SlideShare a Scribd company logo
1 of 31
Download to read offline
   f  x  f  x  dx
                   n
     f  x  f  x  dx
                                      n



                           f  x n1  c
 f  x  f  x  dx 
                 n

                             n 1
     f  x  f  x  dx
                                                             n



                                                  f  x n1  c
                        f  x  f  x  dx 
                                        n

                                                    n 1


e.g. i  a) Find
                  d
                  dx
                        1 x  3
    f  x  f  x  dx
                                                             n



                                                  f  x n1  c
                        f  x  f  x  dx 
                                        n

                                                    n 1


e.g. i  a) Find
                  d
                  dx
                        1 x   3




                                 
                           1  x 3  1  x 3  2  3 x 2 
                                                 1
                d                    1         

                dx                   2
                                        3x 2
                                   
                                     2 1  x3
x2
b) Hence find;      1 x 3
                            dx
x2
b) Hence find;      1 x 3
                            dx

      x2          2  3x 2
    1 x 3
            dx   
                  3 2 1 x 3
                             dx
x2
b) Hence find;      1 x 3
                            dx

      x2          2  3x 2
    1 x 3
            dx   
                  3 2 1 x 3
                             dx

                  2
                 1  x3  c
                  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx
  1
   2 x 2  x 2 dx
  2
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx
  1
   2 x 2  x 2 dx
  2
   2  x 2 2  c
               3
  1 2
  2 3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx
  1
   2 x 2  x 2 dx
  2
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx
  1
   2 x 2  x 2 dx
  2
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx   u  2  x2
  1
   2 x 2  x 2 dx
  2
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx    u  2  x2
  1                                                 du
   2 x 2  x 2 dx                                     2x
  2                                                 dx
                                                    du  2 xdx
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx    u  2  x2
  1                                                 du
   2 x 2  x 2 dx                            u        2x
  2                                                 dx
                                                    du  2 xdx
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx    u  2  x2
  1                                                 du
   2 x 2  x 2 dx                  1         u        2x
  2                                    du           dx
                                     2
                                                    du  2 xdx
   2  x 2 2  c
               3
  1 2
  2 3
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx    u  2  x2
  1                                                 du
   2 x 2  x 2 dx                 1       u           2x
  2                                   du            dx
                                    2
                                                    du  2 xdx
   2  x 2 2  c
               3
  1 2                                    1
                                    1 2
  2 3                                u du
                                    2
  2  x 2  2  x 2  c
  1
  3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx    u  2  x2
  1                                                 du
   2 x 2  x 2 dx                 1        u          2x
  2                                   du            dx
                                    2
                                                    du  2 xdx
   2  x 2 2  c
               3
  1 2                                    1
                                    1 2
  2 3                                u du
                                    2
  2  x 2  2  x 2  c
  1                                 1 2 2
                                           3

  3                                  u c
                                    2 3
x2
b) Hence find;        1 x 3
                              dx

       x2          2  3x 2
     1 x 3
             dx   
                   3 2 1 x 3
                              dx

                   2
                  1  x3  c
                   3
ii   x 2  x 2 dx       OR       x 2  x 2 dx             u  2  x2
  1                                                      du
   2 x 2  x 2 dx                 1          u             2x
  2                                   du                 dx
                                    2
                                                         du  2 xdx
   2  x 2 2  c
               3
  1 2                                    1
                                    1 2
  2 3                                u du
                                    2
  2  x 2  2  x 2  c
  1                                 1 2 2
                                           3

  3                                  u c
                                    2 3
                                    2  x 2  2  x 2  c
                                    1
                                    3
1
                   x2
iii                      dx
     0    x   3
                    2
                        3
1
                   x2
iii                      dx
     0    x   3
                    2
                        3


          1
  1      3x 2
                dx
  3 0 x 3  2 3
1
                   x2
iii                      dx
     0    x   3
                    2
                        3


          1
  1      3x 2
                dx
  3 0 x 3  2 3


          1
   3 x x  2  dx
  1     2  3     3

  30
1
                      x2
iii                         dx
     0    x      3
                       2
                           3


          1
  1      3x 2
                dx
  3 0 x 3  2 3


          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
1
                      x2
iii                         dx
     0    x      3
                       2
                           3


          1
  1      3x 2
                dx
  3 0 x 3  2 3


          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                   1
                      x2                            x2
iii                         dx         x                dx
                                                     2
                                    OR
     0    x      3
                       2
                           3
                                         0
                                                3        3


