Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Evolution
 
 
 
 
 
Fig. 22-7
 
Descent with modifications
 
 
 
 
 
 
 
<ul><li>Organisms evolve in order to better suit an environment.  Evolution involves mutations in the genetic information ...
 
Fig. 22-18 Human embryo Chick embryo (LM) Pharyngeal pouches Post-anal tail
 
Fig. 22-19 Hawks and other birds Ostriches Crocodiles Lizards and snakes Amphibians Mammals Lungfishes Tetrapod limbs Amni...
Convergent Evolution
 
Human Evolution
Two Opposing Theories <ul><li>Multiregional Theory </li></ul><ul><ul><li>Parallel evolution </li></ul></ul><ul><li>Displac...
 
 
Synthetic Theory
 
Molecular Clocks
Endosymbiotic Theory
 
http://www.geneticorigins.org
Molecular Clock
 
 
 
Dr. Svante Pääbo, Director of the Department of Evolutionary Genetics, Max Planck Institute.
 
 
 
 
 
Two Factors Effecting Haplotypes <ul><li>Evolution. </li></ul><ul><li>Genetic Drift. </li></ul>
 
Genetic Drift
 
 
Ms. Famili  Mr. Edgar
Famili Edgar
My mtDNA Haplotype
Haplogroup HV*
Ms. Famili’s mtDNA Haplotype
Haplogroup U U5 U6
Mt. Toba
 
 
 
 
 
 
 
 
 
Evolution of Populations
Fig. 23-5 Porcupine herd Porcupine herd range Beaufort Sea NORTHWEST TERRITORIES MAP AREA ALASKA CANADA Fortymile herd ran...
Fig. 23-6 Frequencies of alleles Alleles in the population Gametes produced Each egg: Each sperm: 80% chance 80% chance 20...
No mutations
Random mating
No natural selection
Extremely Large Populations
No gene flow
 
 
 
 
Fig. 23-9 Original population Bottlenecking event Surviving population
Fig. 23-10a Range of greater prairie chicken Pre-bottleneck (Illinois, 1820) Post-bottleneck (Illinois, 1993) (a)
Fig. 23-10b Number of alleles per locus Minnesota, 1998     (no bottleneck) Nebraska, 1998     (no bottleneck) Kansas, 199...
Genetic Drift
 
Fig. 24-2 (a) Similarity between different species (b) Diversity within a species
Genographic  Project
 
 
SNP For each individual they analysed half a million SNPs, and then amalgamated the results mathematically to produce two ...
 
Reproductive Isolation
Habitat Isolation
Temporal Isolation
Behavioral Isolation
Mechanical Isolation
Gametic Isolation
Reduced Hybrid Viability
Reduced Hybrid Fertility + =
Hybrid Breakdown
Fig. 24-4 Prezygotic barriers Habitat Isolation Individuals of  different species Temporal Isolation Behavioral Isolation ...
Fig. 24-5 (a) Allopatric speciation (b) Sympatric speciation
Fig. 24-14-1 Gene flow Population (five individuals are shown) Barrier to gene flow
Fig. 24-14-2 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges
Fig. 24-14-3 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges Hybrid zo...
Fig. 24-14-4 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges Hybrid zo...
Breakdown of Reproductive Barriers
Upcoming SlideShare
Loading in …5
×

