()0 () +) q
r s
”
A& YNVfaYV &:aWaYVfa
h8RR BRa NX BR c W RN Z B Z FY U :aZP V Z
9SSRP VbRXei U 2 N dVb& T NO )0( &(,,/,
y k
m
• r q n8BBs
8BB o
w
q
uhi t
)m5X UN
m
” zyz y y
v l k
”
” p
y
y
x p
q
x
•
• 7U YNZ WN ()- 5 FG5GF
• ~ NcNTaPUV ()/ B DF
•
• LN We ()/ BB
• q FNS NZ ()/ 7A
• F
• MUNZT ()/ 7 E
• FafaWV ()0 5 FG5GF
8BB ”
S
• !" ∈ ℱ%%
!∗
: [0,1]-
→ ℝ
Y = !∗
2 + 4
5 i.i.d. 26, 76 689
:
ℱ%% DNN
7	
d
k ˆf f⇤
k2
00snt
<2 r s =ℓ2
?: ℝ@ℓ → ℝ@ℓ2 r s ℓ = 1, … ,<
!ℓ B ≔ ? DℓB + Eℓ ℓ = 1, … , <
rDℓ: =ℓ×=ℓG9 Eℓ2 =ℓ s
snt
ℱ%% ≔ ! B = !H ∘ !HG9 ∘ ⋯∘ !9 B
00
?”ER H
? B = (max B9,0 ,… ,max B-,0 )
8BB r < = 6s
!ℓ B ≔ ? DℓB + Eℓ
B
? B
0
S
• x
• 8BB !" ∈ ℱ%% ”
~y o
!∗
: [0,1]-
→ ℝ
Y = !∗
2 + 4
5 i.i.d. 26, 76 689
:
ℱ%% DNN
d
k ˆf f⇤
k2
dg m
• y
!∗
c x 8BB
r q q BB Z RR s
k
q !"(B) = ∑ RST(B,2S)S
T B, B′ 2 q
q !"(B) = ∑ RSVS BS
VS B 2 rR&T& q s
dg m
• y
!∗
”8BB” y
2 6 ( ,2
!∗
: 0,1 -
→ ℝ x
!" ”
k ”YVZVYNd q x k
E
h
k ˆf f⇤
k2
2
i
= O
⇣
n 2 /(2 +D)
⌘
q
c
•
”
y
Pd c WX
~
r ” s
Y∗
!∗
c 8BB o
• 8BB l
• FafaWV G& ()0 & :N XRN ZVZT N R S RR XRN ZVZT bVN N
WR ZRX R RP VbR& A E J 7D 5 FG5GF
• FPUYV VROR & ()/ & B Z N NYR VP RT R V Z a VZT
RR ZRa NX ZR c W cV U ER H NP VbN V Z SaZP V Z& &
• BRe UNOa 6& G YV WN E& F RO B& ()- & B Y
ON R PN NPV e P Z X VZ ZRa NX ZR c W &
• FaZ F& 7URZ J& JNZT & Va G& L& ()- & N TR
YN TVZ RR ZRa NX ZR c W 2 UR e NZ NXT V UY
• ” ” y
d c
r 0,1 Z + ~ y s
w c
196 6A9 6 2 8 9
”
” B9
BZ
! B9,BZ
w c
•
• 1.	[0,1]-
• 2.	[0,1]-
• )& [0,1]-
• m q
• m q
G[✓`](x) = x(`)
,
where x` is defined inductively as
x(0)
:= x,
x(`0)
:= ⌘(A`0 x(`0 1)
+ b`0 ), for `0
= 1, ..., ` 1,
where ⌘ is an element-wise ReLU function, i.e., ⌘(x) = (max{0, x1}, ..., max{0, x
Here, we define that c(✓) denotes a number of non-zero parameters in ✓.
1.2. Characterization for True functions. We consider a piecewise smooth
functions for characterizing f⇤. To this end, we introduce a formation of
some set of functions.
Smooth Functions Secondly, a set for smooth functions is introduced.
With ↵ > 0, let us define the H¨older norm
kfkH := max
|a|b c
sup
x2[ 1,1]D
|@a
f(x)| + max
|a|=b c
sup
x,x02[ 1,1]D
|@af(x) @af(x0)|
|x x0| b c
,
and also H ([ 1, 1]d) be the H¨older space such that
H = H ([ 1, 1]D
) := f : [ 1, 1]D
! R |kfkH  CH ,
where CH is some finite constant.
