SlideShare a Scribd company logo
1 of 40
1
Isao H. Inoue
Negative charge compressibility
at the channel of
SrTiO3 field-effect transistor
National Institute of Advanced Industrial Science & Technology (AIST)
(Tsukuba, Japan)
2
N. Kumar et al., Scientific Reports 6, 25789 (2016)
Plan & Review.
Double-layer gate
insulator. Oxygen
isotope exchange.
FET device
fabrication.
Characterisation
down to 4K.
Nonequilibrium 
Mott transition.
SX growth of SrTiO3,
SrTi18O3,(Sr,La)TiO3
etc., and
characterisation.
Marcelo J. Rozenberg@U. Paris-Sud
Masaki Oshikawa@ISSP, U. Tokyo
Theory
Strong E field
effect with
topology.
Crystal
Magneto-transport
measurement below
100mK.
Pablo Stoliar@CIC nanoGUNE
Neuromorphic
SrTiO3-FET.
Neuromorphic device
fabrication.
Computer simulation of
filament formation of
MottFET
Amos Sharoni@Bar-Ilan Univ.
SX growth of
vanadates for
neuromorphic
devices.
Device
Ultra Low T
Takashi Oka@MPI, Dresden
Isao Inoue@ESPRIT, AIST
Alejandro Schulman@ESPRIT, AIST
Naoki Shirakawa@FLEC, AIST
Yasuhide Tomioka@ESPRIT, AIST
Shutaro Asanuma@NRI&TIA, AIST
Thin film growth of
perovskite TMO for
Tunnelling RRAM.
Thin Film
Thin film growth of VO2
for Mott FET.
Hiroyuki Yamada@ESPRIT, AIST
Keisuke Shibuya@ESPRIT, AIST
Thin film growth of
perovskite Nickelates.
Device fab in TIA?
Present Collaborators
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
4https://www.facebook.com/isao.phys
Our target: SrTiO3
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
5https://www.facebook.com/isao.phys
SrTiO3 isaninterestingmaterial
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
6https://www.facebook.com/isao.phys
Metal-InsulatorTransitioninSrTiO3
Our preliminary data:
MIT occurs at
the quantum resistance of h/e2.c.f. 3.5×1018cm-3 for Si
3.5×1017cm-3 for Ge
3.3 3.8 4.3 4.8 5.3
103
105
107
109
1011
1013
Vg = 1.8 V
Vg = 2 V
Vg = 2.7 V
Vg = 3 V
Vg = 3.3 V
Vg = 4.5 V
R(Ω/)
1000/T (K-1
)
h/e2
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
7https://www.facebook.com/isao.phys
M. Janousch et al.,Adv. Mat. 19, 2232 (2007)
0.2 mol% Cr-doped
SrTiO3
By applying 0.1MV/cm 

