SlideShare a Scribd company logo
1 of 43
Mass of the Moon is about  1/80 that of the Earth, and its diameter is about 1/4 that of the Earth. The orbit is very nearly circular (eccentricity ~ 0.05) with a mean separation from the Earth of about 384,000 km, which is about 60 Earth radii. The plane of the orbit is tilted about 5 degrees with respect to the ecliptic plane.  The Moon
Moon is the primary cause of tides Tides due to the Sun are two times weaker The interior of the Moon and Earth is heated by tides. (Compare to Io!)
As the Earth rotates beneath the tidal bulges, it attempts to drag the bulges along with it. A large amount of friction is produced which slows down the Earth's spin. The day has been getting longer and longer by about 0.0016 seconds each century.   The Earth’s day was 18 hours long 900 million yr ago Eventually the Earth will keep one face towards Moon. Moon already keeps one face towards Earth – rotational period equals orbital period of 29.5 days.
Fig. 17-4b, p.353 Since the synodic rotational period of the Moon is 29.5 days, Lunar day and Lunar night are each about 15 Earth days long. During the Lunar night the temperature drops to around -113 degrees Celsius, while during the Lunar day the temperature reaches 100 degrees Celsius. The temperature changes are very rapid since there is no atmosphere or surface water to store heat.
Moon has too weak gravity to keep the atmosphere. That is why it also does not have liquid water. It may have ice though (important for future stations!)
Fig. 17-15, p.370
Impact Cratering Impact craters on the moon can be seen easily even with small telescopes.  Ejecta from the impact can be seen as bright rays originating from young craters
4.6 billion years ago: Heavy Bombardment
History of Impact Cratering Most craters seen on the moon’s (and Mercury’s) surface were formed within the first ~  1/2  billion years. Rate of impacts due to interplanetary bombardment decreased rapidly after the formation of the solar system.
Moon Rocks All moon rocks brought back to Earth are  igneous  (= solidified lava) No sedimentary rocks => No sign of water ever present on the moon. Different types of moon rocks: Vesicular   (= containing holes from gas bubbles in the lava) basalts, typical of dark rocks found in maria Breccias  (= fragments of different types of rock cemented together), also containing  anorthosites  (= bright, low-density rocks typical of highlands) Older rocks become pitted with small micrometeorite craters
Lunar maria (“seas”) – huge flows of dark basalt lava
Formation of Maria Impacts of heavy meteorites broke the crust and produced large basins that were flooded with lava
The Moon's density (3.3 g/cm 3 ) is fairly uniform throughout and is only about 3.3 times the density of water. If it has an iron core, it is less than 800 kilometers in diameter. This is a  sharp contrast from planets like Mercury and the Earth  that have large iron-nickel cores and overall densities more than 5 times the density of water. The Moon's mantle is made of silicate materials, like the Earth's mantle, and makes up about 90% of the Moon's volume. The temperatures do increase closer to the center and  may  be high enough to partially liquify the material close to the center. Its lack of a liquid iron-nickel core and slow rotation is why the Moon has no magnetic field.  Lunar samples brought back by the Apollo astronauts show that compared to the Earth, the Moon is  deficient in iron and nickel and volatiles  (elements and compounds that turn into gas at relatively low temperatures) such as water and lead. The Moon is richer in elements and compounds that vaporize at very high temperatures. The Moon's material is like the Earth's mantle material but was heated to very high temperatures so that the volatiles escaped to space.   Strange peculiarities in the Moon’s composition
Our Moon could have been formed in a giant collision 4.5 billion years ago
proposes that a large Mars-sized object hit the Earth and blew mantle material outward which later recoalesced to form the Moon. The Earth had already differentiated by the time of the giant impact so its mantle was already iron-poor. The impact and exposure to space got rid of the volatiles in the ejecta mantle material. Such an impact was rare so is was not likely to have also occurred on the other terrestrial planets.   Giant impact theory:
Modern Theory of Formation of the Moon The Large-Impact Hypothesis ,[object Object],   consistent with “sea of magma” ,[object Object],   Large angular momentum of Earth-moon system ,[object Object],   Different chemical compositions of Earth and moon
Mercury Very similar to Earth’s moon in several ways: ,[object Object],[object Object],[object Object],Most of our knowledge based on measurements by Mariner 10 spacecraft (1974 - 1975) View from Earth
Mariner 10: images of Mercury
The surface conditions are among the harshest in the Solar System. During the long Mercurian day the temperature rises to about 425 degrees Celsius, hot enough to melt lead and hotter than any planet except Venus. Because there is no substantial atmosphere to retain heat, during the equally long nights, the temperature drops quickly to around -180 degrees Celsius, which is among the coldest found in the Solar System. This range of -180 Celsius at night to 425 Celsius in the day is the largest surface temperature variation in the Solar System.
Mercury
Venus - Earth - Mars visible UV
Venus - the brightest "star" The goddess of beauty
The Rotation of Venus ,[object Object],[object Object],[object Object],Possible reasons: ,[object Object],[object Object]
Venus is the second planet from the Sun, with a nearly circular orbit having an average radius of 0.7 A.U. This gives it an orbital period of 225 days. Venus is peculiar in that its rotation is retrograde (in the opposite sense of the Earth and all other planets except Uranus) and because it is very slow: a day on Venus corresponds to 243 Earth days. At present, we have no solid explanation for why this is so. The most plausible theories invoke the collision of two large masses to form Venus in just such a way to cancel most of the rotation for the two masses. Like Mercury, but unlike the other planets, Venus has no moons.   UV Radio image
 