Date: January 13, 2018.
H = H ([0, 1]D
) = f : [0, 1]D
! R|kfkH < 1
ℝ-
[0,1]-
]
^ k R k
w c
• 2.	[0,1]-
• m
• _-G92 ` _̅-G92 `
• b9,… ,bcmℝ- dS2_̅-G9 → bS 2
ℬc,f ≔ E: _-G9
→ ℝ-
g5hijkgli,E@ ∘ dS ∈ mf
, = ∈ ` , h ∈ ^ 	
E_-G9
w c
• 2.	[0,1]-
• n(⋅)
•
ℛc,f ≔ n E ∩ 0,1 -
: E ∈ ℬc,f
3 3 6
8a XRe )1/, 5G
n E
” y R
R = 2 [0,1]-
w c
•
• 0,1 -
• r
• 1s(B)” t rB ∈ t 1 s
• tu ”R
• !u”v
ℱc,w,f,x = y !u B 1sz
B
u∈ w
: !u ∈ mx
, tu ∈ ℛc,f
w c
• r t
B9
BZ
! B9,BZ
t9
r = 3 m+
“
tZ
t|
•
• ~
•
!"H
≔ argmin
Å∈ℱÇÇ
∑ 76 − ! 26
Z:
689
N
D
•
• y
• ” y
ΠÖ ! S ! ∈ ℱ%%
ΠÖ	”BB r s
dΠÖ !|` ∝ exp −∑ 76 − ! 26
Z
6∈ : ãGZ
dΠÖ !
` = 26, 76 6∈[:]2 q ãZ
2
!"å ≔ ∫ !=ΠÖ(!|`)
rh y
N
D
• ” q
!∗
∈ ℱw,c,f,x k éè 1 +
x
-
+
f
Z-GZ
Θ 5
ë
íìîë + 5
ëïñ
óîëïñ 8BB z
m
x m ! ∈ mx
q
m E ∈ ℬc,f q
éè
k ˆfL
f⇤
k2
L2 = ˜O
⇣
max
n
n 2 /(2 +D)
, n ↵/(↵+D 1)
o⌘
• q
!∗
∈ ℱw,c,f,x k éè 1 +
x
-
+
f
Z-GZ
Θ 5
ë
íìîë + 5
ëïñ
óîëïñ 8BB z
m
8BB ” q
E
h
k ˆfB
f⇤
k2
L2
i
= ˜O
⇣
max
n
n 2 /(2 +D)
, n ↵/(↵+D 1)
o⌘
00
• q ”
q x
• u o 9 9 3B yy
y k
!̅ k x ò > 0
m
inf
¯f
sup
f⇤2FM,J,↵,
E
⇥
k ¯f f⇤
k2
L2
⇤
> C max
n
n 2 /(2 +D)
, n ↵/(↵+D 1)
o
d
• y ” y
• !∗
∈ ℱc,w,f,x z ” q
E F ” y
!"ö
q k q ”
Na VNZ q k
x !∗
∈ ℱc,w,f,x òö > 0 m
E
h
k ˆfK
f⇤
k2
L2
i
! CK > 0.
