SlideShare a Scribd company logo
1 of 14
Download to read offline
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. B1, PAGES 631-644, JANUARY 10, 1993
Teleseismic b Values; Or, Much Ado About 1.0
CUFF F•OHUCH
Institutefor Geophysics,UniversityofTexasatAustin
Scozr D. DAVIS1
CooperativeInstitutefor ResearchintheEnvironmentalSciencesandNationalGeophysicalData Center,Boulder,Colorado
In thispaperweinvestigatethevalueof bintheGutenberg-Richterrelationforfourteleseismiccatalogsof
earthquakes:Abe'shistoricalcatalog,theHarvardCentroidMomentTensor(CMT) catalog,thecatalogof the
InternationalSeismologicalCentre(ISC),andtheBlacknestcatalog.Anunfortunateresultisthatbdiffersby30%
ormorewhendeterminedindifferentmagnituderanges,indifferentcatalogs,orusingdifferentmethods.Forglobal
catalogsseparatedintoshallow,intermediate,anddeepearthquakegroups,allvaluesdeterminedforbliebetween
0.72and1.34.Wecanidentifynosystematicglobalvariationofbwithdepth.Forteleseismiccatalogsitisdifficult
tobelievemeasuredgeographicvariationsinbbecausesystematicerrorscauseproblemsofearthquakedetection,
earthquakelocation,aftershockidentification,andmagnitudedetermination.However,somevariationsinbareso
persistentandlargethattheymustbereal.FordeepearthquakesinTonga-Fiji,forexample,variousmeasurements
of blie between1.06and1.57,comparabletob forshallowearthquakes,whereasmeasurementsof b fordeep
earthquakesintherestoftheworldaremuchlower,between0.53and0.96.ForshallowearthquakesintheHarvard
CMTcatalog,earthquakeswiththrustandstrikeslipfocalmechanismshavesignificantlylowerbvalues(0.86and
0.77)thanearthquakeswithnormalfaultingmechanisms(1.06).WhenweseparatetheISCcatalogintoprimary
events(mainshocksandearthquakeswithnoaftershocksorforeshocks)andsecondaryevents(aftershocksand
foreshocks),weobservethatbfor secondaryeventsisnearlyalwayssignificantlyhigherthanbformainshocks.
However,weshowthatthedifferencehasnophysicalsignificance,asit arisessimplyfromtheactof choosing
mainshocksasthelargestearthquakein aforeshock-mainshock-aftershocksequence.Whenwecorrectforthis
systematiceffectbycomparingtherealcatalogstoidenticalcatalogswithrandomlyreassignedmagnitudes,wefind
thatb for secondaryeventsin therealcatalogis actuallylowerthanexpected.Thusamongaftershockslarge
earthquakesarerelativelymorecommonthanexpected,perhapsbecausethemainshockraptureloadsasperitiesin
adjacentregions.
INTRODUCTION
A trivia]observationaboutthenatureof earthquakesis that
not all earthquakesare the same size. Useful parameters
which quantify earthquakesize includemoment[Hanks and
Kanamori, 1979], potency[Heaton and Heaton, 1989], and
radiated energy. However, for historical reasonsthe most
commonlyusedmeasureof earthquakesize is magnitude,as
determinedfrom a variety of differentmagnitudescales. In
practice the statisticaldistributionof sizes for a group of
earthquakescan be quite complicated. For purposesof
comparison,the so-calledGutenberg-Richter[1954] model
hasprovideda quitesuccessfulstartingmodel. Over a limited
range of earthquakemagnitudes,for most magnitudescales
the distributionoften appearsto satisfy
1og10N=a-bM (1)
where N is the numberof earthquakesin the grouphaving
magnitudeslargerthanM, anda andb areconstants.Clearly,
b is a statisticmeasuringtheproportionsof largeandsmall
earthquakesin the group;if b is large,small earthquakesare
relatively common, whereas when b is small,. small
earthquakesarerelativelyrare.
There is a surprisinglylargeliteratureconcerningthese"b
'NowatInstituteforGeophysics,UniversityofTexasatAustin
Copyfight1993bytheAmericanGeophysicalUnion.
Papernumber9211101891.
0148-0227/93/9ZIB-01891505.00
631
values"(seeBath [1981] for a review). A few papersattempt
to relate the value of b to the physical processeswhich.
generategroupsof earthquakes.One approachis to assume
thatthenumberof earthquakesof a givensizeis proportional
to the areaor volumeavailablefor faultingandthusthat theb
value is closelyrelated to the dimensionalityof this volume
[Kanarnori and Anderson, 1975; Aki, 1981]. Another
approachis to attemptto derive a relationbetweenthe stress
or stressdrop in the sourcearea and the b value [Scholz,
1968; Wyss,1973;Hanks, 1979]; generallythe resultis that
higherstressescorrespondto lower b values.
If such physical factors do affect b, then we ought to
observe variations in b that depend on tectonic and
theological conditions near the earthquake source. The
primary objectiveof this paperwill be to determineb values
for selected earthquakegroups in several different global
earthquake catalogs. In particular, we shall addressthe
following questions:
1. How similar or different are b values measured in
different global catalogs? How large must observed
differencesbe to be significant?
2. How-different are b valuesfor earthquakesin different
geographicand tectonic groups, and are these differences
significant?
3. Does bsec, the b value for catalogs of earthquake
foreshocksor aftershocks,differ from bMain,theb value for
events which are mainshocks or which possess no
aftershocks?
The next section describes several different global
earthquakecatalogs,the magnitudescalesusedfor evaluating
632 FRoauca^NDD^v•s' Muc• ADoABotrrT•ss•c b
earthquakesize,andvariousproceduresfor determiningb. To
separateearthquakesinto geographicgroups,we usethesame
subgroupsas in a companionpaperon p values[Davis and
Frohlich, 1991a]. To separateearthquakesin terms of
tectonicgroupsor sourcetype we utilize methodsdescribed
by Frohlich and Apperson[1992].
To investigatedifferencesbetween fore- and aftershocks
and other earthquakes,we utilize methods incorporating
single-linkclusteranalysis(SLC), describedin somedetail
previously[Frohlich and Davis, 1990;Davis and Frohlich,
199lb]. We defineaftdrshocksasin ourpreviouswork,
namely,if a specifiedstatisticaltestsuggeststhata sequence
of earthquakesisrelated,thenwe definethelargestearthquake
as the "primary event" or mainshock, and all other
earthquakesare "secondaryevents", with aftershocksand
foreshocksbeing those which occur after, or before, the
primary event.
Somedifficultiesarisebecause,asweshallshow,thevery
actof identifyingthe primaryeventasthe largestearthquake
in each sequencesystematically affects the values of b
determinedfor primaryandsecondaryevents. Thusmeasured
valuesof bsecfor aftershocksor secondaryeventsmustnearly
always be higher than bMain for mainshocks, even in the
absenceof a physicalcause. To overcomethisproblemand
determinewhetherobserveddifferencesbetweenbMainandbsec
are significant,we developa methodwhich comparesbMain
andbSecfromreal earthquakecatalogswith valuesdetermined
from a correspondinghypotheticalcatalog with randomly
reassignedmagnitudes.
DATA AND METHODS
GlobalSeismicityCatalogsandMagnitudeScales
Because b value is a statistical measure of the relative
occurrenceratesof big and small earthquakes,we prefer
magnitudescalesthatmeasureearthquakesizefaithfully,and
we require catalogsthat are as completeand uniform as
possible.Forthepresentstudy,wehaveutilizeda varietyof
magnitudedatafromfourdifferentglobalseismicitycatalogs.
Abe's catalog. The first of theseis thecatalogof large
earthquakespreparedby Abe [1981, 1984]. He carefully
reevaluatedamplitudeand period observationsfrom several
sourcesincludingworksheetsin the archivesat the California
Institute of Technology. For 1614 large earthquakes
occurring between 1897 and 1980, he redetermined the
magnitudeMs from surfacewaveshavingperiodsof about
20s,andGutenberg's[1945]magnitudemB frombodywaves
having periodsof 6-8 s (Figure 1). The distributionof
magnitudesin Abe'scatalogsuggeststhatMs andmB saturate
at about8.5 and8.2, respectively.As magnitudedecreases,
therateof activityincreasesdownto7.0forbothMs andmB.
Abe's [1981, p. 72] objectivein this work wasto "remove
major inhomogeneitiesin the existing catalogs." For
earthquakeswithmagnitudesof 7'.0andabove,it is likely
thatAbe'scatalogis moreuniformandcompletethanother
availablecatalogs,at leastfor earthquakesoccurringbetween
1904 and 1976.
Harvard catalog. The secondcatalogusedis the Harvard
CentroidMoment Tensor (CMT) catalog. This consistsof
recordsof 8719 earthquakesoccurringbetweenJanuary1977
and June1989. For this periodthe Harvardgrouputilized
3.0
2.5
1.0
0.5
0.0
I I I I I
6.0 7.0 •"' 8.0
rn B
Fig.1.DistributionofmagnitudesmsinAbe'scatalogoflargeearthquakes
occurringbetween1897and1980. Thesolidlineisthecumulativenumber
ofearthquakeshavingmsequaltoorexceedingthegivenvalue,thedashed
lineisthenumberinbinsofwidth0.1.Theverticallinesbetweenmsof7.0
and7.5delineatetherangeusedtodetermineba•,eandbc•,winTable1.
long-period (50-200 s) body and/or surface waves to
determinescalarmomentsandCMT for mostearthquakes
havingmagnitudesof about5.5 andgreater(Figure2). For
thisstudywe convertedthe scalarmomentsMo (in dyne
centimeters)to momentmagnitudesMw andmwusingthe
relationshipssuggestedby Hanksand Kanamori[1979]and
Kanamori [1983]:
2
Mw=T 1øgloMø- 10.7, (2)
mw=(1OgloMo- 10.1)./2.4. (3)
In practice,the momentmagnitudescalesdo not saturate
becausetheydependon suchlongperiodobservations.For
magnitudesbetween7.0 and7.5 wherenoneof thescalesMw,
mw,Ms andmB arenearsaturation,Kanamori [1983] notes
thatMw andmw correspondto Ms andmB, respectively.
WhileHarvard'smethodsfordeterminingCMTshavechanged
somewhat over time [Dziewonski et al., 1981; Dziewonski
and Woodhouse,1983], generallymomentmagnitudesare
becomingacceptedover othermagnitudesbecausemoment
magnitudesare determinedfrom digital data recordedat a
relativelyfew carefullyoperatedseismographstations.
ISC catalog. The third catalog used is that of the
International Seismological Centre (ISC). While this
containsrecordsof severalhundredthousandearthquakes,
betweenJanuary1964andFebruary1986only about47,553
possessmagnitudesmb of 4.8 or larger(Figure3). Because
m/, utilizesbodywaveswith periodsof approximately1.0
second,it saturatesat a magnitudeof about 6.8. In the
National Oceanographicand AtmosphericAdministration
HypocenterData File, which includesmany of the same
earthquakesas the ISC catalog,analysisby Habermann
[1982, 1983] andHabermannet al. [1986]foundthatin most
geographicregions reporting of earthquakeactivity is
homogeneousforearthquakeswithmbof approximately5.0.
FROHLICHANDDAVIS' MUCH ADO ABOUTTELESEISMICb VALUES 633
4
I I
Harvard CMT
I I I I I
Fig. 2. Distributionof magnitudesMwin the HarvardCentroidMoment
Tensorcatalogforearthquakesoccurringbetween1977and1990.Solidand
dashedlines are the cumulativenumberand numberin bins of width 0.1,
respectively.TheverticallinesbetweenMwof 5.65and6.55delineatethe
rangeusedtodeterminebHrvin Table1.
4 ISC
I I I I I I I I
5.0 6.0 7.0 õ.0
baselinedifferencesbetweenindividualstations.Like mb, the
redeterminedmaximum likelihood magnitudesrnb (rnlike)
saturateat about 6.8. As magnitudedecreases,the rate of
activityincreasesdownto about4.2 (Figure4). However,for
the Blacknest catalog the semilog plot of number versus
magnitudeis not so straightas with the Harvard or Abe
catalogs. This is probably becausein certain geographic
regions the global network often missessome earthquakes
havingmagnitudesbetweenabout4.3 and5.0. Nevertheless,
for the period 1964 to 1983, we presumethat magnitudesin
the Blacknest catalog are more uniform temporally and
geographicallythanin theISC catalog. For earthquakeswith
magnitudesof about 5.0 and below rnb (rnlike) averages
approximately0.2 smallerthanmb.
"Altered" magnitudes: Combining the Abe and Harvard
catalogs. Nearly all earthquakecatalogsexhibit temporal
changesin the rate of activity within particularmagnitude
ranges. While some investigatorsattribute this to intrinsic
changesin the rate of occurrenceof earthquakes[Abe and
Kanamori, 1979], another plausible explanation is that
changesin global network coverageand seismographstation
practicesystematicallyaffectmagnitudes.Perez and Scholz
[1984] show that these apparentrate changesdisappearif
Abe'sMs is adjustedby subtracting0.5 from all magnitudes
for earthquakes prior to 1908, and subtracting 0.2 for
earthquakesbetween1908 and 1948.
Using an approachsimilar to that of Perez and Scholz
[1984], we canadjustAbe'srn/• so that for earthquakeswith
magnitudebetween 6.95 and 7.55, the occurrencerate is
nearly constantand in agreementwith the Harvard CMT
catalog(Figure5).Wedefinethe"adjusted"magnitudernB(a•lj)
for anearthquakein yearYby
mB(a•ij) =mB- 0.2forYbetween1904and1939;
= mB- 0.3 for Y between1940 and 1949;
= mB - 0.2 for Y between1950 and 1958;
= mw- 0.1 for Y between1959 and 1976;
= mwfor Y between 1977 and 1990.
Here mw is calculated as above from the CMT scalar
momentMo. SimilarapparentratechangesalsoafflicttheISC
catalogand(to a lesserextent)theHarvardCMT catalog.For
earthquakeswithmagnitudesrnb (mlike) of 4.5 andgreater,
occurrenceratesin theBlacknestcatalogarenearlyconstant
over time.
IIl b
Fig.3. Distributionof magnitudesmbexceeding4.8 in theInternational
SeismimologicalCentrecatalogfor earthquakesoccurringbetween1964
and 1986. Solid and dashed lines are the cumulative number and number in
binsofwidth0.1,respectively.Theverticallinesbetweenmbof5.0and6.0
delineatetherangeusedtodetermineblsc in Table1.
Blacknestcatalog. The fourthcatalogusedis theBlacknest
catalog[Lilwall andNeary, 1986],whichattemptsto remove
stationreportingbiasesin mb asdeterminedby theISC. As
discussedby Habermann[1991] andnumerousothers,thereis
considerableevidencethat both regionaland time-dependent
nonuniformitiesin rnb doexist. Lilwall andNeary [1986] use
a maximum likelihood method similar to that developedby
Ringdal [1986] that purportsto eliminate bias occurring
becauseof data truncation at low readings and becauseof
Methodsfor Measuringb Values
Determining the relative proportionsof large and small
earthquakeswithin a grouprequiresknowledgeof rates of
seismic activity for earthquakesof different sizes. One
approachis to measurethe slope(b value) of the distribution
of log-number versus magnitude, taking care to select a
relatively small magnituderange. Over this rangethe slope
mustbe reasonablystraight,andwe mustselecta rangewhere
themagnitudescalemeasuresearthquakesizefaithfully. Utsu
[1966] and Aki [1965] proposedthe maximum likelihood
methodto measureb for a catalogwheremagnitudesexceed
some minimum value Minin, andPage [1968] presented
modificationsto apply when the catalog is complete only
with a rangeof magnitu.desbetweenMininandM,nax.Bender
[1983] generalizedthe method to apply when the data are
occurrenceratesmeasuredin discretemagnitudeintervals.
Bender's method. Bender [1983] explains her method
634 FROHLICHANDDAVIS: MUCH ADo A•otrr TELESFaSMICb VALUES
clearly and in some detail, therefore here we will only
summarizeher result. In particular,supposethat for a group
of earthquakeswe wishtodetermineb for magnitudesreported
in n discretebinsof width8m betweena minimummagnitude
of Mmin anda maximummagnitudeMm•x. Thenthemaximum
likelihood estimate of b satisfies
q q• (M>-Minin
• -n • = (4)
1-q 1-q &n '
whereq = exp(- 23026 bSm)and(M) is themeanvalueof all
magnitudeswithin the stated ranges. Generally it is not
possibleto solve this equationexplicitly for q, insteadwe
determineit numericallyß
Forexample,supposewe wishto findb for all Aberna with
magnitudesbetween7.0 and 7.5ßthenM min= 6.95, M max =
7.55, n = 6 and8m = 0.1. For this groupof earthquakes
(Figure1) we findthat(M) = 7.18, andthusb = 1.15.
Compositemethod.'A completelydifferentapproachis to
determineb directlyby comparingthe rate of occurrenceof
large and small earthquakes.As we would like "large" and
"small" to encompass the greatest possible range of
magnitudes,we will utilize different magnitudescalesfor
determiningthe relative rates. Since individual magnitude
scalessaturatefor earthquakesoutsidesome optimum size
range, Frohlich [1989] suggestedmeasuringan effective
valueforbeffusingfrequencyofoccurrencedeterminedfortwo
differentmagnitudescales,eachwithin their optimumrange.
In particular,shpposethatrlarge is the frequencyfor
earthquakeshavingmagnitudesbetweenMlargeandMlarge +
•M andrsmatt isthefrequencyforearthquakeswithmagnitudes
betweenMsmalI andMsmatt+ •M. If eachgroupis distributed
asr = A 10't'M thenit is reasonableto define
rlarge
b,y=M -M ' (5)large small
Indeed,if eachgroupis distributedwith the samevalue of b,
thenbeff = b exactly,independentof thebinwidthbM. Of
course,becausedifferentmagnitudescalesmeasuredifferent
properties,oftenbeffdiffersfromtheb valuesdetermined
from either scale.
In this paper we employ a slight generalizationof this
schemeby utilizing three different magnitudescales. To
determinea compositeb valuehereaftercalledbcom•,,we
utilizethemB(adj)scaledescribedabove,themw moment
magnitudesdeterminedfrom scalarmomentsreportedHarvard,
andthemb (mlike) magnitudesfrom the Blacknestcatalog.
We determinerAbe(adj)forearthquakeshavingmagnitudes
between7.0 and 7.5, rHrv for magnitudesbetween5.90 and
6.50, andrBtl•for magnitudesbetween4.85 and5.45. Then
bMis0.6,andbco,,,•,istheslopeoftheleastsquaresfit tothe
magnitudelog-ratepairs (4.85, log10ratk),(5.90, loglorHrv),
and(6.95,10910rAbe(aclj)) (Figure6).
GeographicandTectonicGroupingof Earthquakes
Subsequently we determine b values for a variety of
earthquakesubgroups.-Thus we separateearthquakesinto
groupsdeterminedby (1) geographicregion,(2) focal depth,
(3) nearest tectonic feature, (4) focal mechanism, and (5)
4
o2
I I I I I I I I I
3.0 4.0 5.0 6.0 7.0
Illmlike
Fig.4. Distributionofmagnitudesmr,(m/ike)in theBlacknestcatalogfor
earthquakesoccurringbetween1964and1983.Solidanddashedlinesare
thecumulativenumberandnumberinbinsof width0.1,respectively.The
verticallinesbetweenmr,(m/ike)of4.86and6.15delineatetherangeused
todeterminebst• in Table1.
primary (mainshocks)or secondaryevents(aftershocksand
foreshocks).
For the geographic regionalization, we form regions
identicalto thosedefinedbyDavisandFrohlich[1991a]. For
focal depth, we separately consider three depth ranges:
shallow (depth h lessthan 70 km), intermediate(h between
70 and 300 km), and deep (h greater than 300 kin). To
determinethe distancebetween earthquakesand the nearest
majortectonicfeature,we useddigitizedmapsof trenchesand
ridge-transforms supplied by the Paleo-Oceanographic
MappingProject(POMP) groupat the Universityof Texasat
Austin [Royeret al., 1992].
1000
800
600
400
200
ß
!
!
!
-.1
m W
19100 19120 19•40 19•60 19180
Year
Fig.5. Cumulativenumberofearthquakeswithmagnitudesbetween6.95
and7 55forthe"adjusted"magnitudescalerns.a•-(solidline) andwithoutß •, •J ,
adjustment(dashedline).ThemagnitudemB(adj}ISdeterminedfrommsby
subtracting0.2priorto 1940andbetween1950and1958,subtracting0.3
between1940and1949,andsubtracting0.1between1959and1976. After
1977,mB(adj)equalsmw,themomentmagnitudedeterminedfromthe
Controid Moment Tensor scalar moment.
FRO•ILICI-IANDDAVIS: MUCHADo Anotrr TELESEISMICb VALUES 635
Focal mechanismsare available generally only for the
earthquakesin the HarvardCMT catalog. We classifythese
usingthe trianglediagrams(Figure7) proposedby Frohlich
and Apperson[1992] and describedin detail by Frohlich
[1992]. In this scheme,the three vertices of the triangle
represent "pure" thrust, strike slip, or normal faulting
earthquakeswith vertical T, B, andP axes,respectively. If
ST, •B, and5/, arethe dip anglesof theT, B, andP axes
reportedin theHarvardCMT catalog,then
2 • +sin6?=1. (6)sin•r+sin2 2
Thus for any earthquake, we can define its fractional