Flight over Venus
Venus is about 95% the size of the Earth and has 82% of the Earth's mass. Like the Earth, Venus has a rocky crust and iron-nickel core. But the similarities stop there. Venus has a thick atmosphere made of 96% carbon dioxide ( CO2 ), 3.5% nitrogen ( N2 ), and 0.5% other gases. At Venus' surface, the air pressure is 91 times the Earth's surface atmospheric pressure. Venus' surface atmospheric pressure is the same as what you would feel if you were 1  kilometer  below the ocean surface on the Earth. A human cannot survive at depths greater than just 70 meters below the ocean surface without special diving suits or a submarine. If you want to send someone to Venus, that person would need to be in something like a diving bell.  The Venus explorer would also need a very powerful cooling system: the surface temperature is 737 K (= 477° C)! This is hot enough to melt lead and is over twice as hot as it would be if Venus did not have an atmosphere. Why does Venus have such a thick atmosphere and why is it so hot on its surface?
The Atmosphere of Venus UV image Extremely inhospitable: 96 % carbon dioxide (CO 2 ) 3.5 % nitrogen (N 2 ) Rest: water (H 2 O), hydrochloric acid (HCl), hydrofluoric acid (HF) 4 thick cloud layers  (    surface invisible to us from Earth). Very stable circulation patterns with high-speed winds (up to 240 km/h) Extremely high surface temperature up to 745 K (= 880  o F) Very efficient “greenhouse”! UV image
 
Fig. 17-3a, p.349 Greenhouse for trapping heat Runaway greenhouse effect
The Surface of Venus Early radar images already revealed mountains, plains, craters. Venera 13 photograph of surface of Venus: Colors modified by clouds in Venus’s atmosphere More details from orbiting and landing spacecraft: After correction for atmospheric color effect:
Mars ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
"It will be possible to see cities on Mars, to detect navies in [its] harbors, and the smoke of great manufacturing cities and towns... Is Mars inhabited? There can be little doubt of it ... conditions are all favorable for life, and life, too, of a high order. Is it possible to know this of a certainty? Certainly."   Samuel Leland 1895
Tales of Canals and Life on Mars Early observers (Schiaparelli, Lowell) believed to see canals on Mars This, together with growth/shrinking of polar cap, sparked imagination and sci-fi tales of life on Mars. We know today: “canals” were optical illusion; do not exist! No evidence of life on Mars.
Mars is about half the diameter of the Earth and has 1/10th the Earth's mass. Mars' thin atmosphere (just 1/100th the Earth's) does not trap much heat at all even though it is 95% carbon dioxide ( CO2 ). The other 3% is nitrogen ( N2 ). Because the atmosphere is so thin, the greenhouse effect is insignificant and Mars has rapid cooling between night and day. When night comes the temperature can drop by over 100 K (180° F)! The large temperature differences create strong winds. The strong winds whip up dust and within a few weeks time, they can make dust storms that cover the entire planet for a few months.
 