          1
  1      3x 2
                dx
  3 0 x 3  2 3


          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                   1
                      x2                            x2            u  x3  2
iii                         dx         x                dx
                                                     2
                                    OR
     0    x      3
                       2
                           3
                                         0
                                                3        3
                                                                  du  3 x 2 dx
          1
  1      3x 2
                dx
  3 0 x 3  2 3


          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                   1
                      x2                            x2            u  x3  2
iii                         dx         x                dx
                                                     2
                                    OR
     0    x      3
                       2
                           3
                                         0
                                                3        3
                                                                  du  3 x 2 dx
                                                                  x  0, u  2
          1
  1      3x 2
                dx
  3 0 x 3  2 3
                                                                  x  1, u  1
          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                    1
                      x2                               x2            u  x3  2
iii                         dx          x                  dx
                                                        2
                                    OR
     0    x      3
                       2
                           3
                                          0
                                                   3        3
                                                                     du  3 x 2 dx
                                              1
                                                                     x  0, u  2
          1
  1      3x 2                             1 3
                dx                       u du
  3 0 x 3  2 3
                                          3 2                       x  1, u  1
          1
   3 x x  2  dx
   1    2  3     3

   30
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                    1
                      x2                               x2            u  x3  2
iii                         dx          x                  dx
                                                        2
                                    OR
     0    x      3
                       2
                           3
                                          0
                                                   3        3
                                                                     du  3 x 2 dx
                                              1
                                                                     x  0, u  2
          1
  1      3x 2                             1 3
                dx                       u du
  3 0 x 3  2 3
                                          3 2                       x  1, u  1

                                           u  2
          1
   3 x x  2  dx
   1    2  3     3                         1  2 1
   30                                       6
     1 3
     6
              
   x  2  0
             2 1
                                
   1 1        1 
                
   6  1  2 2 
           2


    1
 
    8
1                                     1
                      x2                                x2            u  x3  2
iii                         dx          x                   dx
                                                         2
                                    OR
     0    x      3
                       2
                           3
                                           0
                                                    3        3
                                                                      du  3 x 2 dx
                                               1
                                                                      x  0, u  2
          1
  1      3x 2                             1 3
                dx                       u du
  3 0 x 3  2 3
                                          3 2                        x  1, u  1

                                           u  2
          1
   3 x x  2  dx
   1    2  3     3                         1  2 1
   30                                       6

     6
              
   x  2  0
     1 3     2 1
                                           1 1
                                                 2
                                                      
                                                        1 
                                                             
                                            6  1  2 2 
   1 1        1                           1
                                    
   6  1  2 2 
           2
                                            8
    1
 
    8
1                                        1
                      x2                                   x2            u  x3  2
iii                         dx              x                  dx
                                                            2
                                     OR
     0    x      3
                       2
                           3
                                              0
                                                       3        3
                                                                         du  3 x 2 dx
                                                  1
                                                                         x  0, u  2
          1
  1      3x 2                                1 3
                dx                          u du
  3 0 x 3  2 3
                                             3 2                        x  1, u  1

                                              u  2
          1
   3 x x  2  dx
   1    2  3     3                            1  2 1
   30                                          6

     6
              
   x  2  0
     1 3     2 1
                                              1 1
                                                    2
                                                         
                                                           1 
                                                                
                                               6  1  2 2 
   1 1        1                              1
                                       
   6  1  2 2 
           2
                                               8
    1
 
    8
                                    Exercise 11H; 1, 3, 5, 7ace etc, 8bdf,9 11*

More Related Content

Similar to 11 x1 t16 06 derivative times function

11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
Nigel Simmons
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)
Nigel Simmons
 
X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)
Nigel Simmons
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)
Nigel Simmons
 
X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)
Nigel Simmons
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)
Nigel Simmons
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)
Nigel Simmons
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)
Nigel Simmons
 

Similar to 11 x1 t16 06 derivative times function (20)

11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)
 
X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)
 
X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)
 
11. límite de funciones
11. límite de funciones11. límite de funciones
11. límite de funciones
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
Integral por partes-1.pptx
Integral por partes-1.pptxIntegral por partes-1.pptx
Integral por partes-1.pptx
 
3 3克拉瑪公式
3 3克拉瑪公式3 3克拉瑪公式
3 3克拉瑪公式
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)
 
Intgrales
IntgralesIntgrales
Intgrales
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)
 
12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t16 06 derivative times function

