria WWE3
Katanobacteria WWE3
Microgenomates Roizmanbacteria
Microgenomates Roizmanbacteria
Microgenomates
Microgenomates Curtissbacteria
gg
Microgenomates Daviesbacteria
gg
Microgenomates Levybacteria
Microgenomates Woesebacteria
Microgenomates Amesbacteria
Mi t L b t i
Microgenomates Shapirobacteria
Mi t W bMi t
Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria
Mi Sh i b i
Microgenomates Gottesmanbacteria
t R i b t i
g yg y
KAZAN
CPR2, Saccharibacteria TM7
Berkelbacteria
Berkelbacteria
Berkelbacteria
Berkelbacteria
CPR Uncultured unclassified bacteria
Peregrinibacteria
Peregrinibacteria
Absconditabacteria SR1
Gracilibacteria BD1-5 / GNO2
SM2F11
Parcubacteria
Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria
te a
Parcubacteria
Parcubacteria
Parcubacteria
Parcubacteria
AbscAbs
Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria,
Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria
gg
Parcubacteria
Parcubacteria Moranbacteria
Parcubacteria
Parcubacteria Yanofskybacteria
P b i
Candidate Phyla Radiation
Diapherotrites
Nanohaloarchaeota
Unclassified archaea
Pacearchaeota
Woesearchaeota, Nanoarchaeota
Woesearchaeota
Altiarchaeales
Z7ME43
Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci
E43
Archaeoglobi, Methanomicrobia, Halobacteria
, , ,, , ,
Aciduliprofundum, Thermoplasmata
gg
Uncultured Thermoplasmata
p ,p ,
Thermoplasmata
p
Unclassified archaea
Korarchaeota
,
Crenarchaeota
Crenarchaeota
Thorarchaeota
Lokiarchaeota
YNPFFA
Thaumarchaeota
Thaumarchaeota
b l b
Aigarchaeota,
FFA
Cand. Caldiarchaeum subterraneum
C b t i M l i b t i
Opisthokonta, Excavata, Archaeplastida
Chromalveolata, Amoebozoa
Th h
,
Th h t
Eukaryotes
Bacteria
Archaea
Katanobacteria WWE3
Bootstrap ≥ 85%
85% > Bootstrap ≥ 50%
Woesearchaeota, Nanoarchaeota
view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for
) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and
ple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting
xonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives
om this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support
mplete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick
Dataset 2.
OBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS
www.nature.com/naturemicrobiology 3
© 2016 Macmillan Publishers Limited. All rights reserved
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2014
Also many uncultured eukaryotic groups
5353
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Details
• Dowloaded 10,000+ genomes from various
databases (including many I generated)
• 1000+ new genomes
• Searched these genomes for a set
universal homologous genes (ribosomal
proteins) (based on AMPHORA)
• Aligned the sequences of these genes
between species
• Maximum likelihood tree
54
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Details
• If you want to do things like this
• Learn biology but also
• Bioinformatics
• Programming
• Data science
• Quantitative biology
• Statistics
55
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Reminder
These trees are based on analysis of
ribosomal proteins. They represent only
a small subset of all the genes in a
genome.
56
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Microbial Diversity
• We do not have time to cover all of these
groups of microbes in lecture
• These groups barely scratch the surface of
the true diversity
• Examples of Biological Diversity of
Microbes
• Focus on the Big Picture Patterns of This
Diversity
57
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Clicker
58
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Clicker
Which of the following is an example of
universal homology
A: Ether-linked lipids
B: Peptidoglycan
C: Ester-linked lipids
D: Transcription of DNA into RNA
E: Translation of RNA in the nucleus
59
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Clicker
Which of the following is an example of
universal homology
A: Ether-linked lipids
B: Peptidoglycan
C: Ester-linked lipids
D: Transcription of DNA into RNA
E: Translation of RNA in the nucleus
60
Bacterial Diversity: Gram Positive vs. Negative
61
Outside of cell
Outside of cell
Inside of cell
Inside of cell
Cell
envelope
Cell wall
(peptidoglycan)
Plasma
membrane
Outer membrane
of cell envelope
Periplasmic space
Peptidoglycan layer
Periplasmic space
Plasma
membrane
5 µm
5 µm
Gram Positive
Gram
Negative
Bacterial and Archaeal Shapes
Archaea cell membranes
have lipids with fatty acids
linked to glycerol by ether
linkages (a synapomorphy of
archaea):
62
Ester Linkages
Bacterial and eukaryotic cell membranes
have lipids with fatty acids connected to
glycerol by ester linkages:
63
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Diversity of Form
• Bacteria and archaea way more diverse in
morphology (e.g., size, shape) than many
appreciate
• Morphological diversity in NPAF
eukaryotes also immense (NPAF = non
plant, animal, or fungal)
• Diversity of movement connected to
diversity of form
• Many examples of convergent evolution in
morphology, related features
64
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Bacteria: Major Cell Forms
• Among the Bacteria and Archaea, three
shapes are common:
! Sphere or coccus (plural cocci), occur
singly or in plates, blocks, or clusters.
! Rod—bacillus (plural bacilli)
! Helical
• Rods and helical shapes may form chains
or clusters.
65
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Bacteria: Other Forms
66
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Archaea: Examples of Forms
67
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Motility of Vibrio (a member of the Proteobacteria phylum)
68
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Corkscrew Movement of Spiraling (A Cyanobacterium)
69
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
•Most are marine and are important
photoautotrophic primary producers
•Mixture of pigments give them a golden
brown color.
•Have two flagella, one in an equatorial
groove, the other in a longitudinal groove.
Alveolates: Dinoflagellates
70
Certium
tenue
Coral symbiont
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Chromalveolates: Haptophytes
• Haptophytes
71
Coccolithophores (haptophytes)
can also form immense
blooms in the ocean.
Blooms can reduce the amount
of sunlight that penetrates
deeper waters.
Emiliania huxleyi—one of
smallest unicellular
eukaryotes. May contribute to
global warming through its
metabolism.
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Alveolates: Ciliates
72
Movement in a ciliate from the gut of a termite
• All have numerous cilia,
• Most are heterotrophic; very diverse
group.
• Have complex body forms and two
types of nuclei.
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Stramenopiles: Diatoms
•Unicellular, but many associate in
filaments.
•Have carotenoids and appear yellow or
brown.
•Excellent fossil record
•Most are photoautotrophic
•Responsible for 20% of all carbon fixation.
•Oil, gas source
73
A colony of the diatom,
Bacillaria paradoxa
Rhizaria: Foraminiferans
Sand beaches in the tropics
• Secrete shells of calcium carbonate.
• Discarded shells make up limestone.
• Create some beach sands
• Used to date & characterize sedimentary
rocks.
• Some live as plankton, others at sea bottom.
• Thread-like, branched pseudopods extend
through pores in the shell and form a sticky net
that captures smaller plankton.
74
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Rhizaria: Radiolarians
• Have thin, stiff pseudopods
reinforced by microtubules.
• The pseudopods increase surface
area for exchange of materials; and
help the cell float.
• Exclusively marine, most secrete
glassy endoskeletons, many with
elaborate designs.
75
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Unikonts: Opisthokonts: Choanoflagellates
•Choanoflagellates are sister to the
animals.
•Some are colonial and resemble a
type of cell found in sponges.
76
The choanoflagellate Salpingoeca sp. feeding
Convergent Evolution
• Look Like Fungi
77
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Figure 30.14 Sexual Life Cycles of Chytrids and Zygospore Fungi (Part 1)
78
Stramenopiles: Oomcyetes
Phytophthora
Potato Late Blight
• Non-photosynthetic.
• Are absorptive heterotrophs
• Once were classed as fungi, but
are unrelated.
79
Sudden Oak Death
Amoebozoans: Plasmodial Slime Molds
• Individual motile cells can form single,
multinucleate cell (plasmodium)
• Ingest food by endocytosis
• Form spores on stalks called fruiting
bodies.
• Found in cool, moist habitats
80
Amoebozoans: Cellular Slime Molds
• Life cycle consists of individual motile cells that
ingest food by endocytosis
• This is followed by the formation of single,
multicellular fruiting structure
• Each cell retains its own plasma membrane
and individuality
81
Karyo
Multicellularity
• Many lineages, not just PAF (plants,
animals and fungi) include multicellular
representatives
• Mechanisms responsible for multicellularity
different in different groups (why might that
be)?
82
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Many Fungi Multicellular
83
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Animals
84
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Plants
8
Amoebozoans: Cellular Slime Molds
• Life cycle consists of individual motile cells that
ingest food by endocytosis
• This is followed by the formation of single,
multicellular fruiting structure
• Each cell retains its own plasma membrane
and individuality
86
Karyo
•All are multicellular; some get very large
(e.g., giant kelp).
•The carotenoid fucoxanthin imparts the
brown color.
•Almost exclusively marine.
Stramenopiles: Brown Algae
87
A community of brown algae: The marine kelp forest
Amoebozoans: Plasmodial Slime Molds
• Individual motile cells can form single,
multinucleate cell (plasmodium)
• Ingest food by endocytosis
• Form spores on stalks called fruiting
bodies.
• Found in cool, moist habitats
88
Plantae: Red Algae
89
• Most red algae are marine
and multicellular.
• Red pigment is
phycoerythrin.
•Many reproduce with spores
Motile spores from
Purpureofilum
Audouinella pacifica
Spyridia
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
The chlorophytes are the
sister group to charophytes
and land plants.
Synapomorphies include
chlorophyll a and b, and
starch as a storage product.
More than 17,000 species;
marine, freshwater, and
terrestrial. Unicellular to large
90
Plantae: Chlorophytes
Movement in the green
alga Volvox
Micrasterias
Multicellular Bacteria (Stigmatella, a Proteobacterium)
Photo 26.24 Fruiting body of gliding bacterium Stigmatella aurantiaca. SEM.
91
Biofilms are common in bacteria
92
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Photo 26.4 Filaments of photoautotrophic cyanobacteria,
93
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
More on Multicellularity
Later in BIS2C
94
Diversity of Processes
• Microbes are able to make use of or alter
just about any chemical bond found on
Earth
• This allows a wide range of niches, and a
wide diversity of roles in ecosystems
• Also diverse mechanisms for surviving and
thriving in “harsh” conditions
• Humans and other organisms have taken
advantage of this diversity in many ways
95
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
The Unusual
105°C
CH3
CO, 80°CH2S, pH 0, 95°C High salt
CO2 4°Clow pH
96
The Influential
Carbon cycle Nitrogen cycle
97
The Consumable
• =
98
Feed microbes
a little carbon
and they can
make some
nice things
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Functional Diversity
Covered in
Labs 2 and 3 and Lecture 11-13
99
Interactions
• Microbes have diverse interactions with
other organisms (both microbes and
macrobes)
• Symbiosis is an intimate association
between at least two different organisms in
which at least one of them benefits
100
The Bad
101
Alveolates: Apicomplexans
• All parasitic
• Have a mass of organelles at one tip
—the apical complex that help the
parasite enter the host’s cells.
102
Apical complex • Plasmodium falciparum-
Malaria kills 700,000-2,000,000
people per year—75% of them
are African children
Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016
Red tide caused by dinoflagellates (Gonyaulax sp.).
103
Excavates: Diplomonads and Parabisalids
• Unicellular
• Lack mitochondria and most are
anaerobic. This is a derived condition
• Giardia lamblia - a diplomonad - is a
human parasite
• Trichomonas vaginalis - parabasalid - STD
104
Excavates: Heteroloboseans
• Amoeboid body form.
• Naegleria can enter humans and
cause a fatal nervous system
disease - “brain eating”
• Some can transform between
amoeboid and flagellated stages.
105
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity
BiS2C: Lecture 9: Microbial Diversity