proportionsof thrust, strike slip, or normal faulting to be
sin2ST,sin2bB,andsin25/,. In thispaper,weshallclassify
aCMT mechanismas"thrust"if ST isgreaterthan50ø,"strike
slip"if bBis greaterthan60ø,and"normal"if 5/, is greater
than 60ø. All other mechanismswe classifyas "other." In
addition,we includeas"other" all CMT mechanismshaving a
compensatedlinearvectordipole(CLVD) fractionfcivaof 0.2
andgreater.The CLVD fractionfctvdis definedastheabsolute
value of the ratio of the largest and smallest principal
moments[e.g., Frohlich and Apperson,1992].
To separate earthquakes into "primary events"
(mainshocks)and"secondaryevents"(fore- and aftershocks),
we use singlelink clustering(SLC) algorithmsdescribedby
Frohlich and Davis [1990] andDavis and Frohlich [1991a,
1991b]. To identify aftershockswe employ a conversion
factorC of 1.0km/dayanda "cutoffdistance"D of 40 "space-
time km" (ST lcm,seeFrohlich and Davis [1990]) for the ISC
catalog,50 ST km for theBlacknestcatalog,and 100 ST km
for theHarvardCMT catalog.
Measuring b for Mainshocksand SecondaryEvents; a
Tutorial Example. We cannot compare b values for
mainshocksand secondaryeventsin the usualway, because
separating an earthquake catalog into mainshocks and
Three Global Caf•alogs
I I
30
o• / ' ,0
Z 0• / Blackne '
• oo
o
-lo ', , ,"3 4 5 6 ? 8
m•lik, M•, mp(•dj)
Fig.6.O•fhitionofbc•. • thcksoldanddashedlhesshow•e activity
rate•r 0.1ma•itude unitforea•quakes • •e Blacknest,Hazard, and
Abe(adjustS)catalogs.•e solidciml•sam• acdvityrateswi•h •
rangeof ma•itudes •dimted by •e bars;for Blacknest,4.85-5.45;for
Hazard,5.•-6.50;forA• (adjustS),6.95-?.55.Wedefinebc• asthe
slopeof•e dashedstraightl•e whichistheleastsquaresfitto•ese acfivi•
•tes.
secondaryeventscreatesa systematicbiascausingbsec to be
greaterthanamain.To illustratethis(Figure8), we generatea
hypotheticalcatalogof 10,000 earthquakeswhich satisfythe
Gutenberg-Richterlaw exactly,with b = 1.0 andMinin= 4.75.
Supposefurtherthat in this catalogeachpair of earthquakes
comprisesa primary-secondaryevent sequence,so that there
are 5000 primary and5000 secondaryevents. If we identify
thelargereventof eachpair astheprimaryevent,thenamain
is 0.91 and bSec is 2.12. These b values differ from 1.0
because our selection method for identifying secondary
events systematically discriminates against selecting the
largeeventsin the catalog. In contrast,for thepopulationof
primary events, it discriminatesin favor of selectinglarge
events. Clearly, this systematic bias also acts when we
distinguish mainshocksand secondaryearthquakesin real
catalogs as well, although it has apparently not been
recognizedexplicitly in previousstudies.
To take accountof this systematicbias, we comparethe
observedvaluesof amainandbsec in eachcatalogwith values
determined for an "identical catalog with randomized
magnitudes"(ICRM). The ICRM has the samenumber of
earthquakes,the samedistributionof magnitudes,the same
number of primary events, and for each primary the same
number of secondaryevents as the correspondingprimary
event in the real catalog. However, we have randomly
reorderedthe magnitudesin the entire ICRM to insure that
possible physical differences generating mainshocks and
secondaryeventscannotaffect measurementsof amainand
bSec.
Notethatby themselvesmeasurementsof amainandbsec in
the ICRM have absolutelyno physicalsignificance;they are
NORMAL THRUST
OFig.7. Trianglediagramfordisplayingearthquakefocalmechanisms.The
threeverticescorrespondtopurestrikeslip(top),thrust(right),andnormal
fault(left)mechanisms.Alsoshownarethemechanismswhichplotatthe
midpointsofthethreesidesandinthecenter.ForanearthquakewithT,B,
andP axeshavingdipanglesrelativetohorizontalof br, 15a,andfit',the
proportionofthrust,strikeslip,andnormalfaultingaresin2fyr,sin2fia,and
sin2fi•.ThecurvedlinesonthefigurecorrespondtomechanismshavingP
andB axeswithdipsof60ø,andtoaT axiswithadipof50ø.In thispaper
wedefineearthquakesasnormal,strikeslip,orthrustif thedipoftheP orB
axesexceeds60øorif thedipoftheT axisexceeds50ø.Oddearthquakesare
all other events.
636 FROHLICHANDDAVIS: MUCH ADO Aaotrr TELESEtSM•Cb VALUES
useful only as standardsof comparisonfor evaluating the
difference(bsec-bMain)in the real catalog. Thusphysically
significantdifferencesbetweenmainshocksand aftershocks
showup asa differencebetweenthequantity(bsec- bMai,,)in
therealcatalogand(bsec -bMain) in theICRM.
WhendeterminingbMainandbsec for theICRM by Bender's
method,a minor difficulty occursif we apply a fixed upper
magnitudecutoffasdescribedabove(e.g.,seeTable1). That
is, a fixed upper magnitude cutoff may exclude some
mainshockswithout excluding their associatedsecondary
events, thus preventingthe ICRM from having the same
distributionof magnitudesas the original data catalog. To
avoidthisproblem,whendeterminingbMainandbsec in each
geographicregionwe separatelydeterminedthe maximum
magnitudesfor primary andsecondaryevents,and we used
thesemaximaastheuppercutoffvaluesfor Bender'smethod.
To include as many secondaryeventsas possible,for the
analysisof bMainandbsecin theISC catalogwe useda smaller
lower magnitudecutoff (mr,= 4.8) thanin Table 1. For the
BlacknestandHarvardCMT analyseswe usedthesamelower
cutoffs as in Table 1.
For the ISC catalog,a secondminor difficulty may occur
becausesaturationof themr,magnitudescalecausesthelarger
earthquakesto be assignedunrealisticallylow magnitudes.
As thiswouldsystematicallyaffectprimaryeventsandbMain,
asin thestudyof Davis and Frohlich [1991a] we utilized
surfacewaveor momentmagnitudesfor all earthquakeswith
mr, exceeding6.5. In the analysesof the Blacknestand
HarvardCMT catalog,we utilizedmr,(mlike) andMw for all
earthquakes,regardlessof theirmagnitude.
RESULTS
Global Measurements
Evenfor globalcatalogs,thevalueof b measureddepends
stronglyon the particularcatalogchosenand the rangeof
magnitudesusedin thedetermination(Table1). Forexample,
for earthquakesof all depthsconsideredtogether,blsc is 1.25
for the body wave magnitudemr,, whereasfor the moment
magnitude Mw, bHrv is 0.90, or 28% lower. While blsc
exceeds bHrv in all other depth ranges as well, the
relationship between the other scales differs somewhat
amongthe differentdepthgroupings.For example,babe is
nearlyidenticalto blsC for intermediateanddeepearthquakes,
but it is 0.15 smaller for shallow events. However, for the
Harvardcatalog,bHrvmeasuredfromMw ishigherfor shallow
earthquakesthanfor deepandintermediateevents,whilebHrv
measuredfrommwis actuallylowerfor theshallowevents.
These observed differences in measured b are not due
primarilyto statisticalvariations.For bothBender's[1983]
andPage's [1968] method,the standarddeviationfor b
determined from the magnitudes of a catalog with-N
earthquakesis approximatelyproportionaltob/N1/2. Thus
for the entries in Table 1 the statistical uncertainties are less
than0.01 evenfor babe, andlessstill for b determinedfrom
the other catalogs.
A moreimportantsourceof variationin b arisesbecause.in
most catalogsthe relationshipbetweenthe log of number
versusmagnitudeis not rea.llylinear, i.e., the Gutenberg-
Richter"law" is not strictlytrue. This is especiallyevident
in the ISC catalog (Figure 3) and the Blacknest catalog
(Figure4). Forexample,if wemeasureb forearthquakesof all
Synthetic Catalog
:3.5
3.0
• 2.5
2.0
ol.5
_o
0.5
0.0
• • for entirecatalogb - 1.0
-  • 1 aftershock/mainshock
_ ••ainshockwithlargermb
bM•u=0'91k,,• •
- bsee=2'12• •'•A
I I I I I I
5.0 6.0 ?.0
rn b
Fig.8. Defining"mainshocks"asthelargestearthquakein amainshock-
aftershockssequencecausesdifferentbvaluesformainshocksandaftershocks.
Formagnitudeincrementsof 0.1, graphshowsthenumberofmainshocks
(bottomdashedline),aftershocks(solidline),andall events(topdashed
line).Thissyntheticearthquakecataloghas10,000eventswithmagnitude
exceeding4.75andanoverallb valueof 1.0. Eachmainshock-aftershock
sequenceconsistsofonemainshockandonesecondaryevent(aftershock),
with themainshockbeingthelargerof thetwo stochasticallygenerated
events.Fortheportionofthecatalogwithmagnitudesexceeding5.25(tothe
rightof shortverticalline),bseeis 2.12andbMainis0.91.
depthshaving magnitudesbetween5.25 and 6.35, we find
blscis 1.44 (comparedto 1.25 in Table 1) andbBt•:is 1.32
(comparedto 1.13 in Table 1).
Regional and TectonicVariations
Measurementsof b in different regional and focal depth
groupings(Table 2) rangebetween0.64 and 1.76, which are
the minimumandmaximumof bBll:in the Blacknestcatalog.
The compositevaluebcomppossessesthesmallestrange
(0.73 to 1.16). However, there is surprisingly little
correlation between the values of b determined by the
differentmethods. For example,the correlationcoefficients
relatingcolumnsof Table2 areblsC andbBt•:= 0.53;blsC and
bHrv= 0.66;b•sc andbcomp= 0.36;bt•t•:andbHrv= 0.36;
andbComp= 0.60;andbHrvandbcomp=0.29.InTable2there
is no apparentsystematicdifference between b valuesfor
shallow earthquakesand those for intermediate and deep
earthquakes.
Individual geographic regions generally possess
earthquakeswith a variety of tectonic features and focal
mechanisms. While there seems to be no clear difference in b
whenearthquakesare groupedby proximity to nearestmajor
tectonic feature (Table 3), bHrv for thrust and strike slip
earthquakes(0.86 and0.77) is significantlylessthanbHrvfor
normaland"other"earthquakes(1.06 and 1.05).
The Tonga-Fiji region is unusualin that it possessesa
significantlylargenumberof shallow,intermediate,anddeep
earthquakes.In all depthranges,all four of the b valuesthat
we determined(Table 3) are larger in the Tonga-Fiji region
thanelsewherein the world. As notedpreviouslyby Giardini
[1988] and Frohlich [1989], this is especiallytrue for the
FRoroaCHANDDAVIS: Muc• ADo ABOUTT•es•s•c b VALUES 637
deep earthquakes. In Tonga-Fiji, b for deep earthquakes
rangesbetween1.06forbCom•,and1.57forb;sc andbBlk,
valueswhich are comparableto the b determinedfor shallow
earthquakeselsewhere.For therestof theworld,b for deep
earthquakesis extremelylow, rangingfrom 0.53 for bHrvto
0.96 for b;sc.
Mainshocksand SecondaryEvents
In every geographic region considered (Table 4 and
Figure9), bMainfor primary eventswas lessthan bSec for
secondaryevents(aftershocksandforeshocks).This wastrue
not only for the observationswhere the magnitudes for
individualeventswere as assignedin catalogs,but alsoin the
ICRM catalogwhere thesemagnitudeswere randomizedand
reassigned (Table 4 and Figure 10). These results are
unsurprisingconsideringthat our selection of mainshocks
createsa systematicbias which increasesb for secondary
events(Figure 8).
However, for the ISC data what is surprisingis that the
difference(bsec -bMain ) is nearly always larger in the
randomized (ICRM) catalog than in the observations
(Table4, Obs-ICRM column, and Figure 11). Thus in a
relativesensewe canconcludethatbsec for secondaryevents
is actually"smaller than" expected,i.e., it is smallerthan the
valuedeterminedif magnitudesareassignedrandomly.
We obtain the sameresultsfrom analysisof mainshocks
and secondaryevents within geographicsubregionsof the
BlacknestCMT catalog(Figure 12 andTable 5) andwithin
geographicsubregionsof the Harvard CMT catalog(Figure
12).In particular,bMainwasgenerallylessthanbsec;however
the differencewas lessthan expectedas determinedfrom an
ICRM.
ISC Observations
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
O_oO
I I I I I I I I I
0.8 1.2 1.6 2.0 2.4
bMain
Fig.9. MeasurementofbMa•nforprincipalevents(mainshocks)andbse½for
secondaryevents(aftershocksandforeshocks)for earthquakesin the
InternationalSeismologicalCentrecatalogfor 34 geographicregions
investigatedby DavisandFrohlich[1991a](seeTable4). Straightline
indicatesbMa/n= bsec.Notethatgenerallyb$ec> bMain.
638 FROHLICHANDDAVIS: MUCH Ar>o ABOUTT•aSM•C b VALUF_,•
TABLE 2. Comparisonof b ValuesDeterminedby SeveralMethodsin VariousGeographicRegions
Geographic
Regions blsC bB1k hi_itv bComp
ShallowEarthquakes(h < 70 km)
1 1.09 1.06 0.78 1.12
2 1.34 0.78 1.07 0.95
3 1.25 1.1 1 0.88 0.7 8
4 1.45 1.15 -- 0.87
5 and 6 1.19 1.03 0.91 0.81
7 1.33 1.35 0.89 1.14
8 0.86 1.28 -- 0.76
9-11 1.31 1.46 1.09 1.12
12 1.32 1.76 0.87 •
13 and 14 1.16 1.21 0.65 1.02
15 and 16 1.08 1.06 0.68 0.92
17 1.17 1.19 0.85 0.97
18 1.53 1.17 1.26 1.1 1
19-21 1.15 1.04 0.89 0.95
22 1.34 1.08 1.11 0.83
23 1.27 1.04 0.66 0.88
24 1.10 0.98 0.88 0.99
25 and26 1.10 1.14 0.79 1.16
27 1.01 0.88 0.89 0.89
28 1.37 1.04 1.01 1.02
29 1.47 1.25 0.73 •
30 1.46 1.46 1.14 1.06
31 1.35 1.13 • •
32 1.06 1.02 -- 1.08
33 1.48 1.60 1.21 1.20
34 1.71 1.24 • 0.98
Average 1.27 1.17 0.92 0.98
IntermediateDepthEarthquakes(70 km _•h < 300 kin)
1 1.57 1.11 • •
3 1.50 1.27 • --
5 and 6 1.26 1.03 0.67 0.92
7 0.94 0.87 -- •
9-11 1.29 1.38 0.96 1.12
13 and 14 1.21 0.99 1.09 0.79
15 1.08 1.01 • 1.13
17 1.20 1.01 • 0.90
18 1.50 1.23 • 0.97
19-21 1.29 1.05 -- 0.88
22 1.12 0.65 • 0.68
23 1.62 1.24 • 1.08
24 1.51 1.33 • 1.12
25 and 26 1.24 1.07 0.98 1.01
34 1.41 0.91 • 0.73
Average 1.32 1.08 0.93 0.94
DeepEarthquakes(300 km _<h)
9-11 1.48 1.41 1.09 --
12 1.63 1.68 1.29 0.99
18 0.92 0.64 • 0.77
25 and 26 1.00 • • •
Average 1.26 1.24 1.19 0.88
Themagnitudescalescatalogsetc.for theb valuesblsC bB1k blJavandbCorn--areasin Table 1
withbHrvutiliz•gtheMwscale,andbCornpdeterminedusingthecompositemetliOddescribedmthe
text. Geographicregionsare as givenby DavisandFrohlich [1991a]andTable 4, exceptseveral
regionsare combinedas indicated.The tabledoesnot includeb valuesfor regionswhere there are
fewerthan 100 eventsin the ISC catalog,75 eventsin the Blacknestcatalog,or 40 eventsin the
HarvardCMT catalog.Averagesareunweightedmeanof numbersin eachcolumn.
FROHLICHANDDAMS: MUC• ADOABotrrTELES•SMICb VALUE$ 639
TABLE 3: Comparisonof b Valuesfor EarthquakesGroupedbyNearestTectonicFeature,
Focal MechanismType,andby Proximityto Tonga-Fiji
bComp
Nearest Tectonic Feature a
RidgeTransform-FractureZone 1.56 1.17 O.91
Subduction Zone 1.55 1.14 O.89
1.22
0.91
FocalMechanismTypeb(h_<50km)
Thrust -- -- 0.86
StrikeSlip • • 0.77
Normal -- • 1.06
Other • • 1.05
Proximity to Tonga-Fiji (Flinn-EngdahlRegions12-13)
Shallow(h < 70 km)
Tonga-Fiji 1.31 1.47 1.05 1.11
Rest of World 1.22 1.11 0.89 0.95
Intermediate(70 < h < 300 km)
Tonga-Fiji 1.29 1.37 0.96 1.08
Rest of World 1.33 1.08 0.79 0.93
Deep(h < 300 km)
Tonga-Fiji 1.57 1.57 1.22 1.06
Rest of World 0.96 0.58 0.53 0.69
Themagnitudescales,catalogs,etc.,forthebvaluesbisC, bBlk,bHrv,andbCom areasinTable1p ,
withbHrvutilizingtheMwscale,andbCompdeterminedusingthecompositemethoddescribedinthe
text.
aHypocentersareearthquakeswithfocaldepthh < 50 kmoccurringwithin200 km of a spreading
ridge,transform,fracturezoneor subductionzoneasindicatedbythePOMPGroup.
bseeFigure7fordefinitionsofthrust,strikeslip,etc.
ISC ICRM Synthetics
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.8 1.2 1.6 2.0 2.4
bMain
Fig.10.MeasurementofbMainformainshocksandbsecforsecondaryevents
asin Figure9 exceptthatwithineachgeographicregion,eventmagnitudes
are reassignedrandomly(i.e., theyconstitutean IdenticalCatalogwith
RandomizedMagnitudes,or ICRM). StraightlineindicatesbMain=bsec.
Notethatbsec> bMalneventhoughtherandomizationremovesanypossible
effectcausedbyphysicaldifferencesinmainshocksandsecondaryevents.
DISCUSSIONAND CONCLUSIONS
How Well Do We Know b?
Recently,severalinvestigatorshave generatedsynthetic
earthquake catalogs having b values of 1.0 using
generalizationsof Burridge and Knopoff[1967] block and
springmodels[Bak and Tang, 1989;Carlson, 1991a; 1991b;
Shawet al., 1992]. The presentpapersuggeststhat while
observedvaluesof b equal1.0 in thesensethatb is neveror
almostneverlessthan0.5 andneveror almostnevergreater
than 2.0, its precise value is uncertain or indeterminate.
Exceptin thisabovelimitedsense,it is simplynottruethatb
is 1.0.
This result shouldnot be surprising,as there is no one
"best"or "correct"magnitudescale. The Gutenberg-Richter
"law" is essentiallyempirical,earthquakesaresimplyoneof
a hostof phenomenafor whichlogarithmicplotsof number
versussize are approximatelystraight(e.g., Frohlich and
Buskirk,1982]. Furthermore,studiesseekingto find a linear
relationshipbetween various magnitudescalesseldomfind
thatthecoefficientof b is 1.0 (e.g.,seeHeatonet al., [1986],
and Bath's [1981] comprehensive table of these
relationships).
An importantconclusionof thispaperis thatoneshouldbe
very wary aboutattachingunduesignificanceto differencesin
measurements of b values, unless these differences are
extremelylarge,suchas25% or evengreater. Herewe have
usedseveraldifferentmethodstosystematicallydeterminethe
parameterb of theGutenberg-Richterlaw for severalcatalogs
640 FROHLICHANDDAVIS: MUCH ADO A•otrr TELESmSMtCb VALUES
TABLE 4. Comparisonof b Valuesfor MainshockandSecondaryEventsin the
GeographicRegionsInvestigatedby DavisandFrohlich[1991a]
Geographic Flinn-Engdahl Observations ICRMa
Regions Regions bMainObs bSeeobsbMainR bSecRObs-ICRMb
1 Alaska 1 1.06 1.31 1.02 1.42 -0.15
2 West CoastNorth America 2,3,4 1.16 1.76 1.16 1.77 -0.01
3 Mexico-Central America 5,6 1.25 1.55 1.21 1.86 -0.35
4 Caribbean 7 1.26 2.05 1.27 2.00 0.06
5 SouthAmerica 1 8,9 1.06 1.20 1.04 1.44 -0.26
6 SouthAmerica 2 8,9 1.23 1.34 1.18 1.66 -0.37
7 South Sandwich Islands 10 1.03 1.32 1.01 1.43 -0.13
8 New Zealand 11 1.08 1.16 1.07 1.20 -0.05
9 Tonga1 12 1.18 1.48 1.16 1.66 -0.20
10 Tonga2 12 1.11 1.34 1.07 1.52 -0.22
11 Tonga3 12 1.18 1.36 1.12 1.63 -0.33
12 Fiji 13 1.25 1.68 1.21 2.12 -0.48
13 Vanuatu(NewHebrides)1 14 1.01 1.33 0.95 1.54 -0.27
14 Vanuatu(NewHebrides)2 14 0.98 1.27 0.94 1.39 -0.16
15 Solomon Islands 1 15 0.99 1.26 0.98 1.29 -0.04
16 Solomon Islands 2 15 0.94 1.07 0.85 1.28 -0.30
17 New Guinea 16 0.98 1.13 0.96 1.21 -0.10
18 Carolines- Marianas 17,18 1.22 1.82 1.25 1.65 0.20
19 Kuriles 1 19 0.99 1.20 0.92 1.34 -0.21
20 Kuriles 2 19 1.16 1.39 1.11 1.48 -0.14
21 Kuriles 3 19 1.16 1.49 1.12 1.66 -0.21
22 Japan- Taiwan 20,21 1.13 1.58 1.10 1.84 -0.29
23 Philippines 22 1.07 1.38 1.05 1.44 -0.08
24 Molucca-Celebes 23 1.01 1.29 0.99 1.35 -0.08
25 Java 1 24 0.90 0.87 0.88 1.05 -0.20
26 Java 2 24 1.16 1.10 1.08 1.62 -0.60
27 Asia 25,26,27,28 1.11 1.18 1.02 1.69 -0.60
28 Asia Minor 29,30 1.26 1.87 1.21 2.17 -0.35
29 Africa 31,37 1.38 1.58 1.32 1.84 -0.32
30 Atlantic-Indian oceans 32,33,34,35 1.31 2.05 1.31 2.13 -0.08
31 PolarRegions 36,40,42,49,50 1.08 1.57 1.06 1.85 -0.30
32 PacificOcean 38,39,41 0.95 1.31 0.99 1.20 0.15
33 SouthPacificOcean 43,44,45,46 1.22 1.82 1.25 1.61 0.24
34 Pakistan-HinduKush 47,48 1.44 1.76 1.34 2.53 -0.87
DataareISCdatawithmagnitudemb,exceptmagnitudesexceeding6.5,areadjustedasinDavisandFrohlich[1991a].Allb
valuesaredeterminedusingBender'smethod,witha lowermagnitudecutoffof 4.8 andanuppermagnitudecutoffdeterminedfromthe
data as described in the text.
aIdenticalcatalogswithrandomizedmagnitudes,asdescribedin text.
bObs-ICRM=(bSeeOb•-bMainOb•)-(bSecR-bMainR)
of teleseismicallyrecordedearthquakes. For the different
global catalogs,we find valuesof b rangingfrom 0.79 to
1.25. Becausethe log numberversusmagnituderelation is
not linear(Figures1 to 4), evenfor individualcatalogstheb
valuevariesby 15% or moredependingon theexactrangeof
magnitudesusedfor its determination.
There are alsoserioussystematicproblemsthat afflict the
measurement of b values and that seem to be overlooked in
many of the papers interpretingobservationsof b. The
determination of b rests on the accurate determination of
