Integration By Parts
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                      udv  uv   vdu
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                      udv  uv   vdu
u   should be chosen so that differentiation makes it a
    simpler function.
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                       udv  uv   vdu
 u   should be chosen so that differentiation makes it a
     simpler function.
dv   should be chosen so that it can be integrated
e.g. (i)    x cos xdx
e.g. (i)    x cos xdx   ux
e.g. (i)    x cos xdx    ux
                         du  dx
e.g. (i)    x cos xdx    ux
                         du  dx   dv  cos xdx
e.g. (i)    x cos xdx    ux       v  sin x
                         du  dx   dv  cos xdx
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
            x sin x  cos x  c
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
            x sin x  cos x  c



     ii  log xdx
e.g. (i)    x cos xdx              ux         v  sin x
            x sin x   sin xdx   du  dx     dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                u  log x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x
                                        dx
                                   du 
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x
                                        dx
                                   du          dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
                                        dx
                                   du          dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
            x log x   dx        du 
                                        dx
                                                dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
            x log x   dx        du 
                                        dx
                                                dv  dx
                                         x
            x log x  x  c
1
iii  xe 7 x dx
     0
1
iii  xe 7 x dx   ux
     0
1
iii  xe 7 x dx    ux
     0
                     du  dx
1
iii  xe 7 x dx    ux
     0
                     du  dx   dv  e 7 x dx
1
                                  1 7 x
iii  xe dx
        7 x
                 ux       v e
    0
                                  7
                du  dx   dv  e 7 x dx
1
                                                    1 7 x
iii  xe dx
        7 x
                                   ux       v e
    0
                                                    7
                 1    1           du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
1
                                                    1 7 x
iii  xe dx
        7 x
                                   ux       v e
    0
                                                    7
                 1    1           du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
                           1
      1 7 x 1 7 x 
     xe  e 
      7      49     0
1
                                                         1 7 x
iii  xe dx
        7 x
                                        ux       v e
    0
                                                         7
                 1     1               du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
                           1
      1 7 x 1 7 x 
     xe  e 
      7      49     0

    1 e 7  1 e 7   0  1 
                                 
       7       49   49 
       8         1
     e 7 
       49       49
iv  e x cos xdx
iv  e x cos xdx   u  ex
iv  e x cos xdx    u  ex
                     du  e x dx
iv  e x cos xdx    u  ex
                     du  e x dx   dv  cos xdx
iv  e x cos xdx    u  ex        v  sin x
                     du  e x dx   dv  cos xdx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
                             du  e x dx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
                             du  e x dx   dv  sin xdx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex        v   cos x
                             du  e x dx   dv  sin xdx
iv  e x cos xdx                      u  ex        v  sin x
                                       du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                        u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x       x

                                       du  e x dx   dv  sin xdx
iv  e x cos xdx                             u  ex        v  sin x
                                              du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                               u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                              du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
iv  e x cos xdx                                 u  ex        v  sin x
                                                  du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                                   u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                                  du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
                     1           1
       e x cos xdx  e x sin x  e x cos x  c
                     2           2
iv  e x cos xdx                                 u  ex        v  sin x
                                                  du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                                   u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                                  du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
                     1           1
       e x cos xdx  e x sin x  e x cos x  c
                     2           2




                 Exercise 2B; 1 to 6 ac, 7 to 11, 12 ace etc

X2 t04 01 by parts (2013)

  • 1.
  • 2.
    Integration By Parts Whenan integral is a product of two functions and neither is the derivative of the other, we integrate by parts.
  • 3.
    Integration By Parts Whenan integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu
  • 4.
    Integration By Parts Whenan integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu u should be chosen so that differentiation makes it a simpler function.
  • 5.
    Integration By Parts Whenan integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu u should be chosen so that differentiation makes it a simpler function. dv should be chosen so that it can be integrated
  • 6.
    e.g. (i)  x cos xdx
  • 7.
    e.g. (i)  x cos xdx ux
  • 8.
    e.g. (i)  x cos xdx ux du  dx
  • 9.
    e.g. (i)  x cos xdx ux du  dx dv  cos xdx
  • 10.
    e.g. (i)  x cos xdx ux v  sin x du  dx dv  cos xdx
  • 11.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx
  • 12.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c
  • 13.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx
  • 14.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x
  • 15.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x dx du  x
  • 16.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x dx du  dv  dx x
  • 17.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx dx du  dv  dx x
  • 18.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx  x log x   dx du  dx dv  dx x
  • 19.
    e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx  x log x   dx du  dx dv  dx x  x log x  x  c
  • 20.
    1 iii  xe7 x dx 0
  • 21.
    1 iii  xe7 x dx ux 0
  • 22.
    1 iii  xe7 x dx ux 0 du  dx
  • 23.
    1 iii  xe7 x dx ux 0 du  dx dv  e 7 x dx
  • 24.
    1 1 7 x iii  xe dx 7 x ux v e 0 7 du  dx dv  e 7 x dx
  • 25.
    1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0
  • 26.
    1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0 1  1 7 x 1 7 x    xe  e   7 49 0
  • 27.
    1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0 1  1 7 x 1 7 x    xe  e   7 49 0  1 e 7  1 e 7   0  1      7 49   49  8 1   e 7  49 49
  • 28.
    iv  ex cos xdx
  • 29.
    iv  ex cos xdx u  ex
  • 30.
    iv  ex cos xdx u  ex du  e x dx
  • 31.
    iv  ex cos xdx u  ex du  e x dx dv  cos xdx
  • 32.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx
  • 33.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x
  • 34.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex
  • 35.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex du  e x dx
  • 36.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex du  e x dx dv  sin xdx
  • 37.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x du  e x dx dv  sin xdx
  • 38.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx
  • 39.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x
  • 40.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x 1 1  e x cos xdx  e x sin x  e x cos x  c 2 2
  • 41.
    iv  ex cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x 1 1  e x cos xdx  e x sin x  e x cos x  c 2 2 Exercise 2B; 1 to 6 ac, 7 to 11, 12 ace etc