for about 30 min
Pt
Pt
Vo are created, distributed in
the channel, and form a
metallic path.
VO creation by electric-field
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
HfO2/Parylene bilayer
Hybrid gate insulator
HfO2 (ε = 21.5)
+
Parylene-C (ε=2.7)
Isao Inoue and Hisashi Shima,
Japan Patent Number: 5522688, Date of Patent: 18th April, 2014
8https://www.facebook.com/isao.phys
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 9https://www.facebook.com/isao.phys
6nmParylene
20nmHfO2
G
S D
SrTiO3 channel
4µm
S
D
V1 V2 V3
V4 V5 V6
G
4µm
G
S D
VD =
VD =
VD =
W
L
STEM+EDX
SEM
SEM
I. Inoue and H. Shima, Japan Patent No.5522688 (2014)
I. Inoue, Japan Patent Application No.2016-013743 (2016)
N. Kumar,A. Kito, I. H. Inoue, Sci. Rep. 6, 25789 (2016)
TEM
Parylene/HfO2/SrTiO3 FET
Drain current ID vs. gate voltage VG
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
10https://www.facebook.com/isao.phys
log10(ID)
VG
Ideal FET
Vth
threshold voltage
sub-threshold region
accumulation region
G
S D
VG
ID
Much better than any SrTiO3-FET in literature
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 11https://www.facebook.com/isao.phys
10
-5
10
-3
10
-1
10
1
µFE(cm
2
/Vs)
630
VG (V)
VD = 1V
VD = 0.1V
1050
n (10
13
cm
-2
)
200
100
0
σ(µS)
VD = 1V
µ=10.9cm2/Vs
Accumulation Region
—- sheet conductivity
of the channel
—- sheet carrier density
of the channel
Drain current ID vs. gate voltage VG
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
12https://www.facebook.com/isao.phys
log10(ID)
VG
Ideal FET
One order
60mV
theoreticalminimum
Vth
threshold voltage
sub-threshold region
accumulation region
G
S D
VG
ID
Much better than any SrTiO3-FET in literature
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 13https://www.facebook.com/isao.phys
10
-5
10
-3
10
-1
10
1
µFE(cm
2
/Vs)
630
VG (V)
VD = 1V
VD = 0.1V
1050
n (10
13
cm
-2
)
200
100
0
σ(µS)
VD = 1V
µ=10.9cm2/Vs
Accumulation Region
—- sheet conductivity
of the channel
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
S = 171 mV/dec
VD = 1 V
10
-14
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
VD = 0.5 V
0.1 V
0.02 V
Sub-threshold Region
—- sheet carrier density
of the channel
S=170mV/dec is extremely small !
(~100mV/dec even for Si FET).
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
14https://www.facebook.com/isao.phys
Gate
Insulator
G
non-metallic
SrTiO3
channelSD
Capacitances of normal FET
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
15https://www.facebook.com/isao.phys
5
Subthreshold swing
GateMetal4 µm
1.2 mV
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
210
9 µm
0.8 mV
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
2 µm
1.1 mV
3210
20 µm
0.6 mV
VG (V)
ID(A)
ISD(A)
VG (V)
L = 2µm L = 4µm
L = 9µm L = 20µm
S = 189 mV/dec S = 172 mV/dec
S = 200 mV/decS = 200 mV/dec
1
transport
factor
body factor
Subthreshold swing of an insulator (and semiconductor)
…… only the thermally excited
carriers can contribute the
transport.
…… definition
…… φ is the surface potential
C□
…… because = (1/ +1/ )-1n□ VGCSTO
□
CSTO
□φ = / = (1+ / )-1n□ CSTO
□ C□ VG
This does not depend whether
SrTiO3 is metallic, semiconducting,
or insulating.
Small S means
very clean channel !!
What is the sub-threshold swing?
・・・subthreshold swing
60mV/decade
=170mV/dec !!
16
HfO2/Parylene/SrTiO3
cleaner interface
continuous and large
doping control
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
17https://www.facebook.com/isao.phys
Hall effect measurement
@RT
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Parylene + HfO2
vbvb
4µm
S
D
V1 V2 V3
V4 V5 V6
G
-0.1
0
0.1
-9 -6 -3 0 3 6 9
B ( T)
VG = 6.2 V
-2
0
2
Rxy(kΩ)
VG = 3.6 V
-1
0
1 VG = 4.4 V
-0.4
-0.2
0
0.2
0.4
Rxy(MΩ)
VG = 2 V
-0.04
0
0.04 VG = 2.7 V
-0.2
0
0.2
Rxy(kΩ)
-9 -6 -3 0 3 6 9
B ( T)
VG = 5.4 V
-1
0
1
VH(mV)
-9 -6 -3 0 3 6 9
B (T)
VG = 4.8 V
-5
-4
-3
-2
-1
ΔV(mV)
1.20.80.40
Time (hours)
-9
0
9
B(T)
VG = 4.8 V
(a) (b)
ΔV(mV)
B(T)
VH(mV)
VG=4.8V
T=300K
B (T)Time (hours)(c)
B(T) B(T)
Rxy(kΩ)Rxy(kΩ)Rxy(MΩ)
VG = 2.7 VVG = 2 V
VG = 4.4 V
VG = 6.2 VVG = 5.4 V
VG = 3.6 V
VG=4.8V
⊗B
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
18https://www.facebook.com/isao.phys
Gate
Insulator
G
non-metallic
SrTiO3
channelSD
Carrier density of SrTiO3 channel
+
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
19https://www.facebook.com/isao.phys
Total capacitance estimation
subthreshold swing
60mV/decade
=170mV/dec !!
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
S = 171 mV/dec
VD = 1 V
10
-14
10
-13
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
ID(A)
3210
VG (V)
VD = 0.5 V
0.1 V
0.02 V
19
measured by fabricating
a capacitor structure
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
20https://www.facebook.com/isao.phys
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Gate
source
SrTiO3
drain
Parylene + HfO2
Low VG region is well explained
