SlideShare a Scribd company logo
1 of 19
Download to read offline
SEP 09 ‘98 04:36PM CONSOL R&D LIBRQRY P .2/20
EVALUATION OF AIR HEATER PERFORMANCE AND THE
ACCURACY OF THE RESULT
JosephT. Maskew, Duane C. McCoy, (CONSOL Inc., R&D),
Burton L. Marker (NYSEG), and JamesU. Watts (DOE, FETC)
With the increasedemphasisonthe efficiency of fossil-fuel-fired, steamgenerationfacilities, the
performanceof ancillary equipmentis becomingincreasinglyimportant. The air heateris a
souteeof lost thermal efficiency in two ways -- air leakageinto flue gassideandpoor heat
recovery. Moreover, air inlcak makesit difftcult to determinethe exiting flue gastemperature
andtheperformanceof the airheater. Thispaperaddressestheissueof properly evaluatingthe
air heaterperformanceandthe accuracyof thefinal result. The appendixdiscussesthe
proceduresusedto determinethe individual measurementsandthe uncertaintyof these
measurements.
Background
As part of the I-J.S.Departmentof Energy’s(DOE) CleanCoalTechnologyIV Demonstration
Progrsm,New York StateElectric & GasCorporation(NI’SEG) selectedtheMilliken Station for
installation of innovative SO?andNO, control technologiesandefficiency improvements. These
improvementswill allow utilities to complywith the CleanAir Act Amendmentsof 1990. The
air heaterson Unit 2 werereplacedto improveunit efficiency aspart of the demonstration
program. The original air heaterwasaregenerativeLjungstromunit; thereplacementair heater
wasa low pressuredrop, high eff%cirncyheatpipe. CONSOLR&D evaluatedtheperformance
of the air heaterandestimatedtheuncertaintyin the evaluation.
The American Societyof MechanicalEngineers(ASME) providesa standardmethodof
computing the performanceof air heaters.This isperformancetestcode(PTC)ASME PTC 4.3.’
This methodwas specifiedasthe standardof acceptableperformanceby warranteesof the new
a.irheaters. While the AShfE codeis often specifiedin equipmentwarrantees,it appearsto be
rarely applied. Instead,performanceindicatorssuchasthemeasuredeffectivenessof the air- and
gas-sidesandthe X-ratio arecompareddirectly againstdesignvalues. Suchcomparisonsare
poor substitutesfor theASME PTC which correctsfor partof thedifferencesbetweentestand
designconditions independentlyof thevendor’sdesignalgorithms. The algorithms,normally
provided by the vendor asperformancecurvesand/orcorrelationsthat predictthe outlet
temperaturebasedon inlet conditions,cannotbe applieddirectly in theASME code. The ASME
codepredictsthe temperaturecorrectedto the designvaluewhile theperformancecurvespredict
the expectedtemperatureat operatingconditions. This paperprovidesamethodof applying the
vendor’s performancecurvesto evaluatetheperformancecorrectedto designasperASTM
PTC 4.3.
An air heateris shownschematicallyin Figure I. Note that theASh4FPTC4.3 nomenclatureis
usedin Figure 1 andthroughout this paper. In theair heater,energyin the flue gasis recovered
by the incoming combustionair. While normally severalair streamsarcpresent(primary and
secondary),in this paperwe examineonly onesectionof the air heater.
SEP 09 ‘98 04:37PM CONSOL R&D LIBRARY
P .a20
s----L--,
FloeGa Enkdng I
Figure 1 Air HeaterSchematic
ASME PTC 4.3 calculatesa“totally correctedflue gasoutlettemperature”(TCFGOT), rc,$nrord,
shownbelow (ASME Supplement’asEquation7.12):
f GlSSTotd = fG15cU + tG156G + ki15&Y + lG1566 -3’tG15 (1)
tG,56A= Flue gastemperatureleavingthe air heatercorrectedfor deviation from
design entering air temperature, OF,
lo,sJo = Flue gastemperatureleaving the ah heatercorrectedfor deviation from design
entering flue gastemperature, ’ F,
f015M7(= Flue gastemperatureleaving the air heatercorrectedfor deviation from design
X - ratio, ’ F,
fG,5SE= Flue gastemperatureleaving the air heatercorrectedfor deviation from design
entering gasffow, ’ F, and
tGi5= Measuredflue gastemperatureleaving the air heater, “F.
ThePTC provides equationsfor thefirst two of thetemperaturecorrectjons,rGIJdAandtc,,6G,but
not for the othertwo, rca WRandrc,Jh. Theselattertemperaturecorrectionsareunique to a
specific air heater. If thesetemperaturecorrectionsarenot providedby theequipment
manufacturerasalgorithms (or plots), they canbe estimatedby theprocedurepresentedin this
paper. Theprocedureusesdesignperformancecurvesand/oralgorithmsnormally provided by
the vendor to evaluatethe temperaturecorrectionsrequiredby Equation1. TheTCFGOT is then
comparedto the designflue gastemperature.The computedvalueof the TCFGOT shouldbe
lessthanor equalto thedesignflue gastemperature,if theair heateris performing properly.
The TCFGOT
The two temperaturecorrectionfactorsprovidedby thePTC sretGIsd,,andtns rl0 Theseare
definedin termsof designvaluesandof measuredresultsof astandardtestof anair heater. For
thedeviation from the designenteringair temperature,rclJM,this is:
~Gl56A =
'ABD' G14 - rGIS) + rG14+G15 - rR8)
- 1.4s)
SEP 09 ‘98 04:37PM CONSOL R&D LIBRRRY
P. 4/a
rAsD= Design air temperatureenteringtheair heater, ’ F,
ro,4 = Measuredflue gastemperatureenteringthe air heater, “F, and
tAB= Measuredair temperatureenteringthe air heater, “F.
Similarly, for the deviation from the designenteringflue gastemperature,thetemperature
correotionis:
tGlsSG =
*c14ll &S - ‘48) + ‘18 +G14 - h)
(to14 - tA8)
where
tG,4n= Designflue gastemperatureenteringtheairbeater,‘F.
X-Ratio Correction Flue Gas Flow Correction
//
~Ossign X-Ratio~Ossign X-Ratio
Measured X-Ratio
Figure 2 X-Ratio Correction