values for magnitudes. Even thoughmagnitudescalesare
logarithmic, magnitudesdeterminedby different stations
typicallydiffer by asmuchas0.5. Habermann [1991] and
othershave shownthat reportedmagnitudesoften appearto
vary over time, as does the level of completenessof
earthquake catalogs, apparently for systematic reasons.
There is excellentevidencethatnumerousearthquakeswith mr,
between5.0 and 5.5 are missedregularly even in the ISC
catalog[e.g.,WalkerandMcCreary, 1985].
Furthermore,individual magnitude scales typically are
meaningful only over a limited range of earthquakesize,
which is problematicsince one desiresas large a range as
possible to obtain good information about b. Finally,
methods to calculate statisticaluncertaintiesin b [Aki, 1965;
Page, 1968; Bender, 1983] invariably assumethat the log
number versus magnitude curve is straight over some
magnituderange, and thus they seriouslyunderestimatethe
trueuncertaintyin thedeterminationof b. Log numberversus
magnitudecurves(Figures1-4) generallyare not thatstraight
overany magnituderangeunlesstheyhavebeen"adjusted"to
makethemstraight,asin thestudyof Pachecoet al. [1992].
Becauseof theseproblems,thereare legitimatereasonsto
doubtmany publishedinterpretationsof b values,especially
when these interpretations rest on the measurementof
differencesin b of 0.1 or less[e.g.,Andersonet al., 1980].
This is especiallytrue sincevariousparametersquantifying
the size of earthquakes'measuredifferent propertiesof the
earthquake source. Thus we should not expect close
agreement between b values determined from different
magnitudescales. We shouldalsonot expecttoo muchfrom
equationsattemptingto describethe relationshipbetween
magnitudescalesandothermeasuresof earthquakesize,such
asmoment,potency,or radiatedenergy.
Regional,Tectonic,andDepthDependenceof b
In spiteof ourpessimismaboutobtaininghighlyprecise
FROHLICHANDDAVIS' MUCHADOABOUTTF.LES•SMICb VALUES 641
ISC Catalog
1.6 -
•08 -
I
• 0.6-e
?,0.4
I I I I I I I I I
0.0 0.4: 0.8 1•2 1.6
[bSec- b•lein]observeUons
Fig.11. Thedifferencebetweenbvaluesfor secondaryevents(bsec)and
primaryevents(bM•n)forthe InternationalSeismologicalCentre(I$C)
catalog(horizontalaxis)andfor theIdenticalCataloõwithRandornized
Magnitudes(ICRM) (verticalaxis).Notethatthedifferenceis generally
smaller for I$C observations than for the ICtLM. The data are from Table 4.
Blacknest and Harvard Catalogs
1.6
1.4
•12• ß
•08• ß
I
o0.6
?, 0.4
0.2
0.0
_ o
_ o6 o•
.,
o
0.0 0.4 0.8 1.2 1.6
[bSec-b•ain]ob$ervation$
Fig. 12. Thedifferencebetweenb valuesfor secondaryevents(b$zc)and
primaryevents(bM•n)fortwoearthquakecatalogs(horizontalaxis)andfor
theIdenticalCatalogwithRandomizodMagnitudes(verticalaxis).Circles
areBlacknestdatafor28geographicregionswhicharenearlyidenticaltothe
geographicregionsevaluatexiinTable4 andFigures9to 11. Trianglesare
HarvardControidMomentTensordataforsixgeographicregions.Forthe
Blacknestcatalog,the b valuesare determinedfrom m/, (m/ike)using
Bender'smethodwith a minimummagnitudeof 4.85. For theHarvard
catalogthebvaluesaredeterminedfromMwusingBender'smethodwitha
minimummagnitudeof 5.65.
and accuratemeasurementsof b for real earthquakecatalogs,
there exist some differences in the size distributions of
earthquakegroupswhichwebelievearereal. Oneof themost
strikingdifferencesis for deepearthquakesin Tongarelative
to deep earthquakeselsewherein the world. For deep
earthquakesin Tonga-Fiji(Table3) we find thatb is 1.0 or
greater,whilefor deepearthquakeselsewhere,b issmallerby
30% or more. Clearly, small earthquakesare especially
commonin Tonga-Fijirelativeto thenumberof earthquakes
withmttorMwexceeding7.0. In contrast,elsewherethereis
evidence that large deep earthquakesare more common
relative to the number of small earthquakesobserved. The
Tonga-Fijiregionis generallyconsideredto be thearchetypal
deepearthquakezonebecausetwo thirdsof the world'sdeep
earthquakesoccurthere;however,thesedatasuggestthatit is
in fact anomalousin comparisonto otherregionswheredeep
earthquakesoccur.
Anotherpossiblysignificantobservationis that bHrv for
shallowthrusting(0.86) and strike slip earthquakes(0.77)
seemsto be somewhatlessthan bHrv for earthquakeswith
normalfaulting(1.06) focal mechanisms(Table3). These
differencesareno largerthansomeof theregionaldifferences
noted in Table 2; however, we tend to find them more
believablebecausetheyaredeterminedfrom a largernumber
of eventsand becausethe CMT catalogpossessesa nearly
linear log numberversusmagnituderelationover a larger
rangethanmostothercatalogs(Figure2). The higherb for
thenormalfaultingearthquakesmaycomeaboutif theyoccur
underconditionsof lower stressor stressdrop than thrustor
strikeslip earthquakes[Scholz,1968;Wyss,1973].
Mainshocksand SecondaryEvents
An important result in this paper is that earthquake
aftershocksand foreshocksnearly always have higher b
valuesthanthosereportedin catalogsof mainshocks(Figure
9) but that this is primarily a systematiceffect due to
selectingmainshocksas the largest events in sequences
(Figures8 and10). This apparentlyhasnot beenrecognized
previously,althoughKnopoffet al. [1982] did suggestthat
undiscoveredsystematicerrors might be responsiblefor
many reported differences in b before and after large
earthquakes.The particularsystematicproblemdiscoveredin
this paper shouldoccur wheneveraftershocksor dependent
events are removed from earthquake sequencesprior to
statisticalanalysis. However, it shouldnot affect analyses
like thoseof Smith [1986], where earthquakesare separated
only into temporalor spatialgroups.
Ourresultis thatbSec is actuallylower thanexpectedif the
only influenceon b comesfrom defining the mainshockas
the largestearthquakein eachsequence.This resultis quite
robust, as it seems to hold for earthquakesin the ISC,
Blacknest,and Harvard CMT catalogs(Figures11 and 12).
However,thisresultis quitesubtle;to determineit, we hadto
comparethe observedmagnitudesof primaryand secondary
events with a hypothetical catalog having an identical
distributionof magnitudes,but assignedrandomlyto primary
and secondaryevents. Since the occurrenceof a primary
eventundoubtedlyaltersthe stressfield in the neighborhood
of the sourceregion, it is unsurprisingthat it affects the
relative distributionsof small and large eventsas well. Our
resultimpliesthat amongaftershocks,b valuesare lower than
expected, and thus large aftershocksare relatively more
642 FgotmIct• A•D DAYre: Moctt ADo A•otrr T•-Lmsmssacb VALUmS
TABLE 5. Comparisonof b Valuesfor MainshockandSecondaryEvents
for GeographicRegionsin theBlacknestCatalog
•ographic Observations
egions bMainObs bSeeobsbMainR bSeeR Obs-ICRMb
1 0.93 1.34 0.96 1.28 0.09
2 0.76 0.92 0.61 1.25 -0.48
3 1.08 1.41 1.02 1.81 -0.46
4 1.02 1.65 0.99 1.95 -0.33
5 and 6 0.96 1.23 0.96 1.25 -0.02
7 1.09 1.73 1.06 1.85 -0.15
8 1.16 1.49 1.12 1.78 -0.33
9 1.35 1.92 1.29 2.44 -0.58
10 and 11 1.19 1.68 1.16 1.83 -0.18
12 1.36 2.32 1.32 2.9 8 -0.70
13 and 14 1.05 1.51 1.06 1.49 0.03
15 and 16 0.90 1.33 0.88 1.37 -0.06
17 1.01 1.51 0.97 1.70 -0.23
18 1.04 1.66 1.01 1.97 -0.34
19 0.92 1.26 0.94 1.20 0.08
20 and 21 0.94 1.28 0.91 1.36 -0.11
22 0.91 1.50 0.87 1.85 -0.39
23 0.98 1.45 0.98 1.48 -0.03
24 1.08 1.45 1.06 1.52 -0.09
25 and 26 1.07 1.25 1.05 1.33 -0.10
27 0.89 0.96 0.79 1.42 -0.56
28 0.96 1.54 0.94 1.65 -0.13
29 1.17 1.54 1.08 1.97 -0.52
30 1.42 2.10 1.40 2.45 -0.37
31 0.88 1.34 0.88 1.36 -0.02
32 0.90 1.23 0.95 1.07 0.21
33 1.46 2.40 1.44 2.71 -0.33
34 0.97 1.17 0.91 1.65 -0.54
Magnitudesarem4b'(mlike),andvaluesaredeterminedusingBender'smethod,withalowermagnitudecutoffof 75 andanuppermagnitudecutoffdeterminedfromthedataasdescribedin the
text. Regionnumberscorrespondto geographicregionsin Table4.
aIdenticalcatalogswithrandomizedmagnitudes,asdescribedintext.
bObs-ICRM=(bSecobs-bMainObs)-(bSeer-bMainR)
common than expected. If we interpret this in terms of
analysessuchas thoseof Scholz [1968], Wyss [1973], and
Hanks [1979], this suggestsstressesor stressdropsbecome
higher near the source region following a mainshock,
perhaps because the mainshock rupture process loads
asperitieswithin the sourceregion and in adjacentregions.
At presentwe offerno furtherexplanationfor thisresult.
This problem of when bias may be present in the
determinationof b is fairly subtle,asb is subjectto numerous
systematic and statistical errors which afflict earthquake
detection,earthquakelocation,aftershockidentification,and
magnitude determination. Moreover, we show in the
appendixthat the situationis not straightforwardeven if we
constructa syntheticcatalogwith mainshocksand synthetic
aftershock sequences, where the mainshocks follow a
Gutenberg-RichterlawwithbvaluebMain,andeachindividual
mainshockgeneratesaftershocksequenceswithbvaluebAft.
In this case, when we separate the entire catalog into
mainshocks and aftershocks, we find that the observed b
valuebsecfor aftershocksin the catalog as a whole is not
usuallyequaltobAft. Rather,bsec forthecatalogmayequal
bMain,bAft, or anyvaluein between.Mostobservational
studiesfind thataftershocksmakeup a substantial,buthighly
variable fraction of the eventsin earthquakecatalogs[e.g.,
Reasenberg, 1985; Eneva and Pavlis, 1988; Davis and
Frohlich, 1991a]. Thusif bMainandbsecdiffer, this suggests
that someof the regionalandtemporalvariationsin b values
observedin previousstudiesmay be due to differencesin the
proportionof aftershocks.
APPENDIX:bMainANDbs•½FORPRIMARY
AND SECONDARY EvF2qrs
Supposethata catalogof earthquakesconsistsof two types
of events: primaryevents,whichoccurindependentlyof one
another;and secondaryevents,whosenumber,size, and time
of occurrencemay dependon the occurrenceof the primary
events. In the equations that follow, we shall use the
subscript"Main" to label primaryevents,andthe subscripts
"Sec" and "Aft" to label secondaryevents. We shallusethe
subscript"Aft" only to refer to propertiesof secondaryevents
of individual earthquakes,whereasthe subscript"Sec" will
refer to properties of all secondaryevents in the catalog,
consideredtogether. Usually we studycatalogsconsistingof
mainshock-aftershocksequenceswherethe mainshockis the
largest event and also the primary event. However, more
generally, secondaryeventsmay include foreshocksas well
as aftershocks.
Supposethatprimary eventsfollow the Gutenberg-Richter
relation up to some maximummagnitudeMm,•x. Then the
expectednumbernMain(M)dM of mainshocks having
magnitudesbetweenM andM + dM is
-b M
0a Ma/nnMain(M)dM=1 10 dM. (A1)
FROHLICHANnDAVIS' MUCH Ano ABotrr TELESEISMICb VALUES 643
SupposealsothattheexpectednumbernAft(MAft,M)dMAftof
secondaryeventshavingmagnitudesbetweenMaftandMAft+
dMAftforeachprimaryeventofmagnitudeM scalesas
nAft(MAft,M)dMAft=f(M)g(M-MAft)dMAft. (A2)
For the purposesof this paper we shall assumethat the
functionsf andg taketheparticularlysimpleformsf(M)= c, a
constant and that
This impliesthat eachindividualaftershocksequencefollows
aGutenberg-RichterlawwithabvalueequaltobAft. Thenin
the entire earthquake catalog the expected number of
secondary events nobs(M $ec)dMsec observed to have
magnitudesbetweenMsecandMsec+ dMSecwill be
S•½
(A4)
If bMaindiffersfrombnft , thisisa
c 10 -b MMa• $•c
- l• ß
nøbs(Msec)riMSee(baft-bMain)lnlO
c'
As. the ratio of the two terms in the brackets is
10•'bAftMain)('Mmax-MSec)weseethatwhenbAft>>bMainthe
secondterm will be negligiblewith respectto the first, and
thebvaluebsec for the entiregroupof secondaryeventswill
be approximatelybAft. Similarly,whenbMain>>bAft the
distribution of primary events dominates bsec, which
approachesbMain. Moregenerally,notethatif wedefinebsec
= - d(loglonobs)/dMSec,then:
(bAft-bMain)
bsec=b•ft+[]. (A6)
An important conclusion is that for a catalog of
earthquakesdivided into primary and secondaryevents,the
observedb valuebsec for secondaryeventsin the catalogis
notsimplyequalto thebAft, theb valueforsequencesof
secondaryevents for individual earthquakeswithin the
catalog.
Acknowledgments.WethankRoyLilwall,TedHabermann,andvarious
colleaguesattheInternationalSeismologicalCentreandHarvardUniver-
sityforprovidinguswiththeearthquakecatalogsanalyzedin thispaper.
WearegratefulforfinancialsupportfromtheNationalScienceFoundation
undergrantsEAR-89-16665andEAR-91-105069,andfrom the U.S.
GeologicalSurvey. Finally, we are thankfulfor conversationswith
numerousindividualswhoprovokedustowritethispaper,eventhoughin
thepastoneofus(C.F.)statedthathewouldnever,everwriteapaperabout
bvalues.Thispaperis contribution928of theInstitutefor Geophysics,
UniversityofTexas.
REFERENCES
Abe,K.,Magnitudesoflargeshallowearthquakesfrom1904to1980,Phys.
Earth Planet.Inter., 27, 72-92, 1981.
Abe,K.,Complementsto"Magnitudesoflargeshallowearthquakesfrom
1904to 1980",Phys.EarthPlanet.Inter.,34, 17-23,1984.
Abe,K.,andH.Kanamori,Temporalvariationsoftheactivityofintermedi-
ateanddeepfocusearthquakes,J.Geophys.Res.,84,3589-3595,1979.
Aki, K., Maximumlikelihoodestimateof bin theformulalogN '- a - bM
anditsconfidencelimits,Bull.EarthquakeRes.Inst.Univ.Tokyo,43,
237-239, 1965.
Aki,K.,Aprobabilisticsynthesisofprecursoryphenomena,inEarthquake
Prediction:AnInternationalReview,MauriceEwingSer.,vol.4, edited
byD.W. SimpsonandP.G.Richards,pp.566-574,AGU,Washington,
D.C., 1981.
Anderson,R. N., A. Hasegawa,N. Umino,andA. Takagi,Phasechanges
andthefrequency-magnitudedistributionintheupperplaneofthedeep
seismiczonebeneathTohoku,Japan,J. Geophys.Res.,85, 1389-1398,
1980.
Bak,P.,andC.Tang,Earthquakesasaself-organizedcriticalphenomenon,
J. Geophys.Res.,94, 15,635-15,637,1989.
Bath,M., Earthquakemagnitude-Recentresearchandcurrenttrends,Earth
Sci.Rev., 17, 315-398, 1981.
Bender,B., Maximumlikelihoodestimationof b valuesfor magnitude
groupeddata,Bull.Seismol.Soc.Am.,73,831-851,1983.
Burridge,R., andL. Knopoff,Modelandtheoreticalseismology,Bull.
Seismol.Soc.Am., 57, 341-371, 1967.
Carlson,J. M., Time intervalsbetweencharacteristicearthquakesand
correlationswith smallerevents:An analysisbasedon a mechanical
modelof afault,J. Geophys.Res.,96,4255-4267,199la.
Carlson,J.M., A two-dimensionalmodelofafault,Phys.Rev.A,44, 6226,
1991b.
Davis,S. D., andC. Frohlich,Single-linkclusteranalysisof earthquake
aftershocks:Decaylawsandregionalvariations,J. Geophys.Res.,96,
6335-6350, 199la.
Davis,S. D., and C. Frohlich,Single-linkclusteranalysis,synthetic
earthquakecatalogs,andaftershockidentification,Geophys.J. Int.,
104,289-306, 1991b.
Dziewonski,A.M., T. A. Chou,andJ. H. Woodhouse,Determinationof
earthquakesourceparametersfromwaveformdataforstudiesofglobal
andregionalseismicity,J. Geophys.Res.,86, 2825-2852,1981.
Dziewonski,A.M., andJ. H. Woodhouse,An experimentin systematic
studyof globalseismicity:Centroid-momenttensorsolutionsfor 201
moderateandlargeearthquakesof 1981,J. Geophys.Res.,88, 3247-
3271, 1983.
Eneva,M., andG. L. Pavlis,Applicationof pair analysisstatisticsto
aftershocksofthe1984MorganHill,California,earthquake,J.Geophys.
Res.,93, 9113-9125, 1988.
Frohlich,C., Thenatureof deep-focusearthquakes,Annu.Rev.Earth
Planet. Sci.,17, 227-254, 1989.
Frohlich,C.,Trianglediagrams:Ternarygraphstodisplaysimilarityand
diversityofearthquakefocalmechanisms,Phys.EarthPlanet.Inter.,in
press,1992.
Frohlich,C.,andK. D.Apperson,Earthquakefocalmechanisms,moment
tensors,andtheconsistencyof seismicactivitynearplateboundaries,
Tectonics,11,279-296, 1992.
Frohlich,C., andR. E. Buskirk,Survivorshipcurvesandgrowthratesfor
apopulationof mustachehairs,TexasJ. Sci.,34, 207-214,1982.
Frohlich,C., andS.D, Davis,Single-linkclusteranalysisasamethodto
evaluatespatialandtemporalpropertiesofearthquakecatalogs,Geophys.
J. Int., 100, 19-32, 1990.
Giardini,D., Frequencydistributionandquantificationof deepearth-
quakes,J. Geophys.Res.,93,2095-2105,1988.
Gutenberg,B., Amplitudesof P, PP andS andmagnitudesof shallow
earthquakes,Bull.Seismol.Soc.Am.,35, 57-69,1945.
Gutenberg,B., andC. F. Richter,SeismicityoftheEarthandAssociated
Phenomena,PrincetonUniversityPress,Princeton,N.J., 1954.
Habermann,R. E.,Consistencyofteleseismicreportingsince1963,Bull.
Seismol.Soc.Am., 72, 93-111, 1982.
Habermann,R. E., Teleseismicdetectionin theAleutianIslandarc,J.
Geophys.Res.,88, 5056-5064,1983.
Habermann,R. E., Seismicityratevariationsandsystematicchangesin
magnitudeinteleseismiccatalogs,Tectonophysics,193,277-289,1991.
Habermann,R. E., W. R. McCann,andB. Perin,Spatialseismicity
variationsalongconvergentplateboundaries,Geophys.J. R. Astron.
Soc.,85, 43-68, 1986.
Hanks,T. C.,b valuesandtonseismicsourcemodels:Implicationsfor
tectonicstressvariationsalongactivecrustalfaultzonesandtheestima-
tionof high-frequencystronggroundmotion,J. Geophys.Res.,84,
2235-2242, 1979.
644 FROitL•CltASr•DAVIS: Muc• Ar•o ArtouT TF.L•S•SM•C b VALUES
Hanks,T. C., andH. Kanamori,A momentmagnitudescale,J. Geophys.
Res.,84, 2348-2350, 1979.
Heaton,T. H.,andR.E.Heaton,Staticdeformationsfrompointforcesand
forcecoupleslocatedinweldedelasticPoissonianhalf-spaces:Implica-
tionsfor seismicmomenttensors,Bull. Seisrnol.Soc.Am.,79, 813-841,
1989.
Heaton,T. H.,F.Tajima,andA. W.Mori,Estimatinggroundmotionsusing
recordedaccelerograms,Surv.Geophys.,8, 25-83,1986.
Kanamori,H., Magnitudescaleand quantificationof earthquakes,
Tectonophysics,93, 185-199,1983.
Kanamori,H., andD. L. Anderson,Theoreticalbasisof someempirical
relationsinseismology,BUll.Seismol.Soc.Amer.,65,1073-1095,1975.
Knopoff,L., Y. Y. Kagan,andR. Knopoff,bvaluesforforeshocksand
aftershocksinrealandsimulatedearthquakesequences,Bull.Seisrnol.
Soc.Am., 72, 1663-1676, 1982.
Lilwall,R.C.,andJ.M. Neary,Redeterminationofearthquakebody-wave
magnitudes(mb)usingISCbulletindata,Rep.O 21/85,38pp.,At.
WeaponsRes.Estab.,Aldermaston,England,1986.
Pacheco,J.F., C. H. Scholz,andL. R. Sykes,Changesin frequency-size
relationshipfromsmalltolargeearthquakes,Nature,355,71-73,1992.
Page,R.,AftershocksandmicroaftershocksofthegreatAlaskaearthquake
of 1964,Bull. Seismol.Soc.Am., 58, 1131-1168, 1968.
Perez,O.J.,andC. H. Scholz,Heterogeneitiesoftheinstrumentalseismic-
ity catalog(1904-1980)for strongshallowearthquakes,Bull.Seismol.
Soc.Am., 74,669-686, 1984.
Reasenberg,P., Second-ordermomentof centralCaliforniaseismicity,
1969-1982,J. Geophys.Res.,90,5479-5495,1985.
Ringdal,F.,Studyofmagnitudes,seismicity,andearthquakedetectability
usingaglobalnetwork,Bu//.Seismol.Soc.Am.,76, 1641-1659,1986.
Royer,J.Y., R.D. Muller,L. M. Gahagan,L. A. Lawver,D. Numberg,and
J.G.Sclater,A GlobalIsochronChart,UniversityofTexasInstitutefor
GeophysicsTechnicalReportNo. 117,pp.38, 1992.
Scholz,C.H.,Thefrequency-magnituderelationofmicrofracturinginrock
anditsrelationto earthquakes,Bull.Seismol.Soc.Am.,58, 399-415,
1968.
Shaw,B. E.,J.M. Carlson,andJ.S.Langer,Pauemsofactivitypreceding
largeearthquakes,J. Geophys.Res.,97,479-488,1992.
Smith,W.D.,Evidenceforprecursorychangesinthefrequency-magnitude
b-value,Geophys.J. R. Astron.Soc.,86, 815-838,1986.
Utsu,T., A statisticalsignificancetestofthedifferenceinb-valuebetween
twoearthquakegroups,J.Phys.Earth,14,37-40,1966.
Walker,D. A.,andC.S.McCreary,Significantunreportedearthquakesin
"aseismic"regionsofthewesternPacific,Geophys.Res.Lett.,12,433-
436, 1985.
Wyss,M., Towardsaphysicalunderstandingoftheearthquakefrequency
distribution,Geophys.J. R.Astron.Soc.,31, 341-359,1973.
S.D. Davis and C. Frohlieh, Institute for Geophysics,
Universityof Texasat Austin,8701NorthMopaeBoulevard,
Austin, TX 78759-8345.
(ReceivedJanuary20, 1992;
revisedJuly27, 1992;
acceptedAugust10,1992.)