n□ obtained
by Hall effect
@RT
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
21https://www.facebook.com/isao.phys
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Parylene + HfO2
Metal-Insulator transition occurs
n□ obtained
by Hall effect
@RT
3.3 3.8 4.3 4.8 5.3
103
105
107
109
1011
1013
Vg = 1.8 V
Vg = 2 V
Vg = 2.7 V
Vg = 3 V
Vg = 3.3 V
Vg = 4.5 V
R(Ω/)
1000/T (K-1
)
h/e2
MI transition at RT
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
22https://www.facebook.com/isao.phys
G
SDchannel
Gate
Insulator
G
non-metallic
SrTiO3
channelSD
22Gate
Insulator
non-metallic
SrTiO3
Metallic channel appears !
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
23https://www.facebook.com/isao.phys
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Gate
source
SrTiO3
drain
Parylene + HfO2
n□ obtained
by Hall effect
@RT
Before the MI transition
MI transition at RT
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
24https://www.facebook.com/isao.phys
After the MI transition
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
n□ obtained
by Hall effect
10
11
10
12
10
n(c
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
Gate
source
SrTiO3
drain
@RT
Parylene + HfO2
MI transition at RT But, for to be larger than
its value before the MI transition,
must be negative !!!
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
50
49
C(pF)
10.50
Time (Hours)
VG = 0 V
VG = 8 V
VAC = 0.1 V
f = 1 kHz
50
49
VG=8V
VG=0V
Vac=0.1V
1kHz
0 1Time (hours)
Cins
(pF)
a Rig
Co
ω
Ra
spectral
weight
transfer
spectral
weight
transfer
cb
10
11
10
13
10
15
n(cm
-2
)
6420
VG (V)
1pA
1nA
1µA
ISD
0
0
0.5
(µF/cm2)
2
subthreshold
region
metallic
region
exoticmetal
region
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 25
https://www.facebook.com/isao.phys
If changes like
this, enhancement
is explained well
If channel becomes
simply metallic
Change of capacitance @ MI transition
non-metal
metal
10
11
10
12
10
13
10
14
10
15
n(cm
-2
)
-6
-3
0
3
1/C
STO
(10
6
cm
2
/F)
6420
VG (V)
50
49
C(pF)
10.50
Time (Hours)
VG = 0 V
VG = 8 V
VAC = 0.1 V
f = 1 kHz
50
49
VG=8V
VG=0V
Vac=0.1V
1kHz
0 1Time (hours)
Cins
(pF)
a Rig
Co
ω
Ra
spectral
weight
transfer
spectral
weight
transfer
cb
10
11
10
13
10
15
n(cm
-2
)
6420
VG (V)
1pA
1nA
1µA
ISD
0
0
0.5
(µF/cm2)
2
subthreshold
region
metallic
region
exoticmetal
region
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 25
https://www.facebook.com/isao.phys
If changes like
this, enhancement
is explained well
If channel becomes
simply metallic
Change of capacitance @ MI transition
non-metal
metal
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
26https://www.facebook.com/isao.phys
G
SDchannel
26Gate
Insulator
non-metallic
SrTiO3
Negative charge compressibility !?
Here
then, it must be
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 27https://www.facebook.com/isao.phys
µ
Rigid band shift
ω
Correlation gap closure
D(ω)
µ
ω
ρ(ω)
spectral weight
transfer
quasi-particle spectra
~ DOS
27
Chemical potential decreases
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 28https://www.facebook.com/isao.phys
µ
Rigid band shift
ω
D(ω)
Rashba splitting
µ
ω
ρ(ω)
spectral weight
transfer
quasi-particle spectra
~ DOS
Chemical potential decreases
29
N. Kumar et al., Scientific Reports 6, 25789 (2016)
30
HfO2/Parylene/SrTiO3
Negative capacitance
for metallic channel
Rashba effect?
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 31https://www.facebook.com/isao.phys
Band splitting due to SOC?
ZHICHENG ZHONG, ANNA T ´OTH, AND KARSTEN HELD
FIG. 1. (Color online) Band structure of t2g orbitals in bulk
SrTiO3 calculated by (a) DFT and by (b) a TB model derived in
this Rapid Communication. In the absence of spin-orbit coupling,
yz, zx, and xy are degenerate at the point. SOC splits the
sixfold-degenerate orbitals into +
7 and +
8 states separated by
O = 29 meV.
(yz
term
Hb
0
Its
agr
dee
are
the
Zhichen Zhong et al.,
Phys. Rev. B 87, 161102(R) (2013)
RAPID COMMUNICATIONS
PHYSICAL REVIEW B 87, 161102(R) (2013)
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016 32https://www.facebook.com/isao.phys
Band splitting due to SOC?
Yanwu Xie et al.,
Solid State Commun. 197, 25 (2014)
make the intercept of SH between 0 and 1.
Fig. 4. (Color online) Schematic electronic orbits. (a) Fermi surface when the
q2DEG consists of one light (l) and one heavy (h) subband, showing the inner light
circle and the outer heavier star-shaped geometry. The dark and shaded MB1 and
the yellow dashed MB2 indicate two possible magnetic breakdown (MB) orbits. The
green dots indicate the MB tunneling paths. By symmetry there are 4 equivalent
2
2
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
33https://www.facebook.com/isao.phys
VG = 4V, VD = 100 mV
B (T)
-10 100
0
-100
100
Rxy(Ω)Temperature dep. Hall effect
0 50 100 150 200 250 300
1012
10
13
10
14
1015
nhall
nins
n(cm-2
)
T (K)