d
• y k
• q ”!∗
∈ ℱc,w,f,x
y k
!"õ
q ” q
kx !∗
∈ ℱw,c,f,x
ú > max −
Zx
Zxù-
, −
f
fù-G9
m
E
h
k ˆfF
f⇤
k2
L2
i
> Cn
ec c d
• r s
• 8BB
• ” y 8BB
k
• 8BB ”
• ” ~
x
-
+
f
Z-GZ
x
• ” q Θ 5
ë
íìîë + 5
ëïñ
óîëïñ
8BB” y o
00S d
• & y 1s B , t ∈ ℛf,c	
• rER Hs ”
• ! ∈ mx
• LN We ()/ BB y
• ”
DR R Z ()/ N KVb
∘
00S d
• & 8BB
• y r s
• w q y
• ” z y y
• w m q ” zyz
)g m
+g, m
-g. m
c
• 8BB”
u 5 = 1500 q y , l q )
8BB )(( y k
•
8BB
y
• 8BB y
• ”
y
y
a
•
• 8BB y
•
• 8BB
• 8BB r
s
8BB o
x n d S c c
×
q
v r s
y
snt
x
q p
q
q ”+ y
y
q
p
q
z
x z y k
• F ZR 7& & )10 & C VYNX TX ONX N R S P ZbR TRZPR S Z Z N NYR VP RT R V Z&
GUR NZZNX S N V VP )(,( )(-+&
• FafaWV G& ()0 & :N XRN ZVZT N R S RR XRN ZVZT bVN N WR ZRX R RP VbR& A E
J 7D 5 FG5GF &
• FPUYV VROR & ()/ & B Z N NYR VP RT R V Z a VZT RR ZRa NX ZR c W cV U
ER H NP VbN V Z SaZP V Z& N KVb&
• BRe UNOa 6& G YV WN E& F RO B& ()- & B Y ON R PN NPV e P Z X VZ ZRa NX
ZR c W & A E J 7D 7C G &
• FaZ F& 7URZ J& JNZT & Va G& L& ()- & N TR YN TVZ RR ZRa NX ZR c W 2
UR e NZ NXT V UY N KVb&
• 7U YNZ WN 5& RZNSS A& AN UVRa A& 5 a & 6& R7aZ L& ()/ GUR X
a SNPR S YaX VXNeR ZR c W & A E J 7D 5 FG5GF &
• NcNTaPUV & (). & 8RR XRN ZVZT cV U a X PNX YVZVYN& Z 5 bNZPR VZ BRa NX
ZS YN V Z D PR VZT Fe RY &
• LN We 8& ()/ & 9 O aZ S N dVYN V Z cV U RR ER H ZR c W & BRa NX
BR c W 1, )(+ )),&
• FNS NZ & FUNYV C& ()/ & 8R U cV U N R SS VZ N dVYN VZT ZN a NX SaZP V Z
cV U ZRa NX ZR c W & A E J 7D 7A &
• MUNZT 7& 6RZTV F& N A& ERPU 6& IVZeNX C& (). & HZ R NZ VZT RR
XRN ZVZT R aV R R UVZWVZT TRZR NXVfN V Z& 7 E&
• Ka 5& ENTVZ We A& ()/ & ZS YN V Z UR R VP NZNXe V S TRZR NXVfN V Z PN NOVXV e
S XRN ZVZT NXT V UY & Z 5 bNZPR VZ BRa NX ZS YN V Z D PR VZT Fe RY &
• y
• U 2 ccc&V N a eN&P Y

深層学習による非滑らかな関数の推定

  • 1.
    ()0 () +)q r s
  • 2.
    ” A& YNVfaYV &:aWaYVfa h8RRBRa NX BR c W RN Z B Z FY U :aZP V Z 9SSRP VbRXei U 2 N dVb& T NO )0( &(,,/, y k
  • 3.
  • 4.
    • r qn8BBs 8BB o w q uhi t )m5X UN m
  • 5.
    ” zyz yy v l k ” ” p y y x p q
  • 6.
    x • • 7U YNZWN ()- 5 FG5GF • ~ NcNTaPUV ()/ B DF • • LN We ()/ BB • q FNS NZ ()/ 7A • F • MUNZT ()/ 7 E • FafaWV ()0 5 FG5GF 8BB ”
  • 7.
    S • !" ∈ℱ%% !∗ : [0,1]- → ℝ Y = !∗ 2 + 4 5 i.i.d. 26, 76 689 : ℱ%% DNN 7 d k ˆf f⇤ k2
  • 8.
    00snt <2 r s=ℓ2 ?: ℝ@ℓ → ℝ@ℓ2 r s ℓ = 1, … ,< !ℓ B ≔ ? DℓB + Eℓ ℓ = 1, … , < rDℓ: =ℓ×=ℓG9 Eℓ2 =ℓ s snt ℱ%% ≔ ! B = !H ∘ !HG9 ∘ ⋯∘ !9 B
  • 9.
    00 ?”ER H ? B= (max B9,0 ,… ,max B-,0 ) 8BB r < = 6s !ℓ B ≔ ? DℓB + Eℓ B ? B 0
  • 10.
