SlideShare a Scribd company logo
1 of 115
Download to read offline
Recent advances in nuclear chemistry 
III Schoolof Energetic and Nuclear Chemistry 
Biological and Chemical Research Centre 
University of Warsaw, Poland 
Konstantin 
German 
Frumkin Institute of Physical Chemistry and Electrochemistry 
of Russian Academy of Sciences (IPCE RAS), Moscow, Russia 
Medical institute REAVIZ
Scope 
• 
Nuclear prospects in Russia 
• 
NMR for radioactive materials analyses 
• 
Sync Radiation 
• 
Actinide hypothesis verification
Homo sapience sp. was the most efficient one in applying technologies to improving its life 
Economist Kenneth Boulding(1956) : one who believes that exponential growth could be eternal in the limited world is either mad or economist 
Neand.sp. sp. 
Cosmo sp. 
Coal 
Oil
Petroleum energeticswiki : 
• 
Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom crude oil. The Scottish chemistJames Youngin 1847 noticed a naturalpetroleumseepage in theRiddingscolliery‐Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. • 
In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). 
• 
Great sceptisismto petroliumburning was shown by D. Mendeleev… • 
Once started it will once stop 
WHAT After… ?
Discovery of radioactivity and estimation of its importance 
Becquerel 
• 
In 1896 found out that Uranium ore is emitting some new kind of rays. 
Curie and Sklodowska 
• 
FrenchphysicistPierreCurieandhisyoungPoleassistant(radio)chemistMariaSklodowskain1898foundoutthatnewRadiumsamplesaremorehotcomparedtotheenvironmentsformanymonths.Theyconcluded:radioactivityisnewandveryimportantsourceofenergyandproposeditsusageformedical, pharmaceutical,…,purposes. 
• 
Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.
2014 ‐60thanniversary of the First World NPP • 
The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. 
• 
The power plant remained active until April 29, 2002 when it was finally shut down. 
• 
The single reactor unit at the plant,AM‐1had a total electrical capacity of 6MW and a net capacity of around 5 MWe. Thermal output was 30MW. 
• 
It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors.
Potential of nuclear 
• 
To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors 
• 
The stock of depleted UO2in the world when used in fast reactors will provide the energy equivalent to 4X1011t oil 
http://www.world‐nuclear‐news.org
Fast neutron reactors• 
Fast neutron reactors are a technological step beyond conventional power reactors. 
• 
They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes. • 
Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them. 
• 
Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.
Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) 
• 
FN types: 
• 
BN‐60 
• 
Brest‐300 
• 
BN‐600 
• 
Shevchenko 
• 
Phoenix 
• 
Superphenix 
• 
BN‐800 
• 
BN‐1200 ‐project 
• 
FR = the key to really closed nuclear fuel cycle 
LBE = Lead‐Bismuth eutectic
Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China 
• 
The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 –2014) 
• 
Liquid Sodium is a coolant. 
• 
Fuel: 369 assemblies, each consisting of 127 fuel rods with an enrichment of 17–26% U‐235. 
• 
It was the largest Fast reactorin service in the world. Three turbines are connected to the reactor. Reactor core ‐1.03 m tall , Diameter = 2.05 m. 
• 
China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011 
•
FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. 
Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200 is due for construction by 2020 with Heavy Liquid Metallic Coolant (Pb‐Bi) 
http://www.world‐nuclear‐news.org
Generation IVreactor design 
• 
The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐Bi eutectic coolant. 
• 
Options include a range of plant ratings, including a number of 50 to 150Mweunits featuring long‐life, pre‐ manufactured cores. 
• 
Modular arrangements rated at 300 to 400MWe, and a large monolithic plant rated at 1,200MWe. The fuel is metal ornitride‐based containing U andtransuranics. 
• 
A smaller capacity LFR such as SSTAR can be cooled by naturalconvection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. 
• 
The reactor outlet coolant temperature is typically in the range of 500 to 600°C, possibly ranging over 800°C.
•Develop and demonstrate fast reactor technology that can be commercially deployed 
•Focus on sodium fast reactors because of technical maturity 
•Improve economics by using innovative design features, simplified safety systems, and improved system reliability 
•Advanced materials development 
•Nuclear data measurements and uncertainty reduction analyses for key fast reactor materials 
•Work at Los Alamos focuses on advanced materials development, nuclear data measurements, and safety analyses 
Fast Reactors Program in USA 
* ‐Gordon JarvinenVIII International Workshop ‐Fundamental Plutonium Properties . September 8‐12, 2008
Some of the concepts developed in the past or under development nowadays are the following: 
• 
—In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 
• 
—In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to operate in both critical and subcritical mode 
• 
—In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐ bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on 
• 
—In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulation and the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) 
• 
—In Japan and the USA, the lead‐bismuth cooled encupsulatednuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits 
• 
—In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept 
• 
—In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and transmutation of long lived isotopes in the spent fuel
Small Modular Reactors (SMRs) 
• 
Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). 
• 
These smaller, compact designs are factory‐ fabricated reactors that can be transported by truck or rail to where they are in need.
367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmerica 
Sources: IAEA‐PRIS, MSC 2011
NMR ‐SR 
technics
Nuclear Magnetic 
Resonance 
Spectroscopy 
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance 
Superconducting magnets 21.5 T 
Earth’s magnetic field 5 x 10‐5T 
NMR
Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory 
Avance‐300 Bruker 
Avance‐600 Bruker 
D3‐12 NMR‐600MHz (12.3 AV600_CHEM) 
OPERATED BY THE GROUP OF PROF. V.P. TARASOV, DR. G. KIRAKOSYAN AND V.A. IL’IN
Nuclei in operation 
Nucleus 
Spin 
γ, MHz/T 
Natural Abundance 
Relative Sensitivity 
1H 
1/2 
42.576 
99.985 
100 
2H 
1 
6.536 
0.015 
0.96 
3He 
1/2 
32.433 
.00013 
44 
13C 
1/2 
10.705 
1.108 
1.6 
17O 
3/2 
5.772 
0.037 
2.9 
19F 
1/2 
40.055 
100 
83.4 
23Na 
3/2 
11.262 
100 
9.3 
31P 
1/2 
17.236 
100 
6.6 
39K 
3/2 
1.987 
93.08 
.05 
99Tc 
9/2 
0 (99.8) 
36Cl 
2 
0 (30) 
!
• 
Number and type of NMR active atoms 
• 
Distances between nuclei 
• 
Angles between bonds 
• 
Motions in solution 
• 
Sternheimerconst 
• 
QQC 
• 
Etc… 
Information obtained by NMR 
• 
Organic substances 
• 
Radioactive materials 
• 
Ga‐complexes 
• 
Etc…
99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 
99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72% H218O at 298K. 2702802903003103203303400,400,410,420,430,44NH4Tc16O318O99Tc NMR H0=7.04TлТемпература, Т К Изотопный сдвиг ЯМР 99Тс, м.д.
O‐17 NMR 
• 
In water enriched in O‐17 
280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТемпература, Т К КССВ, Гц
Tc‐NMR 
ChemShifts in TcO4 ‐Puce hunting 
• 
Solutions 
• 
Ionic pair formation 
• 
Receptor Complexes 
Others 
• 
TcO4 –TcO6 
• 
Tc metal 
• 
TcO2
99TcЯМР, CDCl3 
UV, dichloroethane 
Imine-amide macrocycle 
log(β11) = 3.2 
log(β11) = 5.1 
Cyclo[8]pyrrole·2(HCl) 
log(β12) = 3.8 
log(β12)= 6.0 
99Tc-NMRtitration, Bu4N+ 99TcO4–in CDCl3 
99Tc-NMR strengths 
• 
Clear signal 
• 
Good correlation withUV 
KolesnikovG.V., German K.E, KirakosyanG., TananaevI.G., UstynyukYu.A., KhrustalevV.N., KatayevE.A. // Org.Biomol.Chem. ‐2011.
Кривые обратного 99TcЯМР титрования для рецепторов L1 (а) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –апроксимацияконстанты, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). 
УФ‐вид
Кривые обратного 99TcЯМР титрования для рецепторов L2 (б) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –подгон константы, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). 
УФ‐вид
Chemical shift 
http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
Chemical shift 
δ=(f‐fref)/fref
Intramolecularmode 
• 
The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonalbipyramidalgeometry 
• 
PF5 
• 
IF5 
Intermolecular mode 
• 
Tarasovexchange in TcO4‐ TcO6 exchange spectra 
Exchange spectra
Pseudorotationvia the Berry mechanism 
• 
Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types of P−F bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phaseelectron diffractionanalysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long. 
• 
Fluorine‐19 NMRspectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. 
• 
The apparent equivalency arises from the low barrier for pseudorotationvia theBerry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions.The apparent equivalency of the F centers in PF5was first noted by Gutowsky.[2]The explanation was first described byR. Stephen Berry. 
• 
Berry pseudorotationinfluences the19F NMR spectrum of PF5since NMR spectroscopy operates on amillisecondtimescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.