n□(cm-2)
T (K)
3001000 200
1012
1013
1014
1015
n□, Hall
n□, geometric
"Negative Capacitance"
is seen down to 4K
4µm
S
D
V1 V2 V3
V4 V5 V6
G ⊗B
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
34https://www.facebook.com/isao.phys
-10 100
0
-10
10
Rxy–RHB(Ω)
B (T)
Non-linear Hall effect
Non-linearity with no hysteresis.
Subtraction of linear term RHB.
Not caused by magnetisation
-10 -8 -6 -4 -2 0 2 4 6 8 10
-100
-80
-60
-40
-20
0
20
40
60
80
100
ρxy
(Ω)
H (T)
4K
Fit
Vd = 100 mV
Vg = 4V
B (T)
-10 100
0
-0.1
Rxy(kΩ)
0.1
Fit by a two-band model
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
35https://www.facebook.com/isao.phys
A tale of two bands
Our results
30100 20
T (K)
1014
1011
nL
nH µL
100
30100 20
T (K)
0 5 10 15 20 25 30 35
1011
10
12
10
13
1014
n(cm-2
)
T (K)
n1
n2
0 5 10 15 20 25 30
100
1000
µ1
µ2
µ(cm2
/Vs)
T (K)
n□(cm-2)
1013
1012
µH
µ(cm2/Vs)
1000
µH nH
high mobility &
low density band
µL nL
low mobility &
high density band
J. S. Kim et al., PRB 82, 201407 (2010)
For LAO/STO system
1016
1013
1000
1
ZHICHENG ZHONG, ANNA T ´OTH, AND KARSTEN HELD
FIG. 1. (Color online) Band structure of t2g orbitals in bulk
SrTiO3 calculated by (a) DFT and by (b) a TB model derived in
this Rapid Communication. In the absence of spin-orbit coupling,
yz, zx, and xy are degenerate at the point. SOC splits the
sixfold-degenerate orbitals into +
7 and +
8 states separated by
O = 29 meV.
Along the -X(π,0,0) direction (here in units of 1/a with
a = 3.92 ˚A being the calculated lattice constant of STO), the
yz band has a small energy dispersion corresponding to a
???
M. Lee et al., PRL 107,
256601 (2011)
What is the origin of the Kondo effect?
Magnetic impurity??
Our data
100
R□(kΩ)
1.20
0.96
1.12
1.04
10
T (K)
R□(kΩ)
100
T (K)
3002000
1013
103
n□=9.8×1013 cm-2
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
36https://www.facebook.com/isao.phys
Kondo effect appears !
isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
M. Lee et al., PRL 107, 256601 (2011)
37https://www.facebook.com/isao.phys
This Kondo effect is unusual
R□–R□,5K(Ω)
200
0
T (K)
10
increasing
carrier density
R□–R□,5K(Ω)
T (K)
10010
200
0
n□=9.4×1013 cm-2
n□=9.8×1013 cm-2
increasing
carrier density
Originated in two bands of itinerant and nearly localised? (orbital Kondo?)
VG n□ TK ➡ TK
Our preliminary data
Or, TK increase as n□ increases due to Rashba effect?
c.f., D. Mastrogiuseppe et al., PRB 90, 035426 (2014)
36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
38
zzz
high-k/Parylene to
protect surface
Summary
https://www.facebook.com/isao.phys
Miniaturisation Limit
Use Metal-Insulator Transition
to overcome the scaling limit.
Extremely good
FETwith MIT
Negative Capacitance"Kondo"
effect
nonlinear
Hall effect
two bands
36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/
Superstripes 2016 @ Ischia, Italy June 2016
39
Ongoing/future researches
https://www.facebook.com/isao.phys
VO2
(111) SrTiO3
NiO
RNiO3
RMnO3
SrTi(18O,16O)3
etc
4µm
G
S D
HfO2/Parylene/SrTiO3 FET
Artificial synapse
& neuron utilising
2D MI transition.
4µm
S
D
V1 V2 V3
V4 V5 V6
G ⊗B
spin degree of freedom is no longer the spin itself but the
so-called chirality, which for a given band and wave vector
k characterizes the orientation of the eigenspinor, which we
label by + and −. The resulting Fermi surface is formed by
two circles (ellipses for the anisotropic bands) and shown in
Fig. 9. The peculiar spin structure will be important when we
consider the effect of a magnetic field parallel to the interface.
The anisotropic bands have each two minima at ka
0 =
±mhα/ 2
on the axis corresponding to the heavy mass. The
separated minima become a ring of radius ki
0 = mlα/ 2
in
the isotropic band. A schematic view of the resulting band
structure is given in Fig. 3.
We will see in the following how, due to the density-
dependent Rashba coupling, the band structure, and in par-
ticular its (local) minima ϵi,a
0 = αki,a
0 /2 are functions of the
electron density.
D. Field-dependent Rashba coupling
Concerning the dependence of the Rashba coupling on the
electric field, in the absence of compelling first-principles
calculations, we borrow its functional form from semicon-
ductor physics, while the appearing parameters are inferred
FIG. 3. (Color online) Schematic view of the STO band structure
formed by an isotropic Rashba band (grey) and two anisotropic bands
(orange and blue). The isotropic band has a ring of minima at ki
0 =
m∗
α/ 2
, while the anisotropic bands have each two minima at ka
0 =
±mhα/ 2
, where ka
0 is along the direction with the heavy mass mh.
19Multi-band due to Rashba effect
may explain the weird phenomena
of our SrTiO3 FET?
"Quantum phenomena"
1. Quantum oscillation of SrTiO3
2. Quantum Hall effect of SrTiO3
3. Quantum critical point (QCP) of
ferroelectricitsy of SrTi(18O,16O)3
4. Superconductivity of SrTiO3
and SrTi(18O,16O)3