More Related Content

What's hot

Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011
Sérgio Sacani
 
Effects of Deforestation
Effects of DeforestationEffects of Deforestation
Effects of Deforestation
Rahul Rakshit
 
Louie seismix2003-eqimage
Louie seismix2003-eqimageLouie seismix2003-eqimage
Louie seismix2003-eqimage
Stephen
 
From global to regional scale: Remote sensing-based concepts and methods for ...
From global to regional scale: Remote sensing-based concepts and methods for ...From global to regional scale: Remote sensing-based concepts and methods for ...
From global to regional scale: Remote sensing-based concepts and methods for ...
Repository Ipb
 

What's hot (12)

Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011
 
Effects of Deforestation
Effects of DeforestationEffects of Deforestation
Effects of Deforestation
 
Gravity Predictions for Earthquakes
Gravity Predictions for EarthquakesGravity Predictions for Earthquakes
Gravity Predictions for Earthquakes
 
GEOtop Sisef presentation
GEOtop Sisef presentationGEOtop Sisef presentation
GEOtop Sisef presentation
 
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
Toward Sustainable Nitrogen and Carbon Cycling on Diversified Horticulture Fa...
 
Louie seismix2003-eqimage
Louie seismix2003-eqimageLouie seismix2003-eqimage
Louie seismix2003-eqimage
 
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
 
Ecological Marine Units: A New Public-Private Partnership for the Global Ocean
Ecological Marine Units: A New Public-Private Partnership for the Global OceanEcological Marine Units: A New Public-Private Partnership for the Global Ocean
Ecological Marine Units: A New Public-Private Partnership for the Global Ocean
 
From global to regional scale: Remote sensing-based concepts and methods for ...
From global to regional scale: Remote sensing-based concepts and methods for ...From global to regional scale: Remote sensing-based concepts and methods for ...
From global to regional scale: Remote sensing-based concepts and methods for ...
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationM6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
 
Estimating the Probability of Earthquake Occurrence and Return Period Using G...
Estimating the Probability of Earthquake Occurrence and Return Period Using G...Estimating the Probability of Earthquake Occurrence and Return Period Using G...
Estimating the Probability of Earthquake Occurrence and Return Period Using G...
 

