SlideShare a Scribd company logo
1 of 8
Download to read offline
Zhengyu Zhao
Fooling Blind Image Quality Assessment by
Optimizing a Human-Understandable Color Filter
Radboud University (Netherlands)
RU-DS @ Pixel Privacy Task 2020:
Fooling ML models with small, imperceptible perturbations
Szegedy et al. "Intriguing properties of neural networks.", ICLR 2014.
Kurakin et al. "Adversarial examples in the physical world.", ICLR 2017.
Original
CNN CNN
Perturbations Adversarial
vulnerable to image processing
(e.g. JPEG compression)
[1] semantic manipulation [3] DL-based colorization
golf-cart
[2] spatial transformation
trailer truck
domain-specific
costly and
not human-understandble
limited action space
[1] Qiu et al. "SemanticAdv: Generating Adversarial Examples via Attribute-conditioned Image
Editing." ECCV 2020.
Eykholt et al. "Robust physical-world attacks on deep learning visual classification." CVPR 2018.
[2] Engstrom et al. "Exploring the landscape of spatial robustness." ICML 2019.
[3] Bhattad et al. "Unrestricted adversarial examples via semantic manipulation." ICLR 2020.
Fooling ML models with large yet unnoticeable perturbations
[1] Zhao et al. "Adversarial Robustness Against Image Color Transformation within Parametric
Filter Space." Under review. Preliminary work at BMVC 2020.
[2] Hu et al. "Exposure: A white-box photo post-processing framework." ACM TOG 2018.
[3] Kurakin et al. "Adversarial examples in the physical world." ICLR 2017.
[4] Carlini et al. "Towards evaluating the robustness of neural networks." In IEEE S&P 2017.
Simple and human-understandable filter [2]
Generally applicable to all kinds of color images
Relatively large action space (hundreds of parameters)
C&W [4]:
ACE-Ins:
2
)
,
(
min 




 y
x
L
ε
y
x
F
L 




s.t.
),
,
)
(
(
min 2
)
(
)
),
(
(
min ins
x
x
F
y
x
F
L 
 



ε
y
x
L 
 



s.t.
),
,
(
min
PGD [3]:
ACE-PGD:
Our Adversarial Color Enhancement (ACE) [1]
Results
Half of the images to be predicted as low-quality
Robust against JPEG compression
Unacceptable image appeal
Examples
(a) PGD (b) Colorization (c) ACE-PGD
ACE-Ins
Examples of fooling an ImageNet classifier
Guessing:
BIQA model tends to rely on high-frequency features for quality assessment
→ Robust against low-frequency perturbations by ACE
ImageNet classifier learns both low- (e.g. shape) and high-frequency (e.g.
textures) features for object classification
→ Less Robust against low-frequency perturbations by ACE
Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter

More Related Content

Similar to Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter

VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
grssieee
 
Paper Explained: One Pixel Attack for Fooling Deep Neural Networks
Paper Explained: One Pixel Attack for Fooling Deep Neural NetworksPaper Explained: One Pixel Attack for Fooling Deep Neural Networks
Paper Explained: One Pixel Attack for Fooling Deep Neural Networks
Devansh16
 
An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...
IJECEIAES
 

Similar to Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter (20)

TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...
 
Обучение нейросетей компьютерного зрения в видеоиграх
Обучение нейросетей компьютерного зрения в видеоиграхОбучение нейросетей компьютерного зрения в видеоиграх
Обучение нейросетей компьютерного зрения в видеоиграх
 
Masking preprocessing in transfer learning for damage building detection
Masking preprocessing in transfer learning for damage building detectionMasking preprocessing in transfer learning for damage building detection
Masking preprocessing in transfer learning for damage building detection
 
IMAGE GENERATION WITH GANS-BASED TECHNIQUES: A SURVEY
IMAGE GENERATION WITH GANS-BASED TECHNIQUES: A SURVEYIMAGE GENERATION WITH GANS-BASED TECHNIQUES: A SURVEY
IMAGE GENERATION WITH GANS-BASED TECHNIQUES: A SURVEY
 
Image Generation with Gans-based Techniques: A Survey
Image Generation with Gans-based Techniques: A SurveyImage Generation with Gans-based Techniques: A Survey
Image Generation with Gans-based Techniques: A Survey
 
Seminar
SeminarSeminar
Seminar
 
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
 
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
 
OBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYOBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEY
 
IJET-V2I6P17
IJET-V2I6P17IJET-V2I6P17
IJET-V2I6P17
 
A version of watershed algorithm for color image segmentation
A version of watershed algorithm for color image segmentationA version of watershed algorithm for color image segmentation
A version of watershed algorithm for color image segmentation
 
COMPRESSION BASED FACE RECOGNITION USING DWT AND SVM
COMPRESSION BASED FACE RECOGNITION USING DWT AND SVMCOMPRESSION BASED FACE RECOGNITION USING DWT AND SVM
COMPRESSION BASED FACE RECOGNITION USING DWT AND SVM
 
Single image haze removal
Single image haze removalSingle image haze removal
Single image haze removal
 
Paper Explained: One Pixel Attack for Fooling Deep Neural Networks
Paper Explained: One Pixel Attack for Fooling Deep Neural NetworksPaper Explained: One Pixel Attack for Fooling Deep Neural Networks
Paper Explained: One Pixel Attack for Fooling Deep Neural Networks
 
Image Compression based on DCT and BPSO for MRI and Standard Images
Image Compression based on DCT and BPSO for MRI and Standard ImagesImage Compression based on DCT and BPSO for MRI and Standard Images
Image Compression based on DCT and BPSO for MRI and Standard Images
 
Semantic Mapping of Road Scenes
Semantic Mapping of Road ScenesSemantic Mapping of Road Scenes
Semantic Mapping of Road Scenes
 
H018124360
H018124360H018124360
H018124360
 
An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...An effective RGB color selection for complex 3D object structure in scene gra...
An effective RGB color selection for complex 3D object structure in scene gra...
 