The Geology of Mars Giant volcanoes Valleys Impact craters Vallis Marineris Reddish deserts of broken rock, probably smashed by meteorite impacts.
Volcanism on Mars Volcanoes on Mars are shield volcanoes.  Olympus Mons: Highest and largest volcano in the solar system.
The Geology of Mars (2) Northern Lowlands: Free of craters; probably re-surfaced a few billion years ago. Southern Highlands: Heavily cratered; probably 2 – 3 billion years old. Possibly once filled with water.
Hidden Water on Mars No liquid water on the surface: Would evaporate due to low pressure. But evidence for liquid water in the past: Outflow channels from sudden, massive floods Collapsed structures after withdrawal of sub-surface water Splash craters and valleys resembling meandering river beds Gullies, possibly from debris flows Central channel in a valley suggests long-term flowing water
Hidden Water on Mars (2) Gusev Crater and Ma’adim Vallis:  Giant lakes might have drained repeatedly through the Ma’adim Vallis into the crater.
Mars Rovers: discovery of water on Mars!
Salty rocks on Mars: former sea bottom

More Related Content

What's hot

History Of Age Of The Earth
History Of Age Of The EarthHistory Of Age Of The Earth
History Of Age Of The Earth
Jan Parker
 

What's hot (20)

THE UNIVERSE
THE UNIVERSETHE UNIVERSE
THE UNIVERSE
 
Jupiter
JupiterJupiter
Jupiter
 
Basics of the universe
Basics of  the universeBasics of  the universe
Basics of the universe
 
The sun
The sunThe sun
The sun
 
Space Facts for Kids Infographic
Space Facts for Kids InfographicSpace Facts for Kids Infographic
Space Facts for Kids Infographic
 
The Solar System
The Solar SystemThe Solar System
The Solar System
 
Cosmic evolution 04162009short
Cosmic evolution 04162009shortCosmic evolution 04162009short
Cosmic evolution 04162009short
 
Formation of the Solar System
Formation of the Solar SystemFormation of the Solar System
Formation of the Solar System
 
Milky way galaxy
Milky way galaxyMilky way galaxy
Milky way galaxy
 
Chap 2 earth's interior
Chap 2   earth's interiorChap 2   earth's interior
Chap 2 earth's interior
 
Stars - Stellar Evolution
Stars - Stellar EvolutionStars - Stellar Evolution
Stars - Stellar Evolution
 
Venus
VenusVenus
Venus
 
History Of Age Of The Earth
History Of Age Of The EarthHistory Of Age Of The Earth
History Of Age Of The Earth
 
Origin of the Earth
Origin of the EarthOrigin of the Earth
Origin of the Earth
 
Space telescopes
Space telescopesSpace telescopes
Space telescopes
 
origin of earth
origin of earthorigin of earth
origin of earth
 
Dwarf planets
Dwarf planetsDwarf planets
Dwarf planets
 
Origin of the earth
Origin of the earthOrigin of the earth
Origin of the earth
 
The origin of the solar system
The origin of the solar systemThe origin of the solar system
The origin of the solar system
 
Expanding universe
Expanding universeExpanding universe
Expanding universe
 

Viewers also liked

Solar system 05 terrestrial planets
Solar system 05 terrestrial planetsSolar system 05 terrestrial planets
Solar system 05 terrestrial planets
BHSEarthScience
 
Venus presentation
Venus presentationVenus presentation
Venus presentation
ktuttle34
 

