X2 t02 04 forming polynomials (2013)

1,248 views

Published on

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,248
On SlideShare
0
From Embeds
0
Number of Embeds
354
Actions
Shares
0
Downloads
43
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

X2 t02 04 forming polynomials (2013)

  1. 1. Forming Polynomials With The Roots Of Another
  2. 2. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots;
  3. 3. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,   
  4. 4. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y
  5. 5. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y
  6. 6. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y y let y  kx and substitute x  k
  7. 7. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , (3)   c,   c,   c,  let y  1 1 and substitute x  x y y let y  kx and substitute x  k
  8. 8. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c
  9. 9. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  2 ,  2 ,  2 , 
  10. 10. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  ,  ,  ,  2 2 2 let y  x 2 and substitute x  y 1 2
  11. 11. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are;
  12. 12. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,   
  13. 13. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y 
  14. 14. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y
  15. 15. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y 1  y 2  2 y3  0
  16. 16. b)   1,   1,   1
  17. 17. b)   1,   1,   1 let y  x  1 x  y 1
  18. 18. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0
  19. 19. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0
  20. 20. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2
  21. 21. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2
  22. 22. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0  
  23. 23. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20
  24. 24. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2
  25. 25. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2
  26. 26. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2 y3  2 y 2  y  4 y3  2 y 2  y  4  0
  27. 27. d) 1  2 , 1  2 , 1 2
  28. 28. d) 1  2 , 1  2 let y  , 1 2 1 x2 x y  1 2
  29. 29. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y  y 1 2  3 2 y  1 2 20
  30. 30. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2
  31. 31. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y 3 2
  32. 32. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 3 2
  33. 33. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 y 2  2 y 1  4 y3 4 y3  y2  2 y 1  0 3 2
  34. 34. e) Find  2   2   2
  35. 35. e) Find  2   2   2 2   2  2      2  2
  36. 36. e) Find  2   2   2 2   2  2      2  2  0   21  2 2
  37. 37. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c)
  38. 38. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a
  39. 39. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2
  40. 40. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2 Cambridge: Exercise 5C; 1 to 11, 13, 14, 15 Patel: Exercise 5E; 9, 10, 11, 14, 16, 18, 19, 23, 24, 27, 30, 32, 34, 35

×