Similar to Öncel Akademi: İstatistiksel Sismoloji

Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
Ali Osman Öncel
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
Ali Osman Öncel
 
Student Name________________________ .docx
Student Name________________________                              .docxStudent Name________________________                              .docx
Student Name________________________ .docx
cpatriciarpatricia
 
The Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and FaultingThe Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and Faulting
Ali Osman Öncel
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
Ali Osman Öncel
 
01 characteristics ofgroundmotions
01 characteristics ofgroundmotions01 characteristics ofgroundmotions
01 characteristics ofgroundmotions
Zia Ullah
 
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
Sérgio Sacani
 

Similar to Öncel Akademi: İstatistiksel Sismoloji (20)

Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Seismic Risk in Turkey
Seismic Risk in TurkeySeismic Risk in Turkey
Seismic Risk in Turkey
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
a-new-seismic-hazard-model-for-ecuador-2018 (1).pdf
a-new-seismic-hazard-model-for-ecuador-2018 (1).pdfa-new-seismic-hazard-model-for-ecuador-2018 (1).pdf
a-new-seismic-hazard-model-for-ecuador-2018 (1).pdf
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Student Name________________________ .docx
Student Name________________________                              .docxStudent Name________________________                              .docx
Student Name________________________ .docx
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
The Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and FaultingThe Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and Faulting
 
New Magnitude Conversions for Turkey
New Magnitude Conversions for TurkeyNew Magnitude Conversions for Turkey
New Magnitude Conversions for Turkey
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Magnitude Conversion
Magnitude ConversionMagnitude Conversion
Magnitude Conversion
 
01 characteristics ofgroundmotions
01 characteristics ofgroundmotions01 characteristics ofgroundmotions
01 characteristics ofgroundmotions
 
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
Hints that the_lunar_impactflux_has_not_been_constant_for_large_impacts_durin...
 
Intel Report
Intel ReportIntel Report
Intel Report
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
ONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJEONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJE
 

More from Ali Osman Öncel

More from Ali Osman Öncel (20)

APA Yazım Kuralları
APA Yazım KurallarıAPA Yazım Kuralları
APA Yazım Kuralları
 
Gravimetri : Ders 14
Gravimetri : Ders 14Gravimetri : Ders 14
Gravimetri : Ders 14
 
Gravimetri : Ders 13
Gravimetri : Ders 13Gravimetri : Ders 13
Gravimetri : Ders 13
 
Gravimetri : Ders 12
Gravimetri : Ders 12Gravimetri : Ders 12
Gravimetri : Ders 12
 
Riskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve ŞehircilikRiskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve Şehircilik
 
Riskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve ŞehircilikRiskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve Şehircilik
 
Gravimetri : Ders 07
Gravimetri : Ders 07Gravimetri : Ders 07
Gravimetri : Ders 07
 
Gravimetri : Ders 06
Gravimetri : Ders 06Gravimetri : Ders 06
Gravimetri : Ders 06
 
Gravimetri: Ders 05
Gravimetri: Ders 05Gravimetri: Ders 05
Gravimetri: Ders 05
 
Gravimetri : Ders 04
Gravimetri : Ders 04Gravimetri : Ders 04
Gravimetri : Ders 04
 
Gravimetri : Ders 03
Gravimetri : Ders 03Gravimetri : Ders 03
Gravimetri : Ders 03
 
Gravimetri Ders 02
Gravimetri Ders 02Gravimetri Ders 02
Gravimetri Ders 02
 
Gravimetri Ders 01
Gravimetri Ders 01Gravimetri Ders 01
Gravimetri Ders 01
 
Kar Kar Geothermal Field Work
Kar Kar Geothermal Field WorkKar Kar Geothermal Field Work
Kar Kar Geothermal Field Work
 
Beppu geothermal field
Beppu geothermal fieldBeppu geothermal field
Beppu geothermal field
 
High Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational FieldHigh Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational Field
 
Gravity Predictions for Earthquakes
Gravity Predictions for EarthquakesGravity Predictions for Earthquakes
Gravity Predictions for Earthquakes
 
Nakamura Technique for Soil Characterization
Nakamura Technique for Soil CharacterizationNakamura Technique for Soil Characterization
Nakamura Technique for Soil Characterization
 
H/V User Guidelines
H/V User Guidelines H/V User Guidelines
H/V User Guidelines
 
Geopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration ProcessingGeopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration Processing
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