More Related Content

What's hot (20)

Microbial taxonomy and classification system
Microbial taxonomy and classification systemMicrobial taxonomy and classification system
Microbial taxonomy and classification system
 
Air microbiology
Air microbiologyAir microbiology
Air microbiology
 
Methanogens
MethanogensMethanogens
Methanogens
 
Pure culture technic
Pure culture technicPure culture technic
Pure culture technic
 
Microbiology and Microbial Diversities
Microbiology and Microbial DiversitiesMicrobiology and Microbial Diversities
Microbiology and Microbial Diversities
 
Ecology
EcologyEcology
Ecology
 
Microbial flora of soil
Microbial flora of soilMicrobial flora of soil
Microbial flora of soil
 
Microbial taxonomy
Microbial taxonomyMicrobial taxonomy
Microbial taxonomy
 
Microbes of extreme environment
Microbes of extreme environmentMicrobes of extreme environment
Microbes of extreme environment
 
Bacterial photosynthesis 2020
Bacterial photosynthesis  2020Bacterial photosynthesis  2020
Bacterial photosynthesis 2020
 
Environmental microbiology
Environmental microbiologyEnvironmental microbiology
Environmental microbiology
 
Extremophiles
ExtremophilesExtremophiles
Extremophiles
 
Archeabacteria presentation
Archeabacteria presentationArcheabacteria presentation
Archeabacteria presentation
 
