7 E 8 G A T N
I S @
0/21 43
b / 0GB I P Q
SEPPBN
0GB I P Q
EEP q i h :TPDK
DPP / MEEP %@KI GB I P Q
( @K PNE QPEK o v p g ku )-t
) (- ()cn
d
591 4 l ra m d )t
7 B 1 EPK 3BI A :NBAE@PEK ( ( P (.(-PB I
K ,% 2NK B BA
j ez
bsy BP@ w / DPP / I P Q GB % EIAK%@KI
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
I
tG
4103.5/
ü
ü
ü s r
m G
ü _ s
ü _
8 6 ) ( )
28:97 ( )
8 6 (
8 6 ) (
( 8 6 ) (
) 8 6 ( ) )
8 6 ) )( (
ü r
ü Sa
ü
ü n
T
E m G
G
tG I K r m G m e
uN T uN G
m G
uN
/ 4985 .7367 3 6 / 8 3 7 .7367 3 6
e 1 38 r is 17 o
mP P
S mS mr
/ 4985 . P / 8 3 7 . P
0 4:8 P
r c
) ( (
v
v
7 2
7 :3
7 2
7 2
7 2
7 2
7 2
ü n
/ 4985 . o
u _
ü L
ü n ta
/ 8 3 7 . b l T
dK
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
p
L s U 8 6 8 ihms
n p 9 p g
ja n /2 4 2 ,
p o p , -
4
L t d
m :
2
2
7 1
p e x c R 7
p R
p n
10/. 7 . 86 2 5 9 3 : 5 8 8
[ –
8
– 7 7 m 0
7 ] 8
5 7 6 9
7 ] 7 7
8
7
1 2
1 2
1 2
1 2
1 2
1 2
1 2
( ) 7
32px
32px
2
) 7 2 (
32px
32px
NU
P r NUt 3u 6 65 9 7 3 9 oFs
3 n P rI e v v
s r N P i v s
Tc
% ((
ac
, (
1 9 9 6 0684 9 6
2 6 1 9 9 6 .4 6 0684 9 6
.4 6 1 9 9 6 2 6 0684 9 6
g U
U
Tc ∩ 1 9 9 6
Tc ∪ 1 9 9 6
l U
Tc % (( (
ac , ( ) ,
%, %
rf s
t s 119601 P ,
A ocey vo g ocrc Aio i
N o c sryrca
t t
t t
/57484 2 .23084 2
N
P
IP
∩ 01 2 3
∪ 01 2 3
0 U g7 8 = N
,2 3 e a i 0 g
v U se o e g
01 2 3 ,2 3
A
a
A
/ 10 324 W
A
A s
G
A
G
8
9 A u W
k n m S
G
t
9 e
A g
b P b
b b
.3 043n
i L B
c l a me
b tu8
0 D
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
Dk i u H
ü g p GL
o ac a
ü D g rPafmc ec
ü F af r i H tf scn lc
t iy tsh T g eccn
ü b Ho
ecCi h
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
u
b
vg i
2A 4C8 0
c o
ü /0 b
vg
ü /4C4
D9 8 C4C
b
ü eT
2A 4C8 0 c
ü N
o t
ah
/4C4
D9 8 C4C p
sdr
u
2D5 6 0 u
ü
ü 2D5 6 0 N
o
t
vg
ü
L 38BC
m
6B vg
vg
ü 11
ü P
p n
8C6
u
ü v
u
ü
ü
ü i
t
ü
ü
A 9 C 8BB
CA4BC
2477 9 A
9 p
ü 11
ahp
l
b l
( )
L
u g
eA
m r lv o nnt
o g
a
/ 5 0 3 .