Berry pseudorotation: NMR‐31P in PF5 
Yellow atoms are axial 
Blue atoms are axial 
http://fluorine.ch.man.ac.uk/pics/berry.gif 
http://pubs.acs.org/doi/pdf/10.1021/ed083p336.2 
Mechanisms that interchange axial and equatorial atoms in fluxional processes: 
Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via 
Animation of Transition State Normal VibrationalModes
E
NMR‐99Tc in 3 –13 M H2SO4[Tc] = 0.001M 
-10409014019024029034035791113 NMR-99Tc shift , ppm c(H2SO4), M0 ppm = 0,05M KTcO4
99Tc‐NMR Tc(VII) in HClO4 
разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
Solid State NMR 
Characterization of the Structure of solidPertechnicAcid HTcO4 
Solid state 99Tc‐NMR of HTcO4(solid) 
Provide some similarity to Re2O7*2H2O 
Gives evidence for the absence of TcO4 ! 
Charge separated structure favorable
Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide 
• 
Herman Cho, W.A. de Jong, A.P. Sattelberger, F. Poineau, K. R. Czerwinski ‐J. AM. CHEM. SOC. 
•NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. 
•The magnitudes of the predicted tensor principal values appear to be uniformly largerthan those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. 
•The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
• 
NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. 
• 
Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz. 
Typical NMR‐99Tc spectra of 
a ‐metal powder ( Ф80‐150 μm) 
b –nano‐dimensional Tc metal Ф = 50 nm
• 
99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown that for all the supports (except for TiO2), there is an intense signal at –30 –40 ppm arising from the TcO2
Synchrotron Radiation as a Tool 
ISTR 2011 Moscow 
Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators
Advantages compared to standard X‐ray sources 
• 
Intensity/Brightness higher by 6‐10 orders of magnitude 
• 
Continuum spectrum from IR to hard X‐rays 
• 
High natural collimation 
• 
Tunable polarization 
• 
Partial coherence
EUROPEAN SR
EUROPEAN SYNCHROTRONS incl. MOSCOW
European 
synchrotron 
Radiation 
Facility, 
Grenoble, 
France 
Production 
of X-rays in synchrotron
European synchrotron 
ESRF 
Electron energy: 
6 Gev
Bending magnets 
Undulators
• 
Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐4(5 GeV, 40 mA) –both1stgeneration(ε~300 nm∙rad)11 beamlines. 
• 
Kurchatov Synchrotron Radiation Source(Moscow) in operatiionsince early 2000‐ies Siberia‐1 (booster, 450 MeV) –3 VUV beamlines, Siberia‐ 2 –dedicated2ndgeneration source(2.5 GeV, 300 mA, ε~75 nm∙rad), 16beamlines. 
• 
ZelenogradSynchrotron Rad. Facility (LukinIPP)–under construction• 
DubnaElectron SynchrotronDELSI (JINR) –project development 
• 
International collaboration: 
• 
Russian‐German beamlineat BESSY II and Russian involvement in ESRF consortium, 
• 
Russian part in EuropeanXFEL project (X‐ray free‐electron lasers ‐M. Kovalchuk(NRC "Kurchatov Institute", Moscow), A. Svinarenko(OJSC RUSNANO,Moscow)(4thgenerationsource) 
Synchrotron sources in Russia
• 
Basics and typical applications of 
‐EXAFS/XANES‐SAXS‐XRD 
• 
Combined application of X‐ray techniques to structural diagnostics of nano/materials 
SR sources in Russia
SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Department Head ‐Yan Zubavichus 
10 years in user mode
ISTR 2011 Moscow 
Kurchatov Synchrotron Source 
Linac 
Booster 
Main storage 
ring 
Control room
10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 
2. Diffraction 
1. Spectroscopy 
3. Imaging 
Synchrotron techniques include 
Especially protein 
structure solutions 
Unique : 
Structures in solutions 
and polymers
KSRC X-ray stations 
1 
ProteinCrystallography 
2 
PrecisionX-rayOptics 
3 
X-rayCrystallographyandPhysicalMaterialsScience 
4 
MedicalImaging 
6 
Energy-DispersiveEXAFS 
7 
StructuralMaterialsScience(SMS) 
8 
X-raySmallAngleDiffractionCinema(bioobjects) 
9 
RefractionOptics&X-rayFluorescenceAnalysis 
10 
X-rayTopography&Microtomography 
VUV stations 
11 
X-rayPhotoelectronSpectroscopy 
12 
OpticalspectroscopyforCondensedMatter 
13 
Luminescence&OpticalInvestigations 
Technological stations 
14 
X-rayStandingWavesforLangmuir-BlodgettFilms 
15 
MolecularBeamEpitaxy 
16 
LIGA
Characteristics of the beamline 
TypeEnergy interval, keVΔE/E 
Si(111)5‐1910‐4 
Si(220)8‐3510‐4 
Monochromator is driven by stepper motors(1‘‘ discrete steps) 
• 
Ionization chambers+ KEITHLEY 6487 
• 
Scintillation counter withNaI(Tl) crystals 
•Linear gas‐filled detectorCOMBI‐1(“Burevestnik”, St. Petersburg) 
• 
2D‐detectorImagingPlate (FujiFilmBAS2025) 
• 
Semiconducting detector(pureGe) 
Maximum3×3 мм2 
Minimum10×10 μm2 
Step of translations~4 μm 
~ 0.5×108 photons/mm2with energy bandwidth Δλ/λ=10‐4 
Monochromators: 
Detectors: 
Beam dimensions: 
Photon flux:
In‐situcell for functional materials 
3‐component gas mixtures 
• 
Inerts: He, N2, Ar 
• 
Oxidation and reduction:O2, H2 
• 
Catalytic substrate: CO, CH4, etc. 
• 
Vacuum 10 Pa 
20‐550oC 
Thermostabilization through the heating current & thermocouple feedback±1oC 
4 ×350 W 
Cooling down to ‐130oC with a flow of cold N2 gas
He closed‐cycle refrigerator (SHI, Japan) 
Minimum temperature achieved10.0К + precise termostabilization up to room temperature
Combined use ofXAFS, XRD and SAXS• 
XANES‐oxidation state of heavy atoms + coordination symmetry 
• 
EXAFS‐local neighborhoodof a given heavy atom• 
XRD‐long‐range order, phase composition, size of crystallites 
• 
SAXS‐size and shape of nanoparticlesor pores in a range of 1‐100 nm
X‐ray absorption spectroscopy: basics 
ISTR 2011 Moscow
Fermi 
level 
HOMO 
LUMO 
XANES: origin 
Vacuumlevel 
Core electronlevel 
Valenceband 
Forbidden gap 
Conductionband 
XANESprobestheenergydistributionofcertainsymmetry- allowedMOsorDOSfeaturesabovetheFermilevel 
Fermi‘sgolden rule: 
μ ~ |<f | V | i>|2, f,i–wave functions of the final and initial states,V –dipole moment operator
Photoionized atom 
Neighbor atom 
Photoelectron wave 
Back-scattered photoelectronwave 
Single scattering 
Multiple scattering 
EXAFS: origin 
Local-structrureparametersofthecentralatom 
canberetrievedfromEXAFS 
Initial state: electron on the core level 
Final state: outgoing photoelectron wave 
Interference
)(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ 
χ-normalized background-subtracted EXAFS-signal 
k–photoelectron vector modulus (≡2π/λ) 
S –Extrinsic loss coefficient(0.7-1.0) 
N–coordination number in thej-thcoordination sphere 
r–interatomic distance 
f–backscattering amplitude 
ϕ–phase shift 
σ 
–Debye-Waller factors 
λ 
−photoelectron mean-free path
EXAFS/XANES: implementation at SMS 
Detection modes:transmission(ion chambers) 
fluorescence yield( NaI(Tl) scintillation counter, detection limit down to0.005 mass.%) 
Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) withab initiotheoretical phase and amplitude functions fromFEFF8, GNXAS 
Ab initioXANES spectra simulation withFEFF8 , FDMNES, FitIt, etc. 
Absorption edges measuredover 2004‐2014 
К‐edges: 
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te 
L3‐edges: 
Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu
1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.546.556.566.576.586.596.606.61 Mn2+ (MnCl2 6H2O) Mn3+ (Mn2O3) Mn4+ (MnO2) Mn7+ (KMnO4) Photon Energy, keVMn K1635016400164500.00.61.2 Normalized Absorption, a.u. Photon Energy, eV Bi0 Bi3+ (Bi2O3) Bi3+ (Bi(NO3)3.2H2O) Bi5+ (NaBiO3) Bi L1 
XANES 
Information retrieved fromXANES: 
• 
Effective oxidation state 
• 
Coordination polyhedron symmetry 
Data analysis: “fingerpring” approach –comparison with reference spectra + theoretical simulations 
1s→3d,4p 
2p3/2→4d 
2s→6p
Application to Tc 
Tc K‐edge XANES
Application to Re 
Re L3‐edge XANES
01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å 
Tc METAL & Tc CARBIDE
01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å 
Re METAL & Re CARBIDE
PYROMETALLURGY 
REPROCESSING OF SPENT FUEL
Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible species in PRORYV technology (chloride melts) 
Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4, +2,5, +2) halogenides 
(Cl, Br)
а 
б 
в 
а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: 
Tc-Br:N=5,8(4),R=2,51(2)Å,σ2=0,004Å2,ΔE0=-16,9(5)eV, 
б-Биядерныйкластер Tc K-край k3- взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций): 
Tc-TcN=1,66(3), R=2.20(2) Åσ2=0,0069 Å2ΔE0= -1.1(9) eV 
Tc-ClN=2,2(4), R=2,46(2) Åσ2=0,0107 Å2, 
в-Спектр и Tc K-край k3-взвешенный EXAFS для полиядерногохлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения 
Spectra EXAFSof complex Tc halogenides
XAFS analysis of electrode surface after corrosion 
Æ 
Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) 
‐In 1 M NaCl, pH= 2.5 (E= 700 mV) 
XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison 
Layer carefully removed 
and analyzed by XAFS. 
SEM x 50 
Before 
After 
pH =2.5, 1 M NaCl, E = 700 mV during 1 hour 
M. Ferrier, F. Poineau,G.W. ChinthakaSilva, E. Mausolfand K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.
XANES 
No pre‐edge : No TcO4‐sorbed on electrode. 
No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 
Æ 
Product on electrode after corrosion : mainly Tc metal. 
1 M NaCl, pH = 2.5 
1M HCl 
First deriv.
ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . 
Æ 
No oxide detected. 
EXAFS after corrosion 
XRD [5] 
C.N 
R (Å) 
C.N 
R( Å) 
Tc0-Tc1 
10 
2.72 
12 
<2.71> 
Tc0-Tc2 
6 
3.83 
6 
3.85 
Tc0-Tc3 
8 
4.76 
8 
4.73 
pH =2.5 
EXAFS
NEXT : • 
