SlideShare a Scribd company logo

Prosym53

1 of 1
Download to read offline
逆サフィックスリンクを用いた                                      プログラミングシンポジウム
                                                    2012/01/06〜08
塩基配列の曖昧検索                                           Preferred Infrastructure

概要                                   許容誤差 d が小さい場合は,パターンの近傍を
 検索クエリに対し編集距離が一定以下の部分列を検              Suffix Array を用いて列挙する。その際、ある Suffix
索するアルゴリズム(曖昧検索)を実装し、塩基配列              の先頭に別の文字をつけたものの Suffix Array 上で
を曖昧検索するデモを構築した。                       の位置を前計算し、インデックスとして保持する。
デモ画面                              保持するインデックス
                                     dna4 インデックス
                                      文字数が 4 種である事を用いてビット単位で圧縮し
                                      たインデックス
                                     suffix array インデックス
                                     fm インデックス
                                      「ある Suffix の先頭に(文字列中にあるとは限らな
                                      い)別の一文字をつけた文字列」の Suffix Array 中
                                      での位置を前計算したインデックス
                                  その他最適化
システム全体像                              分割が均等になるように最初に分割の幅とそれぞれ
                                      の許容誤差を決めてから再帰処理を行う
                                     文章長を考慮して,パターンの最適な分割幅を調節
                                      する
                                     ノードでの許容誤差を徐々に増やしながら探索する
                                      事で特殊ケースを除き検索を高速化できる.
 フロントサーバーがクエリを受けつける。バックサ          実験
ーバーはインデックスを持ち、曖昧検索を行う。
                                  文字列 4 種類(A, G, C, T)に限定し、ヒトの全染色体
問題設定                              (約 32 億 5400 万塩基)に対し検索を行う。
 文章 T,検索クエリ q、許容誤差 d が与えられたと       実験 1(パターン長一定,許容誤差率を変化)
き、T の部分列で、q との編集距離が d 以下のものを
列挙せよ。
前提知識 1:Suffix Array
 文章 T の Suffix 全体をソートして並べたもの
例:T = abracadabra$の場合




                                     実験 2(許容誤差率一定,パターン長を変化)




前提知識 2:分割統治法
 配列 T に関する問題を、配列を 2 つに再帰的に分割
し、それぞれの配列に対する小問題として再帰的に問
題を解く。(例:クイックソート)
                                  結果
                                     誤差 20%以内ならば 10000 塩基程度でも 100 秒以
                                      内に全列挙を行う事ができた
                                     許容誤差率に対し指数関数的に検索時間が増加した
                                  今後の展望
                                     複数の生物種の塩基配列での相同検索
アルゴリズム概要                             メタゲノム検索
   許容誤差 d が大きい場合、パターンを分割し,そ      参考文献
    れぞれに対して許容誤差(d-1)/2 の解を再帰的に求
    める(鳩の巣原理)。それらのうち全体で d 以下      [1] Myers: A fast bit-vector algorithm for approximate
                                  string matching based on dynamic programming. Journal
    のもの返す。                        of the ACM, 46(3): 395-415 1999.




逆サフィックスリンクを用いた塩基配列の曖昧検索                                                                    1

Recommended

2015 08 survey
2015 08 survey2015 08 survey
2015 08 surveymarujirou
 
アルゴリズムとデータ構造14
アルゴリズムとデータ構造14アルゴリズムとデータ構造14
アルゴリズムとデータ構造14Kenta Hattori
 
入門パターン認識と機械学習15章
入門パターン認識と機械学習15章入門パターン認識と機械学習15章
入門パターン認識と機械学習15章hiro5585
 
Newtsulideprint
NewtsulideprintNewtsulideprint
Newtsulideprinttononro
 
公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮Joe Suzuki
 
Response Summarizer: An Automatic Summarization System of Call Center Convers...
Response Summarizer: An Automatic Summarization System of Call Center Convers...Response Summarizer: An Automatic Summarization System of Call Center Convers...
Response Summarizer: An Automatic Summarization System of Call Center Convers...Preferred Networks
 
対話における商品の営業
対話における商品の営業対話における商品の営業
対話における商品の営業Preferred Networks
 

More Related Content

Viewers also liked

Generation of 3D-avatar animation from latent representations
Generation of 3D-avatar animation from latent representationsGeneration of 3D-avatar animation from latent representations
Generation of 3D-avatar animation from latent representationsPreferred Networks
 
Bayesian Dark Knowledge and Matrix Factorization
Bayesian Dark Knowledge and Matrix FactorizationBayesian Dark Knowledge and Matrix Factorization
Bayesian Dark Knowledge and Matrix FactorizationPreferred Networks
 
ニューラルネットワーク入門
ニューラルネットワーク入門ニューラルネットワーク入門
ニューラルネットワーク入門naoto moriyama
 
ディープラーニングが活かすIoT
ディープラーニングが活かすIoTディープラーニングが活かすIoT
ディープラーニングが活かすIoTPreferred Networks
 
DQN with Differentiable Memory Architectures
DQN with Differentiable Memory ArchitecturesDQN with Differentiable Memory Architectures
DQN with Differentiable Memory ArchitecturesPreferred Networks
 
3D Volumetric Data Generation with Generative Adversarial Networks
3D Volumetric Data Generation with Generative Adversarial Networks3D Volumetric Data Generation with Generative Adversarial Networks
3D Volumetric Data Generation with Generative Adversarial NetworksPreferred Networks
 
