Integration By Parts
Whenan integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
3.
Integration By Parts
Whenan integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
udv uv vdu
4.
Integration By Parts
Whenan integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
udv uv vdu
u should be chosen so that differentiation makes it a
simpler function.
5.
Integration By Parts
Whenan integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
udv uv vdu
u should be chosen so that differentiation makes it a
simpler function.
dv should be chosen so that it can be integrated
e.g. (i) x cos xdx ux v sin x
du dx dv cos xdx
11.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
12.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
13.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx
14.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x
15.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x
dx
du
x
16.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x
dx
du dv dx
x
17.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x vx
dx
du dv dx
x
18.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x vx
x log x dx du
dx
dv dx
x
19.
e.g. (i) x cos xdx ux v sin x
x sin x sin xdx du dx dv cos xdx
x sin x cos x c
ii log xdx u log x vx
x log x dx du
dx
dv dx
x
x log x x c
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
33.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
34.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex
35.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex
du e x dx
36.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex
du e x dx dv sin xdx
37.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex v cos x
du e x dx dv sin xdx
38.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex v cos x
e sin x e cos x e cos xdx
x x x
du e x dx dv sin xdx
39.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex v cos x
e sin x e cos x e cos xdx
x x x
du e x dx dv sin xdx
2 e x cos xdx e x sin x e x cos x
40.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex v cos x
e sin x e cos x e cos xdx
x x x
du e x dx dv sin xdx
2 e x cos xdx e x sin x e x cos x
1 1
e x cos xdx e x sin x e x cos x c
2 2
41.
iv ex cos xdx u ex v sin x
du e x dx dv cos xdx
e sin x e sin xdx
x x
u ex v cos x
e sin x e cos x e cos xdx
x x x
du e x dx dv sin xdx
2 e x cos xdx e x sin x e x cos x
1 1
e x cos xdx e x sin x e x cos x c
2 2
Exercise 2B; 1 to 6 ac, 7 to 11, 12 ace etc