Thermophile
ThermophileThermophile
Thermophile
 
Chapter 1 (microbiology) 8th edition
Chapter 1 (microbiology) 8th edition Chapter 1 (microbiology) 8th edition
Chapter 1 (microbiology) 8th edition
 
Extremopilic microorganisms
Extremopilic microorganismsExtremopilic microorganisms
Extremopilic microorganisms
 
Microbial intraction
Microbial  intractionMicrobial  intraction
Microbial intraction
 
Air Microbiology
Air MicrobiologyAir Microbiology
Air Microbiology
 
Methanogenesis
MethanogenesisMethanogenesis
Methanogenesis
 
Microbiology of air
Microbiology of airMicrobiology of air
Microbiology of air
 

Viewers also liked

B.Sc. Microbiology II Bacteriology Unit III Microbial Diversity
B.Sc. Microbiology II Bacteriology Unit III Microbial DiversityB.Sc. Microbiology II Bacteriology Unit III Microbial Diversity
B.Sc. Microbiology II Bacteriology Unit III Microbial DiversityRai University
 
Diversity of the microbial world 2008 2009
Diversity of the microbial world 2008 2009Diversity of the microbial world 2008 2009
Diversity of the microbial world 2008 2009aiiinura
 
Life On Mars
Life On MarsLife On Mars
Life On MarsFIS
 
Bacteria powerpoint
Bacteria powerpointBacteria powerpoint
Bacteria powerpointjhadachek
 
Climate change powerpoint
Climate change powerpointClimate change powerpoint
Climate change powerpointpacorz
 

Viewers also liked (12)

B.Sc. Microbiology II Bacteriology Unit III Microbial Diversity
B.Sc. Microbiology II Bacteriology Unit III Microbial DiversityB.Sc. Microbiology II Bacteriology Unit III Microbial Diversity
B.Sc. Microbiology II Bacteriology Unit III Microbial Diversity
 
Diversity of the microbial world 2008 2009
Diversity of the microbial world 2008 2009Diversity of the microbial world 2008 2009
Diversity of the microbial world 2008 2009
 
Bacteria
BacteriaBacteria
Bacteria
 
Archaea
ArchaeaArchaea
Archaea
 
Bacteria
BacteriaBacteria
Bacteria
 
Bacteria
BacteriaBacteria
Bacteria
 
life on mars
life on marslife on mars
life on mars
 
Viking mission
Viking missionViking mission
Viking mission
 
Life On Mars
Life On MarsLife On Mars
Life On Mars
 
archea
archea archea
archea
 
Bacteria powerpoint
Bacteria powerpointBacteria powerpoint
Bacteria powerpoint
 
Climate change powerpoint
Climate change powerpointClimate change powerpoint
Climate change powerpoint
 

Similar to BiS2C: Lecture 9: Microbial Diversity

BiS2C: Lecture 7: The Tree of Life
BiS2C: Lecture 7: The Tree of LifeBiS2C: Lecture 7: The Tree of Life
BiS2C: Lecture 7: The Tree of LifeJonathan Eisen
 
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans I
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans IBIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans I
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans IJonathan Eisen
 
BIS2C_2020. Lecture 7. The Domains of Life.
BIS2C_2020. Lecture 7. The Domains of Life.BIS2C_2020. Lecture 7. The Domains of Life.
BIS2C_2020. Lecture 7. The Domains of Life.Jonathan Eisen
 
BIS2C: Lecture 13: The Human Microbiome
BIS2C: Lecture 13: The Human MicrobiomeBIS2C: Lecture 13: The Human Microbiome
BIS2C: Lecture 13: The Human MicrobiomeJonathan Eisen
 
BIS2C: Lecture 27: Having a Diploblast
BIS2C: Lecture 27: Having a DiploblastBIS2C: Lecture 27: Having a Diploblast
BIS2C: Lecture 27: Having a DiploblastJonathan Eisen
 
BIS2C_2020. Lecture 9. Form and function
BIS2C_2020. Lecture 9. Form and functionBIS2C_2020. Lecture 9. Form and function
BIS2C_2020. Lecture 9. Form and functionJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersBIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...Jonathan Eisen
 
BiS2C: Lecture 8: The Tree of Life II
BiS2C: Lecture 8: The Tree of Life IIBiS2C: Lecture 8: The Tree of Life II
BiS2C: Lecture 8: The Tree of Life IIJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...Jonathan Eisen
 
BIS2C: Lecture 34 Fungi
BIS2C: Lecture 34 FungiBIS2C: Lecture 34 Fungi
BIS2C: Lecture 34 FungiJonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Jonathan Eisen
 
BIS2C2020 - Lecture 10 - Parasites and Pathogens
BIS2C2020 - Lecture 10 - Parasites and PathogensBIS2C2020 - Lecture 10 - Parasites and Pathogens
BIS2C2020 - Lecture 10 - Parasites and PathogensJonathan Eisen
 
BiS2C: Lecture 12: Acquiring Novelty
BiS2C: Lecture 12: Acquiring NoveltyBiS2C: Lecture 12: Acquiring Novelty
BiS2C: Lecture 12: Acquiring NoveltyJonathan Eisen
 
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans II
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans IIBIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans II
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans IIJonathan Eisen
 
BIS2C: Lecture 28: Lophotrochozoans
BIS2C: Lecture 28: LophotrochozoansBIS2C: Lecture 28: Lophotrochozoans
BIS2C: Lecture 28: LophotrochozoansJonathan Eisen
 
BIS2C: Lecture 35: Symbioses Across the Tree of Life
BIS2C: Lecture 35: Symbioses Across the Tree of LifeBIS2C: Lecture 35: Symbioses Across the Tree of Life
BIS2C: Lecture 35: Symbioses Across the Tree of LifeJonathan Eisen
 
BIS2C_2020. Lecture 13 Organelles and Endosymbiosis
BIS2C_2020. Lecture 13 Organelles and EndosymbiosisBIS2C_2020. Lecture 13 Organelles and Endosymbiosis
BIS2C_2020. Lecture 13 Organelles and EndosymbiosisJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview.
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview. BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview.
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview. Jonathan Eisen
 

Similar to BiS2C: Lecture 9: Microbial Diversity (20)

BiS2C: Lecture 7: The Tree of Life
BiS2C: Lecture 7: The Tree of LifeBiS2C: Lecture 7: The Tree of Life
BiS2C: Lecture 7: The Tree of Life
 
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans I
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans IBIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans I
BIS2C: Lecture 29: Triploblasts: Protostomes: Ecdysozoans I
 
BIS2C_2020. Lecture 7. The Domains of Life.
BIS2C_2020. Lecture 7. The Domains of Life.BIS2C_2020. Lecture 7. The Domains of Life.
BIS2C_2020. Lecture 7. The Domains of Life.
 