Design
Flue Gas Flaws
Measured Entering Flue Gas Flow
Figure 3 FlueGasFlow Correction
The othertwo temperaturecorrectionsmustbederivedfrom vendordesignperformancecurves
or provided by thevendor in analyticalform. In thecaseof theNYSEG heatpipe airheater,the
vendor supplied aset of performancealgorithmsto beapplied“th performancefiguressimilar
to Figures2 and 3, shownabove. Thesepredictedtheperformancetemperature;that is, the
expectedexit flue gastemperaturesfor the actualoperatingconditions. The algorithm was of the
form:
where
SEP 09 ‘98 04:38PM CONSOL R&D LIBRARY
P. 5/20
9 = Correlation ooefftcient, and
fG,.Jx = Correction factors for deviations from designflue gasflow andfrom design
X- ratio, respectively.
For easeof analysisandof estimatingtheuncertainty,theseplotswereconvertedinto
mathematicalexpressionsof the form:
fg=~,+h.&
for the flue gasflow, andfor the X-ratio:
f, *a2 +&.X+cS2.X2
where
~,,~,,a,,&6s = Correlationcoefficients,
Fo = Flue gasflow rate, and
X = X-ratio for the air side.
(5)
(6)
The forms of theseequationsagreewith the shapesof thecurvesin Figures2 and3. A least
squarescorrelation or someother curvyfitting technique can be usedto evaluatethecorrelation
constants. In the caseof the Milliken study,thecorrelationequationsagreedwith resultsfrom
theplots within the ability to readtheplots.
SincetheX-ratio is defined aatheweight timesheatcapacityratio of theair overthat of the flue
gas,theX-ratio canbe approximatedastheratio of the temperaturechangesfor the two fluids:
x=
WA9 CpA
%I4 “pG
where
cpA= Heatcapacityof air, BtuI lb-”F,
cpG= Heatcapacityof fluegas,But/ lb-*F,
fg5 = Averageflue gasoutlettemperaturecorrectedto no-leak conditions,OF,
w,,s= Weightof air exitingtheairheater,lb/ h, and
wG]4 = WeightOfflue gasenteringtheair heater,lb/h.
(7)
Theno-leak flue gastemperature,rz,, is calculatedfrom the measuredflue gastemperatureby:
sEP 09 ‘98 04:38PM CONSOL R&D LIBRRRY
tNLCl5 = rG15 + - Lb)
P.WZB
(8)
where
A, = Weightpercentair leakageinto theflue gas,and
tlunb= Tempetatureof the air leakinginto theflue gas.
In most air heaters,themajority of the air in theflue gasis leakagefrom the higher pressure, air-
sideof the air heater. The ASME defines’theposition ofthe air leakasoccurringafterthe flue
gasexits the ai~ heater,but before rc,, is measured.Thus,therecanheno correctionto beat
transferwithin the airheaterfor air leakage.In thesecases,
t omb = fA8 (9)
and fAacanbe substitutedfor z,,,,,~in the following equations.However,this derivation will be
general. Substituting Equation 8into Equation7 yields:
x=
[
tG14 - '015 1oo cpo- ".[q.(tG,5 - '-)I
(10)
OA9 - [,!8)
Note the ASME definition for the X-ratio is baaedonzeroleak. If the vendorbaseshis X-ratio
correction curveon anX-ratio with adesignleak,this plot shouldbecorrectedto zeroleak
before generatingEquation 6.
For application of Equation 1,two additional,independenttemperaturecorrectionsarerequired.
Thesecanbe obtainedfrom thevendor’sair heaterperformanceequation,Equation4, andthe
associatedplots -- Figures2 and3. Equationssimilar to Equation4 canbeusedto estimatethe
effect of oneparameterindependentof theotherparametersof theequationto obtain a
temperaturecorrectionfor that parameteralone. This is achievedby evaluatingEquation4 for
the changein oneparameterwhile holding the othersconstant. FOT the deviationfrom the design
X-ratio, this procedureproducesthe following equationfor thetemperaturecorrection, tCISMR:
~G~~~~=~~~~+~~~G~SD-~G~~D~[~-~~~~D~~X]-~A~D~~~~~O~~X
A.4[ I[CPA1 (11)+100cpc- - (k15-L6)II
where
to,sn = Designflue gastemperatureleavingair heater,and
fpD = De&go flue gasflow correctionfactor.
For the deviation from designflow, thetemperaturecorrection,to,, 6nis:
rGlS,=tGl5+~~fG,5~-tGl4D~~-9~fG~fXD]-r~80~9'fg~~~[~ (12)
SEP 09 ‘98 04:38PM CONSOL R&D LIBRRRY
Pa 7120
where
fm = DesignX - ratio correctionfactot.
Equations 1I and 12apply theperformanceequationsand/orcurvesprovidedby thevendorto
evaluatethe effect of the changem X-ratio andflue gasflow on themeasuredtemperature. The
changesfrom the designTCFGOT, thetermswithin the doublelines(I),areappliedto the
measuredflue gasoutlet temperatureto providethetemperaturecorrections.
ASME PTC 4.3 specifiedthe air heatertemperaturecorrectionsat designleak. For theNYSEG
unit, the designleakwas zero. This is reflectedin quation 10wheretheX-ratio is correctedto
the designleak of zerobeforebeing appliedto thecalculationof thetemperaturecorrection. The
leak correction term,
(13)
is re-+red since(1) theperformanceequationandfactorplots werebasedon a zeroleakdesign,
and(2) ASME PTC 4.3 specifiescomparingthe TCFGOT atthe designconditions,which in this
caseis zeroleak. Therefore,theTCFGOT mustbeon thesamebasisasthedesign. The first
four terms of Equation 1 “add” in threeleakterms. Themeasuredflue gastemperatureleaving
the air heater,lcls, subtractsout threeleaktermsasthis measuredvaluecontainsleak. Thus,the
inclusion of aleak correctiontermin Equation11evaluatestheTCFGOTby Equation 1,i,,,,,
at zeroleak, the designcondition, asspecifiedby theASME PTC 4.3.
Substituting
(14)
into Equation 11andthen expandingEquation 1by substitutingEquations2,3,11, and 12,along
with the air heaterperformancecorrelations(Equations5 and6), resultsin the following revised
equation:
SEP 09 ‘98 04:39PM CONSOL R&D LIBRFIRY P . E/20
Inspection of this equationrevealsthat calculationof the TCFGOT requiresonly four measured
,and2 determinedvalues:inlet andoutlet air temperatures,inlet andoutlet flue gastemperatures,
enteringflue gasflow andthe air leak. All of the otherparametersareconstants.The calculated
value oftbe TCXGT from anair heaterperformancetestmustbe equalto or lessthanthe
designvalue for optimal air heaterperformance.
Uncertainty Analysis
The uncertainty in the calculationof theTCFGGT by Equation15was estimatedin supportof a
studyof air heaterperformanceconductedat theMilliken StationofNew York StateElectric &
GasCorporation (IWSEG) in 1995and 1996. Detailsof theair heaterperformanceandof the
uncertainty analysiscanbefound in thereferencedreports.23 Theuncertaintyin the result of a
calculation cannormally be estimateddirectly by partial differentiation of Equation 15with
respectto eachparameter, To accuratelyevaluatethe uncertaintywith anexplicit equation,the
equationmust not besignificantly nonlinear. In thecaseof Equation 15,the air leakintroducesa
significant non-linearity which invalidatesthis approach. Thus,amathematicalapproximation
wasrequiredto evaluatemeuncertaintyin the TCFGOT.
Errorsin measurementsareof two types:biaserrorsandrandomerrors. Biasesareassociated
with the measuringequipmentor procedureandcannotbeminimizedby repeatmeasurements.
However, the TCFGOT temperaturecorrectionsconsistof differencesandratios. This tendsto
compensatefor bias errors. Randomerrorsarereducedby repeatmeasurements.The following
derivation assumesonly onetestandthusrepresentsthemaximumestimatederror.
The bias andrandom errorsarepropagatedseparatelyusingTaylor seriesexpansionsfor highly
nonlinear equations:
SEP 09 ‘98 04:39PM CONSOL R&D LIBRRRY
P .9/20
Sbnv =
where
(16)
Af
- = Incrementalchangein thefunction f with respectto xi,
&i
Af- = Incrementalchangein thefunction f with respectto xj,
&ni
crX,= Error in parameteri,
oXj = Error in parameterj, and
f = Function shownaboveasEquation 15.
This numerical approachof estimatingthe uncertaintyin theTCFGOTis similar to theonethat
Carl James4usesfor estimatingtheuncertaintyin thed&gn of across-flowheatexchanger.Of
interestis the fact that the uncertaintyin the designof aheatexchangerestimatedby Jamesis
much largerthanthe uncertaintyin the estimateof theperformance.For anumericalapproach,
Equation 16must approximatethe surfaceofthe function asa linearsegmentparallel to thetrue
functional relationship. With independentparameters,only the i=j termsof Equation 16arenon-
zero, simplifying the Taylor seriesexpansion.However,if thetermsarecorrelatable,that is, not
independent,then the sumof thecrossproductsin Equation 16isnot zeroandthesetermsmust
be included in the estimate. This is discussedfurtherin the appendix.
This expansionis usedto evaluatethebias andrandomerrorcontributionsseparately.Thebias
andrandom errorsaresummedseparatelyto form thebiaserrorstatisticandtherandomerror
statistic,andthen combinedto estimatethe total uncertaintyby:
u=p+(r.s)‘]~ (17)
where
U = Uncertainty interval,
B = Overall bias error statistic,
S = Overall random error statistic, and
t = Appropriate Student’s t value. (For 95 % significance, t = 2.0 for a
reasonablesamplesize.)
The parametervaluesusedfor the estimationof theuncertaintyof the TCFGOT andthebias and
random erroreassociatedwith themareshownbelow in TableI. Thebiasandrandomerrors
were estimatedby separateerrorpropagationcalculationsfor standard,multipoint sampling
arraysin the inlet andoutlet ductsof theair heater. Thesemultipoint sampleswereusedto
SEP 09 '98 04:4BPM CONSOL R&D LIBRARY
P . lW20
evaluateaveragetemperaturesandcompositionsin the ducts. Theappendixpresentsabrief
discussionof this with amoredetaileddiscussionavailablein theprojectreports5 As discussed
in theAppendix, examinationof the derivationof thesesampleerrorssuggeststhat for standard,
multipoint traversesof utility-scale equipment,the biasandrandomerrorsshownin TableII for
theseaveragetemperaturesandcompositionsaretypical.
Table K
Value of Parameters and Their AssociatedBias and Random Errors
Parameter
Air Temperature
@ Inlet andAmbient
Air Temperature
@ outlet
Flue GasTemperature
@ Inlet
Flue GasTemperature
@ Outlet
Flue GasFlow
Air Leak
Unit Value BiasError RandomError
“F 100 1.00 0.15
OF 644 6.44 0.74
“F 680 6.81 0.81
‘F 285 2.85 0.35
1,000lb/h 157 9.82 0.72
percent 6 0.05 0.77
TheseparametersarepropagatedusingEquation 16. Thebiasandrandomerrorsarepropagated
separatelyandsummedto form theB andScomponentsof Equation 17. Equation 17is then
usedto estimatethe overall uncertaintyinterval.
The following exampleshowsthe evaluationof oneof theincrementalchangetermsrequiredby
Equation 16. To evaluatethebias error associatedwith theair temperatureat theinlet:
1. The TCFGOT is calculatedatthebasetemperature,100OF,plus threetimesthe bias
error.
2. Thenthe TCFGOT is calculatedat 100“F minusthreetimesthebias error.
3. Designatingthesetwo valuesof theTCFGOT asf, andfp,respectively,the contribution
to the bias error of theTCFGGT for theinlet air temperatureis evaluatedby the
following:
!iEP 09 ‘98 04:40PM CONSOL R&D LIBRQRY P. ii/20
q=fa -f,
6.0,
=31231-313.17
6.1
= LO143
(18)
All otherparametersareheld constantatthevaluesshownin TableI during this calculation.
Equation 15is usedto calculatetheTCFGCT. Sincetheparametersh and4 wereevaluatedat
threetimes thebias error,o,,greaterand three times the biaserrorlower thantheactualvalue of
the temperatureof the inlet air, thetotal deltais six times a,. Thatis, thedifferencebetweenf.
sndfp is divided by six timesthebiaserror.
To bean accurateestimateof the error,thefunction equation& mustberelatively hear over
therangeof the error. That is, iff”is thevalueof TCFGOT ataninlet air temperatureof 100 ‘F,
then if,
f, -fO sfO -fp
(31291-312.74)=(312.74-313.17)
0.436= 0.422
then the assumptionof linearity and,in turn, thevalidity of the estimateis conflrmed.
This calculation is repeatedfor theotherparameterslistedin TableI andtheproductssummedas
shownin Equation 15to producetheresultingbiasandrandomerrorsshownin TableII, This is
the estimateof theuncertainty from Equation17in thedeterminationof the “totally corrected
flue gasoutlet temperature,”or TCFGOT, for anair heater. The estimateof theerror in the
determinationof the totally correctedflue gastemperatureis+4.75 *F for the specificconditions
shownin Table I. As apercentage,-2%, this uncertaintycanbeappliedto evaluationof other
air heatn3.
Table II
Estimate of the Uncertainty of
the Totally Corrected Flue GasTemperature
Parameter JI&- Bias Random _Uncertaintv
TCFGOT “F 4.57 0.66 zk4.75
Conclusions
The ASME PTC 4.3 provides astandardizedmethodfor evaluatingthe performanceof utility air
heaters. It provides amathematicallycotr&Ctmeansof evaluatingtheperformancewhich aidsin
SEP 09 ‘98 04:40PM CONSOL R&D LIBRRRY
P. 12/20
minimixing disputesbetweensuppliersandpurchaserswhenguaranteeperformauceevaluations
areconducted. In operatingplants,it is generallyimpossibleto establishdesignconditionsto
verify performance. To overcomethis, thePTC specifiesthatthemeasuredflue gasoutlet
temperaturemust be correctedfor differencesfrom designinlet airtemperature,designinlet flue
gastemperature,designX-ratio, anddesignflue gasrate. Oncethesecorrectionsaredetermined,
the“‘totally correctedflue gasoutlet temperature”canbecalculatedandcomparedwith the
designoutlet temperature. Calculationof thefirst two temperaturecorrectionsis explicitly
defined by theASME code. The determinationof thetemperaturecorrectionsfor differences
from designX-ratio anddesignflue gasflow areleft to thesupplieror purchaserto determine.
Normally the manufacturerwill supplythepurchaserwith designperformancecurvesor
equations,but not with thoseto calculatethetemperaturecorrectionsspecifiedby the PTC. This
paperprovides amethodfor evaluatingtheremainingtwo temperaturecorrectionsusing the
performancecurves. Shouldthemanufactureralsoprovide proceduresfor calculatingthe
specifiedPTC temperaturecorrections,theresultscanbecheckedusingtheproposedprocedure.