Öncel Akademi: İstatistiksel Sismoloji

  • 1. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. B1, PAGES 631-644, JANUARY 10, 1993 Teleseismic b Values; Or, Much Ado About 1.0 CUFF F•OHUCH Institutefor Geophysics,UniversityofTexasatAustin Scozr D. DAVIS1 CooperativeInstitutefor ResearchintheEnvironmentalSciencesandNationalGeophysicalData Center,Boulder,Colorado In thispaperweinvestigatethevalueof bintheGutenberg-Richterrelationforfourteleseismiccatalogsof earthquakes:Abe'shistoricalcatalog,theHarvardCentroidMomentTensor(CMT) catalog,thecatalogof the InternationalSeismologicalCentre(ISC),andtheBlacknestcatalog.Anunfortunateresultisthatbdiffersby30% ormorewhendeterminedindifferentmagnituderanges,indifferentcatalogs,orusingdifferentmethods.Forglobal catalogsseparatedintoshallow,intermediate,anddeepearthquakegroups,allvaluesdeterminedforbliebetween 0.72and1.34.Wecanidentifynosystematicglobalvariationofbwithdepth.Forteleseismiccatalogsitisdifficult tobelievemeasuredgeographicvariationsinbbecausesystematicerrorscauseproblemsofearthquakedetection, earthquakelocation,aftershockidentification,andmagnitudedetermination.However,somevariationsinbareso persistentandlargethattheymustbereal.FordeepearthquakesinTonga-Fiji,forexample,variousmeasurements of blie between1.06and1.57,comparabletob forshallowearthquakes,whereasmeasurementsof b fordeep earthquakesintherestoftheworldaremuchlower,between0.53and0.96.ForshallowearthquakesintheHarvard CMTcatalog,earthquakeswiththrustandstrikeslipfocalmechanismshavesignificantlylowerbvalues(0.86and 0.77)thanearthquakeswithnormalfaultingmechanisms(1.06).WhenweseparatetheISCcatalogintoprimary events(mainshocksandearthquakeswithnoaftershocksorforeshocks)andsecondaryevents(aftershocksand foreshocks),weobservethatbfor secondaryeventsisnearlyalwayssignificantlyhigherthanbformainshocks. However,weshowthatthedifferencehasnophysicalsignificance,asit arisessimplyfromtheactof choosing mainshocksasthelargestearthquakein aforeshock-mainshock-aftershocksequence.Whenwecorrectforthis systematiceffectbycomparingtherealcatalogstoidenticalcatalogswithrandomlyreassignedmagnitudes,wefind thatb for secondaryeventsin therealcatalogis actuallylowerthanexpected.Thusamongaftershockslarge earthquakesarerelativelymorecommonthanexpected,perhapsbecausethemainshockraptureloadsasperitiesin adjacentregions. INTRODUCTION A trivia]observationaboutthenatureof earthquakesis that not all earthquakesare the same size. Useful parameters which quantify earthquakesize includemoment[Hanks and Kanamori, 1979], potency[Heaton and Heaton, 1989], and radiated energy. However, for historical reasonsthe most commonlyusedmeasureof earthquakesize is magnitude,as determinedfrom a variety of differentmagnitudescales. In practice the statisticaldistributionof sizes for a group of earthquakescan be quite complicated. For purposesof comparison,the so-calledGutenberg-Richter[1954] model hasprovideda quitesuccessfulstartingmodel. Over a limited range of earthquakemagnitudes,for most magnitudescales the distributionoften appearsto satisfy 1og10N=a-bM (1) where N is the numberof earthquakesin the grouphaving magnitudeslargerthanM, anda andb areconstants.Clearly, b is a statisticmeasuringtheproportionsof largeandsmall earthquakesin the group;if b is large,small earthquakesare relatively common, whereas when b is small,. small earthquakesarerelativelyrare. There is a surprisinglylargeliteratureconcerningthese"b 'NowatInstituteforGeophysics,UniversityofTexasatAustin Copyfight1993bytheAmericanGeophysicalUnion. Papernumber9211101891. 0148-0227/93/9ZIB-01891505.00 631 values"(seeBath [1981] for a review). A few papersattempt to relate the value of b to the physical processeswhich. generategroupsof earthquakes.One approachis to assume thatthenumberof earthquakesof a givensizeis proportional to the areaor volumeavailablefor faultingandthusthat theb value is closelyrelated to the dimensionalityof this volume [Kanarnori and Anderson, 1975; Aki, 1981]. Another approachis to attemptto derive a relationbetweenthe stress or stressdrop in the sourcearea and the b value [Scholz, 1968; Wyss,1973;Hanks, 1979]; generallythe resultis that higherstressescorrespondto lower b values. If such physical factors do affect b, then we ought to observe variations in b that depend on tectonic and theological conditions near the earthquake source. The primary objectiveof this paperwill be to determineb values for selected earthquakegroups in several different global earthquake catalogs. In particular, we shall addressthe following questions: 1. How similar or different are b values measured in different global catalogs? How large must observed differencesbe to be significant? 2. How-different are b valuesfor earthquakesin different geographicand tectonic groups, and are these differences significant? 3. Does bsec, the b value for catalogs of earthquake foreshocksor aftershocks,differ from bMain,theb value for events which are mainshocks or which possess no aftershocks? The next section describes several different global earthquakecatalogs,the magnitudescalesusedfor evaluating
  • 2. 632 FRoauca^NDD^v•s' Muc• ADoABotrrT•ss•c b earthquakesize,andvariousproceduresfor determiningb. To separateearthquakesinto geographicgroups,we usethesame subgroupsas in a companionpaperon p values[Davis and Frohlich, 1991a]. To separateearthquakesin terms of tectonicgroupsor sourcetype we utilize methodsdescribed by Frohlich and Apperson[1992]. To investigatedifferencesbetween fore- and aftershocks and other earthquakes,we utilize methods incorporating single-linkclusteranalysis(SLC), describedin somedetail previously[Frohlich and Davis, 1990;Davis and Frohlich, 199lb]. We defineaftdrshocksasin ourpreviouswork, namely,if a specifiedstatisticaltestsuggeststhata sequence of earthquakesisrelated,thenwe definethelargestearthquake as the "primary event" or mainshock, and all other earthquakesare "secondaryevents", with aftershocksand foreshocksbeing those which occur after, or before, the primary event. Somedifficultiesarisebecause,asweshallshow,thevery actof identifyingthe primaryeventasthe largestearthquake in each sequencesystematically affects the values of b determinedfor primaryandsecondaryevents. Thusmeasured valuesof bsecfor aftershocksor secondaryeventsmustnearly always be higher than bMain for mainshocks, even in the absenceof a physicalcause. To overcomethisproblemand determinewhetherobserveddifferencesbetweenbMainandbsec are significant,we developa methodwhich comparesbMain andbSecfromreal earthquakecatalogswith valuesdetermined from a correspondinghypotheticalcatalog with randomly reassignedmagnitudes. DATA AND METHODS GlobalSeismicityCatalogsandMagnitudeScales Because b value is a statistical measure of the relative occurrenceratesof big and small earthquakes,we prefer magnitudescalesthatmeasureearthquakesizefaithfully,and we require catalogsthat are as completeand uniform as possible.Forthepresentstudy,wehaveutilizeda varietyof magnitudedatafromfourdifferentglobalseismicitycatalogs. Abe's catalog. The first of theseis thecatalogof large earthquakespreparedby Abe [1981, 1984]. He carefully reevaluatedamplitudeand period observationsfrom several sourcesincludingworksheetsin the archivesat the California Institute of Technology. For 1614 large earthquakes occurring between 1897 and 1980, he redetermined the magnitudeMs from surfacewaveshavingperiodsof about 20s,andGutenberg's[1945]magnitudemB frombodywaves having periodsof 6-8 s (Figure 1). The distributionof magnitudesin Abe'scatalogsuggeststhatMs andmB saturate at about8.5 and8.2, respectively.As magnitudedecreases, therateof activityincreasesdownto7.0forbothMs andmB. Abe's [1981, p. 72] objectivein this work wasto "remove major inhomogeneitiesin the existing catalogs." For earthquakeswithmagnitudesof 7'.0andabove,it is likely thatAbe'scatalogis moreuniformandcompletethanother availablecatalogs,at leastfor earthquakesoccurringbetween 1904 and 1976. Harvard catalog. The secondcatalogusedis the Harvard CentroidMoment Tensor (CMT) catalog. This consistsof recordsof 8719 earthquakesoccurringbetweenJanuary1977 and June1989. For this periodthe Harvardgrouputilized 3.0 2.5 1.0 0.5 0.0 I I I I I 6.0 7.0 •"' 8.0 rn B Fig.1.DistributionofmagnitudesmsinAbe'scatalogoflargeearthquakes occurringbetween1897and1980. Thesolidlineisthecumulativenumber ofearthquakeshavingmsequaltoorexceedingthegivenvalue,thedashed lineisthenumberinbinsofwidth0.1.Theverticallinesbetweenmsof7.0 and7.5delineatetherangeusedtodetermineba•,eandbc•,winTable1. long-period (50-200 s) body and/or surface waves to determinescalarmomentsandCMT for mostearthquakes havingmagnitudesof about5.5 andgreater(Figure2). For thisstudywe convertedthe scalarmomentsMo (in dyne centimeters)to momentmagnitudesMw andmwusingthe relationshipssuggestedby Hanksand Kanamori[1979]and Kanamori [1983]: 2 Mw=T 1øgloMø- 10.7, (2) mw=(1OgloMo- 10.1)./2.4. (3) In practice,the momentmagnitudescalesdo not saturate becausetheydependon suchlongperiodobservations.For magnitudesbetween7.0 and7.5 wherenoneof thescalesMw, mw,Ms andmB arenearsaturation,Kanamori [1983] notes thatMw andmw correspondto Ms andmB, respectively. WhileHarvard'smethodsfordeterminingCMTshavechanged somewhat over time [Dziewonski et al., 1981; Dziewonski and Woodhouse,1983], generallymomentmagnitudesare becomingacceptedover othermagnitudesbecausemoment magnitudesare determinedfrom digital data recordedat a relativelyfew carefullyoperatedseismographstations. ISC catalog. The third catalog used is that of the International Seismological Centre (ISC). While this containsrecordsof severalhundredthousandearthquakes, betweenJanuary1964andFebruary1986only about47,553 possessmagnitudesmb of 4.8 or larger(Figure3). Because m/, utilizesbodywaveswith periodsof approximately1.0 second,it saturatesat a magnitudeof about 6.8. In the National Oceanographicand AtmosphericAdministration HypocenterData File, which includesmany of the same earthquakesas the ISC catalog,analysisby Habermann [1982, 1983] andHabermannet al. [1986]foundthatin most geographicregions reporting of earthquakeactivity is homogeneousforearthquakeswithmbof approximately5.0.
  • 3. FROHLICHANDDAVIS' MUCH ADO ABOUTTELESEISMICb VALUES 633 4 I I Harvard CMT I I I I I Fig. 2. Distributionof magnitudesMwin the HarvardCentroidMoment Tensorcatalogforearthquakesoccurringbetween1977and1990.Solidand dashedlines are the cumulativenumberand numberin bins of width 0.1, respectively.TheverticallinesbetweenMwof 5.65and6.55delineatethe rangeusedtodeterminebHrvin Table1. 4 ISC I I I I I I I I 5.0 6.0 7.0 õ.0 baselinedifferencesbetweenindividualstations.Like mb, the redeterminedmaximum likelihood magnitudesrnb (rnlike) saturateat about 6.8. As magnitudedecreases,the rate of activityincreasesdownto about4.2 (Figure4). However,for the Blacknest catalog the semilog plot of number versus magnitudeis not so straightas with the Harvard or Abe catalogs. This is probably becausein certain geographic regions the global network often missessome earthquakes havingmagnitudesbetweenabout4.3 and5.0. Nevertheless, for the period 1964 to 1983, we presumethat magnitudesin the Blacknest catalog are more uniform temporally and geographicallythanin theISC catalog. For earthquakeswith magnitudesof about 5.0 and below rnb (rnlike) averages approximately0.2 smallerthanmb. "Altered" magnitudes: Combining the Abe and Harvard catalogs. Nearly all earthquakecatalogsexhibit temporal changesin the rate of activity within particularmagnitude ranges. While some investigatorsattribute this to intrinsic changesin the rate of occurrenceof earthquakes[Abe and Kanamori, 1979], another plausible explanation is that changesin global network coverageand seismographstation practicesystematicallyaffectmagnitudes.Perez and Scholz [1984] show that these apparentrate changesdisappearif Abe'sMs is adjustedby subtracting0.5 from all magnitudes for earthquakes prior to 1908, and subtracting 0.2 for earthquakesbetween1908 and 1948. Using an approachsimilar to that of Perez and Scholz [1984], we canadjustAbe'srn/• so that for earthquakeswith magnitudebetween 6.95 and 7.55, the occurrencerate is nearly constantand in agreementwith the Harvard CMT catalog(Figure5).Wedefinethe"adjusted"magnitudernB(a•lj) for anearthquakein yearYby mB(a•ij) =mB- 0.2forYbetween1904and1939; = mB- 0.3 for Y between1940 and 1949; = mB - 0.2 for Y between1950 and 1958; = mw- 0.1 for Y between1959 and 1976; = mwfor Y between 1977 and 1990. Here mw is calculated as above from the CMT scalar momentMo. SimilarapparentratechangesalsoafflicttheISC catalogand(to a lesserextent)theHarvardCMT catalog.For earthquakeswithmagnitudesrnb (mlike) of 4.5 andgreater, occurrenceratesin theBlacknestcatalogarenearlyconstant over time. IIl b Fig.3. Distributionof magnitudesmbexceeding4.8 in theInternational SeismimologicalCentrecatalogfor earthquakesoccurringbetween1964 and 1986. Solid and dashed lines are the cumulative number and number in binsofwidth0.1,respectively.Theverticallinesbetweenmbof5.0and6.0 delineatetherangeusedtodetermineblsc in Table1. Blacknestcatalog. The fourthcatalogusedis theBlacknest catalog[Lilwall andNeary, 1986],whichattemptsto remove stationreportingbiasesin mb asdeterminedby theISC. As discussedby Habermann[1991] andnumerousothers,thereis considerableevidencethat both regionaland time-dependent nonuniformitiesin rnb doexist. Lilwall andNeary [1986] use a maximum likelihood method similar to that developedby Ringdal [1986] that purportsto eliminate bias occurring becauseof data truncation at low readings and becauseof Methodsfor Measuringb Values Determining the relative proportionsof large and small earthquakeswithin a grouprequiresknowledgeof rates of seismic activity for earthquakesof different sizes. One approachis to measurethe slope(b value) of the distribution of log-number versus magnitude, taking care to select a relatively small magnituderange. Over this rangethe slope mustbe reasonablystraight,andwe mustselecta rangewhere themagnitudescalemeasuresearthquakesizefaithfully. Utsu [1966] and Aki [1965] proposedthe maximum likelihood methodto measureb for a catalogwheremagnitudesexceed some minimum value Minin, andPage [1968] presented modificationsto apply when the catalog is complete only with a rangeof magnitu.desbetweenMininandM,nax.Bender [1983] generalizedthe method to apply when the data are occurrenceratesmeasuredin discretemagnitudeintervals. Bender's method. Bender [1983] explains her method
  • 4. 634 FROHLICHANDDAVIS: MUCH ADo A•otrr TELESFaSMICb VALUES clearly and in some detail, therefore here we will only summarizeher result. In particular,supposethat for a group of earthquakeswe wishtodetermineb for magnitudesreported in n discretebinsof width8m betweena minimummagnitude of Mmin anda maximummagnitudeMm•x. Thenthemaximum likelihood estimate of b satisfies q q• (M>-Minin • -n • = (4) 1-q 1-q &n ' whereq = exp(- 23026 bSm)and(M) is themeanvalueof all magnitudeswithin the stated ranges. Generally it is not possibleto solve this equationexplicitly for q, insteadwe determineit numericallyß Forexample,supposewe wishto findb for all Aberna with magnitudesbetween7.0 and 7.5ßthenM min= 6.95, M max = 7.55, n = 6 and8m = 0.1. For this groupof earthquakes (Figure1) we findthat(M) = 7.18, andthusb = 1.15. Compositemethod.'A completelydifferentapproachis to determineb directlyby comparingthe rate of occurrenceof large and small earthquakes.As we would like "large" and "small" to encompass the greatest possible range of magnitudes,we will utilize different magnitudescalesfor determiningthe relative rates. Since individual magnitude scalessaturatefor earthquakesoutsidesome optimum size range, Frohlich [1989] suggestedmeasuringan effective valueforbeffusingfrequencyofoccurrencedeterminedfortwo differentmagnitudescales,eachwithin their optimumrange. In particular,shpposethatrlarge is the frequencyfor earthquakeshavingmagnitudesbetweenMlargeandMlarge + •M andrsmatt isthefrequencyforearthquakeswithmagnitudes betweenMsmalI andMsmatt+ •M. If eachgroupis distributed asr = A 10't'M thenit is reasonableto define rlarge b,y=M -M ' (5)large small Indeed,if eachgroupis distributedwith the samevalue of b, thenbeff = b exactly,independentof thebinwidthbM. Of course,becausedifferentmagnitudescalesmeasuredifferent properties,oftenbeffdiffersfromtheb valuesdetermined from either scale. In this paper we employ a slight generalizationof this schemeby utilizing three different magnitudescales. To determinea compositeb valuehereaftercalledbcom•,,we utilizethemB(adj)scaledescribedabove,themw moment magnitudesdeterminedfrom scalarmomentsreportedHarvard, andthemb (mlike) magnitudesfrom the Blacknestcatalog. We determinerAbe(adj)forearthquakeshavingmagnitudes between7.0 and 7.5, rHrv for magnitudesbetween5.90 and 6.50, andrBtl•for magnitudesbetween4.85 and5.45. Then bMis0.6,andbco,,,•,istheslopeoftheleastsquaresfit tothe magnitudelog-ratepairs (4.85, log10ratk),(5.90, loglorHrv), and(6.95,10910rAbe(aclj)) (Figure6). GeographicandTectonicGroupingof Earthquakes Subsequently we determine b values for a variety of earthquakesubgroups.-Thus we separateearthquakesinto groupsdeterminedby (1) geographicregion,(2) focal depth, (3) nearest tectonic feature, (4) focal mechanism, and (5) 4 o2 I I I I I I I I I 3.0 4.0 5.0 6.0 7.0 Illmlike Fig.4. Distributionofmagnitudesmr,(m/ike)in theBlacknestcatalogfor earthquakesoccurringbetween1964and1983.Solidanddashedlinesare thecumulativenumberandnumberinbinsof width0.1,respectively.The verticallinesbetweenmr,(m/ike)of4.86and6.15delineatetherangeused todeterminebst• in Table1. primary (mainshocks)or secondaryevents(aftershocksand foreshocks). For the geographic regionalization, we form regions identicalto thosedefinedbyDavisandFrohlich[1991a]. For focal depth, we separately consider three depth ranges: shallow (depth h lessthan 70 km), intermediate(h between 70 and 300 km), and deep (h greater than 300 kin). To determinethe distancebetween earthquakesand the nearest majortectonicfeature,we useddigitizedmapsof trenchesand ridge-transforms supplied by the Paleo-Oceanographic MappingProject(POMP) groupat the Universityof Texasat Austin [Royeret al., 1992]. 1000 800 600 400 200 ß ! ! ! -.1 m W 19100 19120 19•40 19•60 19180 Year Fig.5. Cumulativenumberofearthquakeswithmagnitudesbetween6.95 and7 55forthe"adjusted"magnitudescalerns.a•-(solidline) andwithoutß •, •J , adjustment(dashedline).ThemagnitudemB(adj}ISdeterminedfrommsby subtracting0.2priorto 1940andbetween1950and1958,subtracting0.3 between1940and1949,andsubtracting0.1between1959and1976. After 1977,mB(adj)equalsmw,themomentmagnitudedeterminedfromthe Controid Moment Tensor scalar moment.