Viewers also liked (11)

venus and mars
venus and marsvenus and mars
venus and mars
 
EXPLORING ON MARS - THE RED PLANET
EXPLORING ON MARS - THE RED PLANETEXPLORING ON MARS - THE RED PLANET
EXPLORING ON MARS - THE RED PLANET
 
Planetary Atmospheres & Life
Planetary Atmospheres & LifePlanetary Atmospheres & Life
Planetary Atmospheres & Life
 
The sun,mercury, venus and mars
The sun,mercury, venus and marsThe sun,mercury, venus and mars
The sun,mercury, venus and mars
 
Evaluating the impact of Mars and Venus Effect on the use of an Adaptive Lear...
Evaluating the impact of Mars and Venus Effect on the use of an Adaptive Lear...Evaluating the impact of Mars and Venus Effect on the use of an Adaptive Lear...
Evaluating the impact of Mars and Venus Effect on the use of an Adaptive Lear...
 
Mercury Venus Mars
Mercury Venus MarsMercury Venus Mars
Mercury Venus Mars
 
Solar system 05 terrestrial planets
Solar system 05 terrestrial planetsSolar system 05 terrestrial planets
Solar system 05 terrestrial planets
 
Venus presentation
Venus presentationVenus presentation
Venus presentation
 
The Moon... physical characteristics (teach)
 The Moon... physical characteristics  (teach) The Moon... physical characteristics  (teach)
The Moon... physical characteristics (teach)
 
Mars facts ppt
Mars facts ppt Mars facts ppt
Mars facts ppt
 
Planet Mars
Planet MarsPlanet Mars
Planet Mars
 

Similar to moon, mars, venus

moon and mercury
moon and mercurymoon and mercury
moon and mercury
Bob Smullen
 
Our Solar System
Our Solar SystemOur Solar System
Our Solar System
rbarneveld
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
vegayjorge
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
vegayjorge
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
vegayjorge
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
vegayjorge
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
vegayjorge
 
Our Solar System
Our Solar SystemOur Solar System
Our Solar System
mlong24
 
Semester II Final Review
Semester II Final ReviewSemester II Final Review
Semester II Final Review
rantaj000
 

Similar to moon, mars, venus (20)

Ch09 inner planets
Ch09 inner planetsCh09 inner planets
Ch09 inner planets
 
moon and mercury
moon and mercurymoon and mercury
moon and mercury
 
Touring our solar system (astronomy)
Touring  our solar system (astronomy)Touring  our solar system (astronomy)
Touring our solar system (astronomy)
 
SOLAR SYSTEM
SOLAR SYSTEMSOLAR SYSTEM
SOLAR SYSTEM
 
Our Solar System
Our Solar SystemOur Solar System
Our Solar System
 
Astonishing Astronomy 101 – Chapters 9, 10 and 11
Astonishing Astronomy 101 – Chapters 9, 10 and 11Astonishing Astronomy 101 – Chapters 9, 10 and 11
Astonishing Astronomy 101 – Chapters 9, 10 and 11
 
THE PLANET MERCURY
THE PLANET MERCURYTHE PLANET MERCURY
THE PLANET MERCURY
 
Solar system
Solar systemSolar system
Solar system
 
Dtu10e lecture ppt_ch07
Dtu10e lecture ppt_ch07Dtu10e lecture ppt_ch07
Dtu10e lecture ppt_ch07
 
Ppt for ma'am belmi
Ppt for ma'am belmiPpt for ma'am belmi
Ppt for ma'am belmi
 
Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6
 
Solar system
Solar systemSolar system
Solar system
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
 
Inside the planets of the solar system
Inside the planets of the solar systemInside the planets of the solar system
Inside the planets of the solar system
 
Astonishing Astronomy 101 - Chapter 8
Astonishing Astronomy 101 - Chapter 8Astonishing Astronomy 101 - Chapter 8
Astonishing Astronomy 101 - Chapter 8
 
Our Solar System
Our Solar SystemOur Solar System
Our Solar System
 
Semester II Final Review
Semester II Final ReviewSemester II Final Review
Semester II Final Review
 