This was donefor theMill&en air heaterperformancetestingwith good agreementfound
betweenthe two methods.
As part of the Mill&en air heatertestprogram,theuncertaintyin the ASME PTC 4.3 equation
for calculating the TCFGOT wasdetermined. Becauseof thenon-linearity of thefinal equation,
numerical approximationswete usedto determinethe differentialsneededfor thepropagation
procedure. For the examplepresented,the estimateduncertaintyis 4.75 “F for theTCFGOT at a
95% confidencelevel. This showsthatthe uncertaintyin the codeprocedureis relatively small,
about2% of thedesignoutlet temperatureasexpressedin degreesFahrenheit.
References
I. Air Heaters-Supplement to PerformanceTestCodefor SteamGeneratingUnits,
Pl-C 4.1; ASME/ANSI PTC 4.3- 1974;Reaffirmed 1991,TheAmerican Societyof
Mechanical Engineers,New York, 1968.
2. McCoy, D. C.; Bilonick, R. A.; “Milliken StationHeatPipeAir HeaterPerformance
Uncertainty Analysis”, Reportpreparedby CONSOLInc., R&D for New York State
Electric & GasCorporation,Binghamton,New York, June1995.
3. Maskew, J.T.; ‘Milliken StationHeatPipeAir HeaterPerformanceUncertainty Analysis
of Totallv CorrectedGas TemneratureLeavine theAir Heater”,Reportpreparedby
CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghsmton, New
York, April 1996.
4. James,C. A.; Taylor, R. F.; Hedge,B. K.; ‘The Application of UncertaintyAnalysis to
Cross-Flow Heat ExchangerPerformancePredictions”;Heut TransferEngineering; 16,
4; pp 50-61; 1995.
5. McCoy, D. C.; ‘Heat PipePerformance-- Final Report”; Final reportpreparedby
CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghamton,New
York, August 1998.
SEP 09 ‘98 04:41P,, CCNSOL R&D CIBRFlRY
APPENDXX
Estimation of Uncertainty in the Individual ParametersRequired for the Evaluation
of the ASMlE PTC 4.3 “Totally Corrected Flue GasOutlet Temperature”
The uncertainty analysesdiscussedin this paperarefor theAmericanSocietyofMechanical
Engineering(ASME) proceduresfor testingtheperformanceof air heatersand,specifically, for
the equationto predict the “totally correctedflue gasoutlet temperature”(TCFGOT). The
estimatesof bias errorsandrandomerrorsfor the individual parameterswerederivedfor the
equipmentandmethodologyusedin obtainingthedatarequiredfor atestprogram. This test
programfocusedon evaluatingtheperformanceof anairheaterrecentlyinstalledin the Milliken
Stationof New York StateEleotric & Gas. Themethodsfollowed in deriving theestimatesof
the uncertainty of theindividual parametersarepublishedby ASME.’ Comprehensive
discussionof all of the calculationsis publishede1sewhere.l
Milliken Station Unit 2 is a 150MW, pulverizedcoal-firedboiler with twin, parallel air heaters.
Eachair heaterheatsboth primary andsecondaryair for half of the unit in separatesectionswith
the flue gasmixed beforeandafter the tir heater. Theuncertaintyanalysispresentedbelow
containsthe resultsfor both the primary andsecondarysidesof theair heater. Thedesignof the
air heaterwas such.that all of the air leakageoccurredat sootblowerports. Air leakedfrom
outsideof the air heaterinto the flue gasheatingtheprimary air. Leakageinto the sideheating
the secondaryair wasinsignificant andwasignoredin the following evaluation.
Test Procedure
The generaltestprocedurefollowed in the determinationof the TCFGOT wasthe ASME
PerformanceTest Code(PTC)PTC 4.1’ andPTC4.34. Individual parametersrequiredby the
PTC 4.3 were measuredfollowing generallyacceptedmethods,normally U. S.Environmental
ProtectionAgency (EPA) methods. For gasvelocity, EPA Method 2’ wasusedalongwith EPA
Method 16. The gascompositionwasdeterminedgenerallyfollowing theproceduresof EPA
Method 3?. Sincethe ASME procedurebasestheflue gasandair flow ratesonthe coal feedrate
andgasproperties,rather thanon themeasuredgasandair velocities,the derivationof the errors
of the individual parametersis complex. However,usingthecoal feedrate,from calibrated
feeders,andgascompositionsasabasecreatesacommonbondbetweentheair andflue gas
flows. This createsaconsistentbasisfor the calculations.
Background
Error propagationis calculatedby Taylor Seriesexpansionof the resultantfunction. In general,
if r =f(xa x2,. .,x, . . .,xJ, thenthe errorstatistics,S,,,, for eitherthe biaserroror therandom
erroris calculatedby
where
SEP 09 ‘98 04:42PM CONSOL R&D LIBRFIRY
P .14/20
af al- = Partial derivativesof j with respectto Y,(orxi), and
ax,’ c%cj
cr,,, oxj = Error with respectto xi (or xj).
when theparametersareindependent,only thei=j termsaresignificant. For manyof the
parametersexaminedin this work, theparameterswerea independentandall of the termsin
Equation Al were evaluated. Note thatusinga singlethermocoupleto measureall of the
temperaturesin thetraverseof a planein aductcreatesadependencybetweenthese
measurements.The biaserror associatedwith tbethermocoupleis the samefor all points. Thus,
it is dependent. To illustrate the calculationcomplexity for the estimateof the errorsof the
individual paran~eters,astep-by-stepcalculationof theestimateof theuncertaintyfor aweight
averagetemperatureof a gasis shownbelow. The averageis basedon atraverseof aninlet (or
outlet) duct. For the detailsof the estimationof the uncertaintiesof otherparameters,refer to the
final Milliken project report8 Only the errorsanduncertaintyfor theseotherevaluationsare
presentedhere.
Temperature Traverse Uncertainty Calculation
Theweight averagetemperatureof a gasflowing in aductis basedon aflow weighted average
of the temperaturesobtainedfrom astandardtraverseof the duct. Thatis,
where
t AiwT,
T=% = j=l
i A,wi
ill
Ai = Crosssectionalareafor point i, ft2,
i = Traversepoint number,
q = Temperahuemeasuredatpoint i, ’ R,
vi = Velocity in areaAi determinedatpoint i, fps, and
pi = Fluid densityin areaA;, lb/ f?.
(a
The fluid velocity is determinedby aPitot tubemeasurement.The gasis assumedto behave
ideally andthevelocity is constantoverthe entirecross-sectionalareaA,. The velocity is
calculatedby:
I
vi=85.49cl:.Mi.T,21 1P,,.Mi (A31
SW 09 ‘98 04:42PM CONSOL R&D LIBRRRY
P .15/20
CP, - Pitot tube flow coeffkzicnL dimensionless,
0, - Vclacity head in area i, inches W. C.,
P,, = Static pressure in area i, inches Hg. absolute, and
M, = GAS mole weight in CWS i. Ib / lb - mol.
Similarly, the gasdensityis calculated:
0.04578.Mi .I’,;
Pi =
T,
(A41
Substituting the formulas for vi (EquationA3) andp, (EquationA4) into EquationA2 and
simplifying yields:
Equation A5 is partially differentiatedwith respectto A, CP, dP,,M,,PI,, andT,,andthe
resulting partial summedasindicatedin EquationAl. EquationA5 producessix setsof partial
differential equations. If the denominatorof EquationA5 is setequalto Sum1andthenumerator
equalto Sum2to simplify the resultingequations,thesepartial differentialsare:
Gg c~.(~..M,.P,i.7;)t.suml-cP.,.(~‘~.~i)‘.sum2 (A6)
-=
34 SumI’
dr,,=
~.(~.~,.~i.T)f.Suml-A, ,Sum2
@‘I
e,-=
aw
xsuml-c<.A,. sum2 (A@
2.Suml’
SEP 09 ‘98
t&,:&W, CONSOL R&D LIBRARY
a Lg
C4. A;. ~Suml-Ce.4, .Sum2
-=
a&f; 2~SurnP
,&ml-Cf.A,,
ae, = 2.sum12
P x/20
(AlO)
Theseindividual differentials aremultiplied andsummedasshownby EquationAl. Thebias
errorsandrandom errors, a,, for this calculationarelistedin TableA-I. TableA-I alsolists the
sourceof the bias andrandomerrorsfor eachof theparameters.As previouslymentioned,many
of the crossproduct termsmustbeincludedin thebiascalculationssincethe sameequipment
wasusedto measureaparameter. Theinclusion of crossproducts,i@ terms, addssignificantly
to thenumberof termsthat mustbeevaluated.If therewereno crossproductterms,aduct
traverseof 12samplepoints in EquationA5 would require72terms. With thecrossproducts,
this increasesto 864terms. In the caseof thebiaserror,thecrossproducttelms accountfor
essentiallyall of the error in determiningtheaveragetemperature.Sincethebiaserrorsarenot
reducedby taking multiple measurements,thebiaserrorsaccountfor mostof theuncertaintyin
thefinal averagetemperatureasshownin TableA-II. In thecaseof the secondaxyair inlet,
which hasonly four traversepoints,thebiaserroris 90%of theuncertaintyin the dctetination
of the averagetemperature.
TableA-II summarizesthe uncertaintyestimatesfor the Milliken air heaterfor theaverageai*
andgastemperatures.Thebias erroris responsiblefor themajority of the uncertaintyevenwith
only a four-point traverse. Repetitivemeasurementstendto reducetherandomerror.
TableA-III showsthe efTorsfor the otherparametersrequiredto evaluatetheTCFGOT. The
uncertaintyis shownasapercentof thefinal calculatedvalue. All uncertaintyestimatesareat
the 95% confidencelimit.
SEi= 09 ‘98 04:43PM CONSOL R&D LIBRARY
P. 17/20
Table A-I
Summary of Bias Errors and Precision Indices for
Uncertainty Calculations
Palsmeter
llmension
Width
Length
Yemperature
Bias Error
0.5” (0.042”)
0.5” (0.042”)
l%of”F
Reading
RandomError
lOne Stand.Dev.) CommentsI Basis
0.5” (0.042”) Assumed
0.5” (0.042”) Assumed
% % of OF Bias- Typical for Type K
Reading Thermocouples,
Random- ASME PTC 1
Barometric 0.04” Hg 0.04” Hg Calibrationof Aneroid
BarometerScale
Static
Vel. Head, AP
0.05” WC
2 % of Avg.
Reading
0.05” WC
0.00005”WC
WaterManometerScale
ShortridgeAir Data
Multimeter, Model ADM-870
Bias - InstrumentDesignSpec.
Random- %DesignSpec.
‘itot Factor, CP 0.01 0.0 CalibrationAccuracy
:oal Analysis
Moisture 3.9 % rel. LO.20+ O.O12*MQ Bias- AssumedSameasAsh
(2 * 1.414) Random-ASTM Repeatability
C 3.9 % rel. Q.&Q Bias - AssumedSameasAsh
(2 * 1.414) Random- ASTM Repeatability
I-l 3.9 % rel. (Q&J Bias -Assumed SameasAsh
(2 * 1.414) Random- ASTM Repeatability
N 3.9 %rel. 10.11) Bias -Assumed SameasAsh
(2 * 1.414) Random- ASTM Repeatability
S 1.9% rel. (0.06+ O.O3S*S Biss - From Washability Data
(2 * 1.414) Random- ASTIMRepeatability
Ash 3.9 % rel. 10.07+ 0.02*&h Bias -From Washability Data
(2 * 1.414) Random- ASTM Repeatability
SEP 09 ‘98 04:43PM CONSOL R&D LIBRFlRY
P. m/20
Table A-I
Summary of Bias Errors and Precision Indices for
Uncertainty Calculations
RandomError
Parameter Bias Error (OneStand.Dew.1 Comments/ Basis
CoalAnalysis (Cont.)
CinAsh 25 % rel. 10%rel. Bias - Experiencewith Milliken
Unit 2 LossOn Ignition Data
Random- Assumed
Coal Rate 5 % rel. 0.25 %rel Bias - Assumed
Random- Typical, PTC 4.1
Gas Analysis
02
CO
co,
0.05 % abs. 0.05% abs.
20 mm 10Ppm
0.1 % abs. 3 % rel.
Bias - Calibration GasSpec
Random- Low 0, Instrument
Design Spec.
Same
OrsatMeter
Bias - Burette ScaleDivision
Random-Experience, PTC 4.1
Air Moisture 10% rel. 20 % rel. Bias - Error of 1 “F in Reading
Wet Bulb Temperature(WBT)
Random- Error of 2 “F in
ReadingWBT
Molecular Wt.
Flue Gas
Air
0.05
0.025
0.07
0.05
CombinedUncertainty of
Analysisfor Ash andFlue Gas
CombinedUncertainty for
Humidity
SEP 09 ‘98 04:43PM CONSOL R&D LIBRQRY P. 19/2!2
Table A-II
Uncertainty Estimates for Average Duct Temperatures
Basedupon Multi-Point Traverses
No. of
Traverse BiasError, Random
Location Points %“F Jrror. %“F Uncertaintv. %“F
Primary Air Inlet 12 1.00 0.15 1.05
Primary Air Outlet 20 1.00 0.11 1.03
SecondaryAir Inlet 4 1.00 0.25 1.11
SecondaryAir Outlet 24 1.00 0.11 1.03
Flue GasInlet 20 1.oo 0.12 1.03
Flue GasOutlet 24 1.oo 0.14 1.04
Table A-III
Uncertainty Estimatesfor Other Parameters
Required to Evaluate TCFGOT
Location Bias Error. % RandomError. o/n
Primary Air Flow, Inlet 3.31 2.93
Primary Air Flow, Outlet 2.61 2.08
SecondaryAir Flow, 5.02 0.68
Inlet/Outlet
Uncertaintv. %
6.72
4.92
5.20
Flue GasFlow, Inlet 6.28 0.75 6.46
Flue GasFlow, Outlet 6.25 0.46 6.32
Flow Split BetweenAir Beaters 0.43 0.49 0.94
Air Leak @ 6.87% Leak 0.85 12.60 25.21
Conclusions
Two conclusionscanbe reachedafter examiningtheseresults. The estimatesofthe uncertainties
shownin Table A-II andA-III arevalid for all airheaters,whenavalid duct traversecaribe
SEP 09 ‘98 04:44PM CONSOL R&D LIBRARY
P.20/20
performed. The uncertaintyfor aducttraversewith asfew as4 pointsis still dominatedby the
bias errors. Secondly,sincethedornimtnterrorsin theraw dataareexpressedaspercentages,the
resultsshownin TablesA-II andA-HI, andin themain body of thispaper,areindependentof the
absolutevaluesof theparameters.Thus,they applyto anyair heater.
Appendix Referencea
1.
2.
3.
4.
5.
6.
7.
8.
MeasurementUncertain@Part 1.InstrumentsandApparatus,ANSJJASME
PTC 19.1-1985,The AmericanSocietyofMechanical Engincera,New York, 1986.
McCoy, D. C. andBilonick, R. A.; ‘Milliken StationHeatPipeAir HeaterPerformance
Uncertainty Analysis”; Reportpreparedby CONSOL Inc., R&D for New York State
Electric & GasCorporation,Binghamton,New York, June1995.
SteamGenerating Units, AShEJANSI PTC4.1 - 1974;Reaffumed 1991,The American
Societyof MechanicalEngineers,New York, 1970.
Air Heaters,Supplementto PerformanceTestCodefor SteamGenerating Units,
PTC 4.1, ASM&A.NSI PTC 4.3- 1974;Reaffirmed 1991,TheAmericanSocietyof
MechanicalEngineers,New York, 1968.
ERAMethod 2, Determination of StackGasVelocityand VolumetricFlow Rate (Tjqe S
Pitot Tube),U. S.EnvironmentalProtectionAgency,Codeof FederalRegulations40,
Washington,D. C., 1996.
EPA Method 1, Sampleand Velociy Traverses& StationarySources,U. S.
Environmental ProtectionAgency, Codeof FederalRegulations40, Washington,D. C.,
1996.
EPA Method 3, GasAnalysisfor CO, 0, ExcessAir, andDry Molecular Weight,W.S.
Environmental ProtectionAgency, Codeof FederalRegulations40,Washington,D. C.,
1996.
McCoy, D. C.; ‘Xeat PipePerformance-Final Report”, Final reportpreparedby
CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghmton, New
York, August 1998.