SAXS
X‐ray detector (0D,1D, 2D) I(s) 
Scattering vector s = k1 ‐k0 
s = 4πsin θ/ λ= 2π/ d 
Sample in the transmission geometry 
2θ 
k0 
k1 
s 
Point/Linear collimation 
Monochro‐ matic X‐ray source 
SAXS: Basics
ISTR 2011 Moscow 
Indirect FT 
I(s) –experimentalscattering 
curve 
P(r) –volumedistributionof hard spheres
ISTR 2011 Moscow 
SAXS: implementation at SMS 
Sample-to-detectordistance,mm 
2θmin-2θmax,° 
qmin-qmax,nm-1 
E=25keV 
qmin-qmax,nm-1 
E=6keV 
120 
0.95-45.00 
4.2–179 
1–43 
500 
0.23-13.50 
1–59 
0.24–14.2 
1000 
0.11-6.84 
0.5–30 
0.12–7,1 
2390 
0.05-2.87 
0.2–12.7 
0.05-3 
Only transmission geometry (no GISAXS for the moment) 
Scattering vectoris oriented vertically; 
sample‐to‐detector distance up to 2.5 m; 
Photon energy5‐30 keV(the possibility to employ anomalous scattering) 
Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images) 
Simulation: 
Single size distribution of spherical particlesR=20±4 Å 
IsGISAXS 
GNOM
1 . Small‐angle diffraction on mesostructured materials 
2 . SAXS application: aqueous colloids 
p.e. ‐of Tc sulfide nanoparticles 
3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)
Examples of combined structural studies
E
E
E
E
Сдвиг ЯМР сигнала в нанодисперсном 
образце 20% Tc/g‐Al2O3 (Рис. 4а) составляет 
7406 м.д., что на 600 м.д. превышает 
значение сдвига в порошке металлического 
технеция с диаметром частиц 50–100 μм. 
Линия с шириной на половине высоты ~1 kHz 
имеет Лоренцевский вид и не имеет 
саттелитной структуры, связанной с 
квадрупольными взаимодействиями первого 
порядка, типичными для ГПУ решеток. Для 
технециевой фольги толщиной 20μм спектр 
99Tc ЯМР показывает, что позиция центральной компоненты очень близка к аналогичной позиции в образце микродисперсного порошка, хотя 8 саттелитов практически не выражены в результате высокой дефектности решетки кристаллитов фольги, связанной с многократными последовательными механическими обработками (прокаткой). 
Отсутствие квадрупольной структуры в нанодисперсном образце ясно указывает на кубическую решетку фазы металличекого технеция. Значительное увеличение сдвига Найта в нандисперсном образце может отражать изменение плотности состояний на уровне Ферми по сравнению с микродисперсным образцом металлического технеция с ГПУ решеткой [7].
• 
99Tc ЯМР спектр образцы 5% Tc/γ‐ Al2O3при 295 K; 
• 
(a) SW1.7 МГц, число сканов 250000, (b) SW250 кГц, число сканов 64000 
•99Tc ЯМРспектры: (a) образца20% Tc/γ‐ Al2O3при295 K; SW 500 кГц, числосканов191000, D00.5s ; (b) порошкаметаллическогоTc сдиаметромчастиц50–100 μм, SW 2.5 мГц, числосканов50000, D00.5s.
V.F. Peretrukhin, G.T. Seaborg, N..N. Krot, LNL, Berkley, 1998 
3
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability exist 
‰ 
For huge part ‐It works ! ! ! 
VII
• 
Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” 
• 
Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf 
TRU 
5 
Detailed fig 
In: Jarvinen et all 
Plutonium
Synthesis and the types of An(VII) 
• 
CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkalineconditions. 
• 
Bothinteractionofsolidcomponentsandalsoconductingtheoxidationinalkalinesolutions. 
• 
CompoundsofAn(VII)arestableonlyinstrongalkali,andrapidlydecomposeinneutraloracidicconditions. 
• 
An(VII)arequitevariableincomposition:formallytheycouldbeconsideredtocontainanionsAnO65-,AnO53-,[AnO4(OH)2]3- ,[An2O8(OH)2]4-andAnO4-butthelatterisnotsupportedbyX-rayanalyses. 
• 
AshortnumberofthesolidcompoundscontainingAnO65-, andAnO53-anionswereisostructuraltocorrespondingortho- andmeso-rhenatesReO65-,ReO53-(butnoanalogyinsolutions). 
6
MAnO4(·nH2O) (M–alkali metal) 
• 
It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M–alkali metal) have the structures similar to uranates(VI) of alkali earth metals. 
• 
They contain shortened linear groupsAnO23+and O– bridges collecting all into anionic layers. 
Structural type of BaUO4. 
(Reis A.H. et al. JINC, 1976). 
7
BaUO4structural type compounds 
• 
Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data) 
• 
1 –U compounds 
• 
2 –Np compounds 
• 
Chemical properties of Np(VI) and Np(VII) compounds are different 
• 
LiReO4*1.5H2O contra LiTcO4*3H2O 
8
IR spectral data indicates Np‐O and Np=O difference 
Evident splitting at the CsNpO4spectrum indicates/supports the presence of two types of Np‐O bonds: 
• 
O=Np=O 
• 
Np‐O‐Np 
In Li5NpO6all the Np‐O bonds are of the same nature 
9
Mossbauer spectra of Np(VII) compounds 
• 
1 –CsNpO4 
• 
2 –Na3NpO4(OH)2*nH2O 
• 
3 –Li5 NpO6 
• 
4 –frozen solution of Np(VII) in 10M NaOH 
• 
Dots ‐experiment, curve – squared plotting
Inthisway: 
Transuranic(VII) MAnO4(·nH2O) compounds are completely different : 
from 
MXO4xnH2O(X–elementsofthe7thGroupfromPeriodicTable,Mn,Tc,Re,n=0,1,1.5,3) 
fromTc(VII)acid 
German,Peretrukhin2003 
Poineau,German2010 
fromRe(VII)acid 
BeyerH.etall. 
Angew.Chem.,1968 
fromI(VII)acid 
fromCl(VII)acid 
Структурный тип BaUO4. 
(Reis A.H. et al. JINC, 1976). 
(Maruk A.Ya. et al. Russ. Coord. Chem.2011) 
and from TcO3+ 
Pertechnetyl Fluorosulfate, [TcO3][SO3F] –ZAAC, 2007 
J.Supeł, U. Abram et all. 
Berlin, Freie Universität. 
11
100 
Isostructural: 
LiBrO4∙3H2O 
LiClO4∙ 3H2O 
LiMnO4∙ 3H2O 
LiTcO4∙6/2H2O6/2=3 
LiReO4∙1.5H2O 
LiReO4∙ H2O 
‐ 
Analogous are absent 
More diffused 4d electrons in Re compared to 3d electrons in Tc
101 
Isostructural pertechnetate salts withcation : anion = 1:1 
Cation 
Anion 
ClO4- 
MnO4- 
ReO4- 
[Li · 6/2Н2O]+ 
+ 
+ 
* 
Na+ 
– 
* 
+ 
K+ 
– 
– 
+ 
Rb+ 
– 
– 
+ 
Cs+ 
– 
– 
+ 
NH4+ 
– 
– 
+ 
Ag+ 
– 
– 
+ 
[(CH3)4N]+ 
+ 
– 
+ 
[(C3H7)4N]+ 
– 
* 
+ 
[(C4H9)4N]+ 
* 
* 
* 
[(C6H5)3PNH2]+ 
* 
* 
+ 
[C7H14N3]+ 
* 
* 
+ 
[C7H10N3(C3H5)4]+ 
* 
* 
+ 
[C7H10N3(C6H5)4]+ 
* 
* 
* 
[C6H8N]+ 
– 
* 
+ 
[C4H10NO]+ 
– 
* 
+ 
[CN3H6]+ 
+ 
* 
+ 
*Notdetermined.doesn’texists 
–NosimilaritytoTc 
+Isostructural
Anionic chain [(Np2O8)(OH)2]n4n‐in the structure 
of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O 
(Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973). 
12 
Np(VII) & I(VII) 
• 
Two types of Np in Np(VII) compound while only one Iin I(VII) 
• 
One bridging O in Np(VII) while two bridging O in I(VII) 
• 
Np(VII) is stable in alkali while I(VII) –in acids 
Neutral chains in HIO4. 
( Smith, T. et all. Inorg.Chem., 1968)
The first Pu(VII) single crystal 
13
14
Na4[AnO4(OH)2](OH)∙2H2O 
Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) 
Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) 
Np1‐O3 1.917(2) Pu1‐O3 1.9109(15) 
Np1‐O4 1.880(2)Pu1‐O4 1.8811(19) 
Np1‐O5 2.315(2) Pu1‐O5 2.2952(19) 
Np1‐O6 2.362(2)Pu1‐O6 2.339(2) 
An‐OH distances are more sensible to actinide contraction than An=O distances 
15
Several mixed cation compounds of Np(VII) and Pu(VII) 
NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=102.6161(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0179. 
NaRb2[NpO4(OH)2]∙4H2O(II):a=5.4558(2),b=12.4478(3),c=7.9251(2)Å,β=103.6310(13)°, sp.gr.P21/n,Z=2,R1[I>2σ(I)]=0.0218. 
NaCs2[NpO4(OH)2]∙4H2O(III):a=15.0048(4),b=9.1361(2),c=10.6747(3)Å,β=129.7361(9)°, sp.gr.C2/c,Z=4,R1[I>2σ(I)]=0.0148. 
NaRb5[PuO4(OH)2]2∙6H2O(IV):a=6.4571(1),b=8.2960(1),c=10.8404(2)Å,α=105.528(1),β=97.852(1),γ=110.949(1)°,sp.gr.P‐1,Z=2,R1[I>2σ(I)]=0.0189. 
NaRb2[PuO4(OH)2]∙4H2O(V):a=8.2168(2),b=13.4645(3),c=9.9238(2)Ǻ,β=102.6626(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0142. 
NaCs2[PuO4(OH)2]∙4H2O (VI):a= 11.1137(2), b=9.9004(2), c = 10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z= 4, R1 [I > 2σ(I)] = 0.0138. 
Anion of [PuO4(OH)2]3‐ 
in the structure of IV 
16
Selected interatomic distances and torsion angles 
in the structures I –VI : 
IIIIIIIVVVI 
Bond(Å) 
An=O 1.8790(12)2×1.8690(9) 2×1.8884(9)1.8695(15)1.8685(12)2×1.8868(15) 
1.8855(13) 2×1.9138(9)2×1.8944(9)1.8724(15)1.8761(12)2×1.8876(14) 
1.8955(13)1.8919(15) 1.8897(12) 1.9223(13)1.8985(16)1.9144(12) 
An‐O(OH)2.3259(13)2×2.3750(9)2×2.3643(9)2.3197(16)2.3083(13)2×2.3236(15) 
2.3382(13)2.3556(15)2.3229(13) 
Angle(º)IIIIIIIVVVI 
H‐O…O‐H145(4)180133(4)39(4)140(3)48(5) 
17
RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetatesolutions. 
Thenewcompoundsof 
МNpO4·nH2Otype,whereМ–unichargedcationofalkalimetal,ammonium,silver,guanidiniumortetraalkylammonium 
and 
Np(VII)withbichargedcationsofalkalineearthmetals,andalsoCu,CdandZn. 
Allthesecompoundshavebeenthoroughlycharacterizedbymeansofchemicalanalyses,IRandUV-visspectroscopy.Thestudyconfirmed,that… 
18
Pu(VII) compounds 
are close structural and chemical analogues 
of Np(VII) ones 
19
Tc(VII) & Pu(VII), Np(VII) 
Pu(VII) and Tc(VII) are different in (cry,ele)‐structure, 
ligand arrangement, stability and chemical properties ! 
1000 ppm
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability exist 
‰ 
For huge part ‐It works ! ! ! 
VII 
4
An(VII) ‐Tc&Re(VII) 
• 
Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations of the new compounds of 
• 
heptavalent neptunium and plutonium, 
• 
heptavalent technetium and rhenium 
• 
confirmtheearlierprevailingopinionabouttheabsenceofadeepsimilarityinphysico‐chemicalpropertiesbetweentheheptavalenttransuranicelementsandtheelementsofGroupVIIoftheshortformofthePeriodictableandtheformalnatureofsomeofthestructuralsimilaritiesamongtheconsideredheptavalentcompounds. 
• 
PrincipallyonecanattendtheformationofPu(VIII)butitisnottheaqueousmediathatcouldstanditsoxidizingpower. 
20
BessonovPerminovKrot, GrigorievPeretrukhinGermanCzerwinskiPoineau 
Thank you for your Attention!
ISTR‐2014
Thank you for your attention !