bD cP B
0 0 4738 0 598
L
ru
/ 1652 . bDbD
5A6 59B
( ( ( ( /-- -
v (.) - / . ( - ( // )
b (/, .( (. ,-/
L
t r
ü o )( )( - cmf t
ü s , ), s )
n t P
v n t ia
u T t
l %
4A 6 9 31
% P
26 6 0D 9 6
e
g
4D7 8 31l
l
( )
, - . /
2 2 A8 6 2 9
/
D D D D
p
D x
989 2 ed7 9 n7 9
p
D x
25
2559 8 4 9 8
f o
R u L
R
x t p 1. °
° g r c
m b
0 9B2 6 /
P
a
2 2 A8 6 2 9
iv
l
0A3 94 / lm
m
l
G
n n
A83 8A 8B
28A08B
A83 8A 8B 28A08B
A83 8A 8B 28A08B
7
A83 8A 8B 7
5 8 8BD
A83 8A 8B 78 A 8B
783 8A 8B 4A 8B3 5 8
783 8A 8B
im 00 wr n saLN 28A08B v vgu s
w u ex t w s
o
e l
1 D4B8 /
pP
.4B4 C9 8 B4B
_
Rcb
d
1C5 6 / pP de
e
pP d
) h m p
h
17G7 . A BG7G CB
f
n DC9 r
h
DC9
h
f b
z
h z h z ef z e
f044 h 044 v
h A y v
ACA BG A l ACA BG A v P
7 B B 7G h Ss
7 B B 7G G D
L
v DC9 r h 7AA7 c d
7AA7 h d
87G9 L 621
DC9 h DC9 r r DC9 h
r 17G7 . A BG7G CB
G 97 p c u h
G G 7G C
h v t v
CDG A 621 . 7A a
BC A7 L c v c 97 B f
97 B ) 9 D 7B n
7B CA CG7G CB 17G7 . A BG7G CB f n
7B CA D 17G7 . A BG7G CB f n
h f h f D G CB r n
h
m p
5 7G 3/
i w
go
17G7 . A BG7G CB
e
f
5 8 9 3/m
m
( )
-
u r
u
.1 1 , 594 1 7
s
4 36
u
g 4 36
c
ut
c p e
m m
ih m
D
4 36 m
m
A4
19 87 5
.1 1 , 594 1 7
o
n
u
r
0 7A1 4 /
v L
.1 1 , 594 1 7
l
Pba
c
0 2873 / v cv c
v oc
tP ocP
(
0 3984 / P
oc
(
0 8A2 5 / P
oc
t
2 2 6 5 2 8
rP
5 47
t
l 5 47
oc
t
ocP n h
v oc P
. 1 oc g y u
t 44 24B e
i P L tP
t
)
0 3984 / P
oc
0 8A2 5 / P
oc
t
p
0 8A2 5 /
v I
2 2 6 5 2 8
m
bUa
ocP
0 3984 / v ocv oc
73 7 7A
73 7 7A
73 7 7A
73 7 7A
27 07A
27 07A
9A9 7 _
9A9 7
F n u
v 9A9 7
.1 i o
g
l NL P p
s
t
r
1 9 4A7 /
a
4A4 B8 7 A4A9
bm
Rc
e
1B5 96 / ee
Ri
g
0 9B4 7 .
SN L
4 4 A8 7 4 9
e
_P
0A5 96 . _u _
D
73 7 7
73 7 7
73 7 7
73 7 7
17 /7
17 /7
_P
a v
2A5 9 P
l c
s _P m r l c n2A5 9 P l
c B bo n
g 1A5:96 0 Lg
i
a
1 9B4 7 0
L K
P
.4 4 A8 7 4 9
_S
g
1A5:96 0 Lga
a
Lg
A 7 3
/7 4 A
A 7 3
A 7 3
A 7 3
A 7 3
A 7 3
2A5 9
l c
bv 2A5 9 l c rs e
u o to m ns u
i 0 2763 / mLi
l
a
0 6 1 4 /
mL n
P
1 1 5849 1 6 9
i
0 2763 / mLia
a
mLi
r l cD or E cD o
u g D v v x u
r r
cD o . 347 t
eb
0 6 1 4 / te L
P
c
0 6 1 4 / t
e L
.1 1 5849 1 6 9
a
b uv
0 2763 / te brte b
B
D
L
D
g
mt l o 0 6 1 4 / l L
l A
0 6 1 4 /
l o 0 6 1 4 / l Ln i l
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
31 4 s
URL: 1, 3 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385
2 Andreas Veit, Michael Wilber, Serge Belongie “Residual Networks Behave Like Ensembles of Relatively Shallow Networks https://arxiv.org/abs/1605.06431”
5R 2
5
t N
t st
4 torchvision https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
B
URL: 4 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385
4 torchvision https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
B
URL: 4 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385
6 / : 3 .
3 . /6/3 . 46 / . 3 4: 3 . /6/3 3 6 3 . /6/3 3 6 6 4:
ot q
- S
d R x t
x t e c S
sz eE c
d R x t sz E
C R c S
x t
x t
i u R ot q N S
Jie Hu, Li Shen, Gang Sun “Squeeze-and-Excitation Networks” https://arxiv.org/abs/1709.01507
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
C
vx
t t u o x o
n
o n
o n
o n x
e N_ rt o n x
c o g e n x
b s sx f rt o n
. yo n
rt o n
la i m
L Y p
L p E
pb S
z
L pD
B Cb S
OE
cA
/
/
/Ba gC
D
/
m
r
b S
Y
Nh
/
.
L Y p ue Fo m dktn p si
a
L N D
..7 . 525 4. 6 3 6 1
P
. . P
a a N
EP
aA 22 (2 ) g S a c a
2 aiok pnbMf T I e W ( pm LWe baS
22 (2 ) D
3 3 .