BIS2C: Lecture 13: The Human Microbiome
BIS2C: Lecture 13: The Human MicrobiomeBIS2C: Lecture 13: The Human Microbiome
BIS2C: Lecture 13: The Human Microbiome
 
BIS2C: Lecture 27: Having a Diploblast
BIS2C: Lecture 27: Having a DiploblastBIS2C: Lecture 27: Having a Diploblast
BIS2C: Lecture 27: Having a Diploblast
 
BIS2C_2020. Lecture 9. Form and function
BIS2C_2020. Lecture 9. Form and functionBIS2C_2020. Lecture 9. Form and function
BIS2C_2020. Lecture 9. Form and function
 
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersBIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
 
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
 
BiS2C: Lecture 8: The Tree of Life II
BiS2C: Lecture 8: The Tree of Life IIBiS2C: Lecture 8: The Tree of Life II
BiS2C: Lecture 8: The Tree of Life II
 
EVE161 Lecture 1
EVE161 Lecture 1EVE161 Lecture 1
EVE161 Lecture 1
 
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...
BIS2C. Biodiversity and the Tree of Life. 2014. L8. Intro to Microbial Divers...
 
BIS2C: Lecture 34 Fungi
BIS2C: Lecture 34 FungiBIS2C: Lecture 34 Fungi
BIS2C: Lecture 34 Fungi
 
Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1
 
BIS2C2020 - Lecture 10 - Parasites and Pathogens
BIS2C2020 - Lecture 10 - Parasites and PathogensBIS2C2020 - Lecture 10 - Parasites and Pathogens
BIS2C2020 - Lecture 10 - Parasites and Pathogens
 
BiS2C: Lecture 12: Acquiring Novelty
BiS2C: Lecture 12: Acquiring NoveltyBiS2C: Lecture 12: Acquiring Novelty
BiS2C: Lecture 12: Acquiring Novelty
 
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans II
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans IIBIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans II
BIS2C: Lecture 30: Triploblasts: Protostomes: Ecdysozoans II
 
BIS2C: Lecture 28: Lophotrochozoans
BIS2C: Lecture 28: LophotrochozoansBIS2C: Lecture 28: Lophotrochozoans
BIS2C: Lecture 28: Lophotrochozoans
 
BIS2C: Lecture 35: Symbioses Across the Tree of Life
BIS2C: Lecture 35: Symbioses Across the Tree of LifeBIS2C: Lecture 35: Symbioses Across the Tree of Life
BIS2C: Lecture 35: Symbioses Across the Tree of Life
 
BIS2C_2020. Lecture 13 Organelles and Endosymbiosis
BIS2C_2020. Lecture 13 Organelles and EndosymbiosisBIS2C_2020. Lecture 13 Organelles and Endosymbiosis
BIS2C_2020. Lecture 13 Organelles and Endosymbiosis
 
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview.
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview. BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview.
BIS2C. Biodiversity and the Tree of Life. 2014. L1. Introduction and Overview.
 

More from Jonathan Eisen

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfJonathan Eisen
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesJonathan Eisen
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingJonathan Eisen
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsJonathan Eisen
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Jonathan Eisen
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2Jonathan Eisen
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4Jonathan Eisen
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 Jonathan Eisen
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines Jonathan Eisen
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionJonathan Eisen
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2Jonathan Eisen
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionJonathan Eisen
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionJonathan Eisen
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingJonathan Eisen
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionJonathan Eisen
 

More from Jonathan Eisen (20)

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdf
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of Microbes
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meeting
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current Actions
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 Introduction
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 Vaccines
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA Detection
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 Introduction
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID Testing
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID Vaccines
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID Transmission
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
 

Recently uploaded

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 

Recently uploaded (20)