More Related Content

What's hot

Uranium enrichment and extraction from ores
Uranium enrichment and extraction from oresUranium enrichment and extraction from ores
Uranium enrichment and extraction from oresمحمد عاطف
 
Nuclear Power Plant
Nuclear Power PlantNuclear Power Plant
Nuclear Power Plantmaneesh001
 
Lec-Nuclear-1.pptx
Lec-Nuclear-1.pptxLec-Nuclear-1.pptx
Lec-Nuclear-1.pptxWajidahmdani
 
Nuclear reactors
Nuclear reactorsNuclear reactors
Nuclear reactorsNisarg Shah
 
Lec-Nuclear-2.pptx
Lec-Nuclear-2.pptxLec-Nuclear-2.pptx
Lec-Nuclear-2.pptxWajidahmdani
 
Nuclear power
Nuclear powerNuclear power
Nuclear powerAparna
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plantRP6997
 
Components of nuclear power plant
Components of  nuclear power plant Components of  nuclear power plant
Components of nuclear power plant Muhammad Talha Khan
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plantAakash Gupta
 
nuclear power generation
nuclear power generationnuclear power generation
nuclear power generationAhmed Sarhan
 
Physics and Technology of Nuclear Reactors
Physics and Technology of Nuclear ReactorsPhysics and Technology of Nuclear Reactors
Physics and Technology of Nuclear ReactorsPaul Callaghan
 
NPP, Nuclear Power Plant,
NPP, Nuclear Power Plant, NPP, Nuclear Power Plant,
NPP, Nuclear Power Plant, Abha Tripathi
 
MET 401 Chapter 8 -_nuclear_power_plant
MET 401 Chapter 8 -_nuclear_power_plantMET 401 Chapter 8 -_nuclear_power_plant
MET 401 Chapter 8 -_nuclear_power_plantIbrahim AboKhalil
 
Nuclear crisis of japan
Nuclear crisis of japanNuclear crisis of japan
Nuclear crisis of japanPracto
 
Nuclear thermal propulsion in space(NTP)
Nuclear thermal propulsion in space(NTP)Nuclear thermal propulsion in space(NTP)
Nuclear thermal propulsion in space(NTP)SANDIP THORAT
 
international thermo nuclear reactor
international thermo nuclear reactorinternational thermo nuclear reactor
international thermo nuclear reactorpushpeswar reddy
 

What's hot (20)

Uranium enrichment and extraction from ores
Uranium enrichment and extraction from oresUranium enrichment and extraction from ores
Uranium enrichment and extraction from ores
 