More Related Content

Similar to Negative charge compressibility at the channel of SrTiO3 field-effect transistor

EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW Sensor
Elizabeth Buitrago, PhD
 
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
emilius wahyu
 

Similar to Negative charge compressibility at the channel of SrTiO3 field-effect transistor (17)

EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW Sensor
 
Divertor Tokamak Test Facility Project Proposal
Divertor Tokamak Test Facility Project ProposalDivertor Tokamak Test Facility Project Proposal
Divertor Tokamak Test Facility Project Proposal
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
Japan Booth, Small Sat Conference 2019
Japan Booth, Small Sat Conference 2019Japan Booth, Small Sat Conference 2019
Japan Booth, Small Sat Conference 2019
 
Proc,Air,Water_July 2016
Proc,Air,Water_July 2016Proc,Air,Water_July 2016
Proc,Air,Water_July 2016
 
Lamps fazia silicon-detectors_20200827_phil_yoon
Lamps fazia silicon-detectors_20200827_phil_yoonLamps fazia silicon-detectors_20200827_phil_yoon
Lamps fazia silicon-detectors_20200827_phil_yoon
 
SOTA.pptx
SOTA.pptxSOTA.pptx
SOTA.pptx
 
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine	Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
 
curriculum_english_2015
curriculum_english_2015curriculum_english_2015
curriculum_english_2015
 
8. cv ketua peneliti talenta 2021 (1)
8. cv ketua peneliti talenta 2021 (1)8. cv ketua peneliti talenta 2021 (1)
8. cv ketua peneliti talenta 2021 (1)
 
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
Baltica vii. life management and maintenance for power plants. vol. 2 ( pdf d...
 
SPICE Model Library in SPICE PARK,AUGUST 2010
SPICE Model Library in SPICE PARK,AUGUST 2010SPICE Model Library in SPICE PARK,AUGUST 2010
SPICE Model Library in SPICE PARK,AUGUST 2010
 
Surface Traping in Silicon Nanowire Dual material engineered Cylindrical gate...
Surface Traping in Silicon Nanowire Dual material engineered Cylindrical gate...Surface Traping in Silicon Nanowire Dual material engineered Cylindrical gate...
Surface Traping in Silicon Nanowire Dual material engineered Cylindrical gate...
 