    S • x • 8BB!" ∈ ℱ%% ” ~y o !∗ : [0,1]- → ℝ Y = !∗ 2 + 4 5 i.i.d. 26, 76 689 : ℱ%% DNN d k ˆf f⇤ k2
  • 11.
    dg m • y !∗ cx 8BB r q q BB Z RR s k q !"(B) = ∑ RST(B,2S)S T B, B′ 2 q q !"(B) = ∑ RSVS BS VS B 2 rR&T& q s
  • 12.
    dg m • y !∗ ”8BB”y 2 6 ( ,2 !∗ : 0,1 - → ℝ x !" ” k ”YVZVYNd q x k E h k ˆf f⇤ k2 2 i = O ⇣ n 2 /(2 +D) ⌘
  • 13.
  • 14.
    c • ” y Pd c WX ~ r” s Y∗ !∗ c 8BB o
  • 15.
    • 8BB l •FafaWV G& ()0 & :N XRN ZVZT N R S RR XRN ZVZT bVN N WR ZRX R RP VbR& A E J 7D 5 FG5GF • FPUYV VROR & ()/ & B Z N NYR VP RT R V Z a VZT RR ZRa NX ZR c W cV U ER H NP VbN V Z SaZP V Z& & • BRe UNOa 6& G YV WN E& F RO B& ()- & B Y ON R PN NPV e P Z X VZ ZRa NX ZR c W & • FaZ F& 7URZ J& JNZT & Va G& L& ()- & N TR YN TVZ RR ZRa NX ZR c W 2 UR e NZ NXT V UY • ” ” y
  • 16.
    d c r 0,1Z + ~ y s w c 196 6A9 6 2 8 9 ” ” B9 BZ ! B9,BZ
  • 17.
    w c • • 1. [0,1]- •2. [0,1]- • )& [0,1]- • m q • m q G[✓`](x) = x(`) , where x` is defined inductively as x(0) := x, x(`0) := ⌘(A`0 x(`0 1) + b`0 ), for `0 = 1, ..., ` 1, where ⌘ is an element-wise ReLU function, i.e., ⌘(x) = (max{0, x1}, ..., max{0, x Here, we define that c(✓) denotes a number of non-zero parameters in ✓. 1.2. Characterization for True functions. We consider a piecewise smooth functions for characterizing f⇤. To this end, we introduce a formation of some set of functions. Smooth Functions Secondly, a set for smooth functions is introduced. With ↵ > 0, let us define the H¨older norm kfkH := max |a|b c sup x2[ 1,1]D |@a f(x)| + max |a|=b c sup x,x02[ 1,1]D |@af(x) @af(x0)| |x x0| b c , and also H ([ 1, 1]d) be the H¨older space such that H = H ([ 1, 1]D ) := f : [ 1, 1]D ! R |kfkH  CH , where CH is some finite constant. Date: January 13, 2018. H = H ([0, 1]D ) = f : [0, 1]D ! R|kfkH < 1
  • 18.
    ℝ- [0,1]- ] ^ k Rk w c • 2. [0,1]- • m • _-G92 ` _̅-G92 ` • b9,… ,bcmℝ- dS2_̅-G9 → bS 2 ℬc,f ≔ E: _-G9 → ℝ- g5hijkgli,E@ ∘ dS ∈ mf , = ∈ ` , h ∈ ^ E_-G9
  • 19.
    w c • 2. [0,1]- •n(⋅) • ℛc,f ≔ n E ∩ 0,1 - : E ∈ ℬc,f 3 3 6 8a XRe )1/, 5G n E ” y R R = 2 [0,1]-
  • 20.
    w c • • 0,1- • r • 1s(B)” t rB ∈ t 1 s • tu ”R • !u”v ℱc,w,f,x = y !u B 1sz B u∈ w : !u ∈ mx , tu ∈ ℛc,f
  • 21.
    w c • rt B9 BZ ! B9,BZ t9 r = 3 m+ “ tZ t|
  • 22.
  • 23.
    • • y • ”y ΠÖ ! S ! ∈ ℱ%% ΠÖ ”BB r s dΠÖ !|` ∝ exp −∑ 76 − ! 26 Z 6∈ : ãGZ dΠÖ ! ` = 26, 76 6∈[:]2 q ãZ 2 !"å ≔ ∫ !=ΠÖ(!|`) rh y N D
  • 25.
    • ” q !∗ ∈ℱw,c,f,x k éè 1 + x - + f Z-GZ Θ 5 ë íìîë + 5 ëïñ óîëïñ 8BB z m x m ! ∈ mx q m E ∈ ℬc,f q éè k ˆfL f⇤ k2 L2 = ˜O ⇣ max n n 2 /(2 +D) , n ↵/(↵+D 1) o⌘
  • 26.