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 

BiS2C: Lecture 9: Microbial Diversity

  • 1. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Lecture 9: Microbial Diversity BIS 002C Biodiversity & the Tree of Life Spring 2016 Prof. Jonathan Eisen 1
  • 2. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Where we are going and where we have been • Previous Lecture: !8: The Tree of Life II • Current Lecture: !9: Microbial Diversity • Next Lecture: !10: The Not Quite a Tree Tree of Life 2
  • 3. Lectures 9-13 Microbial Diversity • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized • The Tree of Life is not actually a tree • The biological diversity (form, function, etc) seen in microbes is immense • Microbes run (kind of) the planet • Microbial interactions (with each other and non- microbes) also help run the planet 3
  • 4. Lectures 9 • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized • The Tree of Life is not actually a tree • The biological diversity (form, function, etc) seen in microbes is immense • Microbes run (kind of) the planet • Microbial interactions (with each other and non- microbes) also help run the planet 4
  • 5. Lectures 10 • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized • The Tree of Life is not actually a tree • The biological diversity (form, function, etc) seen in microbes is immense • Microbes run (kind of) the planet • Microbial interactions (with each other and non- microbes) also help run the planet 5
  • 6. Lecture 11 • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized • The Tree of Life is not actually a tree • The biological diversity (form, function, etc) seen in microbes is immense • Microbes run (kind of) the planet • Microbial interactions (with each other and non- microbes) also help run the planet 6
  • 7. Lectures 12-13 • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized • The Tree of Life is not actually a tree • The biological diversity (form, function, etc) seen in microbes is immense • Microbes run (kind of) the planet • Microbial interactions (with each other and non- microbes) also help run the planet 7
  • 8. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Lecture 9: Microbial Diversity • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized 8
  • 9. Unrooted Tree of Life (from ~ 2004) 9 adapted from Baldauf, et al., in Assembling the Tree of Life, 2004
  • 10. 10adapted from Baldauf, et al., in Assembling the Tree of Life, 2004 P Plants
 Two Weeks Unrooted Tree of Life (from ~ 2004)
  • 11. 11adapted from Baldauf, et al., in Assembling the Tree of Life, 2004 F Fungi One Week P Unrooted Tree of Life (from ~ 2004)
  • 12. 12adapted from Baldauf, et al., in Assembling the Tree of Life, 2004 A Animals Two Weeks P Unrooted Tree of Life (from ~ 2004)
  • 13. 13adapted from Baldauf, et al., in Assembling the Tree of Life, 2004 1.5 Weeks Unrooted Tree of Life (from ~ 2004)
  • 14. Unrooted Tree of Life 14adapted from Baldauf, et al., in Assembling the Tree of Life, 2004 1.5 Weeks Mostly Microbes
  • 15. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 The Bacteria and Archaea via Textbook v.10 15
  • 16. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Eukaryotic Groups via Textbook v.10 16
  • 17. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2014 Eukaryote Groups - More Detail 1717
  • 18. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Microbial Diversity • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized 18
  • 19. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 20 Field Observations Are Important Tools
  • 20. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 • Field studies of multicellular organisms are of course common • Show binoculars, butterfly nets, etc • Field studies of microbes are also possible but a bit more challenging 21 Field Observations Important in Microbial Studies
  • 21. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 • More detail on some of these in Labs 2 and 3 22
  • 22. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 !23 Culturing Microbes
  • 23. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Culturing • More On This in Lectures 11-12 • Some in Labs 2-3 24
  • 24. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 DNA Sequencing • All cellular organisms have genomes made up of DNA • All cellular organisms transcribe DNA into RNA and then translate RNA into protein • Sequencing involves reading the string of letters in DNA, RNA or protein • Sequencing is usually done on DNA • Sequencing gets cheaper and faster VERY fast • Sequencing is very useful is studying microbial diversity 25
  • 25. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 26 Sequencing Has Gone Crazy
  • 26. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 rRNA Sequencing for Phylogenetic Analysis 27 rRNA rRNArRNA ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG Taxa Characters S ACUGCACCUAUCGUUCG R ACUCCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG F ACUCCAGGUAUCGAUCG C ACCCCAGCUCUCGCUCG W ACCCCAGCUCUGGCUCG Taxa Characters S ACUGCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG C ACCCCAGCUCUCGCUCG EukaryotesBacteria ?????Archaea
  • 27. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Clicker 28
  • 28. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Which of the following is NOT a reason that analysis of rRNA is useful for inferring a Tree of Life A: rRNAs are universal homologies B: rRNAs can be sequenced C: rRNAs are transcribed from DNA D: rRNAs have functional roles in ribosomes E: rRNAs don't vary between species 29
  • 29. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Which of the following is NOT a reason that analysis of rRNA is useful for inferring a Tree of Life A: rRNAs are universal homologies B: rRNAs can be sequenced C: rRNAs are transcribed from DNA D: rRNAs have functional roles in ribosomes E: rRNAs don't vary between species 30
  • 30. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Genome Sequencing Improves Phylogenetic Analysis 31 ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG EukaryotesBacteria ?????Archaea DNA DNADNA ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG
  • 31. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Genome Sequencing Has Many Other Uses 32 ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG DNA DNADNA ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG
  • 32. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Genome Sequencing Has Many Other Uses 33 ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG DNA DNADNA ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG Some Discussion of this in Lecture 10
  • 33. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 2002 Most Genomes from a Few Groups 34 Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
  • 34. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 2002-2007: TIGR Tree of Life Project 35 Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree Naomi Ward Karen Nelson
  • 35. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 2007-2014: Genomic Encyclopedia 36 Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree
  • 36. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 2007-2014: Genomic Encyclopedia 37 Figure from Barton, Eisen et al. “Evolution”, CSHL Press based on Baldauf et al Tree BUT …
  • 37. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Microbial Diversity • The Tree of Life is mostly microbial • Diverse methods are available for studying microbial diversity • Most of the diversity of microbial life is poorly characterized 38
  • 38. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Great Plate Count Anomaly 39 <<<< Culturing Observation CountCount
  • 39. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Great Plate Count Anomaly 39 <<<< Culturing Observation CountCount http://www.google.com/url? sa=i&rct=j&q=&esrc=s&source=images&c d=&docid=rLu5sL207WlE1M&tbnid=CRLQ YP7d9d_TcM:&ved=0CAUQjRw&url=http %3A%2F%2Fwww.biol.unt.edu %2F~jajohnson %2FDNA_sequencing_process&ei=hFu7U_ TyCtOqsQSu9YGwBg&psig=AFQjCNG-8EB dEljE7- yHFG2KPuBZt8kIPw&ust=14048739512114 24 DNA