A VSAT LINK MARGIN CALCULATION A TURBO-C PROGRAMME
A VSAT LINK MARGIN CALCULATION A TURBO-C PROGRAMMEA VSAT LINK MARGIN CALCULATION A TURBO-C PROGRAMME
A VSAT LINK MARGIN CALCULATION A TURBO-C PROGRAMME
 
Ultra low phase noise frequency synthesizer
Ultra low phase noise frequency synthesizerUltra low phase noise frequency synthesizer
Ultra low phase noise frequency synthesizer
 
IRJET - A Review on the Hysteretic Effects on Thin Film Transistors
IRJET -  	  A Review on the Hysteretic Effects on Thin Film TransistorsIRJET -  	  A Review on the Hysteretic Effects on Thin Film Transistors
IRJET - A Review on the Hysteretic Effects on Thin Film Transistors
 
Utvflex reeling cables
Utvflex reeling cablesUtvflex reeling cables
Utvflex reeling cables
 

Recently uploaded

Heat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree daysHeat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree days
Brahmesh Reddy B R
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 

Recently uploaded (20)

Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Heat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree daysHeat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree days
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Heads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdfHeads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdf
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
 
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
VILLAGE ATTACHMENT For rural agriculture  PPT.pptxVILLAGE ATTACHMENT For rural agriculture  PPT.pptx
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
 
NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.
 
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptxANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
 
Classification of Kerogen, Perspective on palynofacies in depositional envi...
Classification of Kerogen,  Perspective on palynofacies in depositional  envi...Classification of Kerogen,  Perspective on palynofacies in depositional  envi...
Classification of Kerogen, Perspective on palynofacies in depositional envi...
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENSANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
 
Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algae
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 