  • 5. FRO•ILICI-IANDDAVIS: MUCHADo Anotrr TELESEISMICb VALUES 635 Focal mechanismsare available generally only for the earthquakesin the HarvardCMT catalog. We classifythese usingthe trianglediagrams(Figure7) proposedby Frohlich and Apperson[1992] and describedin detail by Frohlich [1992]. In this scheme,the three vertices of the triangle represent "pure" thrust, strike slip, or normal faulting earthquakeswith vertical T, B, andP axes,respectively. If ST, •B, and5/, arethe dip anglesof theT, B, andP axes reportedin theHarvardCMT catalog,then 2 • +sin6?=1. (6)sin•r+sin2 2 Thus for any earthquake, we can define its fractional proportionsof thrust, strike slip, or normal faulting to be sin2ST,sin2bB,andsin25/,. In thispaper,weshallclassify aCMT mechanismas"thrust"if ST isgreaterthan50ø,"strike slip"if bBis greaterthan60ø,and"normal"if 5/, is greater than 60ø. All other mechanismswe classifyas "other." In addition,we includeas"other" all CMT mechanismshaving a compensatedlinearvectordipole(CLVD) fractionfcivaof 0.2 andgreater.The CLVD fractionfctvdis definedastheabsolute value of the ratio of the largest and smallest principal moments[e.g., Frohlich and Apperson,1992]. To separate earthquakes into "primary events" (mainshocks)and"secondaryevents"(fore- and aftershocks), we use singlelink clustering(SLC) algorithmsdescribedby Frohlich and Davis [1990] andDavis and Frohlich [1991a, 1991b]. To identify aftershockswe employ a conversion factorC of 1.0km/dayanda "cutoffdistance"D of 40 "space- time km" (ST lcm,seeFrohlich and Davis [1990]) for the ISC catalog,50 ST km for theBlacknestcatalog,and 100 ST km for theHarvardCMT catalog. Measuring b for Mainshocksand SecondaryEvents; a Tutorial Example. We cannot compare b values for mainshocksand secondaryeventsin the usualway, because separating an earthquake catalog into mainshocks and Three Global Caf•alogs I I 30 o• / ' ,0 Z 0• / Blackne ' • oo o -lo ', , ,"3 4 5 6 ? 8 m•lik, M•, mp(•dj) Fig.6.O•fhitionofbc•. • thcksoldanddashedlhesshow•e activity rate•r 0.1ma•itude unitforea•quakes • •e Blacknest,Hazard, and Abe(adjustS)catalogs.•e solidciml•sam• acdvityrateswi•h • rangeof ma•itudes •dimted by •e bars;for Blacknest,4.85-5.45;for Hazard,5.•-6.50;forA• (adjustS),6.95-?.55.Wedefinebc• asthe slopeof•e dashedstraightl•e whichistheleastsquaresfitto•ese acfivi• •tes. secondaryeventscreatesa systematicbiascausingbsec to be greaterthanamain.To illustratethis(Figure8), we generatea hypotheticalcatalogof 10,000 earthquakeswhich satisfythe Gutenberg-Richterlaw exactly,with b = 1.0 andMinin= 4.75. Supposefurtherthat in this catalogeachpair of earthquakes comprisesa primary-secondaryevent sequence,so that there are 5000 primary and5000 secondaryevents. If we identify thelargereventof eachpair astheprimaryevent,thenamain is 0.91 and bSec is 2.12. These b values differ from 1.0 because our selection method for identifying secondary events systematically discriminates against selecting the largeeventsin the catalog. In contrast,for thepopulationof primary events, it discriminatesin favor of selectinglarge events. Clearly, this systematic bias also acts when we distinguish mainshocksand secondaryearthquakesin real catalogs as well, although it has apparently not been recognizedexplicitly in previousstudies. To take accountof this systematicbias, we comparethe observedvaluesof amainandbsec in eachcatalogwith values determined for an "identical catalog with randomized magnitudes"(ICRM). The ICRM has the samenumber of earthquakes,the samedistributionof magnitudes,the same number of primary events, and for each primary the same number of secondaryevents as the correspondingprimary event in the real catalog. However, we have randomly reorderedthe magnitudesin the entire ICRM to insure that possible physical differences generating mainshocks and secondaryeventscannotaffect measurementsof amainand bSec. Notethatby themselvesmeasurementsof amainandbsec in the ICRM have absolutelyno physicalsignificance;they are NORMAL THRUST OFig.7. Trianglediagramfordisplayingearthquakefocalmechanisms.The threeverticescorrespondtopurestrikeslip(top),thrust(right),andnormal fault(left)mechanisms.Alsoshownarethemechanismswhichplotatthe midpointsofthethreesidesandinthecenter.ForanearthquakewithT,B, andP axeshavingdipanglesrelativetohorizontalof br, 15a,andfit',the proportionofthrust,strikeslip,andnormalfaultingaresin2fyr,sin2fia,and sin2fi•.ThecurvedlinesonthefigurecorrespondtomechanismshavingP andB axeswithdipsof60ø,andtoaT axiswithadipof50ø.In thispaper wedefineearthquakesasnormal,strikeslip,orthrustif thedipoftheP orB axesexceeds60øorif thedipoftheT axisexceeds50ø.Oddearthquakesare all other events.
  • 6. 636 FROHLICHANDDAVIS: MUCH ADO Aaotrr TELESEtSM•Cb VALUES useful only as standardsof comparisonfor evaluating the difference(bsec-bMain)in the real catalog. Thusphysically significantdifferencesbetweenmainshocksand aftershocks showup asa differencebetweenthequantity(bsec- bMai,,)in therealcatalogand(bsec -bMain) in theICRM. WhendeterminingbMainandbsec for theICRM by Bender's method,a minor difficulty occursif we apply a fixed upper magnitudecutoffasdescribedabove(e.g.,seeTable1). That is, a fixed upper magnitude cutoff may exclude some mainshockswithout excluding their associatedsecondary events, thus preventingthe ICRM from having the same distributionof magnitudesas the original data catalog. To avoidthisproblem,whendeterminingbMainandbsec in each geographicregionwe separatelydeterminedthe maximum magnitudesfor primary andsecondaryevents,and we used thesemaximaastheuppercutoffvaluesfor Bender'smethod. To include as many secondaryeventsas possible,for the analysisof bMainandbsecin theISC catalogwe useda smaller lower magnitudecutoff (mr,= 4.8) thanin Table 1. For the BlacknestandHarvardCMT analyseswe usedthesamelower cutoffs as in Table 1. For the ISC catalog,a secondminor difficulty may occur becausesaturationof themr,magnitudescalecausesthelarger earthquakesto be assignedunrealisticallylow magnitudes. As thiswouldsystematicallyaffectprimaryeventsandbMain, asin thestudyof Davis and Frohlich [1991a] we utilized surfacewaveor momentmagnitudesfor all earthquakeswith mr, exceeding6.5. In the analysesof the Blacknestand HarvardCMT catalog,we utilizedmr,(mlike) andMw for all earthquakes,regardlessof theirmagnitude. RESULTS Global Measurements Evenfor globalcatalogs,thevalueof b measureddepends stronglyon the particularcatalogchosenand the rangeof magnitudesusedin thedetermination(Table1). Forexample, for earthquakesof all depthsconsideredtogether,blsc is 1.25 for the body wave magnitudemr,, whereasfor the moment magnitude Mw, bHrv is 0.90, or 28% lower. While blsc exceeds bHrv in all other depth ranges as well, the relationship between the other scales differs somewhat amongthe differentdepthgroupings.For example,babe is nearlyidenticalto blsC for intermediateanddeepearthquakes, but it is 0.15 smaller for shallow events. However, for the Harvardcatalog,bHrvmeasuredfromMw ishigherfor shallow earthquakesthanfor deepandintermediateevents,whilebHrv measuredfrommwis actuallylowerfor theshallowevents. These observed differences in measured b are not due primarilyto statisticalvariations.For bothBender's[1983] andPage's [1968] method,the standarddeviationfor b determined from the magnitudes of a catalog with-N earthquakesis approximatelyproportionaltob/N1/2. Thus for the entries in Table 1 the statistical uncertainties are less than0.01 evenfor babe, andlessstill for b determinedfrom the other catalogs. A moreimportantsourceof variationin b arisesbecause.in most catalogsthe relationshipbetweenthe log of number versusmagnitudeis not rea.llylinear, i.e., the Gutenberg- Richter"law" is not strictlytrue. This is especiallyevident in the ISC catalog (Figure 3) and the Blacknest catalog (Figure4). Forexample,if wemeasureb forearthquakesof all Synthetic Catalog :3.5 3.0 • 2.5 2.0 ol.5 _o 0.5 0.0 • • for entirecatalogb - 1.0 - • 1 aftershock/mainshock _ ••ainshockwithlargermb bM•u=0'91k,,• • - bsee=2'12• •'•A I I I I I I 5.0 6.0 ?.0 rn b Fig.8. Defining"mainshocks"asthelargestearthquakein amainshock- aftershockssequencecausesdifferentbvaluesformainshocksandaftershocks. Formagnitudeincrementsof 0.1, graphshowsthenumberofmainshocks (bottomdashedline),aftershocks(solidline),andall events(topdashed line).Thissyntheticearthquakecataloghas10,000eventswithmagnitude exceeding4.75andanoverallb valueof 1.0. Eachmainshock-aftershock sequenceconsistsofonemainshockandonesecondaryevent(aftershock), with themainshockbeingthelargerof thetwo stochasticallygenerated events.Fortheportionofthecatalogwithmagnitudesexceeding5.25(tothe rightof shortverticalline),bseeis 2.12andbMainis0.91. depthshaving magnitudesbetween5.25 and 6.35, we find blscis 1.44 (comparedto 1.25 in Table 1) andbBt•:is 1.32 (comparedto 1.13 in Table 1). Regional and TectonicVariations Measurementsof b in different regional and focal depth groupings(Table 2) rangebetween0.64 and 1.76, which are the minimumandmaximumof bBll:in the Blacknestcatalog. The compositevaluebcomppossessesthesmallestrange (0.73 to 1.16). However, there is surprisingly little correlation between the values of b determined by the differentmethods. For example,the correlationcoefficients relatingcolumnsof Table2 areblsC andbBt•:= 0.53;blsC and bHrv= 0.66;b•sc andbcomp= 0.36;bt•t•:andbHrv= 0.36; andbComp= 0.60;andbHrvandbcomp=0.29.InTable2there is no apparentsystematicdifference between b valuesfor shallow earthquakesand those for intermediate and deep earthquakes. Individual geographic regions generally possess earthquakeswith a variety of tectonic features and focal mechanisms. While there seems to be no clear difference in b whenearthquakesare groupedby proximity to nearestmajor tectonic feature (Table 3), bHrv for thrust and strike slip earthquakes(0.86 and0.77) is significantlylessthanbHrvfor normaland"other"earthquakes(1.06 and 1.05). The Tonga-Fiji region is unusualin that it possessesa significantlylargenumberof shallow,intermediate,anddeep earthquakes.In all depthranges,all four of the b valuesthat we determined(Table 3) are larger in the Tonga-Fiji region thanelsewherein the world. As notedpreviouslyby Giardini [1988] and Frohlich [1989], this is especiallytrue for the
  • 7. FRoroaCHANDDAVIS: Muc• ADo ABOUTT•es•s•c b VALUES 637 deep earthquakes. In Tonga-Fiji, b for deep earthquakes rangesbetween1.06forbCom•,and1.57forb;sc andbBlk, valueswhich are comparableto the b determinedfor shallow earthquakeselsewhere.For therestof theworld,b for deep earthquakesis extremelylow, rangingfrom 0.53 for bHrvto 0.96 for b;sc. Mainshocksand SecondaryEvents In every geographic region considered (Table 4 and Figure9), bMainfor primary eventswas lessthan bSec for secondaryevents(aftershocksandforeshocks).This wastrue not only for the observationswhere the magnitudes for individualeventswere as assignedin catalogs,but alsoin the ICRM catalogwhere thesemagnitudeswere randomizedand reassigned (Table 4 and Figure 10). These results are unsurprisingconsideringthat our selection of mainshocks createsa systematicbias which increasesb for secondary events(Figure 8). However, for the ISC data what is surprisingis that the difference(bsec -bMain ) is nearly always larger in the randomized (ICRM) catalog than in the observations (Table4, Obs-ICRM column, and Figure 11). Thus in a relativesensewe canconcludethatbsec for secondaryevents is actually"smaller than" expected,i.e., it is smallerthan the valuedeterminedif magnitudesareassignedrandomly. We obtain the sameresultsfrom analysisof mainshocks and secondaryevents within geographicsubregionsof the BlacknestCMT catalog(Figure 12 andTable 5) andwithin geographicsubregionsof the Harvard CMT catalog(Figure 12).In particular,bMainwasgenerallylessthanbsec;however the differencewas lessthan expectedas determinedfrom an ICRM. ISC Observations 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 O_oO I I I I I I I I I 0.8 1.2 1.6 2.0 2.4 bMain Fig.9. MeasurementofbMa•nforprincipalevents(mainshocks)andbse½for secondaryevents(aftershocksandforeshocks)for earthquakesin the InternationalSeismologicalCentrecatalogfor 34 geographicregions investigatedby DavisandFrohlich[1991a](seeTable4). Straightline indicatesbMa/n= bsec.Notethatgenerallyb$ec> bMain.
  • 8. 638 FROHLICHANDDAVIS: MUCH Ar>o ABOUTT•aSM•C b VALUF_,• TABLE 2. Comparisonof b ValuesDeterminedby SeveralMethodsin VariousGeographicRegions Geographic Regions blsC bB1k hi_itv bComp ShallowEarthquakes(h < 70 km) 1 1.09 1.06 0.78 1.12 2 1.34 0.78 1.07 0.95 3 1.25 1.1 1 0.88 0.7 8 4 1.45 1.15 -- 0.87 5 and 6 1.19 1.03 0.91 0.81 7 1.33 1.35 0.89 1.14 8 0.86 1.28 -- 0.76 9-11 1.31 1.46 1.09 1.12 12 1.32 1.76 0.87 • 13 and 14 1.16 1.21 0.65 1.02 15 and 16 1.08 1.06 0.68 0.92 17 1.17 1.19 0.85 0.97 18 1.53 1.17 1.26 1.1 1 19-21 1.15 1.04 0.89 0.95 22 1.34 1.08 1.11 0.83 23 1.27 1.04 0.66 0.88 24 1.10 0.98 0.88 0.99 25 and26 1.10 1.14 0.79 1.16 27 1.01 0.88 0.89 0.89 28 1.37 1.04 1.01 1.02 29 1.47 1.25 0.73 • 30 1.46 1.46 1.14 1.06 31 1.35 1.13 • • 32 1.06 1.02 -- 1.08 33 1.48 1.60 1.21 1.20 34 1.71 1.24 • 0.98 Average 1.27 1.17 0.92 0.98 IntermediateDepthEarthquakes(70 km _•h < 300 kin) 1 1.57 1.11 • • 3 1.50 1.27 • -- 5 and 6 1.26 1.03 0.67 0.92 7 0.94 0.87 -- • 9-11 1.29 1.38 0.96 1.12 13 and 14 1.21 0.99 1.09 0.79 15 1.08 1.01 • 1.13 17 1.20 1.01 • 0.90 18 1.50 1.23 • 0.97 19-21 1.29 1.05 -- 0.88 22 1.12 0.65 • 0.68 23 1.62 1.24 • 1.08 24 1.51 1.33 • 1.12 25 and 26 1.24 1.07 0.98 1.01 34 1.41 0.91 • 0.73 Average 1.32 1.08 0.93 0.94 DeepEarthquakes(300 km _<h) 9-11 1.48 1.41 1.09 -- 12 1.63 1.68 1.29 0.99 18 0.92 0.64 • 0.77 25 and 26 1.00 • • • Average 1.26 1.24 1.19 0.88 Themagnitudescalescatalogsetc.for theb valuesblsC bB1k blJavandbCorn--areasin Table 1 withbHrvutiliz•gtheMwscale,andbCornpdeterminedusingthecompositemetliOddescribedmthe text. Geographicregionsare as givenby DavisandFrohlich [1991a]andTable 4, exceptseveral regionsare combinedas indicated.The tabledoesnot includeb valuesfor regionswhere there are fewerthan 100 eventsin the ISC catalog,75 eventsin the Blacknestcatalog,or 40 eventsin the HarvardCMT catalog.Averagesareunweightedmeanof numbersin eachcolumn.
  • 9. FROHLICHANDDAMS: MUC• ADOABotrrTELES•SMICb VALUE$ 639 TABLE 3: Comparisonof b Valuesfor EarthquakesGroupedbyNearestTectonicFeature, Focal MechanismType,andby Proximityto Tonga-Fiji bComp Nearest Tectonic Feature a RidgeTransform-FractureZone 1.56 1.17 O.91 Subduction Zone 1.55 1.14 O.89 1.22 0.91 FocalMechanismTypeb(h_<50km) Thrust -- -- 0.86 StrikeSlip • • 0.77 Normal -- • 1.06 Other • • 1.05 Proximity to Tonga-Fiji (Flinn-EngdahlRegions12-13) Shallow(h < 70 km) Tonga-Fiji 1.31 1.47 1.05 1.11 Rest of World 1.22 1.11 0.89 0.95 Intermediate(70 < h < 300 km) Tonga-Fiji 1.29 1.37 0.96 1.08 Rest of World 1.33 1.08 0.79 0.93 Deep(h < 300 km) Tonga-Fiji 1.57 1.57 1.22 1.06 Rest of World 0.96 0.58 0.53 0.69 Themagnitudescales,catalogs,etc.,forthebvaluesbisC, bBlk,bHrv,andbCom areasinTable1p , withbHrvutilizingtheMwscale,andbCompdeterminedusingthecompositemethoddescribedinthe text. aHypocentersareearthquakeswithfocaldepthh < 50 kmoccurringwithin200 km of a spreading ridge,transform,fracturezoneor subductionzoneasindicatedbythePOMPGroup. bseeFigure7fordefinitionsofthrust,strikeslip,etc. ISC ICRM Synthetics 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.8 1.2 1.6 2.0 2.4 bMain Fig.10.MeasurementofbMainformainshocksandbsecforsecondaryevents asin Figure9 exceptthatwithineachgeographicregion,eventmagnitudes are reassignedrandomly(i.e., theyconstitutean IdenticalCatalogwith RandomizedMagnitudes,or ICRM). StraightlineindicatesbMain=bsec. Notethatbsec> bMalneventhoughtherandomizationremovesanypossible effectcausedbyphysicaldifferencesinmainshocksandsecondaryevents. DISCUSSIONAND CONCLUSIONS How Well Do We Know b? Recently,severalinvestigatorshave generatedsynthetic earthquake catalogs having b values of 1.0 using generalizationsof Burridge and Knopoff[1967] block and springmodels[Bak and Tang, 1989;Carlson, 1991a; 1991b; Shawet al., 1992]. The presentpapersuggeststhat while observedvaluesof b equal1.0 in thesensethatb is neveror almostneverlessthan0.5 andneveror almostnevergreater than 2.0, its precise value is uncertain or indeterminate. Exceptin thisabovelimitedsense,it is simplynottruethatb is 1.0. This result shouldnot be surprising,as there is no one "best"or "correct"magnitudescale. The Gutenberg-Richter "law" is essentiallyempirical,earthquakesaresimplyoneof a hostof phenomenafor whichlogarithmicplotsof number versussize are approximatelystraight(e.g., Frohlich and Buskirk,1982]. Furthermore,studiesseekingto find a linear relationshipbetween various magnitudescalesseldomfind thatthecoefficientof b is 1.0 (e.g.,seeHeatonet al., [1986], and Bath's [1981] comprehensive table of these relationships). An importantconclusionof thispaperis thatoneshouldbe very wary aboutattachingunduesignificanceto differencesin measurements of b values, unless these differences are extremelylarge,suchas25% or evengreater. Herewe have usedseveraldifferentmethodstosystematicallydeterminethe parameterb of theGutenberg-Richterlaw for severalcatalogs
  • 10. 640 FROHLICHANDDAVIS: MUCH ADO A•otrr TELESmSMtCb VALUES TABLE 4. Comparisonof b Valuesfor MainshockandSecondaryEventsin the GeographicRegionsInvestigatedby DavisandFrohlich[1991a] Geographic Flinn-Engdahl Observations ICRMa Regions Regions bMainObs bSeeobsbMainR bSecRObs-ICRMb 1 Alaska 1 1.06 1.31 1.02 1.42 -0.15 2 West CoastNorth America 2,3,4 1.16 1.76 1.16 1.77 -0.01 3 Mexico-Central America 5,6 1.25 1.55 1.21 1.86 -0.35 4 Caribbean 7 1.26 2.05 1.27 2.00 0.06 5 SouthAmerica 1 8,9 1.06 1.20 1.04 1.44 -0.26 6 SouthAmerica 2 8,9 1.23 1.34 1.18 1.66 -0.37 7 South Sandwich Islands 10 1.03 1.32 1.01 1.43 -0.13 8 New Zealand 11 1.08 1.16 1.07 1.20 -0.05 9 Tonga1 12 1.18 1.48 1.16 1.66 -0.20 10 Tonga2 12 1.11 1.34 1.07 1.52 -0.22 11 Tonga3 12 1.18 1.36 1.12 1.63 -0.33 12 Fiji 13 1.25 1.68 1.21 2.12 -0.48 13 Vanuatu(NewHebrides)1 14 1.01 1.33 0.95 1.54 -0.27 14 Vanuatu(NewHebrides)2 14 0.98 1.27 0.94 1.39 -0.16 15 Solomon Islands 1 15 0.99 1.26 0.98 1.29 -0.04 16 Solomon Islands 2 15 0.94 1.07 0.85 1.28 -0.30 17 New Guinea 16 0.98 1.13 0.96 1.21 -0.10 18 Carolines- Marianas 17,18 1.22 1.82 1.25 1.65 0.20 19 Kuriles 1 19 0.99 1.20 0.92 1.34 -0.21 20 Kuriles 2 19 1.16 1.39 1.11 1.48 -0.14 21 Kuriles 3 19 1.16 1.49 1.12 1.66 -0.21 22 Japan- Taiwan 20,21 1.13 1.58 1.10 1.84 -0.29 23 Philippines 22 1.07 1.38 1.05 1.44 -0.08 24 Molucca-Celebes 23 1.01 1.29 0.99 1.35 -0.08 25 Java 1 24 0.90 0.87 0.88 1.05 -0.20 26 Java 2 24 1.16 1.10 1.08 1.62 -0.60 27 Asia 25,26,27,28 1.11 1.18 1.02 1.69 -0.60 28 Asia Minor 29,30 1.26 1.87 1.21 2.17 -0.35 29 Africa 31,37 1.38 1.58 1.32 1.84 -0.32 30 Atlantic-Indian oceans 32,33,34,35 1.31 2.05 1.31 2.13 -0.08 31 PolarRegions 36,40,42,49,50 1.08 1.57 1.06 1.85 -0.30 32 PacificOcean 38,39,41 0.95 1.31 0.99 1.20 0.15 33 SouthPacificOcean 43,44,45,46 1.22 1.82 1.25 1.61 0.24 34 Pakistan-HinduKush 47,48 1.44 1.76 1.34 2.53 -0.87 DataareISCdatawithmagnitudemb,exceptmagnitudesexceeding6.5,areadjustedasinDavisandFrohlich[1991a].Allb valuesaredeterminedusingBender'smethod,witha lowermagnitudecutoffof 4.8 andanuppermagnitudecutoffdeterminedfromthe data as described in the text. aIdenticalcatalogswithrandomizedmagnitudes,asdescribedin text. bObs-ICRM=(bSeeOb•-bMainOb•)-(bSecR-bMainR) of teleseismicallyrecordedearthquakes. For the different global catalogs,we find valuesof b rangingfrom 0.79 to 1.25. Becausethe log numberversusmagnituderelation is not linear(Figures1 to 4), evenfor individualcatalogstheb valuevariesby 15% or moredependingon theexactrangeof magnitudesusedfor its determination. There are alsoserioussystematicproblemsthat afflict the measurement of b values and that seem to be overlooked in many of the papers interpretingobservationsof b. The determination of b rests on the accurate determination of values for magnitudes. Even thoughmagnitudescalesare logarithmic, magnitudesdeterminedby different stations typicallydiffer by asmuchas0.5. Habermann [1991] and othershave shownthat reportedmagnitudesoften appearto vary over time, as does the level of completenessof earthquake catalogs, apparently for systematic reasons. There is excellentevidencethatnumerousearthquakeswith mr, between5.0 and 5.5 are missedregularly even in the ISC catalog[e.g.,WalkerandMcCreary, 1985]. Furthermore,individual magnitude scales typically are meaningful only over a limited range of earthquakesize, which is problematicsince one desiresas large a range as possible to obtain good information about b. Finally, methods to calculate statisticaluncertaintiesin b [Aki, 1965; Page, 1968; Bender, 1983] invariably assumethat the log number versus magnitude curve is straight over some magnituderange, and thus they seriouslyunderestimatethe trueuncertaintyin thedeterminationof b. Log numberversus magnitudecurves(Figures1-4) generallyare not thatstraight overany magnituderangeunlesstheyhavebeen"adjusted"to makethemstraight,asin thestudyof Pachecoet al. [1992]. Becauseof theseproblems,thereare legitimatereasonsto doubtmany publishedinterpretationsof b values,especially when these interpretations rest on the measurementof differencesin b of 0.1 or less[e.g.,Andersonet al., 1980]. This is especiallytrue sincevariousparametersquantifying the size of earthquakes'measuredifferent propertiesof the earthquake source. Thus we should not expect close agreement between b values determined from different magnitudescales. We shouldalsonot expecttoo muchfrom equationsattemptingto describethe relationshipbetween magnitudescalesandothermeasuresof earthquakesize,such asmoment,potency,or radiatedenergy. Regional,Tectonic,andDepthDependenceof b In spiteof ourpessimismaboutobtaininghighlyprecise