More Related Content

What's hot

East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-mainmanojg1990
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
CFD modelling of a once through steam generator for optimization of flow dist...
CFD modelling of a once through steam generator for optimization of flow dist...CFD modelling of a once through steam generator for optimization of flow dist...
CFD modelling of a once through steam generator for optimization of flow dist...Jan Rusås
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
 
Pinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerPinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerK Vivek Varkey
 
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...Jan Rusås
 
Validation of Results of Analytical Calculation of Steady State Heat Transfer...
Validation of Results of Analytical Calculation of Steady State Heat Transfer...Validation of Results of Analytical Calculation of Steady State Heat Transfer...
Validation of Results of Analytical Calculation of Steady State Heat Transfer...IRJET Journal
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat IntegrationSAJJAD KHUDHUR ABBAS
 
CFD simulation of hrsg stack exhaust gas and its influence on nearby structu...
CFD simulation of hrsg stack exhaust gas and its influence on nearby  structu...CFD simulation of hrsg stack exhaust gas and its influence on nearby  structu...
CFD simulation of hrsg stack exhaust gas and its influence on nearby structu...Jan Rusås
 
17406 heat engineering
17406   heat engineering17406   heat engineering
17406 heat engineeringsoni_nits
 
Me1201 engineering thermodynamics uq - nov dec 2006
Me1201 engineering thermodynamics   uq - nov dec 2006Me1201 engineering thermodynamics   uq - nov dec 2006
Me1201 engineering thermodynamics uq - nov dec 2006BIBIN CHIDAMBARANATHAN
 
Awma 2001 Plumes And Aircraft #0189
Awma 2001   Plumes And Aircraft #0189Awma 2001   Plumes And Aircraft #0189
Awma 2001 Plumes And Aircraft #0189Joel Reisman
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfertmuliya
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3Ebra21
 
25 3 san francisco_08-80_0235
25 3 san francisco_08-80_023525 3 san francisco_08-80_0235
25 3 san francisco_08-80_0235Mijail Cahuana
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
 
PyTeCK: A Python-based automatic testing package for chemical kinetic models
PyTeCK: A Python-based automatic testing package for chemical kinetic modelsPyTeCK: A Python-based automatic testing package for chemical kinetic models
PyTeCK: A Python-based automatic testing package for chemical kinetic modelsOregon State University
 

What's hot (20)

East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
CFD modelling of a once through steam generator for optimization of flow dist...
CFD modelling of a once through steam generator for optimization of flow dist...CFD modelling of a once through steam generator for optimization of flow dist...
CFD modelling of a once through steam generator for optimization of flow dist...
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
Pinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerPinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchanger
 
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...
Eksempler på anvendelse af (Computational Fluid Dynamics) CFD til kraftværker...
 
Validation of Results of Analytical Calculation of Steady State Heat Transfer...
Validation of Results of Analytical Calculation of Steady State Heat Transfer...Validation of Results of Analytical Calculation of Steady State Heat Transfer...
Validation of Results of Analytical Calculation of Steady State Heat Transfer...
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat Integration
 
Reno syd
Reno sydReno syd
Reno syd
 
CFD simulation of hrsg stack exhaust gas and its influence on nearby structu...
CFD simulation of hrsg stack exhaust gas and its influence on nearby  structu...CFD simulation of hrsg stack exhaust gas and its influence on nearby  structu...
CFD simulation of hrsg stack exhaust gas and its influence on nearby structu...
 