Negative charge compressibility at the channel of SrTiO3 field-effect transistor

  • 1. 1 Isao H. Inoue Negative charge compressibility at the channel of SrTiO3 field-effect transistor National Institute of Advanced Industrial Science & Technology (AIST) (Tsukuba, Japan)
  • 2. 2 N. Kumar et al., Scientific Reports 6, 25789 (2016)
  • 3. Plan & Review. Double-layer gate insulator. Oxygen isotope exchange. FET device fabrication. Characterisation down to 4K. Nonequilibrium  Mott transition. SX growth of SrTiO3, SrTi18O3,(Sr,La)TiO3 etc., and characterisation. Marcelo J. Rozenberg@U. Paris-Sud Masaki Oshikawa@ISSP, U. Tokyo Theory Strong E field effect with topology. Crystal Magneto-transport measurement below 100mK. Pablo Stoliar@CIC nanoGUNE Neuromorphic SrTiO3-FET. Neuromorphic device fabrication. Computer simulation of filament formation of MottFET Amos Sharoni@Bar-Ilan Univ. SX growth of vanadates for neuromorphic devices. Device Ultra Low T Takashi Oka@MPI, Dresden Isao Inoue@ESPRIT, AIST Alejandro Schulman@ESPRIT, AIST Naoki Shirakawa@FLEC, AIST Yasuhide Tomioka@ESPRIT, AIST Shutaro Asanuma@NRI&TIA, AIST Thin film growth of perovskite TMO for Tunnelling RRAM. Thin Film Thin film growth of VO2 for Mott FET. Hiroyuki Yamada@ESPRIT, AIST Keisuke Shibuya@ESPRIT, AIST Thin film growth of perovskite Nickelates. Device fab in TIA? Present Collaborators
  • 4. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 4https://www.facebook.com/isao.phys Our target: SrTiO3
  • 5. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 5https://www.facebook.com/isao.phys SrTiO3 isaninterestingmaterial
  • 6. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 6https://www.facebook.com/isao.phys Metal-InsulatorTransitioninSrTiO3 Our preliminary data: MIT occurs at the quantum resistance of h/e2.c.f. 3.5×1018cm-3 for Si 3.5×1017cm-3 for Ge 3.3 3.8 4.3 4.8 5.3 103 105 107 109 1011 1013 Vg = 1.8 V Vg = 2 V Vg = 2.7 V Vg = 3 V Vg = 3.3 V Vg = 4.5 V R(Ω/) 1000/T (K-1 ) h/e2
  • 7. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 7https://www.facebook.com/isao.phys M. Janousch et al.,Adv. Mat. 19, 2232 (2007) 0.2 mol% Cr-doped SrTiO3 By applying 0.1MV/cm 
 for about 30 min Pt Pt Vo are created, distributed in the channel, and form a metallic path. VO creation by electric-field
  • 8. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 HfO2/Parylene bilayer Hybrid gate insulator HfO2 (ε = 21.5) + Parylene-C (ε=2.7) Isao Inoue and Hisashi Shima, Japan Patent Number: 5522688, Date of Patent: 18th April, 2014 8https://www.facebook.com/isao.phys
  • 9. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 9https://www.facebook.com/isao.phys 6nmParylene 20nmHfO2 G S D SrTiO3 channel 4µm S D V1 V2 V3 V4 V5 V6 G 4µm G S D VD = VD = VD = W L STEM+EDX SEM SEM I. Inoue and H. Shima, Japan Patent No.5522688 (2014) I. Inoue, Japan Patent Application No.2016-013743 (2016) N. Kumar,A. Kito, I. H. Inoue, Sci. Rep. 6, 25789 (2016) TEM Parylene/HfO2/SrTiO3 FET
  • 10. Drain current ID vs. gate voltage VG isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 10https://www.facebook.com/isao.phys log10(ID) VG Ideal FET Vth threshold voltage sub-threshold region accumulation region G S D VG ID
  • 11. Much better than any SrTiO3-FET in literature isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 11https://www.facebook.com/isao.phys 10 -5 10 -3 10 -1 10 1 µFE(cm 2 /Vs) 630 VG (V) VD = 1V VD = 0.1V 1050 n (10 13 cm -2 ) 200 100 0 σ(µS) VD = 1V µ=10.9cm2/Vs Accumulation Region —- sheet conductivity of the channel —- sheet carrier density of the channel
  • 12. Drain current ID vs. gate voltage VG isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 12https://www.facebook.com/isao.phys log10(ID) VG Ideal FET One order 60mV theoreticalminimum Vth threshold voltage sub-threshold region accumulation region G S D VG ID
  • 13. Much better than any SrTiO3-FET in literature isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 13https://www.facebook.com/isao.phys 10 -5 10 -3 10 -1 10 1 µFE(cm 2 /Vs) 630 VG (V) VD = 1V VD = 0.1V 1050 n (10 13 cm -2 ) 200 100 0 σ(µS) VD = 1V µ=10.9cm2/Vs Accumulation Region —- sheet conductivity of the channel 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 ID(A) 3210 VG (V) S = 171 mV/dec VD = 1 V 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 ID(A) 3210 VG (V) VD = 0.5 V 0.1 V 0.02 V Sub-threshold Region —- sheet carrier density of the channel S=170mV/dec is extremely small ! (~100mV/dec even for Si FET).
  • 14. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 14https://www.facebook.com/isao.phys Gate Insulator G non-metallic SrTiO3 channelSD Capacitances of normal FET