Honors Biology - Evolution

1,117 views

Published on

Published in: Technology, Education
  • Be the first to comment

Honors Biology - Evolution

  1. 1. Evolution
  2. 7. Fig. 22-7
  3. 9. Descent with modifications
  4. 17. <ul><li>Organisms evolve in order to better suit an environment. Evolution involves mutations in the genetic information of organisms that lead to changes in the appearance or phenotype of organisms. Factors from the environment that influence survival, such as availability of food, water and shelter, generate random mutations in organisms. Many mutations are neutral; they have no effect on the organism’s phenotype. Some mutations are detrimental and make the organism less likely to survive. If an organism develops a detrimental mutation, it will not have offspring and so the detrimental mutation will not be passed down. If an organism has a beneficial mutation, its offspring will have that beneficial mutation and will be better able to survive and reproduce. This process of random mutation and selection from the environment insures that organisms advance to more and more complex levels of biological structure. </li></ul>
  5. 19. Fig. 22-18 Human embryo Chick embryo (LM) Pharyngeal pouches Post-anal tail
  6. 21. Fig. 22-19 Hawks and other birds Ostriches Crocodiles Lizards and snakes Amphibians Mammals Lungfishes Tetrapod limbs Amnion Feathers Homologous characteristic Branch point (common ancestor) Tetrapods Amniotes Birds 6 5 4 3 2 1
  7. 22. Convergent Evolution
  8. 24. Human Evolution
  9. 25. Two Opposing Theories <ul><li>Multiregional Theory </li></ul><ul><ul><li>Parallel evolution </li></ul></ul><ul><li>Displacement Theory </li></ul><ul><ul><li>Out of Africa theory </li></ul></ul>http://news.bbc.co.uk/
  10. 28. Synthetic Theory
  11. 30. Molecular Clocks
  12. 31. Endosymbiotic Theory
  13. 33. http://www.geneticorigins.org
  14. 34. Molecular Clock
  15. 38. Dr. Svante Pääbo, Director of the Department of Evolutionary Genetics, Max Planck Institute.
  16. 44. Two Factors Effecting Haplotypes <ul><li>Evolution. </li></ul><ul><li>Genetic Drift. </li></ul>
  17. 46. Genetic Drift
  18. 49. Ms. Famili Mr. Edgar
  19. 50. Famili Edgar
  20. 51. My mtDNA Haplotype
  21. 52. Haplogroup HV*
  22. 53. Ms. Famili’s mtDNA Haplotype
  23. 54. Haplogroup U U5 U6
  24. 55. Mt. Toba
  25. 65. Evolution of Populations
  26. 66. Fig. 23-5 Porcupine herd Porcupine herd range Beaufort Sea NORTHWEST TERRITORIES MAP AREA ALASKA CANADA Fortymile herd range Fortymile herd ALASKA YUKON
  27. 67. Fig. 23-6 Frequencies of alleles Alleles in the population Gametes produced Each egg: Each sperm: 80% chance 80% chance 20% chance 20% chance q = frequency of p = frequency of C R allele = 0.8 C W allele = 0.2
  28. 68. No mutations
  29. 69. Random mating
  30. 70. No natural selection
  31. 71. Extremely Large Populations
  32. 72. No gene flow
  33. 77. Fig. 23-9 Original population Bottlenecking event Surviving population
  34. 78. Fig. 23-10a Range of greater prairie chicken Pre-bottleneck (Illinois, 1820) Post-bottleneck (Illinois, 1993) (a)
  35. 79. Fig. 23-10b Number of alleles per locus Minnesota, 1998     (no bottleneck) Nebraska, 1998     (no bottleneck) Kansas, 1998     (no bottleneck) Illinois 1930–1960s 1993 Location Population size Percentage of eggs hatched 1,000–25,000 <50 750,000 75,000– 200,000 4,000 5.2 3.7 93 <50 5.8 5.8 5.3 85 96 99 (b)
  36. 80. Genetic Drift
  37. 82. Fig. 24-2 (a) Similarity between different species (b) Diversity within a species
  38. 83. Genographic Project
  39. 86. SNP For each individual they analysed half a million SNPs, and then amalgamated the results mathematically to produce two numbers representing that person. This allowed each individual's genome to be shown as a point on a two-dimensional plot: the bigger the differences in the genomes, the greater the distance between them on the plot.
  40. 88. Reproductive Isolation
  41. 89. Habitat Isolation
  42. 90. Temporal Isolation
  43. 91. Behavioral Isolation
  44. 92. Mechanical Isolation
  45. 93. Gametic Isolation
  46. 94. Reduced Hybrid Viability
  47. 95. Reduced Hybrid Fertility + =
  48. 96. Hybrid Breakdown
  49. 97. Fig. 24-4 Prezygotic barriers Habitat Isolation Individuals of different species Temporal Isolation Behavioral Isolation Mating attempt Mechanical Isolation Gametic Isolation Fertilization Reduced Hybrid Viability Reduced Hybrid Fertility Postzygotic barriers Hybrid Breakdown Viable, fertile offspring (a) (b) (d) (c) (e) (f) (g) (h) (i) (j) (l) (k)
  50. 98. Fig. 24-5 (a) Allopatric speciation (b) Sympatric speciation
  51. 99. Fig. 24-14-1 Gene flow Population (five individuals are shown) Barrier to gene flow
  52. 100. Fig. 24-14-2 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges
  53. 101. Fig. 24-14-3 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges Hybrid zone Hybrid
  54. 102. Fig. 24-14-4 Gene flow Population (five individuals are shown) Barrier to gene flow Isolated population diverges Hybrid zone Hybrid Possible outcomes: Reinforcement OR OR Fusion Stability
  55. 103. Breakdown of Reproductive Barriers

×