  • 40. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 rRNA Sequencing from Environmental Samples 40 rRNA rRNArRNA ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG Taxa Characters S ACUGCACCUAUCGUUCG R ACUCCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG F ACUCCAGGUAUCGAUCG C ACCCCAGCUCUCGCUCG W ACCCCAGCUCUGGCUCG Taxa Characters S ACUGCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG C ACCCCAGCUCUCGCUCG EukaryotesBacteria ?????Archaea
  • 41. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Metagenomics Improves Phylogenetic Resolution 41 metagenomics ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG Taxa Characters S ACUGCACCUAUCGUUCG R ACUCCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG F ACUCCAGGUAUCGAUCG C ACCCCAGCUCUCGCUCG W ACCCCAGCUCUGGCUCG EukaryotesBacteria Archaea Jo Handelsman
  • 42. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Metagenomics Has Many Other Purposes 42 metagenomics ACUGC ACCUAU CGUUCG ACUCC AGCUAU CGAUCG ACCCC AGCUCU CGCUCG Taxa Characters S ACUGCACCUAUCGUUCG R ACUCCACCUAUCGUUCG E ACUCCAGCUAUCGAUCG F ACUCCAGGUAUCGAUCG C ACCCCAGCUCUCGCUCG W ACCCCAGCUCUGGCUCG inputs of fixed carbon or nitrogen from external sources. As with Leptospirillum group I, both Leptospirillum group II and III have the genes needed to fix carbon by means of the Calvin–Benson– Bassham cycle (using type II ribulose 1,5-bisphosphate carboxy- lase–oxygenase). All genomes recovered from the AMD system contain formate hydrogenlyase complexes. These, in combination with carbon monoxide dehydrogenase, may be used for carbon fixation via the reductive acetyl coenzyme A (acetyl-CoA) pathway by some, or all, organisms. Given the large number of ABC-type sugar and amino acid transporters encoded in the Ferroplasma type Figure 4 Cell metabolic cartoons constructed from the annotation of 2,180 ORFs identified in the Leptospirillum group II genome (63% with putative assigned function) and 1,931 ORFs in the Ferroplasma type II genome (58% with assigned function). The cell cartoons are shown within a biofilm that is attached to the surface of an acid mine drainage stream (viewed in cross-section). Tight coupling between ferrous iron oxidation, pyrite dissolution and acid generation is indicated. Rubisco, ribulose 1,5-bisphosphate carboxylase–oxygenase. THF, tetrahydrofolate. articles NATURE | doi:10.1038/nature02340 | www.nature.com/nature 5©2004 NaturePublishing Group Some Discussion of this in Lecture 13
  • 43. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 43 Sequencing Has Gone Crazy
  • 44. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Hug et al. 2016 • Dowloaded 10,000+ genomes from various databases (including many I generated) • 1000+ new genomes • Searched these genomes for a set universal homologous genes (ribosomal proteins) (based on AMPHORA) • Aligned the sequences of these genes between species • Maximum likelihood tree 44 Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48 Laura Hug U. Waterloo Jill Banfield UC Berkeley
  • 45. Hug et al 2016 !45 Hug et al. 2016 Tree of Life 92 Bacterial Phyla 25 Archaeal Phyla 5 Eukaryotic Supergroups Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48 Laura Hug U. Waterloo Jill Banfield UC Berkeley
  • 46. !46 Hug et al 2016Hug et al. 2016 Bacteria Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48
  • 47. Taxa Covered in Textbook !47 Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48
  • 48. !48 Hug et al 2016Phyla Never Grown in the Lab Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48
  • 49. Hug et al 2016 !49 Hug et al. 2016 Archaea and Eukaryotes Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48
  • 50. Hug et al 2016 !50 Hug et al. 2016 Archaea Phyla Never Grown in the Lab Hug et al. Nature Microbiology. A new view of the tree of life. http://dx.doi.org/10.1038/nmicrobiol.2016.48
  • 51. Major Groups by Evolutionary Distance !51
  • 52. The Dark Matter of Biology !52 0.2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota gure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for oups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and hers are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting oups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives ed dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support om 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick rmat in Supplementary Dataset 2. NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS ATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved 2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for ured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and plit into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting ve special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives re apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick pplementary Dataset 2. E MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS ROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved 0.2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives (red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick format in Supplementary Dataset 2. NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved 0.2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives (red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick format in Supplementary Dataset 2. NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota matted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for edges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting cial taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives rent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support he complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick ntary Dataset 2. CROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS 0.2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives (red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick format in Supplementary Dataset 2. NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved 0.2 Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota Figure 2 | A reformatted view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for groups (coloured wedges) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and others are split into multiple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting groups to have special taxonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives (red dots) are apparent from this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support from 50 to 84%. The complete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick format in Supplementary Dataset 2. NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved cteria esebacteria cteria bacteria,Pacebacteria,Collierbacteria eria CandidatePhylaRadiation cteria esebacteria cteria b bacteria,Pacebacteria,Collierbacteria i eria CandidatePhylaRadiation cteria esebacteria cteria bacteria,Pacebacteria,Collierbacteria eria CandidatePhylaRadiation cteria esebacteria cteria b bacteria,Pacebacteria,Collierbacteria i eria CandidatePhylaRadiation Korarchaeota Woesearchaeota,Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri,Methanococci,Methanobacteria,Hadesarchaea,Thermococci Archaeoglobi,Methanomicrobia,Halobacteria Aciduliprofundum,Thermoplasmata UnculturedThermoplasmata Thermoplasmata Opisthokonta,Excavata,Archaeplastida Chromalveolata,Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria,Melainabacteria Deinococcus-Thermus Aquificae,CalescamantesEM19 Caldiserica,Dictyoglomi Thermotogae RBX-1 WOR-1 Firmicutes,Tenericutes,Armatimonadetes,Chloroflexi,Actinobacteria Fusobacteria,Synergistetes Unculturedbacteria(CPRIF32) bacteria(OP9) BRC1,Poribacteria Aigarchaeota,Cand.Caldiarchaeumsubterraneum Cyanobacteria,Melainabacteria Deinococcus-Thermus Aquificae,CalescamantesEM19 Caldiserica,Dictyoglomi q ,q , Thermotogae A ifi C RBX-1 WOR-1 Firmicutes,Tenericutes,Armatimonadetes,Chloroflexi,Actinobacteria Fusobacteria,Synergistetes Unculturedbacteria(CPRIF32) , y g, y g bacteria(OP9) BRC1,Poribacteria ( ) Woesearchaeota,Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri,Methanococci,Methanobacteria,Hadesarchaea,Thermococci E43 Archaeoglobi,Methanomicrobia,Halobacteria , , ,, , , Aciduliprofundum,Thermoplasmata gg UnculturedThermoplasmata p ,p , Thermoplasmata p Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand.Caldiarchaeumsubterraneum C b t i M l i b t i Opisthokonta,Excavata,Archaeplastida Chromalveolata,Amoebozoa Th h , Th h t Eukaryotes Bacteria ArchaeaWoesearchaeota,Nanoarchaeota Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and tinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting ic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives s analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick et 2. OLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS ature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for ) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and ple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting xonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives om this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support mplete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick Dataset 2. OBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota e tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for erage branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting tus. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives alysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support omal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick OGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS om/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved Korarchaeota Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci Archaeoglobi, Methanomicrobia, Halobacteria Aciduliprofundum, Thermoplasmata Uncultured Thermoplasmata Thermoplasmata Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota Cyanobacteria, Melainabacteria Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria Microgenomates Daviesbacteria Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Microgenomates Shapirobacteria Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Microgenomates Gottesmanbacteria KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, KaiserbacteriaParcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi Thermotogae Omnitrophica Omnitrophica Spirochaetes Spirochaetes Hydrogenedentes NKB19 Deltaproteobacteria Epsilonproteobacteria TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria Planctomycetes Chlamydiae Lentisphaerae Verrucomicrobia Verrucomicrobia RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) Aigarchaeota, Cand. Caldiarchaeum subterraneum Unclassified archaea Parcubacteria Candidate Phyla Radiation Cyanobacteria, Melainabacteria Deinococcus-Thermus Aquificae, Calescamantes EM19 Caldiserica, Dictyoglomi q ,q , Thermotogae A ifi C Omnitrophica Omnitrophica pp Spirochaetes Spirochaetes S i h t Hydrogenedentes NKB19 Deltaproteobacteria H d d t N Epsilonproteobacteria b TM6 Alphaproteobacteria, Zetaproteobacteria, Betaproteobacteria, GammaproteobacteriaChrysiogenetes, Deferribacteres Modulibacteria, Tectomicrobia, Nitrospinae, Nitrospirae, Dadabacteria, Thermodesulfobacteria, Deltaprot. NC10, Rokubacteria, Aminicenantes, Acidobacteria D f bD f b , , p ,, , p , Planctomycetes pp Chlamydiae y Lentisphaerae C a ydCh Verrucomicrobia Verrucomicrobia pp RBX-1 WOR-1 Firmicutes, Tenericutes, Armatimonadetes, Chloroflexi, Actinobacteria Fusobacteria, Synergistetes Uncultured bacteria (CP RIF32) , y g, y g Zixibacteria, Marinimicrobia, Caldithrix, Chlorobi, Ignavibacteria, Bacteroidetes Fibrobacteres Cloacamonetes Atribacteria (OP9) BRC1, Poribacteria ( ) Latescibacteria WS3 Gemmatimonadetes, WOR-3, TA06 b M Elusimicrobia Uncultured bacteria Uncultured bacteria (CP RIF1) O h Dojkabacteria WS6 CPR3 Katanobacteria WWE3 Katanobacteria WWE3 Microgenomates Roizmanbacteria Microgenomates Roizmanbacteria Microgenomates Microgenomates Curtissbacteria gg Microgenomates Daviesbacteria gg Microgenomates Levybacteria Microgenomates Woesebacteria Microgenomates Amesbacteria Mi t L b t i Microgenomates Shapirobacteria Mi t W bMi t Microgenomates Beckwithbacteria, Pacebacteria, Collierbacteria Mi Sh i b i Microgenomates Gottesmanbacteria t R i b t i g yg y KAZAN CPR2, Saccharibacteria TM7 Berkelbacteria Berkelbacteria Berkelbacteria Berkelbacteria CPR Uncultured unclassified bacteria Peregrinibacteria Peregrinibacteria Absconditabacteria SR1 Gracilibacteria BD1-5 / GNO2 SM2F11 Parcubacteria Parcubacteria Kuenenbacteria, Falkowbacteria, Uhrbacteria, Magasanikbacteria te a Parcubacteria Parcubacteria Parcubacteria Parcubacteria AbscAbs Parcubacteria Azambacteria, Jorgensenbacteria, Wolfebacteria, Giovannonibacteria, Nomurabacteria, Campbellbacteria, Adlerbacteria, Kaiserbacteria gg Parcubacteria Parcubacteria Moranbacteria Parcubacteria Parcubacteria Yanofskybacteria P b i Candidate Phyla Radiation Diapherotrites Nanohaloarchaeota Unclassified archaea Pacearchaeota Woesearchaeota, Nanoarchaeota Woesearchaeota Altiarchaeales Z7ME43 Methanopyri, Methanococci, Methanobacteria, Hadesarchaea, Thermococci E43 Archaeoglobi, Methanomicrobia, Halobacteria , , ,, , , Aciduliprofundum, Thermoplasmata gg Uncultured Thermoplasmata p ,p , Thermoplasmata p Unclassified archaea Korarchaeota , Crenarchaeota Crenarchaeota Thorarchaeota Lokiarchaeota YNPFFA Thaumarchaeota Thaumarchaeota b l b Aigarchaeota, FFA Cand. Caldiarchaeum subterraneum C b t i M l i b t i Opisthokonta, Excavata, Archaeplastida Chromalveolata, Amoebozoa Th h , Th h t Eukaryotes Bacteria Archaea Katanobacteria WWE3 Bootstrap ≥ 85% 85% > Bootstrap ≥ 50% Woesearchaeota, Nanoarchaeota view of the tree in Fig. 1 in which each major lineage represents the same amount of evolutionary distance. The threshold for ) was an average branch length of <0.65 substitutions per site. Notably, some well-accepted phyla become single groups and ple distinct groups. We undertook this analysis to provide perspective on the structure of the tree, and do not propose the resulting xonomic status. The massive scale of diversity in the CPR and the large fraction of major lineages that lack isolated representatives om this analysis. Bootstrap support values are indicated by circles on nodes—black for support of 85% and above, grey for support mplete ribosomal protein tree is available in rectangular format with full bootstrap values as Supplementary Fig. 1 and in Newick Dataset 2. OBIOLOGY DOI: 10.1038/NMICROBIOL.2016.48 LETTERS www.nature.com/naturemicrobiology 3 © 2016 Macmillan Publishers Limited. All rights reserved
  • 53. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2014 Also many uncultured eukaryotic groups 5353
  • 54. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Details • Dowloaded 10,000+ genomes from various databases (including many I generated) • 1000+ new genomes • Searched these genomes for a set universal homologous genes (ribosomal proteins) (based on AMPHORA) • Aligned the sequences of these genes between species • Maximum likelihood tree 54
  • 55. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Details • If you want to do things like this • Learn biology but also • Bioinformatics • Programming • Data science • Quantitative biology • Statistics 55
  • 56. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Reminder These trees are based on analysis of ribosomal proteins. They represent only a small subset of all the genes in a genome. 56
  • 57. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Microbial Diversity • We do not have time to cover all of these groups of microbes in lecture • These groups barely scratch the surface of the true diversity • Examples of Biological Diversity of Microbes • Focus on the Big Picture Patterns of This Diversity 57
  • 58. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Clicker 58
  • 59. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Clicker Which of the following is an example of universal homology A: Ether-linked lipids B: Peptidoglycan C: Ester-linked lipids D: Transcription of DNA into RNA E: Translation of RNA in the nucleus 59
  • 60. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Clicker Which of the following is an example of universal homology A: Ether-linked lipids B: Peptidoglycan C: Ester-linked lipids D: Transcription of DNA into RNA E: Translation of RNA in the nucleus 60
  • 61. Bacterial Diversity: Gram Positive vs. Negative 61 Outside of cell Outside of cell Inside of cell Inside of cell Cell envelope Cell wall (peptidoglycan) Plasma membrane Outer membrane of cell envelope Periplasmic space Peptidoglycan layer Periplasmic space Plasma membrane 5 µm 5 µm Gram Positive Gram Negative
  • 62. Bacterial and Archaeal Shapes Archaea cell membranes have lipids with fatty acids linked to glycerol by ether linkages (a synapomorphy of archaea): 62