Nuclear Power Plant
Nuclear Power PlantNuclear Power Plant
Nuclear Power Plant
 
Lec-Nuclear-1.pptx
Lec-Nuclear-1.pptxLec-Nuclear-1.pptx
Lec-Nuclear-1.pptx
 
Nuclear reactors
Nuclear reactorsNuclear reactors
Nuclear reactors
 
Lec-Nuclear-2.pptx
Lec-Nuclear-2.pptxLec-Nuclear-2.pptx
Lec-Nuclear-2.pptx
 
Nuclear Power Plant PPT
Nuclear Power Plant PPTNuclear Power Plant PPT
Nuclear Power Plant PPT
 
Nuclear power
Nuclear powerNuclear power
Nuclear power
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Components of nuclear power plant
Components of  nuclear power plant Components of  nuclear power plant
Components of nuclear power plant
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
nuclear power generation
nuclear power generationnuclear power generation
nuclear power generation
 
Physics and Technology of Nuclear Reactors
Physics and Technology of Nuclear ReactorsPhysics and Technology of Nuclear Reactors
Physics and Technology of Nuclear Reactors
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
NPP, Nuclear Power Plant,
NPP, Nuclear Power Plant, NPP, Nuclear Power Plant,
NPP, Nuclear Power Plant,
 
nuclear power plant
nuclear power plant nuclear power plant
nuclear power plant
 
MET 401 Chapter 8 -_nuclear_power_plant
MET 401 Chapter 8 -_nuclear_power_plantMET 401 Chapter 8 -_nuclear_power_plant
MET 401 Chapter 8 -_nuclear_power_plant
 
Nuclear crisis of japan
Nuclear crisis of japanNuclear crisis of japan
Nuclear crisis of japan
 
Nuclear thermal propulsion in space(NTP)
Nuclear thermal propulsion in space(NTP)Nuclear thermal propulsion in space(NTP)
Nuclear thermal propulsion in space(NTP)
 
international thermo nuclear reactor
international thermo nuclear reactorinternational thermo nuclear reactor
international thermo nuclear reactor
 

Similar to 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

SMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfSMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfcguptadae
 
Nuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdfNuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdffinnleymatias
 
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826jaymanek1
 
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionNew New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionEd Beardsworth
 
Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Sreechithra AS
 
Nuclear technologies alan bullick
Nuclear technologies  alan bullickNuclear technologies  alan bullick
Nuclear technologies alan bullickMark McGinley
 
Indian nuclear power programme
Indian nuclear power programmeIndian nuclear power programme
Indian nuclear power programmeNIT Puducherry
 
Ch 13 nuclear energy
Ch 13 nuclear energyCh 13 nuclear energy
Ch 13 nuclear energyTadviDevarshi
 
Nuclear Power plants
Nuclear Power plantsNuclear Power plants
Nuclear Power plantsBeemkumarN
 
NUCLEAR POWER PLANT for Thermal Engineering
NUCLEAR POWER PLANT for Thermal EngineeringNUCLEAR POWER PLANT for Thermal Engineering
NUCLEAR POWER PLANT for Thermal EngineeringMonujBorah
 
178875555 fast-breeder-reactors-pdf
178875555 fast-breeder-reactors-pdf178875555 fast-breeder-reactors-pdf
178875555 fast-breeder-reactors-pdfmanojg1990
 
Nuclear power plant kakarapar
Nuclear power plant kakaraparNuclear power plant kakarapar
Nuclear power plant kakaraparnaitik997
 

Similar to 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture (20)

SMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfSMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdf
 
Nuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdfNuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdf
 
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826
Presentation presentation1.pptx nuclear_power_plant_me_1472237864_228826
 
Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionNew New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Nuclear tpp
Nuclear tppNuclear tpp
Nuclear tpp
 
Rgsharma.pdf
Rgsharma.pdfRgsharma.pdf
Rgsharma.pdf
 
Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)
 
Nuclear technologies alan bullick
Nuclear technologies  alan bullickNuclear technologies  alan bullick
Nuclear technologies alan bullick
 
Indian nuclear power programme
Indian nuclear power programmeIndian nuclear power programme
Indian nuclear power programme
 
Nuclear Power
Nuclear PowerNuclear Power
Nuclear Power
 
Ch 13 nuclear energy
Ch 13 nuclear energyCh 13 nuclear energy
Ch 13 nuclear energy
 
Linked in seminar
Linked in seminarLinked in seminar
Linked in seminar
 
Nuclear Power plants
Nuclear Power plantsNuclear Power plants
Nuclear Power plants
 
NUCLEAR POWER PLANT for Thermal Engineering
NUCLEAR POWER PLANT for Thermal EngineeringNUCLEAR POWER PLANT for Thermal Engineering
NUCLEAR POWER PLANT for Thermal Engineering
 
178875555 fast-breeder-reactors-pdf
178875555 fast-breeder-reactors-pdf178875555 fast-breeder-reactors-pdf
178875555 fast-breeder-reactors-pdf
 
Nuclear power plant kakarapar
Nuclear power plant kakaraparNuclear power plant kakarapar
Nuclear power plant kakarapar
 
nuclear power plant
nuclear power plantnuclear power plant
nuclear power plant
 

More from Konstantin German

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gelsKonstantin German
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna KuzinaKonstantin German
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium contentKonstantin German
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumKonstantin German
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2Konstantin German
 
структуры белков
структуры белковструктуры белков
структуры белковKonstantin German
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.Konstantin German
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016Konstantin German
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы границаKonstantin German
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202Konstantin German
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Konstantin German
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавизKonstantin German
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днкKonstantin German
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днкKonstantin German
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахаридыKonstantin German
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавизKonstantin German
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016Konstantin German
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigenKonstantin German
 

More from Konstantin German (20)

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gels
 
03 1-panasyuk
03 1-panasyuk03 1-panasyuk
03 1-panasyuk
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium content
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rhenium
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2
 
структуры белков
структуры белковструктуры белков
структуры белков
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.
 
1987 na tco4-4h2o
1987 na tco4-4h2o1987 na tco4-4h2o
1987 na tco4-4h2o
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы граница
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавиз
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днк
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахариды
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавиз
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigen
 

Recently uploaded

Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 

Recently uploaded (20)

Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 

2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

  • 1. Recent advances in nuclear chemistry III Schoolof Energetic and Nuclear Chemistry Biological and Chemical Research Centre University of Warsaw, Poland Konstantin German Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, Russia Medical institute REAVIZ
  • 2. Scope • Nuclear prospects in Russia • NMR for radioactive materials analyses • Sync Radiation • Actinide hypothesis verification
  • 3. Homo sapience sp. was the most efficient one in applying technologies to improving its life Economist Kenneth Boulding(1956) : one who believes that exponential growth could be eternal in the limited world is either mad or economist Neand.sp. sp. Cosmo sp. Coal Oil
  • 4. Petroleum energeticswiki : • Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom crude oil. The Scottish chemistJames Youngin 1847 noticed a naturalpetroleumseepage in theRiddingscolliery‐Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. • In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). • Great sceptisismto petroliumburning was shown by D. Mendeleev… • Once started it will once stop WHAT After… ?
  • 5. Discovery of radioactivity and estimation of its importance Becquerel • In 1896 found out that Uranium ore is emitting some new kind of rays. Curie and Sklodowska • FrenchphysicistPierreCurieandhisyoungPoleassistant(radio)chemistMariaSklodowskain1898foundoutthatnewRadiumsamplesaremorehotcomparedtotheenvironmentsformanymonths.Theyconcluded:radioactivityisnewandveryimportantsourceofenergyandproposeditsusageformedical, pharmaceutical,…,purposes. • Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.
  • 6. 2014 ‐60thanniversary of the First World NPP • The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. • The power plant remained active until April 29, 2002 when it was finally shut down. • The single reactor unit at the plant,AM‐1had a total electrical capacity of 6MW and a net capacity of around 5 MWe. Thermal output was 30MW. • It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors.
  • 7. Potential of nuclear • To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors • The stock of depleted UO2in the world when used in fast reactors will provide the energy equivalent to 4X1011t oil http://www.world‐nuclear‐news.org
  • 8. Fast neutron reactors• Fast neutron reactors are a technological step beyond conventional power reactors. • They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes. • Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them. • Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.
  • 9. Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) • FN types: • BN‐60 • Brest‐300 • BN‐600 • Shevchenko • Phoenix • Superphenix • BN‐800 • BN‐1200 ‐project • FR = the key to really closed nuclear fuel cycle LBE = Lead‐Bismuth eutectic
  • 10. Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China • The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 –2014) • Liquid Sodium is a coolant. • Fuel: 369 assemblies, each consisting of 127 fuel rods with an enrichment of 17–26% U‐235. • It was the largest Fast reactorin service in the world. Three turbines are connected to the reactor. Reactor core ‐1.03 m tall , Diameter = 2.05 m. • China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011 •
  • 11. FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200 is due for construction by 2020 with Heavy Liquid Metallic Coolant (Pb‐Bi) http://www.world‐nuclear‐news.org
  • 12. Generation IVreactor design • The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐Bi eutectic coolant. • Options include a range of plant ratings, including a number of 50 to 150Mweunits featuring long‐life, pre‐ manufactured cores. • Modular arrangements rated at 300 to 400MWe, and a large monolithic plant rated at 1,200MWe. The fuel is metal ornitride‐based containing U andtransuranics. • A smaller capacity LFR such as SSTAR can be cooled by naturalconvection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. • The reactor outlet coolant temperature is typically in the range of 500 to 600°C, possibly ranging over 800°C.
  • 13. •Develop and demonstrate fast reactor technology that can be commercially deployed •Focus on sodium fast reactors because of technical maturity •Improve economics by using innovative design features, simplified safety systems, and improved system reliability •Advanced materials development •Nuclear data measurements and uncertainty reduction analyses for key fast reactor materials •Work at Los Alamos focuses on advanced materials development, nuclear data measurements, and safety analyses Fast Reactors Program in USA * ‐Gordon JarvinenVIII International Workshop ‐Fundamental Plutonium Properties . September 8‐12, 2008
  • 14. Some of the concepts developed in the past or under development nowadays are the following: • —In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 • —In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to operate in both critical and subcritical mode • —In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐ bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on • —In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulation and the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) • —In Japan and the USA, the lead‐bismuth cooled encupsulatednuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits • —In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept • —In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and transmutation of long lived isotopes in the spent fuel
  • 15. Small Modular Reactors (SMRs) • Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). • These smaller, compact designs are factory‐ fabricated reactors that can be transported by truck or rail to where they are in need.
  • 16. 367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmerica Sources: IAEA‐PRIS, MSC 2011
  • 18. Nuclear Magnetic Resonance Spectroscopy http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance Superconducting magnets 21.5 T Earth’s magnetic field 5 x 10‐5T NMR
  • 19.
  • 20. Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory Avance‐300 Bruker Avance‐600 Bruker D3‐12 NMR‐600MHz (12.3 AV600_CHEM) OPERATED BY THE GROUP OF PROF. V.P. TARASOV, DR. G. KIRAKOSYAN AND V.A. IL’IN
  • 21. Nuclei in operation Nucleus Spin γ, MHz/T Natural Abundance Relative Sensitivity 1H 1/2 42.576 99.985 100 2H 1 6.536 0.015 0.96 3He 1/2 32.433 .00013 44 13C 1/2 10.705 1.108 1.6 17O 3/2 5.772 0.037 2.9 19F 1/2 40.055 100 83.4 23Na 3/2 11.262 100 9.3 31P 1/2 17.236 100 6.6 39K 3/2 1.987 93.08 .05 99Tc 9/2 0 (99.8) 36Cl 2 0 (30) !
  • 22. • Number and type of NMR active atoms • Distances between nuclei • Angles between bonds • Motions in solution • Sternheimerconst • QQC • Etc… Information obtained by NMR • Organic substances • Radioactive materials • Ga‐complexes • Etc…
  • 23. 99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72% H218O at 298K. 2702802903003103203303400,400,410,420,430,44NH4Tc16O318O99Tc NMR H0=7.04TлТемпература, Т К Изотопный сдвиг ЯМР 99Тс, м.д.
  • 24. O‐17 NMR • In water enriched in O‐17 280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТемпература, Т К КССВ, Гц
  • 25. Tc‐NMR ChemShifts in TcO4 ‐Puce hunting • Solutions • Ionic pair formation • Receptor Complexes Others • TcO4 –TcO6 • Tc metal • TcO2
  • 26. 99TcЯМР, CDCl3 UV, dichloroethane Imine-amide macrocycle log(β11) = 3.2 log(β11) = 5.1 Cyclo[8]pyrrole·2(HCl) log(β12) = 3.8 log(β12)= 6.0 99Tc-NMRtitration, Bu4N+ 99TcO4–in CDCl3 99Tc-NMR strengths • Clear signal • Good correlation withUV KolesnikovG.V., German K.E, KirakosyanG., TananaevI.G., UstynyukYu.A., KhrustalevV.N., KatayevE.A. // Org.Biomol.Chem. ‐2011.
  • 27. Кривые обратного 99TcЯМР титрования для рецепторов L1 (а) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –апроксимацияконстанты, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). УФ‐вид
  • 28. Кривые обратного 99TcЯМР титрования для рецепторов L2 (б) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –подгон константы, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). УФ‐вид
  • 31. Intramolecularmode • The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonalbipyramidalgeometry • PF5 • IF5 Intermolecular mode • Tarasovexchange in TcO4‐ TcO6 exchange spectra Exchange spectra
  • 32. Pseudorotationvia the Berry mechanism • Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types of P−F bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phaseelectron diffractionanalysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long. • Fluorine‐19 NMRspectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. • The apparent equivalency arises from the low barrier for pseudorotationvia theBerry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions.The apparent equivalency of the F centers in PF5was first noted by Gutowsky.[2]The explanation was first described byR. Stephen Berry. • Berry pseudorotationinfluences the19F NMR spectrum of PF5since NMR spectroscopy operates on amillisecondtimescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.