  • 1. f  x  f  x  dx n
  • 2. f  x  f  x  dx n  f  x n1  c  f  x  f  x  dx  n n 1
  • 3. f  x  f  x  dx n  f  x n1  c  f  x  f  x  dx  n n 1 e.g. i  a) Find d dx  1 x  3
  • 4. f  x  f  x  dx n  f  x n1  c  f  x  f  x  dx  n n 1 e.g. i  a) Find d dx  1 x  3   1  x 3  1  x 3  2  3 x 2  1 d 1  dx 2  3x 2  2 1  x3
  • 5. x2 b) Hence find;  1 x 3 dx
  • 6. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx
  • 7. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3
  • 8. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx
  • 9. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx 1   2 x 2  x 2 dx 2
  • 10. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx 1   2 x 2  x 2 dx 2   2  x 2 2  c 3 1 2 2 3
  • 11. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx 1   2 x 2  x 2 dx 2   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 12. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx 1   2 x 2  x 2 dx 2   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 13. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1   2 x 2  x 2 dx 2   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 14. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx  2x 2 dx du  2 xdx   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 15. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx u  2x 2 dx du  2 xdx   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 16. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx 1 u  2x 2 du dx 2 du  2 xdx   2  x 2 2  c 3 1 2 2 3  2  x 2  2  x 2  c 1 3
  • 17. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx 1 u  2x 2 du dx 2 du  2 xdx   2  x 2 2  c 3 1 2 1 1 2 2 3   u du 2  2  x 2  2  x 2  c 1 3
  • 18. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx 1 u  2x 2 du dx 2 du  2 xdx   2  x 2 2  c 3 1 2 1 1 2 2 3   u du 2  2  x 2  2  x 2  c 1 1 2 2 3 3   u c 2 3
  • 19. x2 b) Hence find;  1 x 3 dx x2 2  3x 2  1 x 3 dx    3 2 1 x 3 dx 2   1  x3  c 3 ii   x 2  x 2 dx OR  x 2  x 2 dx u  2  x2 1 du   2 x 2  x 2 dx 1 u  2x 2 du dx 2 du  2 xdx   2  x 2 2  c 3 1 2 1 1 2 2 3   u du 2  2  x 2  2  x 2  c 1 1 2 2 3 3   u c 2 3  2  x 2  2  x 2  c 1 3
  • 20. 1 x2 iii  dx 0 x 3  2 3
  • 21. 1 x2 iii  dx 0 x 3  2 3 1 1 3x 2   dx 3 0 x 3  2 3
  • 22. 1 x2 iii  dx 0 x 3  2 3 1 1 3x 2   dx 3 0 x 3  2 3 1   3 x x  2  dx 1 2 3 3 30
  • 23. 1 x2 iii  dx 0 x 3  2 3 1 1 3x 2   dx 3 0 x 3  2 3 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1 
  • 24. 1 x2 iii  dx 0 x 3  2 3 1 1 3x 2   dx 3 0 x 3  2 3 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 25. 1 1 x2 x2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 1 1 3x 2   dx 3 0 x 3  2 3 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 26. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx 1 1 3x 2   dx 3 0 x 3  2 3 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 27. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx x  0, u  2 1 1 3x 2   dx 3 0 x 3  2 3 x  1, u  1 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 28. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx 1 x  0, u  2 1 1 3x 2 1 3   dx   u du 3 0 x 3  2 3 3 2 x  1, u  1 1   3 x x  2  dx 1 2 3 3 30 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 29. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx 1 x  0, u  2 1 1 3x 2 1 3   dx   u du 3 0 x 3  2 3 3 2 x  1, u  1   u  2 1   3 x x  2  dx 1 2 3 3 1  2 1 30 6 1 3 6    x  2  0 2 1  1 1 1      6  1  2 2  2 1  8
  • 30. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx 1 x  0, u  2 1 1 3x 2 1 3   dx   u du 3 0 x 3  2 3 3 2 x  1, u  1   u  2 1   3 x x  2  dx 1 2 3 3 1  2 1 30 6 6    x  2  0 1 3 2 1  1 1   2  1   6  1  2 2  1 1 1  1      6  1  2 2  2 8 1  8
  • 31. 1 1 x2 x2 u  x3  2 iii  dx  x dx  2 OR 0 x 3  2 3 0 3 3 du  3 x 2 dx 1 x  0, u  2 1 1 3x 2 1 3   dx   u du 3 0 x 3  2 3 3 2 x  1, u  1   u  2 1   3 x x  2  dx 1 2 3 3 1  2 1 30 6 6    x  2  0 1 3 2 1  1 1   2  1   6  1  2 2  1 1 1  1      6  1  2 2  2 8 1  8 Exercise 11H; 1, 3, 5, 7ace etc, 8bdf,9 11*