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
 
A Survey of Image Based Steganography
A Survey of Image Based SteganographyA Survey of Image Based Steganography
A Survey of Image Based Steganography
 

More from multimediaeval

Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
multimediaeval
 

More from multimediaeval (20)

Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
 
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
 
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
Sports Video Classification: Classification of Strokes in Table Tennis for Me...Sports Video Classification: Classification of Strokes in Table Tennis for Me...
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
 
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
 
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
Essex-NLIP at MediaEval Predicting Media Memorability 2020 TaskEssex-NLIP at MediaEval Predicting Media Memorability 2020 Task
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
 
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
 
Fooling an Automatic Image Quality Estimator
Fooling an Automatic Image Quality EstimatorFooling an Automatic Image Quality Estimator
Fooling an Automatic Image Quality Estimator
 
Pixel Privacy: Quality Camouflage for Social Images
Pixel Privacy: Quality Camouflage for Social ImagesPixel Privacy: Quality Camouflage for Social Images
Pixel Privacy: Quality Camouflage for Social Images
 
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-MatchingHCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
 
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
 
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
 
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
 
Deep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp SegmentationDeep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp Segmentation
 
A Temporal-Spatial Attention Model for Medical Image Detection
A Temporal-Spatial Attention Model for Medical Image DetectionA Temporal-Spatial Attention Model for Medical Image Detection
A Temporal-Spatial Attention Model for Medical Image Detection
 
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
 
Fine-tuning for Polyp Segmentation with Attention
Fine-tuning for Polyp Segmentation with AttentionFine-tuning for Polyp Segmentation with Attention
Fine-tuning for Polyp Segmentation with Attention
 
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
 
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
 
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...
 Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ... Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...
 
Personal Air Quality Index Prediction Using Inverse Distance Weighting Method
Personal Air Quality Index Prediction Using Inverse Distance Weighting MethodPersonal Air Quality Index Prediction Using Inverse Distance Weighting Method
Personal Air Quality Index Prediction Using Inverse Distance Weighting Method
 

Recently uploaded

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
ANSARKHAN96
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Silpa
 

Recently uploaded (20)

Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 

Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter

  • 1. Zhengyu Zhao Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter Radboud University (Netherlands) RU-DS @ Pixel Privacy Task 2020:
  • 2. Fooling ML models with small, imperceptible perturbations Szegedy et al. "Intriguing properties of neural networks.", ICLR 2014. Kurakin et al. "Adversarial examples in the physical world.", ICLR 2017. Original CNN CNN Perturbations Adversarial vulnerable to image processing (e.g. JPEG compression)
  • 3. [1] semantic manipulation [3] DL-based colorization golf-cart [2] spatial transformation trailer truck domain-specific costly and not human-understandble limited action space [1] Qiu et al. "SemanticAdv: Generating Adversarial Examples via Attribute-conditioned Image Editing." ECCV 2020. Eykholt et al. "Robust physical-world attacks on deep learning visual classification." CVPR 2018. [2] Engstrom et al. "Exploring the landscape of spatial robustness." ICML 2019. [3] Bhattad et al. "Unrestricted adversarial examples via semantic manipulation." ICLR 2020. Fooling ML models with large yet unnoticeable perturbations
  • 4. [1] Zhao et al. "Adversarial Robustness Against Image Color Transformation within Parametric Filter Space." Under review. Preliminary work at BMVC 2020. [2] Hu et al. "Exposure: A white-box photo post-processing framework." ACM TOG 2018. [3] Kurakin et al. "Adversarial examples in the physical world." ICLR 2017. [4] Carlini et al. "Towards evaluating the robustness of neural networks." In IEEE S&P 2017. Simple and human-understandable filter [2] Generally applicable to all kinds of color images Relatively large action space (hundreds of parameters) C&W [4]: ACE-Ins: 2 ) , ( min       y x L ε y x F L      s.t. ), , ) ( ( min 2 ) ( ) ), ( ( min ins x x F y x F L       ε y x L       s.t. ), , ( min PGD [3]: ACE-PGD: Our Adversarial Color Enhancement (ACE) [1]
  • 5. Results Half of the images to be predicted as low-quality Robust against JPEG compression Unacceptable image appeal
  • 7. (a) PGD (b) Colorization (c) ACE-PGD ACE-Ins Examples of fooling an ImageNet classifier Guessing: BIQA model tends to rely on high-frequency features for quality assessment → Robust against low-frequency perturbations by ACE ImageNet classifier learns both low- (e.g. shape) and high-frequency (e.g. textures) features for object classification → Less Robust against low-frequency perturbations by ACE