CE c U W
U ) P
2 3 2 3 2 3 2 3 2 3 2 3
P V OC M O
A Ui Gc l( ( S a ) (
2 2 . ( 3 . c l( Sengn la l(
!

SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点

  • 1.
    7 E 8G A T N I S @ 0/21 43
  • 2.
    b / 0GBI P Q SEPPBN 0GB I P Q EEP q i h :TPDK DPP / MEEP %@KI GB I P Q ( @K PNE QPEK o v p g ku )-t ) (- ()cn d 591 4 l ra m d )t 7 B 1 EPK 3BI A :NBAE@PEK ( ( P (.(-PB I K ,% 2NK B BA j ez bsy BP@ w / DPP / I P Q GB % EIAK%@KI
  • 3.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 4.
    I tG 4103.5/ ü ü ü s r mG ü _ s ü _ 8 6 ) ( ) 28:97 ( ) 8 6 ( 8 6 ) ( ( 8 6 ) ( ) 8 6 ( ) ) 8 6 ) )( ( ü r ü Sa ü ü n T E m G G tG I K r m G m e uN T uN G m G uN
  • 5.
    / 4985 .73673 6 / 8 3 7 .7367 3 6 e 1 38 r is 17 o mP P S mS mr / 4985 . P / 8 3 7 . P 0 4:8 P r c ) ( ( v v 7 2 7 :3 7 2 7 2 7 2 7 2 7 2 ü n / 4985 . o u _ ü L ü n ta / 8 3 7 . b l T dK
  • 6.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 7.
    p L s U8 6 8 ihms n p 9 p g ja n /2 4 2 , p o p , - 4 L t d m : 2 2 7 1 p e x c R 7 p R p n 10/. 7 . 86 2 5 9 3 : 5 8 8
  • 8.
    [ – 8 – 77 m 0 7 ] 8 5 7 6 9 7 ] 7 7 8 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2
  • 10.
  • 11.
    ) 7 2( 32px 32px
  • 12.
    NU P r NUt3u 6 65 9 7 3 9 oFs 3 n P rI e v v s r N P i v s Tc % (( ac , ( 1 9 9 6 0684 9 6 2 6 1 9 9 6 .4 6 0684 9 6 .4 6 1 9 9 6 2 6 0684 9 6 g U U Tc ∩ 1 9 9 6 Tc ∪ 1 9 9 6 l U Tc % (( ( ac , ( ) , %, % rf s
  • 13.
    t s 119601P , A ocey vo g ocrc Aio i N o c sryrca t t t t /57484 2 .23084 2
  • 14.
    N P IP ∩ 01 23 ∪ 01 2 3 0 U g7 8 = N ,2 3 e a i 0 g v U se o e g 01 2 3 ,2 3
  • 15.
    A a A / 10 324W A A s G A G 8 9 A u W k n m S G t 9 e
  • 16.
    A g b Pb b b .3 043n i L B c l a me b tu8 0 D
  • 19.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 20.
    Dk i uH ü g p GL o ac a ü D g rPafmc ec ü F af r i H tf scn lc t iy tsh T g eccn ü b Ho ecCi h
  • 21.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 22.
    u b vg i 2A 4C80 c o ü /0 b vg ü /4C4 D9 8 C4C b ü eT 2A 4C8 0 c ü N o t ah /4C4 D9 8 C4C p sdr u 2D5 6 0 u ü ü 2D5 6 0 N o t vg ü L 38BC m 6B vg vg ü 11 ü P p n 8C6 u ü v u ü ü ü i t ü ü A 9 C 8BB CA4BC 2477 9 A 9 p ü 11 ahp l b l ( )
  • 23.
    L u g eA m rlv o nnt o g a / 5 0 3 . bD cP B 0 0 4738 0 598 L ru / 1652 . bDbD
  • 24.
    5A6 59B ( (( ( /-- - v (.) - / . ( - ( // ) b (/, .( (. ,-/ L t r ü o )( )( - cmf t ü s , ), s ) n t P v n t ia u T t l % 4A 6 9 31 % P 26 6 0D 9 6 e g 4D7 8 31l l ( ) , - . /
  • 25.
    2 2 A86 2 9 / D D D D p D x 989 2 ed7 9 n7 9 p D x 25 2559 8 4 9 8 f o R u L R x t p 1. ° ° g r c m b 0 9B2 6 / P a 2 2 A8 6 2 9 iv l 0A3 94 / lm m l G
  • 26.
    n n A83 8A8B 28A08B A83 8A 8B 28A08B A83 8A 8B 28A08B 7 A83 8A 8B 7 5 8 8BD A83 8A 8B 78 A 8B 783 8A 8B 4A 8B3 5 8 783 8A 8B im 00 wr n saLN 28A08B v vgu s w u ex t w s o e l 1 D4B8 / pP .4B4 C9 8 B4B _ Rcb d 1C5 6 / pP de e pP d
  • 27.
