1) Knowledge graphs are graphs that are enriched with data over time, resulting in graphs that capture more detail and context about real world entities and their relationships. This allows the information in the graph to be meaningfully searched.
2) In Neo4j, knowledge graphs are built by connecting diverse data across an enterprise using nodes, relationships, and properties. Tools like natural language processing and graph algorithms further enrich the data.
3) Cypher is Neo4j's graph query language that allows users to search for graph patterns and return relevant data and paths. This reveals why certain information was returned based on the context and structure of the knowledge graph.