More from Lionel Wolberger

More from Lionel Wolberger (20)

Fueling-the-AI-revolution.pdf
Fueling-the-AI-revolution.pdfFueling-the-AI-revolution.pdf
Fueling-the-AI-revolution.pdf
 
World Trade Center Collapse
World Trade Center CollapseWorld Trade Center Collapse
World Trade Center Collapse
 
Managing Type 2 Diabetes
Managing Type 2 DiabetesManaging Type 2 Diabetes
Managing Type 2 Diabetes
 
Unique Properties At The Nanoscale
Unique Properties At The NanoscaleUnique Properties At The Nanoscale
Unique Properties At The Nanoscale
 
The Chemistry Of The Cell
The Chemistry Of The CellThe Chemistry Of The Cell
The Chemistry Of The Cell
 
You See It – But Do You Believe It
You See It – But Do You Believe ItYou See It – But Do You Believe It
You See It – But Do You Believe It
 
Clay Minerals And Soil Structure
Clay Minerals And Soil StructureClay Minerals And Soil Structure
Clay Minerals And Soil Structure
 
The Shapes Of Molecules
The Shapes Of MoleculesThe Shapes Of Molecules
The Shapes Of Molecules
 
Industrial Revolution
Industrial RevolutionIndustrial Revolution
Industrial Revolution
 
Wireless Broadband
Wireless BroadbandWireless Broadband
Wireless Broadband
 
Fundamental Elements Of Music
Fundamental Elements Of MusicFundamental Elements Of Music
Fundamental Elements Of Music
 
Donkey Milk
Donkey MilkDonkey Milk
Donkey Milk
 
Proteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for ProteomicsProteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for Proteomics
 
Vital Water
Vital WaterVital Water
Vital Water
 
Liquids and Solids
Liquids and SolidsLiquids and Solids
Liquids and Solids
 
The synaptic order a key concept to understand multicenter bonding synaptic
The synaptic order a key concept  to understand multicenter bonding synapticThe synaptic order a key concept  to understand multicenter bonding synaptic
The synaptic order a key concept to understand multicenter bonding synaptic
 
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & AbIntroduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
 
Living Systems. eukaryotes. best pix. figures1.ppt
Living Systems. eukaryotes. best pix. figures1.pptLiving Systems. eukaryotes. best pix. figures1.ppt
Living Systems. eukaryotes. best pix. figures1.ppt
 
Autoimmunity
AutoimmunityAutoimmunity
Autoimmunity
 
Milky Way physics 101
Milky Way physics 101Milky Way physics 101
Milky Way physics 101
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 