    ) h mp h 17G7 . A BG7G CB f n DC9 r h DC9 h f b z h z h z ef z e f044 h 044 v h A y v ACA BG A l ACA BG A v P 7 B B 7G h Ss 7 B B 7G G D L v DC9 r h 7AA7 c d 7AA7 h d 87G9 L 621 DC9 h DC9 r r DC9 h r 17G7 . A BG7G CB G 97 p c u h G G 7G C h v t v CDG A 621 . 7A a BC A7 L c v c 97 B f 97 B ) 9 D 7B n 7B CA CG7G CB 17G7 . A BG7G CB f n 7B CA D 17G7 . A BG7G CB f n h f h f D G CB r n h m p 5 7G 3/ i w go 17G7 . A BG7G CB e f 5 8 9 3/m m ( ) -
  • 28.
    u r u .1 1, 594 1 7 s 4 36 u g 4 36 c ut c p e m m ih m D 4 36 m m A4 19 87 5 .1 1 , 594 1 7 o n u r 0 7A1 4 / v L .1 1 , 594 1 7 l Pba c 0 2873 / v cv c
  • 29.
    v oc tP ocP ( 03984 / P oc ( 0 8A2 5 / P oc t 2 2 6 5 2 8 rP 5 47 t l 5 47 oc t ocP n h v oc P . 1 oc g y u t 44 24B e i P L tP t ) 0 3984 / P oc 0 8A2 5 / P oc t p 0 8A2 5 / v I 2 2 6 5 2 8 m bUa ocP 0 3984 / v ocv oc
  • 30.
    73 7 7A 737 7A 73 7 7A 73 7 7A 27 07A 27 07A 9A9 7 _ 9A9 7 F n u v 9A9 7 .1 i o g l NL P p s t r 1 9 4A7 / a 4A4 B8 7 A4A9 bm Rc e 1B5 96 / ee
  • 31.
    Ri g 0 9B4 7. SN L 4 4 A8 7 4 9 e _P 0A5 96 . _u _ D 73 7 7 73 7 7 73 7 7 73 7 7 17 /7 17 /7 _P a v 2A5 9 P l c s _P m r l c n2A5 9 P l c B bo n
  • 32.
    g 1A5:96 0Lg i a 1 9B4 7 0 L K P .4 4 A8 7 4 9 _S g 1A5:96 0 Lga a Lg A 7 3 /7 4 A A 7 3 A 7 3 A 7 3 A 7 3 A 7 3 2A5 9 l c bv 2A5 9 l c rs e u o to m ns u
  • 33.
    i 0 2763/ mLi l a 0 6 1 4 / mL n P 1 1 5849 1 6 9 i 0 2763 / mLia a mLi r l cD or E cD o u g D v v x u r r cD o . 347 t eb
  • 34.
    0 6 14 / te L P c 0 6 1 4 / t e L .1 1 5849 1 6 9 a b uv 0 2763 / te brte b B D L D g mt l o 0 6 1 4 / l L l A 0 6 1 4 / l o 0 6 1 4 / l Ln i l
  • 35.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 36.
    31 4 s URL:1, 3 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385 2 Andreas Veit, Michael Wilber, Serge Belongie “Residual Networks Behave Like Ensembles of Relatively Shallow Networks https://arxiv.org/abs/1605.06431” 5R 2 5 t N t st
  • 37.
    4 torchvision https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py B URL:4 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385
  • 38.
    4 torchvision https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py B URL:4 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual Learning for Image Recognition” https://arxiv.org/abs/1512.03385
  • 39.
    6 / :3 . 3 . /6/3 . 46 / . 3 4: 3 . /6/3 3 6 3 . /6/3 3 6 6 4:
  • 40.
    ot q - S dR x t x t e c S sz eE c d R x t sz E C R c S x t x t i u R ot q N S Jie Hu, Li Shen, Gang Sun “Squeeze-and-Excitation Networks” https://arxiv.org/abs/1709.01507
  • 41.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 42.
    C vx t t uo x o n o n o n o n x e N_ rt o n x c o g e n x b s sx f rt o n . yo n rt o n la i m
  • 43.
    L Y p Lp E pb S z L pD B Cb S OE cA / / /Ba gC D / m r b S Y Nh / . L Y p ue Fo m dktn p si
  • 44.
    a L N D ..7. 525 4. 6 3 6 1 P . . P a a N
  • 45.
    EP aA 22 (2) g S a c a 2 aiok pnbMf T I e W ( pm LWe baS 22 (2 ) D
  • 46.
    3 3 . CEc U W U ) P 2 3 2 3 2 3 2 3 2 3 2 3 P V OC M O A Ui Gc l( ( S a ) ( 2 2 . ( 3 . c l( Sengn la l(
  • 47.