17406 heat engineering
17406   heat engineering17406   heat engineering
17406 heat engineering
 
Me1201 engineering thermodynamics uq - nov dec 2006
Me1201 engineering thermodynamics   uq - nov dec 2006Me1201 engineering thermodynamics   uq - nov dec 2006
Me1201 engineering thermodynamics uq - nov dec 2006
 
Turbomachinary: Axial flow compressor and fans
Turbomachinary: Axial flow compressor and fansTurbomachinary: Axial flow compressor and fans
Turbomachinary: Axial flow compressor and fans
 
Awma 2001 Plumes And Aircraft #0189
Awma 2001   Plumes And Aircraft #0189Awma 2001   Plumes And Aircraft #0189
Awma 2001 Plumes And Aircraft #0189
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfer
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3
 
25 3 san francisco_08-80_0235
25 3 san francisco_08-80_023525 3 san francisco_08-80_0235
25 3 san francisco_08-80_0235
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
PyTeCK: A Python-based automatic testing package for chemical kinetic models
PyTeCK: A Python-based automatic testing package for chemical kinetic modelsPyTeCK: A Python-based automatic testing package for chemical kinetic models
PyTeCK: A Python-based automatic testing package for chemical kinetic models
 

Similar to Artículo evaluation of air heater performance and acurracy of the results

EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...AEIJjournal2
 
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...AEIJjournal2
 
Evaluating mathematical heat transfer effectiveness equations using cfd techn...
Evaluating mathematical heat transfer effectiveness equations using cfd techn...Evaluating mathematical heat transfer effectiveness equations using cfd techn...
Evaluating mathematical heat transfer effectiveness equations using cfd techn...aeijjournal
 
Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine
Effect of Compression Ratio on Performance of Combined Cycle Gas TurbineEffect of Compression Ratio on Performance of Combined Cycle Gas Turbine
Effect of Compression Ratio on Performance of Combined Cycle Gas Turbineijsrd.com
 
Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Nemish Kanwar
 
A simplified thermal model for the three way catalytic converter (1)
A simplified thermal model for the three way catalytic converter (1)A simplified thermal model for the three way catalytic converter (1)
A simplified thermal model for the three way catalytic converter (1)Varun Pandey
 
At231 engineering thermodynamics uq - may june 2007.
At231 engineering thermodynamics   uq -  may june 2007.At231 engineering thermodynamics   uq -  may june 2007.
At231 engineering thermodynamics uq - may june 2007.BIBIN CHIDAMBARANATHAN
 
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.BIBIN CHIDAMBARANATHAN
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientSteven Cooke
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...fsnexuss
 
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...meijjournal
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxjuliennehar
 
391861703-Mod-5-Fan-Measurement-and-Testing.pdf
391861703-Mod-5-Fan-Measurement-and-Testing.pdf391861703-Mod-5-Fan-Measurement-and-Testing.pdf
391861703-Mod-5-Fan-Measurement-and-Testing.pdfBlentBulut5
 
R&amp;ac lecture 25
R&amp;ac lecture 25R&amp;ac lecture 25
R&amp;ac lecture 25sayed fathy
 
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET Journal
 
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...IOSR Journals
 

Similar to Artículo evaluation of air heater performance and acurracy of the results (20)

EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
 
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
EVALUATING MATHEMATICAL HEAT TRANSFER EFFECTIVENESS EQUATIONS USING CFD TECHN...
 
Evaluating mathematical heat transfer effectiveness equations using cfd techn...
Evaluating mathematical heat transfer effectiveness equations using cfd techn...Evaluating mathematical heat transfer effectiveness equations using cfd techn...
Evaluating mathematical heat transfer effectiveness equations using cfd techn...
 
Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine
Effect of Compression Ratio on Performance of Combined Cycle Gas TurbineEffect of Compression Ratio on Performance of Combined Cycle Gas Turbine
Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine
 
Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...
 
Touil 1487
Touil 1487Touil 1487
Touil 1487
 
A simplified thermal model for the three way catalytic converter (1)
A simplified thermal model for the three way catalytic converter (1)A simplified thermal model for the three way catalytic converter (1)
A simplified thermal model for the three way catalytic converter (1)
 
At231 engineering thermodynamics uq - may june 2007.
At231 engineering thermodynamics   uq -  may june 2007.At231 engineering thermodynamics   uq -  may june 2007.
At231 engineering thermodynamics uq - may june 2007.
 
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.
ME6301 ENGINEERING THERMODYNAMICS ANNA UNIVERSITY QUESTION PAPER may june 2007.
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge Coefficient
 
O13040297104
O13040297104O13040297104
O13040297104
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
 
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...
PERFORMANCE ANALYSIS OF A COMBINED CYCLE GAS TURBINE UNDER VARYING OPERATING ...
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
 
HHO driven CCPP
HHO driven CCPPHHO driven CCPP
HHO driven CCPP
 
391861703-Mod-5-Fan-Measurement-and-Testing.pdf
391861703-Mod-5-Fan-Measurement-and-Testing.pdf391861703-Mod-5-Fan-Measurement-and-Testing.pdf
391861703-Mod-5-Fan-Measurement-and-Testing.pdf
 
R&amp;ac lecture 25
R&amp;ac lecture 25R&amp;ac lecture 25
R&amp;ac lecture 25
 
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
 
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
 

Recently uploaded

(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Artículo evaluation of air heater performance and acurracy of the results