moon, mars, venus

  • 1. Mass of the Moon is about 1/80 that of the Earth, and its diameter is about 1/4 that of the Earth. The orbit is very nearly circular (eccentricity ~ 0.05) with a mean separation from the Earth of about 384,000 km, which is about 60 Earth radii. The plane of the orbit is tilted about 5 degrees with respect to the ecliptic plane. The Moon
  • 2. Moon is the primary cause of tides Tides due to the Sun are two times weaker The interior of the Moon and Earth is heated by tides. (Compare to Io!)
  • 3. As the Earth rotates beneath the tidal bulges, it attempts to drag the bulges along with it. A large amount of friction is produced which slows down the Earth's spin. The day has been getting longer and longer by about 0.0016 seconds each century. The Earth’s day was 18 hours long 900 million yr ago Eventually the Earth will keep one face towards Moon. Moon already keeps one face towards Earth – rotational period equals orbital period of 29.5 days.
  • 4. Fig. 17-4b, p.353 Since the synodic rotational period of the Moon is 29.5 days, Lunar day and Lunar night are each about 15 Earth days long. During the Lunar night the temperature drops to around -113 degrees Celsius, while during the Lunar day the temperature reaches 100 degrees Celsius. The temperature changes are very rapid since there is no atmosphere or surface water to store heat.
  • 5. Moon has too weak gravity to keep the atmosphere. That is why it also does not have liquid water. It may have ice though (important for future stations!)
  • 7. Impact Cratering Impact craters on the moon can be seen easily even with small telescopes. Ejecta from the impact can be seen as bright rays originating from young craters
  • 8. 4.6 billion years ago: Heavy Bombardment
  • 9. History of Impact Cratering Most craters seen on the moon’s (and Mercury’s) surface were formed within the first ~ 1/2 billion years. Rate of impacts due to interplanetary bombardment decreased rapidly after the formation of the solar system.
  • 10. Moon Rocks All moon rocks brought back to Earth are igneous (= solidified lava) No sedimentary rocks => No sign of water ever present on the moon. Different types of moon rocks: Vesicular (= containing holes from gas bubbles in the lava) basalts, typical of dark rocks found in maria Breccias (= fragments of different types of rock cemented together), also containing anorthosites (= bright, low-density rocks typical of highlands) Older rocks become pitted with small micrometeorite craters
  • 11. Lunar maria (“seas”) – huge flows of dark basalt lava
  • 12. Formation of Maria Impacts of heavy meteorites broke the crust and produced large basins that were flooded with lava
  • 13. The Moon's density (3.3 g/cm 3 ) is fairly uniform throughout and is only about 3.3 times the density of water. If it has an iron core, it is less than 800 kilometers in diameter. This is a sharp contrast from planets like Mercury and the Earth that have large iron-nickel cores and overall densities more than 5 times the density of water. The Moon's mantle is made of silicate materials, like the Earth's mantle, and makes up about 90% of the Moon's volume. The temperatures do increase closer to the center and may be high enough to partially liquify the material close to the center. Its lack of a liquid iron-nickel core and slow rotation is why the Moon has no magnetic field. Lunar samples brought back by the Apollo astronauts show that compared to the Earth, the Moon is deficient in iron and nickel and volatiles (elements and compounds that turn into gas at relatively low temperatures) such as water and lead. The Moon is richer in elements and compounds that vaporize at very high temperatures. The Moon's material is like the Earth's mantle material but was heated to very high temperatures so that the volatiles escaped to space. Strange peculiarities in the Moon’s composition
  • 14. Our Moon could have been formed in a giant collision 4.5 billion years ago
  • 15. proposes that a large Mars-sized object hit the Earth and blew mantle material outward which later recoalesced to form the Moon. The Earth had already differentiated by the time of the giant impact so its mantle was already iron-poor. The impact and exposure to space got rid of the volatiles in the ejecta mantle material. Such an impact was rare so is was not likely to have also occurred on the other terrestrial planets. Giant impact theory:
  • 16.
  • 17.
  • 18. Mariner 10: images of Mercury
  • 19. The surface conditions are among the harshest in the Solar System. During the long Mercurian day the temperature rises to about 425 degrees Celsius, hot enough to melt lead and hotter than any planet except Venus. Because there is no substantial atmosphere to retain heat, during the equally long nights, the temperature drops quickly to around -180 degrees Celsius, which is among the coldest found in the Solar System. This range of -180 Celsius at night to 425 Celsius in the day is the largest surface temperature variation in the Solar System.