  • 33. Berry pseudorotation: NMR‐31P in PF5 Yellow atoms are axial Blue atoms are axial http://fluorine.ch.man.ac.uk/pics/berry.gif http://pubs.acs.org/doi/pdf/10.1021/ed083p336.2 Mechanisms that interchange axial and equatorial atoms in fluxional processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal VibrationalModes
  • 34. E
  • 35. NMR‐99Tc in 3 –13 M H2SO4[Tc] = 0.001M -10409014019024029034035791113 NMR-99Tc shift , ppm c(H2SO4), M0 ppm = 0,05M KTcO4
  • 36. 99Tc‐NMR Tc(VII) in HClO4 разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  • 37. 99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  • 38. Solid State NMR Characterization of the Structure of solidPertechnicAcid HTcO4 Solid state 99Tc‐NMR of HTcO4(solid) Provide some similarity to Re2O7*2H2O Gives evidence for the absence of TcO4 ! Charge separated structure favorable
  • 39. Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide • Herman Cho, W.A. de Jong, A.P. Sattelberger, F. Poineau, K. R. Czerwinski ‐J. AM. CHEM. SOC. •NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. •The magnitudes of the predicted tensor principal values appear to be uniformly largerthan those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. •The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
  • 40. • NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. • Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz. Typical NMR‐99Tc spectra of a ‐metal powder ( Ф80‐150 μm) b –nano‐dimensional Tc metal Ф = 50 nm
  • 41. • 99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown that for all the supports (except for TiO2), there is an intense signal at –30 –40 ppm arising from the TcO2
  • 42. Synchrotron Radiation as a Tool ISTR 2011 Moscow Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators
  • 43. Advantages compared to standard X‐ray sources • Intensity/Brightness higher by 6‐10 orders of magnitude • Continuum spectrum from IR to hard X‐rays • High natural collimation • Tunable polarization • Partial coherence
  • 44.
  • 47. European synchrotron Radiation Facility, Grenoble, France Production of X-rays in synchrotron
  • 48.
  • 49. European synchrotron ESRF Electron energy: 6 Gev
  • 51. • Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐4(5 GeV, 40 mA) –both1stgeneration(ε~300 nm∙rad)11 beamlines. • Kurchatov Synchrotron Radiation Source(Moscow) in operatiionsince early 2000‐ies Siberia‐1 (booster, 450 MeV) –3 VUV beamlines, Siberia‐ 2 –dedicated2ndgeneration source(2.5 GeV, 300 mA, ε~75 nm∙rad), 16beamlines. • ZelenogradSynchrotron Rad. Facility (LukinIPP)–under construction• DubnaElectron SynchrotronDELSI (JINR) –project development • International collaboration: • Russian‐German beamlineat BESSY II and Russian involvement in ESRF consortium, • Russian part in EuropeanXFEL project (X‐ray free‐electron lasers ‐M. Kovalchuk(NRC "Kurchatov Institute", Moscow), A. Svinarenko(OJSC RUSNANO,Moscow)(4thgenerationsource) Synchrotron sources in Russia
  • 52. • Basics and typical applications of ‐EXAFS/XANES‐SAXS‐XRD • Combined application of X‐ray techniques to structural diagnostics of nano/materials SR sources in Russia
  • 53. SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Department Head ‐Yan Zubavichus 10 years in user mode
  • 54. ISTR 2011 Moscow Kurchatov Synchrotron Source Linac Booster Main storage ring Control room
  • 55. 10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 2. Diffraction 1. Spectroscopy 3. Imaging Synchrotron techniques include Especially protein structure solutions Unique : Structures in solutions and polymers
  • 56. KSRC X-ray stations 1 ProteinCrystallography 2 PrecisionX-rayOptics 3 X-rayCrystallographyandPhysicalMaterialsScience 4 MedicalImaging 6 Energy-DispersiveEXAFS 7 StructuralMaterialsScience(SMS) 8 X-raySmallAngleDiffractionCinema(bioobjects) 9 RefractionOptics&X-rayFluorescenceAnalysis 10 X-rayTopography&Microtomography VUV stations 11 X-rayPhotoelectronSpectroscopy 12 OpticalspectroscopyforCondensedMatter 13 Luminescence&OpticalInvestigations Technological stations 14 X-rayStandingWavesforLangmuir-BlodgettFilms 15 MolecularBeamEpitaxy 16 LIGA
  • 57. Characteristics of the beamline TypeEnergy interval, keVΔE/E Si(111)5‐1910‐4 Si(220)8‐3510‐4 Monochromator is driven by stepper motors(1‘‘ discrete steps) • Ionization chambers+ KEITHLEY 6487 • Scintillation counter withNaI(Tl) crystals •Linear gas‐filled detectorCOMBI‐1(“Burevestnik”, St. Petersburg) • 2D‐detectorImagingPlate (FujiFilmBAS2025) • Semiconducting detector(pureGe) Maximum3×3 мм2 Minimum10×10 μm2 Step of translations~4 μm ~ 0.5×108 photons/mm2with energy bandwidth Δλ/λ=10‐4 Monochromators: Detectors: Beam dimensions: Photon flux:
  • 58. In‐situcell for functional materials 3‐component gas mixtures • Inerts: He, N2, Ar • Oxidation and reduction:O2, H2 • Catalytic substrate: CO, CH4, etc. • Vacuum 10 Pa 20‐550oC Thermostabilization through the heating current & thermocouple feedback±1oC 4 ×350 W Cooling down to ‐130oC with a flow of cold N2 gas
  • 59. He closed‐cycle refrigerator (SHI, Japan) Minimum temperature achieved10.0К + precise termostabilization up to room temperature
  • 60. Combined use ofXAFS, XRD and SAXS• XANES‐oxidation state of heavy atoms + coordination symmetry • EXAFS‐local neighborhoodof a given heavy atom• XRD‐long‐range order, phase composition, size of crystallites • SAXS‐size and shape of nanoparticlesor pores in a range of 1‐100 nm
  • 61. X‐ray absorption spectroscopy: basics ISTR 2011 Moscow
  • 62. Fermi level HOMO LUMO XANES: origin Vacuumlevel Core electronlevel Valenceband Forbidden gap Conductionband XANESprobestheenergydistributionofcertainsymmetry- allowedMOsorDOSfeaturesabovetheFermilevel Fermi‘sgolden rule: μ ~ |<f | V | i>|2, f,i–wave functions of the final and initial states,V –dipole moment operator
  • 63. Photoionized atom Neighbor atom Photoelectron wave Back-scattered photoelectronwave Single scattering Multiple scattering EXAFS: origin Local-structrureparametersofthecentralatom canberetrievedfromEXAFS Initial state: electron on the core level Final state: outgoing photoelectron wave Interference
  • 64. )(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ χ-normalized background-subtracted EXAFS-signal k–photoelectron vector modulus (≡2π/λ) S –Extrinsic loss coefficient(0.7-1.0) N–coordination number in thej-thcoordination sphere r–interatomic distance f–backscattering amplitude ϕ–phase shift σ –Debye-Waller factors λ −photoelectron mean-free path
  • 65. EXAFS/XANES: implementation at SMS Detection modes:transmission(ion chambers) fluorescence yield( NaI(Tl) scintillation counter, detection limit down to0.005 mass.%) Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) withab initiotheoretical phase and amplitude functions fromFEFF8, GNXAS Ab initioXANES spectra simulation withFEFF8 , FDMNES, FitIt, etc. Absorption edges measuredover 2004‐2014 К‐edges: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te L3‐edges: Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu
  • 66. 1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.546.556.566.576.586.596.606.61 Mn2+ (MnCl2 6H2O) Mn3+ (Mn2O3) Mn4+ (MnO2) Mn7+ (KMnO4) Photon Energy, keVMn K1635016400164500.00.61.2 Normalized Absorption, a.u. Photon Energy, eV Bi0 Bi3+ (Bi2O3) Bi3+ (Bi(NO3)3.2H2O) Bi5+ (NaBiO3) Bi L1 XANES Information retrieved fromXANES: • Effective oxidation state • Coordination polyhedron symmetry Data analysis: “fingerpring” approach –comparison with reference spectra + theoretical simulations 1s→3d,4p 2p3/2→4d 2s→6p
  • 67. Application to Tc Tc K‐edge XANES
  • 68. Application to Re Re L3‐edge XANES
  • 69. 01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å Tc METAL & Tc CARBIDE
  • 70. 01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å Re METAL & Re CARBIDE
  • 72. Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible species in PRORYV technology (chloride melts) Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4, +2,5, +2) halogenides (Cl, Br)
  • 73. а б в а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: Tc-Br:N=5,8(4),R=2,51(2)Å,σ2=0,004Å2,ΔE0=-16,9(5)eV, б-Биядерныйкластер Tc K-край k3- взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций): Tc-TcN=1,66(3), R=2.20(2) Åσ2=0,0069 Å2ΔE0= -1.1(9) eV Tc-ClN=2,2(4), R=2,46(2) Åσ2=0,0107 Å2, в-Спектр и Tc K-край k3-взвешенный EXAFS для полиядерногохлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения Spectra EXAFSof complex Tc halogenides
  • 74. XAFS analysis of electrode surface after corrosion Æ Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) ‐In 1 M NaCl, pH= 2.5 (E= 700 mV) XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison Layer carefully removed and analyzed by XAFS. SEM x 50 Before After pH =2.5, 1 M NaCl, E = 700 mV during 1 hour M. Ferrier, F. Poineau,G.W. ChinthakaSilva, E. Mausolfand K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.
  • 75. XANES No pre‐edge : No TcO4‐sorbed on electrode. No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 Æ Product on electrode after corrosion : mainly Tc metal. 1 M NaCl, pH = 2.5 1M HCl First deriv.
  • 76. ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . Æ No oxide detected. EXAFS after corrosion XRD [5] C.N R (Å) C.N R( Å) Tc0-Tc1 10 2.72 12 <2.71> Tc0-Tc2 6 3.83 6 3.85 Tc0-Tc3 8 4.76 8 4.73 pH =2.5 EXAFS