  • 11. FROHLICHANDDAVIS' MUCHADOABOUTTF.LES•SMICb VALUES 641 ISC Catalog 1.6 - •08 - I • 0.6-e ?,0.4 I I I I I I I I I 0.0 0.4: 0.8 1•2 1.6 [bSec- b•lein]observeUons Fig.11. Thedifferencebetweenbvaluesfor secondaryevents(bsec)and primaryevents(bM•n)forthe InternationalSeismologicalCentre(I$C) catalog(horizontalaxis)andfor theIdenticalCataloõwithRandornized Magnitudes(ICRM) (verticalaxis).Notethatthedifferenceis generally smaller for I$C observations than for the ICtLM. The data are from Table 4. Blacknest and Harvard Catalogs 1.6 1.4 •12• ß •08• ß I o0.6 ?, 0.4 0.2 0.0 _ o _ o6 o• ., o 0.0 0.4 0.8 1.2 1.6 [bSec-b•ain]ob$ervation$ Fig. 12. Thedifferencebetweenb valuesfor secondaryevents(b$zc)and primaryevents(bM•n)fortwoearthquakecatalogs(horizontalaxis)andfor theIdenticalCatalogwithRandomizodMagnitudes(verticalaxis).Circles areBlacknestdatafor28geographicregionswhicharenearlyidenticaltothe geographicregionsevaluatexiinTable4 andFigures9to 11. Trianglesare HarvardControidMomentTensordataforsixgeographicregions.Forthe Blacknestcatalog,the b valuesare determinedfrom m/, (m/ike)using Bender'smethodwith a minimummagnitudeof 4.85. For theHarvard catalogthebvaluesaredeterminedfromMwusingBender'smethodwitha minimummagnitudeof 5.65. and accuratemeasurementsof b for real earthquakecatalogs, there exist some differences in the size distributions of earthquakegroupswhichwebelievearereal. Oneof themost strikingdifferencesis for deepearthquakesin Tongarelative to deep earthquakeselsewherein the world. For deep earthquakesin Tonga-Fiji(Table3) we find thatb is 1.0 or greater,whilefor deepearthquakeselsewhere,b issmallerby 30% or more. Clearly, small earthquakesare especially commonin Tonga-Fijirelativeto thenumberof earthquakes withmttorMwexceeding7.0. In contrast,elsewherethereis evidence that large deep earthquakesare more common relative to the number of small earthquakesobserved. The Tonga-Fijiregionis generallyconsideredto be thearchetypal deepearthquakezonebecausetwo thirdsof the world'sdeep earthquakesoccurthere;however,thesedatasuggestthatit is in fact anomalousin comparisonto otherregionswheredeep earthquakesoccur. Anotherpossiblysignificantobservationis that bHrv for shallowthrusting(0.86) and strike slip earthquakes(0.77) seemsto be somewhatlessthan bHrv for earthquakeswith normalfaulting(1.06) focal mechanisms(Table3). These differencesareno largerthansomeof theregionaldifferences noted in Table 2; however, we tend to find them more believablebecausetheyaredeterminedfrom a largernumber of eventsand becausethe CMT catalogpossessesa nearly linear log numberversusmagnituderelationover a larger rangethanmostothercatalogs(Figure2). The higherb for thenormalfaultingearthquakesmaycomeaboutif theyoccur underconditionsof lower stressor stressdrop than thrustor strikeslip earthquakes[Scholz,1968;Wyss,1973]. Mainshocksand SecondaryEvents An important result in this paper is that earthquake aftershocksand foreshocksnearly always have higher b valuesthanthosereportedin catalogsof mainshocks(Figure 9) but that this is primarily a systematiceffect due to selectingmainshocksas the largest events in sequences (Figures8 and10). This apparentlyhasnot beenrecognized previously,althoughKnopoffet al. [1982] did suggestthat undiscoveredsystematicerrors might be responsiblefor many reported differences in b before and after large earthquakes.The particularsystematicproblemdiscoveredin this paper shouldoccur wheneveraftershocksor dependent events are removed from earthquake sequencesprior to statisticalanalysis. However, it shouldnot affect analyses like thoseof Smith [1986], where earthquakesare separated only into temporalor spatialgroups. Ourresultis thatbSec is actuallylower thanexpectedif the only influenceon b comesfrom defining the mainshockas the largestearthquakein eachsequence.This resultis quite robust, as it seems to hold for earthquakesin the ISC, Blacknest,and Harvard CMT catalogs(Figures11 and 12). However,thisresultis quitesubtle;to determineit, we hadto comparethe observedmagnitudesof primaryand secondary events with a hypothetical catalog having an identical distributionof magnitudes,but assignedrandomlyto primary and secondaryevents. Since the occurrenceof a primary eventundoubtedlyaltersthe stressfield in the neighborhood of the sourceregion, it is unsurprisingthat it affects the relative distributionsof small and large eventsas well. Our resultimpliesthat amongaftershocks,b valuesare lower than expected, and thus large aftershocksare relatively more
  • 12. 642 FgotmIct• A•D DAYre: Moctt ADo A•otrr T•-Lmsmssacb VALUmS TABLE 5. Comparisonof b Valuesfor MainshockandSecondaryEvents for GeographicRegionsin theBlacknestCatalog •ographic Observations egions bMainObs bSeeobsbMainR bSeeR Obs-ICRMb 1 0.93 1.34 0.96 1.28 0.09 2 0.76 0.92 0.61 1.25 -0.48 3 1.08 1.41 1.02 1.81 -0.46 4 1.02 1.65 0.99 1.95 -0.33 5 and 6 0.96 1.23 0.96 1.25 -0.02 7 1.09 1.73 1.06 1.85 -0.15 8 1.16 1.49 1.12 1.78 -0.33 9 1.35 1.92 1.29 2.44 -0.58 10 and 11 1.19 1.68 1.16 1.83 -0.18 12 1.36 2.32 1.32 2.9 8 -0.70 13 and 14 1.05 1.51 1.06 1.49 0.03 15 and 16 0.90 1.33 0.88 1.37 -0.06 17 1.01 1.51 0.97 1.70 -0.23 18 1.04 1.66 1.01 1.97 -0.34 19 0.92 1.26 0.94 1.20 0.08 20 and 21 0.94 1.28 0.91 1.36 -0.11 22 0.91 1.50 0.87 1.85 -0.39 23 0.98 1.45 0.98 1.48 -0.03 24 1.08 1.45 1.06 1.52 -0.09 25 and 26 1.07 1.25 1.05 1.33 -0.10 27 0.89 0.96 0.79 1.42 -0.56 28 0.96 1.54 0.94 1.65 -0.13 29 1.17 1.54 1.08 1.97 -0.52 30 1.42 2.10 1.40 2.45 -0.37 31 0.88 1.34 0.88 1.36 -0.02 32 0.90 1.23 0.95 1.07 0.21 33 1.46 2.40 1.44 2.71 -0.33 34 0.97 1.17 0.91 1.65 -0.54 Magnitudesarem4b'(mlike),andvaluesaredeterminedusingBender'smethod,withalowermagnitudecutoffof 75 andanuppermagnitudecutoffdeterminedfromthedataasdescribedin the text. Regionnumberscorrespondto geographicregionsin Table4. aIdenticalcatalogswithrandomizedmagnitudes,asdescribedintext. bObs-ICRM=(bSecobs-bMainObs)-(bSeer-bMainR) common than expected. If we interpret this in terms of analysessuchas thoseof Scholz [1968], Wyss [1973], and Hanks [1979], this suggestsstressesor stressdropsbecome higher near the source region following a mainshock, perhaps because the mainshock rupture process loads asperitieswithin the sourceregion and in adjacentregions. At presentwe offerno furtherexplanationfor thisresult. This problem of when bias may be present in the determinationof b is fairly subtle,asb is subjectto numerous systematic and statistical errors which afflict earthquake detection,earthquakelocation,aftershockidentification,and magnitude determination. Moreover, we show in the appendixthat the situationis not straightforwardeven if we constructa syntheticcatalogwith mainshocksand synthetic aftershock sequences, where the mainshocks follow a Gutenberg-RichterlawwithbvaluebMain,andeachindividual mainshockgeneratesaftershocksequenceswithbvaluebAft. In this case, when we separate the entire catalog into mainshocks and aftershocks, we find that the observed b valuebsecfor aftershocksin the catalog as a whole is not usuallyequaltobAft. Rather,bsec forthecatalogmayequal bMain,bAft, or anyvaluein between.Mostobservational studiesfind thataftershocksmakeup a substantial,buthighly variable fraction of the eventsin earthquakecatalogs[e.g., Reasenberg, 1985; Eneva and Pavlis, 1988; Davis and Frohlich, 1991a]. Thusif bMainandbsecdiffer, this suggests that someof the regionalandtemporalvariationsin b values observedin previousstudiesmay be due to differencesin the proportionof aftershocks. APPENDIX:bMainANDbs•½FORPRIMARY AND SECONDARY EvF2qrs Supposethata catalogof earthquakesconsistsof two types of events: primaryevents,whichoccurindependentlyof one another;and secondaryevents,whosenumber,size, and time of occurrencemay dependon the occurrenceof the primary events. In the equations that follow, we shall use the subscript"Main" to label primaryevents,andthe subscripts "Sec" and "Aft" to label secondaryevents. We shallusethe subscript"Aft" only to refer to propertiesof secondaryevents of individual earthquakes,whereasthe subscript"Sec" will refer to properties of all secondaryevents in the catalog, consideredtogether. Usually we studycatalogsconsistingof mainshock-aftershocksequenceswherethe mainshockis the largest event and also the primary event. However, more generally, secondaryeventsmay include foreshocksas well as aftershocks. Supposethatprimary eventsfollow the Gutenberg-Richter relation up to some maximummagnitudeMm,•x. Then the expectednumbernMain(M)dM of mainshocks having magnitudesbetweenM andM + dM is -b M 0a Ma/nnMain(M)dM=1 10 dM. (A1)
  • 13. FROHLICHANnDAVIS' MUCH Ano ABotrr TELESEISMICb VALUES 643 SupposealsothattheexpectednumbernAft(MAft,M)dMAftof secondaryeventshavingmagnitudesbetweenMaftandMAft+ dMAftforeachprimaryeventofmagnitudeM scalesas nAft(MAft,M)dMAft=f(M)g(M-MAft)dMAft. (A2) For the purposesof this paper we shall assumethat the functionsf andg taketheparticularlysimpleformsf(M)= c, a constant and that This impliesthat eachindividualaftershocksequencefollows aGutenberg-RichterlawwithabvalueequaltobAft. Thenin the entire earthquake catalog the expected number of secondary events nobs(M $ec)dMsec observed to have magnitudesbetweenMsecandMsec+ dMSecwill be S•½ (A4) If bMaindiffersfrombnft , thisisa c 10 -b MMa• $•c - l• ß nøbs(Msec)riMSee(baft-bMain)lnlO c' As. the ratio of the two terms in the brackets is 10•'bAftMain)('Mmax-MSec)weseethatwhenbAft>>bMainthe secondterm will be negligiblewith respectto the first, and thebvaluebsec for the entiregroupof secondaryeventswill be approximatelybAft. Similarly,whenbMain>>bAft the distribution of primary events dominates bsec, which approachesbMain. Moregenerally,notethatif wedefinebsec = - d(loglonobs)/dMSec,then: (bAft-bMain) bsec=b•ft+[]. (A6) An important conclusion is that for a catalog of earthquakesdivided into primary and secondaryevents,the observedb valuebsec for secondaryeventsin the catalogis notsimplyequalto thebAft, theb valueforsequencesof secondaryevents for individual earthquakeswithin the catalog. Acknowledgments.WethankRoyLilwall,TedHabermann,andvarious colleaguesattheInternationalSeismologicalCentreandHarvardUniver- sityforprovidinguswiththeearthquakecatalogsanalyzedin thispaper. WearegratefulforfinancialsupportfromtheNationalScienceFoundation undergrantsEAR-89-16665andEAR-91-105069,andfrom the U.S. GeologicalSurvey. Finally, we are thankfulfor conversationswith numerousindividualswhoprovokedustowritethispaper,eventhoughin thepastoneofus(C.F.)statedthathewouldnever,everwriteapaperabout bvalues.Thispaperis contribution928of theInstitutefor Geophysics, UniversityofTexas. REFERENCES Abe,K.,Magnitudesoflargeshallowearthquakesfrom1904to1980,Phys. Earth Planet.Inter., 27, 72-92, 1981. Abe,K.,Complementsto"Magnitudesoflargeshallowearthquakesfrom 1904to 1980",Phys.EarthPlanet.Inter.,34, 17-23,1984. Abe,K.,andH.Kanamori,Temporalvariationsoftheactivityofintermedi- ateanddeepfocusearthquakes,J.Geophys.Res.,84,3589-3595,1979. Aki, K., Maximumlikelihoodestimateof bin theformulalogN '- a - bM anditsconfidencelimits,Bull.EarthquakeRes.Inst.Univ.Tokyo,43, 237-239, 1965. Aki,K.,Aprobabilisticsynthesisofprecursoryphenomena,inEarthquake Prediction:AnInternationalReview,MauriceEwingSer.,vol.4, edited byD.W. SimpsonandP.G.Richards,pp.566-574,AGU,Washington, D.C., 1981. Anderson,R. N., A. Hasegawa,N. Umino,andA. Takagi,Phasechanges andthefrequency-magnitudedistributionintheupperplaneofthedeep seismiczonebeneathTohoku,Japan,J. Geophys.Res.,85, 1389-1398, 1980. Bak,P.,andC.Tang,Earthquakesasaself-organizedcriticalphenomenon, J. Geophys.Res.,94, 15,635-15,637,1989. Bath,M., Earthquakemagnitude-Recentresearchandcurrenttrends,Earth Sci.Rev., 17, 315-398, 1981. Bender,B., Maximumlikelihoodestimationof b valuesfor magnitude groupeddata,Bull.Seismol.Soc.Am.,73,831-851,1983. Burridge,R., andL. Knopoff,Modelandtheoreticalseismology,Bull. Seismol.Soc.Am., 57, 341-371, 1967. Carlson,J. M., Time intervalsbetweencharacteristicearthquakesand correlationswith smallerevents:An analysisbasedon a mechanical modelof afault,J. Geophys.Res.,96,4255-4267,199la. Carlson,J.M., A two-dimensionalmodelofafault,Phys.Rev.A,44, 6226, 1991b. Davis,S. D., andC. Frohlich,Single-linkclusteranalysisof earthquake aftershocks:Decaylawsandregionalvariations,J. Geophys.Res.,96, 6335-6350, 199la. Davis,S. D., and C. Frohlich,Single-linkclusteranalysis,synthetic earthquakecatalogs,andaftershockidentification,Geophys.J. Int., 104,289-306, 1991b. Dziewonski,A.M., T. A. Chou,andJ. H. Woodhouse,Determinationof earthquakesourceparametersfromwaveformdataforstudiesofglobal andregionalseismicity,J. Geophys.Res.,86, 2825-2852,1981. Dziewonski,A.M., andJ. H. Woodhouse,An experimentin systematic studyof globalseismicity:Centroid-momenttensorsolutionsfor 201 moderateandlargeearthquakesof 1981,J. Geophys.Res.,88, 3247- 3271, 1983. Eneva,M., andG. L. Pavlis,Applicationof pair analysisstatisticsto aftershocksofthe1984MorganHill,California,earthquake,J.Geophys. Res.,93, 9113-9125, 1988. Frohlich,C., Thenatureof deep-focusearthquakes,Annu.Rev.Earth Planet. Sci.,17, 227-254, 1989. Frohlich,C.,Trianglediagrams:Ternarygraphstodisplaysimilarityand diversityofearthquakefocalmechanisms,Phys.EarthPlanet.Inter.,in press,1992. Frohlich,C.,andK. D.Apperson,Earthquakefocalmechanisms,moment tensors,andtheconsistencyof seismicactivitynearplateboundaries, Tectonics,11,279-296, 1992. Frohlich,C., andR. E. Buskirk,Survivorshipcurvesandgrowthratesfor apopulationof mustachehairs,TexasJ. Sci.,34, 207-214,1982. Frohlich,C., andS.D, Davis,Single-linkclusteranalysisasamethodto evaluatespatialandtemporalpropertiesofearthquakecatalogs,Geophys. J. Int., 100, 19-32, 1990. Giardini,D., Frequencydistributionandquantificationof deepearth- quakes,J. Geophys.Res.,93,2095-2105,1988. Gutenberg,B., Amplitudesof P, PP andS andmagnitudesof shallow earthquakes,Bull.Seismol.Soc.Am.,35, 57-69,1945. Gutenberg,B., andC. F. Richter,SeismicityoftheEarthandAssociated Phenomena,PrincetonUniversityPress,Princeton,N.J., 1954. Habermann,R. E.,Consistencyofteleseismicreportingsince1963,Bull. Seismol.Soc.Am., 72, 93-111, 1982. Habermann,R. E., Teleseismicdetectionin theAleutianIslandarc,J. Geophys.Res.,88, 5056-5064,1983. Habermann,R. E., Seismicityratevariationsandsystematicchangesin magnitudeinteleseismiccatalogs,Tectonophysics,193,277-289,1991. Habermann,R. E., W. R. McCann,andB. Perin,Spatialseismicity variationsalongconvergentplateboundaries,Geophys.J. R. Astron. Soc.,85, 43-68, 1986. Hanks,T. C.,b valuesandtonseismicsourcemodels:Implicationsfor tectonicstressvariationsalongactivecrustalfaultzonesandtheestima- tionof high-frequencystronggroundmotion,J. Geophys.Res.,84, 2235-2242, 1979.
  • 14. 644 FROitL•CltASr•DAVIS: Muc• Ar•o ArtouT TF.L•S•SM•C b VALUES Hanks,T. C., andH. Kanamori,A momentmagnitudescale,J. Geophys. Res.,84, 2348-2350, 1979. Heaton,T. H.,andR.E.Heaton,Staticdeformationsfrompointforcesand forcecoupleslocatedinweldedelasticPoissonianhalf-spaces:Implica- tionsfor seismicmomenttensors,Bull. Seisrnol.Soc.Am.,79, 813-841, 1989. Heaton,T. H.,F.Tajima,andA. W.Mori,Estimatinggroundmotionsusing recordedaccelerograms,Surv.Geophys.,8, 25-83,1986. Kanamori,H., Magnitudescaleand quantificationof earthquakes, Tectonophysics,93, 185-199,1983. Kanamori,H., andD. L. Anderson,Theoreticalbasisof someempirical relationsinseismology,BUll.Seismol.Soc.Amer.,65,1073-1095,1975. Knopoff,L., Y. Y. Kagan,andR. Knopoff,bvaluesforforeshocksand aftershocksinrealandsimulatedearthquakesequences,Bull.Seisrnol. Soc.Am., 72, 1663-1676, 1982. Lilwall,R.C.,andJ.M. Neary,Redeterminationofearthquakebody-wave magnitudes(mb)usingISCbulletindata,Rep.O 21/85,38pp.,At. WeaponsRes.Estab.,Aldermaston,England,1986. Pacheco,J.F., C. H. Scholz,andL. R. Sykes,Changesin frequency-size relationshipfromsmalltolargeearthquakes,Nature,355,71-73,1992. Page,R.,AftershocksandmicroaftershocksofthegreatAlaskaearthquake of 1964,Bull. Seismol.Soc.Am., 58, 1131-1168, 1968. Perez,O.J.,andC. H. Scholz,Heterogeneitiesoftheinstrumentalseismic- ity catalog(1904-1980)for strongshallowearthquakes,Bull.Seismol. Soc.Am., 74,669-686, 1984. Reasenberg,P., Second-ordermomentof centralCaliforniaseismicity, 1969-1982,J. Geophys.Res.,90,5479-5495,1985. Ringdal,F.,Studyofmagnitudes,seismicity,andearthquakedetectability usingaglobalnetwork,Bu//.Seismol.Soc.Am.,76, 1641-1659,1986. Royer,J.Y., R.D. Muller,L. M. Gahagan,L. A. Lawver,D. Numberg,and J.G.Sclater,A GlobalIsochronChart,UniversityofTexasInstitutefor GeophysicsTechnicalReportNo. 117,pp.38, 1992. Scholz,C.H.,Thefrequency-magnituderelationofmicrofracturinginrock anditsrelationto earthquakes,Bull.Seismol.Soc.Am.,58, 399-415, 1968. Shaw,B. E.,J.M. Carlson,andJ.S.Langer,Pauemsofactivitypreceding largeearthquakes,J. Geophys.Res.,97,479-488,1992. Smith,W.D.,Evidenceforprecursorychangesinthefrequency-magnitude b-value,Geophys.J. R. Astron.Soc.,86, 815-838,1986. Utsu,T., A statisticalsignificancetestofthedifferenceinb-valuebetween twoearthquakegroups,J.Phys.Earth,14,37-40,1966. Walker,D. A.,andC.S.McCreary,Significantunreportedearthquakesin "aseismic"regionsofthewesternPacific,Geophys.Res.Lett.,12,433- 436, 1985. Wyss,M., Towardsaphysicalunderstandingoftheearthquakefrequency distribution,Geophys.J. R.Astron.Soc.,31, 341-359,1973. S.D. Davis and C. Frohlieh, Institute for Geophysics, Universityof Texasat Austin,8701NorthMopaeBoulevard, Austin, TX 78759-8345. (ReceivedJanuary20, 1992; revisedJuly27, 1992; acceptedAugust10,1992.)