ディープラーニングの最新動向
ディープラーニングの最新動向ディープラーニングの最新動向
ディープラーニングの最新動向Preferred Networks
 
実世界の人工知能@DeNA TechCon 2017
実世界の人工知能@DeNA TechCon 2017 実世界の人工知能@DeNA TechCon 2017
実世界の人工知能@DeNA TechCon 2017 Preferred Networks
 
IPAB2017 深層学習を使った新薬の探索から創造へ
IPAB2017 深層学習を使った新薬の探索から創造へIPAB2017 深層学習を使った新薬の探索から創造へ
IPAB2017 深層学習を使った新薬の探索から創造へPreferred Networks
 

Viewers also liked (11)

Generation of 3D-avatar animation from latent representations
Generation of 3D-avatar animation from latent representationsGeneration of 3D-avatar animation from latent representations
Generation of 3D-avatar animation from latent representations
 
Bayesian Dark Knowledge and Matrix Factorization
Bayesian Dark Knowledge and Matrix FactorizationBayesian Dark Knowledge and Matrix Factorization
Bayesian Dark Knowledge and Matrix Factorization
 
ニューラルネットワーク入門
ニューラルネットワーク入門ニューラルネットワーク入門
ニューラルネットワーク入門
 
ディープラーニングが活かすIoT
ディープラーニングが活かすIoTディープラーニングが活かすIoT
ディープラーニングが活かすIoT
 
aiconf2017okanohara
aiconf2017okanoharaaiconf2017okanohara
aiconf2017okanohara
 
DQN with Differentiable Memory Architectures
DQN with Differentiable Memory ArchitecturesDQN with Differentiable Memory Architectures
DQN with Differentiable Memory Architectures
 
3D Volumetric Data Generation with Generative Adversarial Networks
3D Volumetric Data Generation with Generative Adversarial Networks3D Volumetric Data Generation with Generative Adversarial Networks
3D Volumetric Data Generation with Generative Adversarial Networks
 
ディープラーニングの最新動向
ディープラーニングの最新動向ディープラーニングの最新動向
ディープラーニングの最新動向
 
Ibis2016okanohara
Ibis2016okanoharaIbis2016okanohara
Ibis2016okanohara
 
実世界の人工知能@DeNA TechCon 2017
実世界の人工知能@DeNA TechCon 2017 実世界の人工知能@DeNA TechCon 2017
実世界の人工知能@DeNA TechCon 2017
 
IPAB2017 深層学習を使った新薬の探索から創造へ
IPAB2017 深層学習を使った新薬の探索から創造へIPAB2017 深層学習を使った新薬の探索から創造へ
IPAB2017 深層学習を使った新薬の探索から創造へ
 

More from Preferred Networks

Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るPreferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Preferred Networks
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...Preferred Networks
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜Preferred Networks
 
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48Preferred Networks
 

More from Preferred Networks (20)

Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
 
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
 

Prosym53

  • 1. 逆サフィックスリンクを用いた プログラミングシンポジウム 2012/01/06〜08 塩基配列の曖昧検索 Preferred Infrastructure 概要  許容誤差 d が小さい場合は,パターンの近傍を 検索クエリに対し編集距離が一定以下の部分列を検 Suffix Array を用いて列挙する。その際、ある Suffix 索するアルゴリズム(曖昧検索)を実装し、塩基配列 の先頭に別の文字をつけたものの Suffix Array 上で を曖昧検索するデモを構築した。 の位置を前計算し、インデックスとして保持する。 デモ画面 保持するインデックス  dna4 インデックス 文字数が 4 種である事を用いてビット単位で圧縮し たインデックス  suffix array インデックス  fm インデックス 「ある Suffix の先頭に(文字列中にあるとは限らな い)別の一文字をつけた文字列」の Suffix Array 中 での位置を前計算したインデックス その他最適化 システム全体像  分割が均等になるように最初に分割の幅とそれぞれ の許容誤差を決めてから再帰処理を行う  文章長を考慮して,パターンの最適な分割幅を調節 する  ノードでの許容誤差を徐々に増やしながら探索する 事で特殊ケースを除き検索を高速化できる. フロントサーバーがクエリを受けつける。バックサ 実験 ーバーはインデックスを持ち、曖昧検索を行う。 文字列 4 種類(A, G, C, T)に限定し、ヒトの全染色体 問題設定 (約 32 億 5400 万塩基)に対し検索を行う。 文章 T,検索クエリ q、許容誤差 d が与えられたと  実験 1(パターン長一定,許容誤差率を変化) き、T の部分列で、q との編集距離が d 以下のものを 列挙せよ。 前提知識 1:Suffix Array 文章 T の Suffix 全体をソートして並べたもの 例:T = abracadabra$の場合  実験 2(許容誤差率一定,パターン長を変化) 前提知識 2:分割統治法 配列 T に関する問題を、配列を 2 つに再帰的に分割 し、それぞれの配列に対する小問題として再帰的に問 題を解く。(例:クイックソート) 結果  誤差 20%以内ならば 10000 塩基程度でも 100 秒以 内に全列挙を行う事ができた  許容誤差率に対し指数関数的に検索時間が増加した 今後の展望  複数の生物種の塩基配列での相同検索 アルゴリズム概要  メタゲノム検索  許容誤差 d が大きい場合、パターンを分割し,そ 参考文献 れぞれに対して許容誤差(d-1)/2 の解を再帰的に求 める(鳩の巣原理)。それらのうち全体で d 以下 [1] Myers: A fast bit-vector algorithm for approximate string matching based on dynamic programming. Journal のもの返す。 of the ACM, 46(3): 395-415 1999. 逆サフィックスリンクを用いた塩基配列の曖昧検索 1