  • 77. NEXT : • SAXS
  • 78. X‐ray detector (0D,1D, 2D) I(s) Scattering vector s = k1 ‐k0 s = 4πsin θ/ λ= 2π/ d Sample in the transmission geometry 2θ k0 k1 s Point/Linear collimation Monochro‐ matic X‐ray source SAXS: Basics
  • 79. ISTR 2011 Moscow Indirect FT I(s) –experimentalscattering curve P(r) –volumedistributionof hard spheres
  • 80. ISTR 2011 Moscow SAXS: implementation at SMS Sample-to-detectordistance,mm 2θmin-2θmax,° qmin-qmax,nm-1 E=25keV qmin-qmax,nm-1 E=6keV 120 0.95-45.00 4.2–179 1–43 500 0.23-13.50 1–59 0.24–14.2 1000 0.11-6.84 0.5–30 0.12–7,1 2390 0.05-2.87 0.2–12.7 0.05-3 Only transmission geometry (no GISAXS for the moment) Scattering vectoris oriented vertically; sample‐to‐detector distance up to 2.5 m; Photon energy5‐30 keV(the possibility to employ anomalous scattering) Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images) Simulation: Single size distribution of spherical particlesR=20±4 Å IsGISAXS GNOM
  • 81. 1 . Small‐angle diffraction on mesostructured materials 2 . SAXS application: aqueous colloids p.e. ‐of Tc sulfide nanoparticles 3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)
  • 82. Examples of combined structural studies
  • 83. E
  • 84. E
  • 85. E
  • 86. E
  • 87. Сдвиг ЯМР сигнала в нанодисперсном образце 20% Tc/g‐Al2O3 (Рис. 4а) составляет 7406 м.д., что на 600 м.д. превышает значение сдвига в порошке металлического технеция с диаметром частиц 50–100 μм. Линия с шириной на половине высоты ~1 kHz имеет Лоренцевский вид и не имеет саттелитной структуры, связанной с квадрупольными взаимодействиями первого порядка, типичными для ГПУ решеток. Для технециевой фольги толщиной 20μм спектр 99Tc ЯМР показывает, что позиция центральной компоненты очень близка к аналогичной позиции в образце микродисперсного порошка, хотя 8 саттелитов практически не выражены в результате высокой дефектности решетки кристаллитов фольги, связанной с многократными последовательными механическими обработками (прокаткой). Отсутствие квадрупольной структуры в нанодисперсном образце ясно указывает на кубическую решетку фазы металличекого технеция. Значительное увеличение сдвига Найта в нандисперсном образце может отражать изменение плотности состояний на уровне Ферми по сравнению с микродисперсным образцом металлического технеция с ГПУ решеткой [7].
  • 88. • 99Tc ЯМР спектр образцы 5% Tc/γ‐ Al2O3при 295 K; • (a) SW1.7 МГц, число сканов 250000, (b) SW250 кГц, число сканов 64000 •99Tc ЯМРспектры: (a) образца20% Tc/γ‐ Al2O3при295 K; SW 500 кГц, числосканов191000, D00.5s ; (b) порошкаметаллическогоTc сдиаметромчастиц50–100 μм, SW 2.5 мГц, числосканов50000, D00.5s.
  • 89.
  • 90.
  • 91. V.F. Peretrukhin, G.T. Seaborg, N..N. Krot, LNL, Berkley, 1998 3
  • 92. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII
  • 93. • Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” • Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf TRU 5 Detailed fig In: Jarvinen et all Plutonium
  • 94. Synthesis and the types of An(VII) • CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkalineconditions. • Bothinteractionofsolidcomponentsandalsoconductingtheoxidationinalkalinesolutions. • CompoundsofAn(VII)arestableonlyinstrongalkali,andrapidlydecomposeinneutraloracidicconditions. • An(VII)arequitevariableincomposition:formallytheycouldbeconsideredtocontainanionsAnO65-,AnO53-,[AnO4(OH)2]3- ,[An2O8(OH)2]4-andAnO4-butthelatterisnotsupportedbyX-rayanalyses. • AshortnumberofthesolidcompoundscontainingAnO65-, andAnO53-anionswereisostructuraltocorrespondingortho- andmeso-rhenatesReO65-,ReO53-(butnoanalogyinsolutions). 6
  • 95. MAnO4(·nH2O) (M–alkali metal) • It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M–alkali metal) have the structures similar to uranates(VI) of alkali earth metals. • They contain shortened linear groupsAnO23+and O– bridges collecting all into anionic layers. Structural type of BaUO4. (Reis A.H. et al. JINC, 1976). 7
  • 96. BaUO4structural type compounds • Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data) • 1 –U compounds • 2 –Np compounds • Chemical properties of Np(VI) and Np(VII) compounds are different • LiReO4*1.5H2O contra LiTcO4*3H2O 8
  • 97. IR spectral data indicates Np‐O and Np=O difference Evident splitting at the CsNpO4spectrum indicates/supports the presence of two types of Np‐O bonds: • O=Np=O • Np‐O‐Np In Li5NpO6all the Np‐O bonds are of the same nature 9
  • 98. Mossbauer spectra of Np(VII) compounds • 1 –CsNpO4 • 2 –Na3NpO4(OH)2*nH2O • 3 –Li5 NpO6 • 4 –frozen solution of Np(VII) in 10M NaOH • Dots ‐experiment, curve – squared plotting
  • 99. Inthisway: Transuranic(VII) MAnO4(·nH2O) compounds are completely different : from MXO4xnH2O(X–elementsofthe7thGroupfromPeriodicTable,Mn,Tc,Re,n=0,1,1.5,3) fromTc(VII)acid German,Peretrukhin2003 Poineau,German2010 fromRe(VII)acid BeyerH.etall. Angew.Chem.,1968 fromI(VII)acid fromCl(VII)acid Структурный тип BaUO4. (Reis A.H. et al. JINC, 1976). (Maruk A.Ya. et al. Russ. Coord. Chem.2011) and from TcO3+ Pertechnetyl Fluorosulfate, [TcO3][SO3F] –ZAAC, 2007 J.Supeł, U. Abram et all. Berlin, Freie Universität. 11
  • 100. 100 Isostructural: LiBrO4∙3H2O LiClO4∙ 3H2O LiMnO4∙ 3H2O LiTcO4∙6/2H2O6/2=3 LiReO4∙1.5H2O LiReO4∙ H2O ‐ Analogous are absent More diffused 4d electrons in Re compared to 3d electrons in Tc
  • 101. 101 Isostructural pertechnetate salts withcation : anion = 1:1 Cation Anion ClO4- MnO4- ReO4- [Li · 6/2Н2O]+ + + * Na+ – * + K+ – – + Rb+ – – + Cs+ – – + NH4+ – – + Ag+ – – + [(CH3)4N]+ + – + [(C3H7)4N]+ – * + [(C4H9)4N]+ * * * [(C6H5)3PNH2]+ * * + [C7H14N3]+ * * + [C7H10N3(C3H5)4]+ * * + [C7H10N3(C6H5)4]+ * * * [C6H8N]+ – * + [C4H10NO]+ – * + [CN3H6]+ + * + *Notdetermined.doesn’texists –NosimilaritytoTc +Isostructural
  • 102. Anionic chain [(Np2O8)(OH)2]n4n‐in the structure of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O (Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973). 12 Np(VII) & I(VII) • Two types of Np in Np(VII) compound while only one Iin I(VII) • One bridging O in Np(VII) while two bridging O in I(VII) • Np(VII) is stable in alkali while I(VII) –in acids Neutral chains in HIO4. ( Smith, T. et all. Inorg.Chem., 1968)
  • 103. The first Pu(VII) single crystal 13
  • 104. 14
  • 105. Na4[AnO4(OH)2](OH)∙2H2O Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) Np1‐O3 1.917(2) Pu1‐O3 1.9109(15) Np1‐O4 1.880(2)Pu1‐O4 1.8811(19) Np1‐O5 2.315(2) Pu1‐O5 2.2952(19) Np1‐O6 2.362(2)Pu1‐O6 2.339(2) An‐OH distances are more sensible to actinide contraction than An=O distances 15
  • 106. Several mixed cation compounds of Np(VII) and Pu(VII) NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=102.6161(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0179. NaRb2[NpO4(OH)2]∙4H2O(II):a=5.4558(2),b=12.4478(3),c=7.9251(2)Å,β=103.6310(13)°, sp.gr.P21/n,Z=2,R1[I>2σ(I)]=0.0218. NaCs2[NpO4(OH)2]∙4H2O(III):a=15.0048(4),b=9.1361(2),c=10.6747(3)Å,β=129.7361(9)°, sp.gr.C2/c,Z=4,R1[I>2σ(I)]=0.0148. NaRb5[PuO4(OH)2]2∙6H2O(IV):a=6.4571(1),b=8.2960(1),c=10.8404(2)Å,α=105.528(1),β=97.852(1),γ=110.949(1)°,sp.gr.P‐1,Z=2,R1[I>2σ(I)]=0.0189. NaRb2[PuO4(OH)2]∙4H2O(V):a=8.2168(2),b=13.4645(3),c=9.9238(2)Ǻ,β=102.6626(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0142. NaCs2[PuO4(OH)2]∙4H2O (VI):a= 11.1137(2), b=9.9004(2), c = 10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z= 4, R1 [I > 2σ(I)] = 0.0138. Anion of [PuO4(OH)2]3‐ in the structure of IV 16
  • 107. Selected interatomic distances and torsion angles in the structures I –VI : IIIIIIIVVVI Bond(Å) An=O 1.8790(12)2×1.8690(9) 2×1.8884(9)1.8695(15)1.8685(12)2×1.8868(15) 1.8855(13) 2×1.9138(9)2×1.8944(9)1.8724(15)1.8761(12)2×1.8876(14) 1.8955(13)1.8919(15) 1.8897(12) 1.9223(13)1.8985(16)1.9144(12) An‐O(OH)2.3259(13)2×2.3750(9)2×2.3643(9)2.3197(16)2.3083(13)2×2.3236(15) 2.3382(13)2.3556(15)2.3229(13) Angle(º)IIIIIIIVVVI H‐O…O‐H145(4)180133(4)39(4)140(3)48(5) 17
  • 108. RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetatesolutions. Thenewcompoundsof МNpO4·nH2Otype,whereМ–unichargedcationofalkalimetal,ammonium,silver,guanidiniumortetraalkylammonium and Np(VII)withbichargedcationsofalkalineearthmetals,andalsoCu,CdandZn. Allthesecompoundshavebeenthoroughlycharacterizedbymeansofchemicalanalyses,IRandUV-visspectroscopy.Thestudyconfirmed,that… 18
  • 109. Pu(VII) compounds are close structural and chemical analogues of Np(VII) ones 19
  • 110. Tc(VII) & Pu(VII), Np(VII) Pu(VII) and Tc(VII) are different in (cry,ele)‐structure, ligand arrangement, stability and chemical properties ! 1000 ppm
  • 111. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII 4
  • 112. An(VII) ‐Tc&Re(VII) • Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations of the new compounds of • heptavalent neptunium and plutonium, • heptavalent technetium and rhenium • confirmtheearlierprevailingopinionabouttheabsenceofadeepsimilarityinphysico‐chemicalpropertiesbetweentheheptavalenttransuranicelementsandtheelementsofGroupVIIoftheshortformofthePeriodictableandtheformalnatureofsomeofthestructuralsimilaritiesamongtheconsideredheptavalentcompounds. • PrincipallyonecanattendtheformationofPu(VIII)butitisnottheaqueousmediathatcouldstanditsoxidizingpower. 20
  • 115. Thank you for your attention !