    • q !∗ ∈ ℱw,c,f,xk éè 1 + x - + f Z-GZ Θ 5 ë íìîë + 5 ëïñ óîëïñ 8BB z m 8BB ” q E h k ˆfB f⇤ k2 L2 i = ˜O ⇣ max n n 2 /(2 +D) , n ↵/(↵+D 1) o⌘
  • 27.
    00 • q ” qx • u o 9 9 3B yy y k !̅ k x ò > 0 m inf ¯f sup f⇤2FM,J,↵, E ⇥ k ¯f f⇤ k2 L2 ⇤ > C max n n 2 /(2 +D) , n ↵/(↵+D 1) o
  • 28.
    d • y ”y • !∗ ∈ ℱc,w,f,x z ” q E F ” y !"ö q k q ” Na VNZ q k x !∗ ∈ ℱc,w,f,x òö > 0 m E h k ˆfK f⇤ k2 L2 i ! CK > 0.
  • 29.
    d • y k •q ”!∗ ∈ ℱc,w,f,x y k !"õ q ” q kx !∗ ∈ ℱw,c,f,x ú > max − Zx Zxù- , − f fù-G9 m E h k ˆfF f⇤ k2 L2 i > Cn
  • 30.
    ec c d •r s • 8BB • ” y 8BB k • 8BB ” • ” ~ x - + f Z-GZ x • ” q Θ 5 ë íìîë + 5 ëïñ óîëïñ
  • 31.
  • 32.
    00S d • &y 1s B , t ∈ ℛf,c • rER Hs ” • ! ∈ mx • LN We ()/ BB y • ” DR R Z ()/ N KVb ∘
  • 33.
    00S d • &8BB • y r s • w q y • ” z y y • w m q ” zyz )g m +g, m -g. m
  • 35.
    c • 8BB” u 5= 1500 q y , l q ) 8BB )(( y k
  • 36.
  • 38.
    a • • 8BB y • •8BB • 8BB r s 8BB o x n d S c c
  • 39.
    × q v r s y snt x qp q q ”+ y y q p q z
  • 40.
  • 41.
    • F ZR7& & )10 & C VYNX TX ONX N R S P ZbR TRZPR S Z Z N NYR VP RT R V Z& GUR NZZNX S N V VP )(,( )(-+& • FafaWV G& ()0 & :N XRN ZVZT N R S RR XRN ZVZT bVN N WR ZRX R RP VbR& A E J 7D 5 FG5GF & • FPUYV VROR & ()/ & B Z N NYR VP RT R V Z a VZT RR ZRa NX ZR c W cV U ER H NP VbN V Z SaZP V Z& N KVb& • BRe UNOa 6& G YV WN E& F RO B& ()- & B Y ON R PN NPV e P Z X VZ ZRa NX ZR c W & A E J 7D 7C G & • FaZ F& 7URZ J& JNZT & Va G& L& ()- & N TR YN TVZ RR ZRa NX ZR c W 2 UR e NZ NXT V UY N KVb& • 7U YNZ WN 5& RZNSS A& AN UVRa A& 5 a & 6& R7aZ L& ()/ GUR X a SNPR S YaX VXNeR ZR c W & A E J 7D 5 FG5GF & • NcNTaPUV & (). & 8RR XRN ZVZT cV U a X PNX YVZVYN& Z 5 bNZPR VZ BRa NX ZS YN V Z D PR VZT Fe RY & • LN We 8& ()/ & 9 O aZ S N dVYN V Z cV U RR ER H ZR c W & BRa NX BR c W 1, )(+ )),& • FNS NZ & FUNYV C& ()/ & 8R U cV U N R SS VZ N dVYN VZT ZN a NX SaZP V Z cV U ZRa NX ZR c W & A E J 7D 7A & • MUNZT 7& 6RZTV F& N A& ERPU 6& IVZeNX C& (). & HZ R NZ VZT RR XRN ZVZT R aV R R UVZWVZT TRZR NXVfN V Z& 7 E& • Ka 5& ENTVZ We A& ()/ & ZS YN V Z UR R VP NZNXe V S TRZR NXVfN V Z PN NOVXV e S XRN ZVZT NXT V UY & Z 5 bNZPR VZ BRa NX ZS YN V Z D PR VZT Fe RY &
  • 42.
    • y • U2 ccc&V N a eN&P Y