  • 21. Venus - Earth - Mars visible UV
  • 22. Venus - the brightest "star" The goddess of beauty
  • 23.
  • 24. Venus is the second planet from the Sun, with a nearly circular orbit having an average radius of 0.7 A.U. This gives it an orbital period of 225 days. Venus is peculiar in that its rotation is retrograde (in the opposite sense of the Earth and all other planets except Uranus) and because it is very slow: a day on Venus corresponds to 243 Earth days. At present, we have no solid explanation for why this is so. The most plausible theories invoke the collision of two large masses to form Venus in just such a way to cancel most of the rotation for the two masses. Like Mercury, but unlike the other planets, Venus has no moons. UV Radio image
  • 25.  
  • 27. Venus is about 95% the size of the Earth and has 82% of the Earth's mass. Like the Earth, Venus has a rocky crust and iron-nickel core. But the similarities stop there. Venus has a thick atmosphere made of 96% carbon dioxide ( CO2 ), 3.5% nitrogen ( N2 ), and 0.5% other gases. At Venus' surface, the air pressure is 91 times the Earth's surface atmospheric pressure. Venus' surface atmospheric pressure is the same as what you would feel if you were 1 kilometer below the ocean surface on the Earth. A human cannot survive at depths greater than just 70 meters below the ocean surface without special diving suits or a submarine. If you want to send someone to Venus, that person would need to be in something like a diving bell. The Venus explorer would also need a very powerful cooling system: the surface temperature is 737 K (= 477° C)! This is hot enough to melt lead and is over twice as hot as it would be if Venus did not have an atmosphere. Why does Venus have such a thick atmosphere and why is it so hot on its surface?
  • 28. The Atmosphere of Venus UV image Extremely inhospitable: 96 % carbon dioxide (CO 2 ) 3.5 % nitrogen (N 2 ) Rest: water (H 2 O), hydrochloric acid (HCl), hydrofluoric acid (HF) 4 thick cloud layers (  surface invisible to us from Earth). Very stable circulation patterns with high-speed winds (up to 240 km/h) Extremely high surface temperature up to 745 K (= 880 o F) Very efficient “greenhouse”! UV image
  • 29.  
  • 30. Fig. 17-3a, p.349 Greenhouse for trapping heat Runaway greenhouse effect
  • 31. The Surface of Venus Early radar images already revealed mountains, plains, craters. Venera 13 photograph of surface of Venus: Colors modified by clouds in Venus’s atmosphere More details from orbiting and landing spacecraft: After correction for atmospheric color effect:
  • 32.
  • 33. "It will be possible to see cities on Mars, to detect navies in [its] harbors, and the smoke of great manufacturing cities and towns... Is Mars inhabited? There can be little doubt of it ... conditions are all favorable for life, and life, too, of a high order. Is it possible to know this of a certainty? Certainly." Samuel Leland 1895
  • 34. Tales of Canals and Life on Mars Early observers (Schiaparelli, Lowell) believed to see canals on Mars This, together with growth/shrinking of polar cap, sparked imagination and sci-fi tales of life on Mars. We know today: “canals” were optical illusion; do not exist! No evidence of life on Mars.
  • 35. Mars is about half the diameter of the Earth and has 1/10th the Earth's mass. Mars' thin atmosphere (just 1/100th the Earth's) does not trap much heat at all even though it is 95% carbon dioxide ( CO2 ). The other 3% is nitrogen ( N2 ). Because the atmosphere is so thin, the greenhouse effect is insignificant and Mars has rapid cooling between night and day. When night comes the temperature can drop by over 100 K (180° F)! The large temperature differences create strong winds. The strong winds whip up dust and within a few weeks time, they can make dust storms that cover the entire planet for a few months.
  • 36.  
  • 37. The Geology of Mars Giant volcanoes Valleys Impact craters Vallis Marineris Reddish deserts of broken rock, probably smashed by meteorite impacts.
  • 38. Volcanism on Mars Volcanoes on Mars are shield volcanoes. Olympus Mons: Highest and largest volcano in the solar system.
  • 39. The Geology of Mars (2) Northern Lowlands: Free of craters; probably re-surfaced a few billion years ago. Southern Highlands: Heavily cratered; probably 2 – 3 billion years old. Possibly once filled with water.
  • 40. Hidden Water on Mars No liquid water on the surface: Would evaporate due to low pressure. But evidence for liquid water in the past: Outflow channels from sudden, massive floods Collapsed structures after withdrawal of sub-surface water Splash craters and valleys resembling meandering river beds Gullies, possibly from debris flows Central channel in a valley suggests long-term flowing water
  • 41. Hidden Water on Mars (2) Gusev Crater and Ma’adim Vallis: Giant lakes might have drained repeatedly through the Ma’adim Vallis into the crater.
  • 42. Mars Rovers: discovery of water on Mars!
  • 43. Salty rocks on Mars: former sea bottom