  • 1. SEP 09 ‘98 04:36PM CONSOL R&D LIBRQRY P .2/20 EVALUATION OF AIR HEATER PERFORMANCE AND THE ACCURACY OF THE RESULT JosephT. Maskew, Duane C. McCoy, (CONSOL Inc., R&D), Burton L. Marker (NYSEG), and JamesU. Watts (DOE, FETC) With the increasedemphasisonthe efficiency of fossil-fuel-fired, steamgenerationfacilities, the performanceof ancillary equipmentis becomingincreasinglyimportant. The air heateris a souteeof lost thermal efficiency in two ways -- air leakageinto flue gassideandpoor heat recovery. Moreover, air inlcak makesit difftcult to determinethe exiting flue gastemperature andtheperformanceof the airheater. Thispaperaddressestheissueof properly evaluatingthe air heaterperformanceandthe accuracyof thefinal result. The appendixdiscussesthe proceduresusedto determinethe individual measurementsandthe uncertaintyof these measurements. Background As part of the I-J.S.Departmentof Energy’s(DOE) CleanCoalTechnologyIV Demonstration Progrsm,New York StateElectric & GasCorporation(NI’SEG) selectedtheMilliken Station for installation of innovative SO?andNO, control technologiesandefficiency improvements. These improvementswill allow utilities to complywith the CleanAir Act Amendmentsof 1990. The air heaterson Unit 2 werereplacedto improveunit efficiency aspart of the demonstration program. The original air heaterwasaregenerativeLjungstromunit; thereplacementair heater wasa low pressuredrop, high eff%cirncyheatpipe. CONSOLR&D evaluatedtheperformance of the air heaterandestimatedtheuncertaintyin the evaluation. The American Societyof MechanicalEngineers(ASME) providesa standardmethodof computing the performanceof air heaters.This isperformancetestcode(PTC)ASME PTC 4.3.’ This methodwas specifiedasthe standardof acceptableperformanceby warranteesof the new a.irheaters. While the AShfE codeis often specifiedin equipmentwarrantees,it appearsto be rarely applied. Instead,performanceindicatorssuchasthemeasuredeffectivenessof the air- and gas-sidesandthe X-ratio arecompareddirectly againstdesignvalues. Suchcomparisonsare poor substitutesfor theASME PTC which correctsfor partof thedifferencesbetweentestand designconditions independentlyof thevendor’sdesignalgorithms. The algorithms,normally provided by the vendor asperformancecurvesand/orcorrelationsthat predictthe outlet temperaturebasedon inlet conditions,cannotbe applieddirectly in theASME code. The ASME codepredictsthe temperaturecorrectedto the designvaluewhile theperformancecurvespredict the expectedtemperatureat operatingconditions. This paperprovidesamethodof applying the vendor’s performancecurvesto evaluatetheperformancecorrectedto designasperASTM PTC 4.3. An air heateris shownschematicallyin Figure I. Note that theASh4FPTC4.3 nomenclatureis usedin Figure 1 andthroughout this paper. In theair heater,energyin the flue gasis recovered by the incoming combustionair. While normally severalair streamsarcpresent(primary and secondary),in this paperwe examineonly onesectionof the air heater.
  • 2. SEP 09 ‘98 04:37PM CONSOL R&D LIBRARY P .a20 s----L--, FloeGa Enkdng I Figure 1 Air HeaterSchematic ASME PTC 4.3 calculatesa“totally correctedflue gasoutlettemperature”(TCFGOT), rc,$nrord, shownbelow (ASME Supplement’asEquation7.12): f GlSSTotd = fG15cU + tG156G + ki15&Y + lG1566 -3’tG15 (1) tG,56A= Flue gastemperatureleavingthe air heatercorrectedfor deviation from design entering air temperature, OF, lo,sJo = Flue gastemperatureleaving the ah heatercorrectedfor deviation from design entering flue gastemperature, ’ F, f015M7(= Flue gastemperatureleaving the air heatercorrectedfor deviation from design X - ratio, ’ F, fG,5SE= Flue gastemperatureleaving the air heatercorrectedfor deviation from design entering gasffow, ’ F, and tGi5= Measuredflue gastemperatureleaving the air heater, “F. ThePTC provides equationsfor thefirst two of thetemperaturecorrectjons,rGIJdAandtc,,6G,but not for the othertwo, rca WRandrc,Jh. Theselattertemperaturecorrectionsareunique to a specific air heater. If thesetemperaturecorrectionsarenot providedby theequipment manufacturerasalgorithms (or plots), they canbe estimatedby theprocedurepresentedin this paper. Theprocedureusesdesignperformancecurvesand/oralgorithmsnormally provided by the vendor to evaluatethe temperaturecorrectionsrequiredby Equation1. TheTCFGOT is then comparedto the designflue gastemperature.The computedvalueof the TCFGOT shouldbe lessthanor equalto thedesignflue gastemperature,if theair heateris performing properly. The TCFGOT The two temperaturecorrectionfactorsprovidedby thePTC sretGIsd,,andtns rl0 Theseare definedin termsof designvaluesandof measuredresultsof astandardtestof anair heater. For thedeviation from the designenteringair temperature,rclJM,this is: ~Gl56A = 'ABD' G14 - rGIS) + rG14+G15 - rR8) - 1.4s)
  • 3. SEP 09 ‘98 04:37PM CONSOL R&D LIBRRRY P. 4/a rAsD= Design air temperatureenteringtheair heater, ’ F, ro,4 = Measuredflue gastemperatureenteringthe air heater, “F, and tAB= Measuredair temperatureenteringthe air heater, “F. Similarly, for the deviation from the designenteringflue gastemperature,thetemperature correotionis: tGlsSG = *c14ll &S - ‘48) + ‘18 +G14 - h) (to14 - tA8) where tG,4n= Designflue gastemperatureenteringtheairbeater,‘F. X-Ratio Correction Flue Gas Flow Correction // ~Ossign X-Ratio~Ossign X-Ratio Measured X-Ratio Figure 2 X-Ratio Correction Design Flue Gas Flaws Measured Entering Flue Gas Flow Figure 3 FlueGasFlow Correction The othertwo temperaturecorrectionsmustbederivedfrom vendordesignperformancecurves or provided by thevendor in analyticalform. In thecaseof theNYSEG heatpipe airheater,the vendor supplied aset of performancealgorithmsto beapplied“th performancefiguressimilar to Figures2 and 3, shownabove. Thesepredictedtheperformancetemperature;that is, the expectedexit flue gastemperaturesfor the actualoperatingconditions. The algorithm was of the form: where
  • 4. SEP 09 ‘98 04:38PM CONSOL R&D LIBRARY P. 5/20 9 = Correlation ooefftcient, and fG,.Jx = Correction factors for deviations from designflue gasflow andfrom design X- ratio, respectively. For easeof analysisandof estimatingtheuncertainty,theseplotswereconvertedinto mathematicalexpressionsof the form: fg=~,+h.& for the flue gasflow, andfor the X-ratio: f, *a2 +&.X+cS2.X2 where ~,,~,,a,,&6s = Correlationcoefficients, Fo = Flue gasflow rate, and X = X-ratio for the air side. (5) (6) The forms of theseequationsagreewith the shapesof thecurvesin Figures2 and3. A least squarescorrelation or someother curvyfitting technique can be usedto evaluatethecorrelation constants. In the caseof the Milliken study,thecorrelationequationsagreedwith resultsfrom theplots within the ability to readtheplots. SincetheX-ratio is defined aatheweight timesheatcapacityratio of theair overthat of the flue gas,theX-ratio canbe approximatedastheratio of the temperaturechangesfor the two fluids: x= WA9 CpA %I4 “pG where cpA= Heatcapacityof air, BtuI lb-”F, cpG= Heatcapacityof fluegas,But/ lb-*F, fg5 = Averageflue gasoutlettemperaturecorrectedto no-leak conditions,OF, w,,s= Weightof air exitingtheairheater,lb/ h, and wG]4 = WeightOfflue gasenteringtheair heater,lb/h. (7) Theno-leak flue gastemperature,rz,, is calculatedfrom the measuredflue gastemperatureby:
  • 5. sEP 09 ‘98 04:38PM CONSOL R&D LIBRRRY tNLCl5 = rG15 + - Lb) P.WZB (8) where A, = Weightpercentair leakageinto theflue gas,and tlunb= Tempetatureof the air leakinginto theflue gas. In most air heaters,themajority of the air in theflue gasis leakagefrom the higher pressure, air- sideof the air heater. The ASME defines’theposition ofthe air leakasoccurringafterthe flue gasexits the ai~ heater,but before rc,, is measured.Thus,therecanheno correctionto beat transferwithin the airheaterfor air leakage.In thesecases, t omb = fA8 (9) and fAacanbe substitutedfor z,,,,,~in the following equations.However,this derivation will be general. Substituting Equation 8into Equation7 yields: x= [ tG14 - '015 1oo cpo- ".[q.(tG,5 - '-)I (10) OA9 - [,!8) Note the ASME definition for the X-ratio is baaedonzeroleak. If the vendorbaseshis X-ratio correction curveon anX-ratio with adesignleak,this plot shouldbecorrectedto zeroleak before generatingEquation 6. For application of Equation 1,two additional,independenttemperaturecorrectionsarerequired. Thesecanbe obtainedfrom thevendor’sair heaterperformanceequation,Equation4, andthe associatedplots -- Figures2 and3. Equationssimilar to Equation4 canbeusedto estimatethe effect of oneparameterindependentof theotherparametersof theequationto obtain a temperaturecorrectionfor that parameteralone. This is achievedby evaluatingEquation4 for the changein oneparameterwhile holding the othersconstant. FOT the deviationfrom the design X-ratio, this procedureproducesthe following equationfor thetemperaturecorrection, tCISMR: ~G~~~~=~~~~+~~~G~SD-~G~~D~[~-~~~~D~~X]-~A~D~~~~~O~~X A.4[ I[CPA1 (11)+100cpc- - (k15-L6)II where to,sn = Designflue gastemperatureleavingair heater,and fpD = De&go flue gasflow correctionfactor. For the deviation from designflow, thetemperaturecorrection,to,, 6nis: rGlS,=tGl5+~~fG,5~-tGl4D~~-9~fG~fXD]-r~80~9'fg~~~[~ (12)
  • 6. SEP 09 ‘98 04:38PM CONSOL R&D LIBRRRY Pa 7120 where fm = DesignX - ratio correctionfactot. Equations 1I and 12apply theperformanceequationsand/orcurvesprovidedby thevendorto evaluatethe effect of the changem X-ratio andflue gasflow on themeasuredtemperature. The changesfrom the designTCFGOT, thetermswithin the doublelines(I),areappliedto the measuredflue gasoutlet temperatureto providethetemperaturecorrections. ASME PTC 4.3 specifiedthe air heatertemperaturecorrectionsat designleak. For theNYSEG unit, the designleakwas zero. This is reflectedin quation 10wheretheX-ratio is correctedto the designleak of zerobeforebeing appliedto thecalculationof thetemperaturecorrection. The leak correction term, (13) is re-+red since(1) theperformanceequationandfactorplots werebasedon a zeroleakdesign, and(2) ASME PTC 4.3 specifiescomparingthe TCFGOT atthe designconditions,which in this caseis zeroleak. Therefore,theTCFGOT mustbeon thesamebasisasthedesign. The first four terms of Equation 1 “add” in threeleakterms. Themeasuredflue gastemperatureleaving the air heater,lcls, subtractsout threeleaktermsasthis measuredvaluecontainsleak. Thus,the inclusion of aleak correctiontermin Equation11evaluatestheTCFGOTby Equation 1,i,,,,, at zeroleak, the designcondition, asspecifiedby theASME PTC 4.3. Substituting (14) into Equation 11andthen expandingEquation 1by substitutingEquations2,3,11, and 12,along with the air heaterperformancecorrelations(Equations5 and6), resultsin the following revised equation:
  • 7. SEP 09 ‘98 04:39PM CONSOL R&D LIBRFIRY P . E/20 Inspection of this equationrevealsthat calculationof the TCFGOT requiresonly four measured ,and2 determinedvalues:inlet andoutlet air temperatures,inlet andoutlet flue gastemperatures, enteringflue gasflow andthe air leak. All of the otherparametersareconstants.The calculated value oftbe TCXGT from anair heaterperformancetestmustbe equalto or lessthanthe designvalue for optimal air heaterperformance. Uncertainty Analysis The uncertainty in the calculationof theTCFGGT by Equation15was estimatedin supportof a studyof air heaterperformanceconductedat theMilliken StationofNew York StateElectric & GasCorporation (IWSEG) in 1995and 1996. Detailsof theair heaterperformanceandof the uncertainty analysiscanbefound in thereferencedreports.23 Theuncertaintyin the result of a calculation cannormally be estimateddirectly by partial differentiation of Equation 15with respectto eachparameter, To accuratelyevaluatethe uncertaintywith anexplicit equation,the equationmust not besignificantly nonlinear. In thecaseof Equation 15,the air leakintroducesa significant non-linearity which invalidatesthis approach. Thus,amathematicalapproximation wasrequiredto evaluatemeuncertaintyin the TCFGOT. Errorsin measurementsareof two types:biaserrorsandrandomerrors. Biasesareassociated with the measuringequipmentor procedureandcannotbeminimizedby repeatmeasurements. However, the TCFGOT temperaturecorrectionsconsistof differencesandratios. This tendsto compensatefor bias errors. Randomerrorsarereducedby repeatmeasurements.The following derivation assumesonly onetestandthusrepresentsthemaximumestimatederror. The bias andrandom errorsarepropagatedseparatelyusingTaylor seriesexpansionsfor highly nonlinear equations:
  • 8. SEP 09 ‘98 04:39PM CONSOL R&D LIBRRRY P .9/20 Sbnv = where (16) Af - = Incrementalchangein thefunction f with respectto xi, &i Af- = Incrementalchangein thefunction f with respectto xj, &ni crX,= Error in parameteri, oXj = Error in parameterj, and f = Function shownaboveasEquation 15. This numerical approachof estimatingthe uncertaintyin theTCFGOTis similar to theonethat Carl James4usesfor estimatingtheuncertaintyin thed&gn of across-flowheatexchanger.Of interestis the fact that the uncertaintyin the designof aheatexchangerestimatedby Jamesis much largerthanthe uncertaintyin the estimateof theperformance.For anumericalapproach, Equation 16must approximatethe surfaceofthe function asa linearsegmentparallel to thetrue functional relationship. With independentparameters,only the i=j termsof Equation 16arenon- zero, simplifying the Taylor seriesexpansion.However,if thetermsarecorrelatable,that is, not independent,then the sumof thecrossproductsin Equation 16isnot zeroandthesetermsmust be included in the estimate. This is discussedfurtherin the appendix. This expansionis usedto evaluatethebias andrandomerrorcontributionsseparately.Thebias andrandom errorsaresummedseparatelyto form thebiaserrorstatisticandtherandomerror statistic,andthen combinedto estimatethe total uncertaintyby: u=p+(r.s)‘]~ (17) where U = Uncertainty interval, B = Overall bias error statistic, S = Overall random error statistic, and t = Appropriate Student’s t value. (For 95 % significance, t = 2.0 for a reasonablesamplesize.) The parametervaluesusedfor the estimationof theuncertaintyof the TCFGOT andthebias and random erroreassociatedwith themareshownbelow in TableI. Thebiasandrandomerrors were estimatedby separateerrorpropagationcalculationsfor standard,multipoint sampling arraysin the inlet andoutlet ductsof theair heater. Thesemultipoint sampleswereusedto
  • 9. SEP 09 '98 04:4BPM CONSOL R&D LIBRARY P . lW20 evaluateaveragetemperaturesandcompositionsin the ducts. Theappendixpresentsabrief discussionof this with amoredetaileddiscussionavailablein theprojectreports5 As discussed in theAppendix, examinationof the derivationof thesesampleerrorssuggeststhat for standard, multipoint traversesof utility-scale equipment,the biasandrandomerrorsshownin TableII for theseaveragetemperaturesandcompositionsaretypical. Table K Value of Parameters and Their AssociatedBias and Random Errors Parameter Air Temperature @ Inlet andAmbient Air Temperature @ outlet Flue GasTemperature @ Inlet Flue GasTemperature @ Outlet Flue GasFlow Air Leak Unit Value BiasError RandomError “F 100 1.00 0.15 OF 644 6.44 0.74 “F 680 6.81 0.81 ‘F 285 2.85 0.35 1,000lb/h 157 9.82 0.72 percent 6 0.05 0.77 TheseparametersarepropagatedusingEquation 16. Thebiasandrandomerrorsarepropagated separatelyandsummedto form theB andScomponentsof Equation 17. Equation 17is then usedto estimatethe overall uncertaintyinterval. The following exampleshowsthe evaluationof oneof theincrementalchangetermsrequiredby Equation 16. To evaluatethebias error associatedwith theair temperatureat theinlet: 1. The TCFGOT is calculatedatthebasetemperature,100OF,plus threetimesthe bias error. 2. Thenthe TCFGOT is calculatedat 100“F minusthreetimesthebias error. 3. Designatingthesetwo valuesof theTCFGOT asf, andfp,respectively,the contribution to the bias error of theTCFGGT for theinlet air temperatureis evaluatedby the following:
  • 10. !iEP 09 ‘98 04:40PM CONSOL R&D LIBRQRY P. ii/20 q=fa -f, 6.0, =31231-313.17 6.1 = LO143 (18) All otherparametersareheld constantatthevaluesshownin TableI during this calculation. Equation 15is usedto calculatetheTCFGCT. Sincetheparametersh and4 wereevaluatedat threetimes thebias error,o,,greaterand three times the biaserrorlower thantheactualvalue of the temperatureof the inlet air, thetotal deltais six times a,. Thatis, thedifferencebetweenf. sndfp is divided by six timesthebiaserror. To bean accurateestimateof the error,thefunction equation& mustberelatively hear over therangeof the error. That is, iff”is thevalueof TCFGOT ataninlet air temperatureof 100 ‘F, then if, f, -fO sfO -fp (31291-312.74)=(312.74-313.17) 0.436= 0.422 then the assumptionof linearity and,in turn, thevalidity of the estimateis conflrmed. This calculation is repeatedfor theotherparameterslistedin TableI andtheproductssummedas shownin Equation 15to producetheresultingbiasandrandomerrorsshownin TableII, This is the estimateof theuncertainty from Equation17in thedeterminationof the “totally corrected flue gasoutlet temperature,”or TCFGOT, for anair heater. The estimateof theerror in the determinationof the totally correctedflue gastemperatureis+4.75 *F for the specificconditions shownin Table I. As apercentage,-2%, this uncertaintycanbeappliedto evaluationof other air heatn3. Table II Estimate of the Uncertainty of the Totally Corrected Flue GasTemperature Parameter JI&- Bias Random _Uncertaintv TCFGOT “F 4.57 0.66 zk4.75 Conclusions The ASME PTC 4.3 provides astandardizedmethodfor evaluatingthe performanceof utility air heaters. It provides amathematicallycotr&Ctmeansof evaluatingtheperformancewhich aidsin
  • 11. SEP 09 ‘98 04:40PM CONSOL R&D LIBRRRY P. 12/20 minimixing disputesbetweensuppliersandpurchaserswhenguaranteeperformauceevaluations areconducted. In operatingplants,it is generallyimpossibleto establishdesignconditionsto verify performance. To overcomethis, thePTC specifiesthatthemeasuredflue gasoutlet temperaturemust be correctedfor differencesfrom designinlet airtemperature,designinlet flue gastemperature,designX-ratio, anddesignflue gasrate. Oncethesecorrectionsaredetermined, the“‘totally correctedflue gasoutlet temperature”canbecalculatedandcomparedwith the designoutlet temperature. Calculationof thefirst two temperaturecorrectionsis explicitly defined by theASME code. The determinationof thetemperaturecorrectionsfor differences from designX-ratio anddesignflue gasflow areleft to thesupplieror purchaserto determine. Normally the manufacturerwill supplythepurchaserwith designperformancecurvesor equations,but not with thoseto calculatethetemperaturecorrectionsspecifiedby the PTC. This paperprovides amethodfor evaluatingtheremainingtwo temperaturecorrectionsusing the performancecurves. Shouldthemanufactureralsoprovide proceduresfor calculatingthe specifiedPTC temperaturecorrections,theresultscanbecheckedusingtheproposedprocedure. This was donefor theMill&en air heaterperformancetestingwith good agreementfound betweenthe two methods. As part of the Mill&en air heatertestprogram,theuncertaintyin the ASME PTC 4.3 equation for calculating the TCFGOT wasdetermined. Becauseof thenon-linearity of thefinal equation, numerical approximationswete usedto determinethe differentialsneededfor thepropagation procedure. For the examplepresented,the estimateduncertaintyis 4.75 “F for theTCFGOT at a 95% confidencelevel. This showsthatthe uncertaintyin the codeprocedureis relatively small, about2% of thedesignoutlet temperatureasexpressedin degreesFahrenheit. References I. Air Heaters-Supplement to PerformanceTestCodefor SteamGeneratingUnits, Pl-C 4.1; ASME/ANSI PTC 4.3- 1974;Reaffirmed 1991,TheAmerican Societyof Mechanical Engineers,New York, 1968. 2. McCoy, D. C.; Bilonick, R. A.; “Milliken StationHeatPipeAir HeaterPerformance Uncertainty Analysis”, Reportpreparedby CONSOLInc., R&D for New York State Electric & GasCorporation,Binghamton,New York, June1995. 3. Maskew, J.T.; ‘Milliken StationHeatPipeAir HeaterPerformanceUncertainty Analysis of Totallv CorrectedGas TemneratureLeavine theAir Heater”,Reportpreparedby CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghsmton, New York, April 1996. 4. James,C. A.; Taylor, R. F.; Hedge,B. K.; ‘The Application of UncertaintyAnalysis to Cross-Flow Heat ExchangerPerformancePredictions”;Heut TransferEngineering; 16, 4; pp 50-61; 1995. 5. McCoy, D. C.; ‘Heat PipePerformance-- Final Report”; Final reportpreparedby CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghamton,New York, August 1998.