  • 63. Ester Linkages Bacterial and eukaryotic cell membranes have lipids with fatty acids connected to glycerol by ester linkages: 63
  • 64. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Diversity of Form • Bacteria and archaea way more diverse in morphology (e.g., size, shape) than many appreciate • Morphological diversity in NPAF eukaryotes also immense (NPAF = non plant, animal, or fungal) • Diversity of movement connected to diversity of form • Many examples of convergent evolution in morphology, related features 64
  • 65. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Bacteria: Major Cell Forms • Among the Bacteria and Archaea, three shapes are common: ! Sphere or coccus (plural cocci), occur singly or in plates, blocks, or clusters. ! Rod—bacillus (plural bacilli) ! Helical • Rods and helical shapes may form chains or clusters. 65
  • 66. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Bacteria: Other Forms 66
  • 67. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Archaea: Examples of Forms 67
  • 68. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Motility of Vibrio (a member of the Proteobacteria phylum) 68
  • 69. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Corkscrew Movement of Spiraling (A Cyanobacterium) 69
  • 70. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 •Most are marine and are important photoautotrophic primary producers •Mixture of pigments give them a golden brown color. •Have two flagella, one in an equatorial groove, the other in a longitudinal groove. Alveolates: Dinoflagellates 70 Certium tenue Coral symbiont
  • 71. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Chromalveolates: Haptophytes • Haptophytes 71 Coccolithophores (haptophytes) can also form immense blooms in the ocean. Blooms can reduce the amount of sunlight that penetrates deeper waters. Emiliania huxleyi—one of smallest unicellular eukaryotes. May contribute to global warming through its metabolism.
  • 72. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Alveolates: Ciliates 72 Movement in a ciliate from the gut of a termite • All have numerous cilia, • Most are heterotrophic; very diverse group. • Have complex body forms and two types of nuclei.
  • 73. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Stramenopiles: Diatoms •Unicellular, but many associate in filaments. •Have carotenoids and appear yellow or brown. •Excellent fossil record •Most are photoautotrophic •Responsible for 20% of all carbon fixation. •Oil, gas source 73 A colony of the diatom, Bacillaria paradoxa
  • 74. Rhizaria: Foraminiferans Sand beaches in the tropics • Secrete shells of calcium carbonate. • Discarded shells make up limestone. • Create some beach sands • Used to date & characterize sedimentary rocks. • Some live as plankton, others at sea bottom. • Thread-like, branched pseudopods extend through pores in the shell and form a sticky net that captures smaller plankton. 74
  • 75. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Rhizaria: Radiolarians • Have thin, stiff pseudopods reinforced by microtubules. • The pseudopods increase surface area for exchange of materials; and help the cell float. • Exclusively marine, most secrete glassy endoskeletons, many with elaborate designs. 75
  • 76. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Unikonts: Opisthokonts: Choanoflagellates •Choanoflagellates are sister to the animals. •Some are colonial and resemble a type of cell found in sponges. 76 The choanoflagellate Salpingoeca sp. feeding
  • 78. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Figure 30.14 Sexual Life Cycles of Chytrids and Zygospore Fungi (Part 1) 78
  • 79. Stramenopiles: Oomcyetes Phytophthora Potato Late Blight • Non-photosynthetic. • Are absorptive heterotrophs • Once were classed as fungi, but are unrelated. 79 Sudden Oak Death
  • 80. Amoebozoans: Plasmodial Slime Molds • Individual motile cells can form single, multinucleate cell (plasmodium) • Ingest food by endocytosis • Form spores on stalks called fruiting bodies. • Found in cool, moist habitats 80
  • 81. Amoebozoans: Cellular Slime Molds • Life cycle consists of individual motile cells that ingest food by endocytosis • This is followed by the formation of single, multicellular fruiting structure • Each cell retains its own plasma membrane and individuality 81 Karyo
  • 82. Multicellularity • Many lineages, not just PAF (plants, animals and fungi) include multicellular representatives • Mechanisms responsible for multicellularity different in different groups (why might that be)? 82
  • 83. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Many Fungi Multicellular 83
  • 84. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Animals 84
  • 85. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Plants 8
  • 86. Amoebozoans: Cellular Slime Molds • Life cycle consists of individual motile cells that ingest food by endocytosis • This is followed by the formation of single, multicellular fruiting structure • Each cell retains its own plasma membrane and individuality 86 Karyo
  • 87. •All are multicellular; some get very large (e.g., giant kelp). •The carotenoid fucoxanthin imparts the brown color. •Almost exclusively marine. Stramenopiles: Brown Algae 87 A community of brown algae: The marine kelp forest
  • 88. Amoebozoans: Plasmodial Slime Molds • Individual motile cells can form single, multinucleate cell (plasmodium) • Ingest food by endocytosis • Form spores on stalks called fruiting bodies. • Found in cool, moist habitats 88
  • 89. Plantae: Red Algae 89 • Most red algae are marine and multicellular. • Red pigment is phycoerythrin. •Many reproduce with spores Motile spores from Purpureofilum Audouinella pacifica Spyridia
  • 90. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 The chlorophytes are the sister group to charophytes and land plants. Synapomorphies include chlorophyll a and b, and starch as a storage product. More than 17,000 species; marine, freshwater, and terrestrial. Unicellular to large 90 Plantae: Chlorophytes Movement in the green alga Volvox Micrasterias
  • 91. Multicellular Bacteria (Stigmatella, a Proteobacterium) Photo 26.24 Fruiting body of gliding bacterium Stigmatella aurantiaca. SEM. 91
  • 92. Biofilms are common in bacteria 92
  • 93. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Photo 26.4 Filaments of photoautotrophic cyanobacteria, 93
  • 94. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 More on Multicellularity Later in BIS2C 94
  • 95. Diversity of Processes • Microbes are able to make use of or alter just about any chemical bond found on Earth • This allows a wide range of niches, and a wide diversity of roles in ecosystems • Also diverse mechanisms for surviving and thriving in “harsh” conditions • Humans and other organisms have taken advantage of this diversity in many ways 95
  • 96. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 The Unusual 105°C CH3 CO, 80°CH2S, pH 0, 95°C High salt CO2 4°Clow pH 96
  • 97. The Influential Carbon cycle Nitrogen cycle 97
  • 98. The Consumable • = 98 Feed microbes a little carbon and they can make some nice things
  • 99. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Functional Diversity Covered in Labs 2 and 3 and Lecture 11-13 99
  • 100. Interactions • Microbes have diverse interactions with other organisms (both microbes and macrobes) • Symbiosis is an intimate association between at least two different organisms in which at least one of them benefits 100
  • 102. Alveolates: Apicomplexans • All parasitic • Have a mass of organelles at one tip —the apical complex that help the parasite enter the host’s cells. 102 Apical complex • Plasmodium falciparum- Malaria kills 700,000-2,000,000 people per year—75% of them are African children
  • 103. Slides by Jonathan Eisen for BIS2C at UC Davis Spring 2016 Red tide caused by dinoflagellates (Gonyaulax sp.). 103
  • 104. Excavates: Diplomonads and Parabisalids • Unicellular • Lack mitochondria and most are anaerobic. This is a derived condition • Giardia lamblia - a diplomonad - is a human parasite • Trichomonas vaginalis - parabasalid - STD 104
  • 105. Excavates: Heteroloboseans • Amoeboid body form. • Naegleria can enter humans and cause a fatal nervous system disease - “brain eating” • Some can transform between amoeboid and flagellated stages. 105