  • 12. SEP 09 ‘98 04:41P,, CCNSOL R&D CIBRFlRY APPENDXX Estimation of Uncertainty in the Individual ParametersRequired for the Evaluation of the ASMlE PTC 4.3 “Totally Corrected Flue GasOutlet Temperature” The uncertainty analysesdiscussedin this paperarefor theAmericanSocietyofMechanical Engineering(ASME) proceduresfor testingtheperformanceof air heatersand,specifically, for the equationto predict the “totally correctedflue gasoutlet temperature”(TCFGOT). The estimatesof bias errorsandrandomerrorsfor the individual parameterswerederivedfor the equipmentandmethodologyusedin obtainingthedatarequiredfor atestprogram. This test programfocusedon evaluatingtheperformanceof anairheaterrecentlyinstalledin the Milliken Stationof New York StateEleotric & Gas. Themethodsfollowed in deriving theestimatesof the uncertainty of theindividual parametersarepublishedby ASME.’ Comprehensive discussionof all of the calculationsis publishede1sewhere.l Milliken Station Unit 2 is a 150MW, pulverizedcoal-firedboiler with twin, parallel air heaters. Eachair heaterheatsboth primary andsecondaryair for half of the unit in separatesectionswith the flue gasmixed beforeandafter the tir heater. Theuncertaintyanalysispresentedbelow containsthe resultsfor both the primary andsecondarysidesof theair heater. Thedesignof the air heaterwas such.that all of the air leakageoccurredat sootblowerports. Air leakedfrom outsideof the air heaterinto the flue gasheatingtheprimary air. Leakageinto the sideheating the secondaryair wasinsignificant andwasignoredin the following evaluation. Test Procedure The generaltestprocedurefollowed in the determinationof the TCFGOT wasthe ASME PerformanceTest Code(PTC)PTC 4.1’ andPTC4.34. Individual parametersrequiredby the PTC 4.3 were measuredfollowing generallyacceptedmethods,normally U. S.Environmental ProtectionAgency (EPA) methods. For gasvelocity, EPA Method 2’ wasusedalongwith EPA Method 16. The gascompositionwasdeterminedgenerallyfollowing theproceduresof EPA Method 3?. Sincethe ASME procedurebasestheflue gasandair flow ratesonthe coal feedrate andgasproperties,rather thanon themeasuredgasandair velocities,the derivationof the errors of the individual parametersis complex. However,usingthecoal feedrate,from calibrated feeders,andgascompositionsasabasecreatesacommonbondbetweentheair andflue gas flows. This createsaconsistentbasisfor the calculations. Background Error propagationis calculatedby Taylor Seriesexpansionof the resultantfunction. In general, if r =f(xa x2,. .,x, . . .,xJ, thenthe errorstatistics,S,,,, for eitherthe biaserroror therandom erroris calculatedby where
  • 13. SEP 09 ‘98 04:42PM CONSOL R&D LIBRFIRY P .14/20 af al- = Partial derivativesof j with respectto Y,(orxi), and ax,’ c%cj cr,,, oxj = Error with respectto xi (or xj). when theparametersareindependent,only thei=j termsaresignificant. For manyof the parametersexaminedin this work, theparameterswerea independentandall of the termsin Equation Al were evaluated. Note thatusinga singlethermocoupleto measureall of the temperaturesin thetraverseof a planein aductcreatesadependencybetweenthese measurements.The biaserror associatedwith tbethermocoupleis the samefor all points. Thus, it is dependent. To illustrate the calculationcomplexity for the estimateof the errorsof the individual paran~eters,astep-by-stepcalculationof theestimateof theuncertaintyfor aweight averagetemperatureof a gasis shownbelow. The averageis basedon atraverseof aninlet (or outlet) duct. For the detailsof the estimationof the uncertaintiesof otherparameters,refer to the final Milliken project report8 Only the errorsanduncertaintyfor theseotherevaluationsare presentedhere. Temperature Traverse Uncertainty Calculation Theweight averagetemperatureof a gasflowing in aductis basedon aflow weighted average of the temperaturesobtainedfrom astandardtraverseof the duct. Thatis, where t AiwT, T=% = j=l i A,wi ill Ai = Crosssectionalareafor point i, ft2, i = Traversepoint number, q = Temperahuemeasuredatpoint i, ’ R, vi = Velocity in areaAi determinedatpoint i, fps, and pi = Fluid densityin areaA;, lb/ f?. (a The fluid velocity is determinedby aPitot tubemeasurement.The gasis assumedto behave ideally andthevelocity is constantoverthe entirecross-sectionalareaA,. The velocity is calculatedby: I vi=85.49cl:.Mi.T,21 1P,,.Mi (A31
  • 14. SW 09 ‘98 04:42PM CONSOL R&D LIBRRRY P .15/20 CP, - Pitot tube flow coeffkzicnL dimensionless, 0, - Vclacity head in area i, inches W. C., P,, = Static pressure in area i, inches Hg. absolute, and M, = GAS mole weight in CWS i. Ib / lb - mol. Similarly, the gasdensityis calculated: 0.04578.Mi .I’,; Pi = T, (A41 Substituting the formulas for vi (EquationA3) andp, (EquationA4) into EquationA2 and simplifying yields: Equation A5 is partially differentiatedwith respectto A, CP, dP,,M,,PI,, andT,,andthe resulting partial summedasindicatedin EquationAl. EquationA5 producessix setsof partial differential equations. If the denominatorof EquationA5 is setequalto Sum1andthenumerator equalto Sum2to simplify the resultingequations,thesepartial differentialsare: Gg c~.(~..M,.P,i.7;)t.suml-cP.,.(~‘~.~i)‘.sum2 (A6) -= 34 SumI’ dr,,= ~.(~.~,.~i.T)f.Suml-A, ,Sum2 @‘I e,-= aw xsuml-c<.A,. sum2 (A@ 2.Suml’
  • 15. SEP 09 ‘98 t&,:&W, CONSOL R&D LIBRARY a Lg C4. A;. ~Suml-Ce.4, .Sum2 -= a&f; 2~SurnP ,&ml-Cf.A,, ae, = 2.sum12 P x/20 (AlO) Theseindividual differentials aremultiplied andsummedasshownby EquationAl. Thebias errorsandrandom errors, a,, for this calculationarelistedin TableA-I. TableA-I alsolists the sourceof the bias andrandomerrorsfor eachof theparameters.As previouslymentioned,many of the crossproduct termsmustbeincludedin thebiascalculationssincethe sameequipment wasusedto measureaparameter. Theinclusion of crossproducts,i@ terms, addssignificantly to thenumberof termsthat mustbeevaluated.If therewereno crossproductterms,aduct traverseof 12samplepoints in EquationA5 would require72terms. With thecrossproducts, this increasesto 864terms. In the caseof thebiaserror,thecrossproducttelms accountfor essentiallyall of the error in determiningtheaveragetemperature.Sincethebiaserrorsarenot reducedby taking multiple measurements,thebiaserrorsaccountfor mostof theuncertaintyin thefinal averagetemperatureasshownin TableA-II. In thecaseof the secondaxyair inlet, which hasonly four traversepoints,thebiaserroris 90%of theuncertaintyin the dctetination of the averagetemperature. TableA-II summarizesthe uncertaintyestimatesfor the Milliken air heaterfor theaverageai* andgastemperatures.Thebias erroris responsiblefor themajority of the uncertaintyevenwith only a four-point traverse. Repetitivemeasurementstendto reducetherandomerror. TableA-III showsthe efTorsfor the otherparametersrequiredto evaluatetheTCFGOT. The uncertaintyis shownasapercentof thefinal calculatedvalue. All uncertaintyestimatesareat the 95% confidencelimit.
  • 16. SEi= 09 ‘98 04:43PM CONSOL R&D LIBRARY P. 17/20 Table A-I Summary of Bias Errors and Precision Indices for Uncertainty Calculations Palsmeter llmension Width Length Yemperature Bias Error 0.5” (0.042”) 0.5” (0.042”) l%of”F Reading RandomError lOne Stand.Dev.) CommentsI Basis 0.5” (0.042”) Assumed 0.5” (0.042”) Assumed % % of OF Bias- Typical for Type K Reading Thermocouples, Random- ASME PTC 1 Barometric 0.04” Hg 0.04” Hg Calibrationof Aneroid BarometerScale Static Vel. Head, AP 0.05” WC 2 % of Avg. Reading 0.05” WC 0.00005”WC WaterManometerScale ShortridgeAir Data Multimeter, Model ADM-870 Bias - InstrumentDesignSpec. Random- %DesignSpec. ‘itot Factor, CP 0.01 0.0 CalibrationAccuracy :oal Analysis Moisture 3.9 % rel. LO.20+ O.O12*MQ Bias- AssumedSameasAsh (2 * 1.414) Random-ASTM Repeatability C 3.9 % rel. Q.&Q Bias - AssumedSameasAsh (2 * 1.414) Random- ASTM Repeatability I-l 3.9 % rel. (Q&J Bias -Assumed SameasAsh (2 * 1.414) Random- ASTM Repeatability N 3.9 %rel. 10.11) Bias -Assumed SameasAsh (2 * 1.414) Random- ASTM Repeatability S 1.9% rel. (0.06+ O.O3S*S Biss - From Washability Data (2 * 1.414) Random- ASTIMRepeatability Ash 3.9 % rel. 10.07+ 0.02*&h Bias -From Washability Data (2 * 1.414) Random- ASTM Repeatability
  • 17. SEP 09 ‘98 04:43PM CONSOL R&D LIBRFlRY P. m/20 Table A-I Summary of Bias Errors and Precision Indices for Uncertainty Calculations RandomError Parameter Bias Error (OneStand.Dew.1 Comments/ Basis CoalAnalysis (Cont.) CinAsh 25 % rel. 10%rel. Bias - Experiencewith Milliken Unit 2 LossOn Ignition Data Random- Assumed Coal Rate 5 % rel. 0.25 %rel Bias - Assumed Random- Typical, PTC 4.1 Gas Analysis 02 CO co, 0.05 % abs. 0.05% abs. 20 mm 10Ppm 0.1 % abs. 3 % rel. Bias - Calibration GasSpec Random- Low 0, Instrument Design Spec. Same OrsatMeter Bias - Burette ScaleDivision Random-Experience, PTC 4.1 Air Moisture 10% rel. 20 % rel. Bias - Error of 1 “F in Reading Wet Bulb Temperature(WBT) Random- Error of 2 “F in ReadingWBT Molecular Wt. Flue Gas Air 0.05 0.025 0.07 0.05 CombinedUncertainty of Analysisfor Ash andFlue Gas CombinedUncertainty for Humidity
  • 18. SEP 09 ‘98 04:43PM CONSOL R&D LIBRQRY P. 19/2!2 Table A-II Uncertainty Estimates for Average Duct Temperatures Basedupon Multi-Point Traverses No. of Traverse BiasError, Random Location Points %“F Jrror. %“F Uncertaintv. %“F Primary Air Inlet 12 1.00 0.15 1.05 Primary Air Outlet 20 1.00 0.11 1.03 SecondaryAir Inlet 4 1.00 0.25 1.11 SecondaryAir Outlet 24 1.00 0.11 1.03 Flue GasInlet 20 1.oo 0.12 1.03 Flue GasOutlet 24 1.oo 0.14 1.04 Table A-III Uncertainty Estimatesfor Other Parameters Required to Evaluate TCFGOT Location Bias Error. % RandomError. o/n Primary Air Flow, Inlet 3.31 2.93 Primary Air Flow, Outlet 2.61 2.08 SecondaryAir Flow, 5.02 0.68 Inlet/Outlet Uncertaintv. % 6.72 4.92 5.20 Flue GasFlow, Inlet 6.28 0.75 6.46 Flue GasFlow, Outlet 6.25 0.46 6.32 Flow Split BetweenAir Beaters 0.43 0.49 0.94 Air Leak @ 6.87% Leak 0.85 12.60 25.21 Conclusions Two conclusionscanbe reachedafter examiningtheseresults. The estimatesofthe uncertainties shownin Table A-II andA-III arevalid for all airheaters,whenavalid duct traversecaribe
  • 19. SEP 09 ‘98 04:44PM CONSOL R&D LIBRARY P.20/20 performed. The uncertaintyfor aducttraversewith asfew as4 pointsis still dominatedby the bias errors. Secondly,sincethedornimtnterrorsin theraw dataareexpressedaspercentages,the resultsshownin TablesA-II andA-HI, andin themain body of thispaper,areindependentof the absolutevaluesof theparameters.Thus,they applyto anyair heater. Appendix Referencea 1. 2. 3. 4. 5. 6. 7. 8. MeasurementUncertain@Part 1.InstrumentsandApparatus,ANSJJASME PTC 19.1-1985,The AmericanSocietyofMechanical Engincera,New York, 1986. McCoy, D. C. andBilonick, R. A.; ‘Milliken StationHeatPipeAir HeaterPerformance Uncertainty Analysis”; Reportpreparedby CONSOL Inc., R&D for New York State Electric & GasCorporation,Binghamton,New York, June1995. SteamGenerating Units, AShEJANSI PTC4.1 - 1974;Reaffumed 1991,The American Societyof MechanicalEngineers,New York, 1970. Air Heaters,Supplementto PerformanceTestCodefor SteamGenerating Units, PTC 4.1, ASM&A.NSI PTC 4.3- 1974;Reaffirmed 1991,TheAmericanSocietyof MechanicalEngineers,New York, 1968. ERAMethod 2, Determination of StackGasVelocityand VolumetricFlow Rate (Tjqe S Pitot Tube),U. S.EnvironmentalProtectionAgency,Codeof FederalRegulations40, Washington,D. C., 1996. EPA Method 1, Sampleand Velociy Traverses& StationarySources,U. S. Environmental ProtectionAgency, Codeof FederalRegulations40, Washington,D. C., 1996. EPA Method 3, GasAnalysisfor CO, 0, ExcessAir, andDry Molecular Weight,W.S. Environmental ProtectionAgency, Codeof FederalRegulations40,Washington,D. C., 1996. McCoy, D. C.; ‘Xeat PipePerformance-Final Report”, Final reportpreparedby CONSOL Inc., R&D for New York StateElectric & GasCorporation,Binghmton, New York, August 1998.