  • 15. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 15https://www.facebook.com/isao.phys 5 Subthreshold swing GateMetal4 µm 1.2 mV 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 210 9 µm 0.8 mV 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 2 µm 1.1 mV 3210 20 µm 0.6 mV VG (V) ID(A) ISD(A) VG (V) L = 2µm L = 4µm L = 9µm L = 20µm S = 189 mV/dec S = 172 mV/dec S = 200 mV/decS = 200 mV/dec 1 transport factor body factor Subthreshold swing of an insulator (and semiconductor) …… only the thermally excited carriers can contribute the transport. …… definition …… φ is the surface potential C□ …… because = (1/ +1/ )-1n□ VGCSTO □ CSTO □φ = / = (1+ / )-1n□ CSTO □ C□ VG This does not depend whether SrTiO3 is metallic, semiconducting, or insulating. Small S means very clean channel !! What is the sub-threshold swing? ・・・subthreshold swing 60mV/decade =170mV/dec !!
  • 17. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 17https://www.facebook.com/isao.phys Hall effect measurement @RT 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 10 11 10 12 10 n(c -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) Parylene + HfO2 vbvb 4µm S D V1 V2 V3 V4 V5 V6 G -0.1 0 0.1 -9 -6 -3 0 3 6 9 B ( T) VG = 6.2 V -2 0 2 Rxy(kΩ) VG = 3.6 V -1 0 1 VG = 4.4 V -0.4 -0.2 0 0.2 0.4 Rxy(MΩ) VG = 2 V -0.04 0 0.04 VG = 2.7 V -0.2 0 0.2 Rxy(kΩ) -9 -6 -3 0 3 6 9 B ( T) VG = 5.4 V -1 0 1 VH(mV) -9 -6 -3 0 3 6 9 B (T) VG = 4.8 V -5 -4 -3 -2 -1 ΔV(mV) 1.20.80.40 Time (hours) -9 0 9 B(T) VG = 4.8 V (a) (b) ΔV(mV) B(T) VH(mV) VG=4.8V T=300K B (T)Time (hours)(c) B(T) B(T) Rxy(kΩ)Rxy(kΩ)Rxy(MΩ) VG = 2.7 VVG = 2 V VG = 4.4 V VG = 6.2 VVG = 5.4 V VG = 3.6 V VG=4.8V ⊗B
  • 18. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 18https://www.facebook.com/isao.phys Gate Insulator G non-metallic SrTiO3 channelSD Carrier density of SrTiO3 channel +
  • 19. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 19https://www.facebook.com/isao.phys Total capacitance estimation subthreshold swing 60mV/decade =170mV/dec !! 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 ID(A) 3210 VG (V) S = 171 mV/dec VD = 1 V 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 ID(A) 3210 VG (V) VD = 0.5 V 0.1 V 0.02 V 19 measured by fabricating a capacitor structure
  • 20. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 20https://www.facebook.com/isao.phys 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 10 11 10 12 10 n(c -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) Gate source SrTiO3 drain Parylene + HfO2 Low VG region is well explained n□ obtained by Hall effect @RT
  • 21. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 21https://www.facebook.com/isao.phys 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 10 11 10 12 10 n(c -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) Parylene + HfO2 Metal-Insulator transition occurs n□ obtained by Hall effect @RT 3.3 3.8 4.3 4.8 5.3 103 105 107 109 1011 1013 Vg = 1.8 V Vg = 2 V Vg = 2.7 V Vg = 3 V Vg = 3.3 V Vg = 4.5 V R(Ω/) 1000/T (K-1 ) h/e2 MI transition at RT
  • 22. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 22https://www.facebook.com/isao.phys G SDchannel Gate Insulator G non-metallic SrTiO3 channelSD 22Gate Insulator non-metallic SrTiO3 Metallic channel appears !
  • 23. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 23https://www.facebook.com/isao.phys 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 10 11 10 12 10 n(c -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) Gate source SrTiO3 drain Parylene + HfO2 n□ obtained by Hall effect @RT Before the MI transition MI transition at RT
  • 24. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 24https://www.facebook.com/isao.phys After the MI transition 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) n□ obtained by Hall effect 10 11 10 12 10 n(c -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) Gate source SrTiO3 drain @RT Parylene + HfO2 MI transition at RT But, for to be larger than its value before the MI transition, must be negative !!!
  • 25. 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 50 49 C(pF) 10.50 Time (Hours) VG = 0 V VG = 8 V VAC = 0.1 V f = 1 kHz 50 49 VG=8V VG=0V Vac=0.1V 1kHz 0 1Time (hours) Cins (pF) a Rig Co ω Ra spectral weight transfer spectral weight transfer cb 10 11 10 13 10 15 n(cm -2 ) 6420 VG (V) 1pA 1nA 1µA ISD 0 0 0.5 (µF/cm2) 2 subthreshold region metallic region exoticmetal region isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 25 https://www.facebook.com/isao.phys If changes like this, enhancement is explained well If channel becomes simply metallic Change of capacitance @ MI transition non-metal metal
  • 26. 10 11 10 12 10 13 10 14 10 15 n(cm -2 ) -6 -3 0 3 1/C STO (10 6 cm 2 /F) 6420 VG (V) 50 49 C(pF) 10.50 Time (Hours) VG = 0 V VG = 8 V VAC = 0.1 V f = 1 kHz 50 49 VG=8V VG=0V Vac=0.1V 1kHz 0 1Time (hours) Cins (pF) a Rig Co ω Ra spectral weight transfer spectral weight transfer cb 10 11 10 13 10 15 n(cm -2 ) 6420 VG (V) 1pA 1nA 1µA ISD 0 0 0.5 (µF/cm2) 2 subthreshold region metallic region exoticmetal region isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 25 https://www.facebook.com/isao.phys If changes like this, enhancement is explained well If channel becomes simply metallic Change of capacitance @ MI transition non-metal metal
  • 27. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 26https://www.facebook.com/isao.phys G SDchannel 26Gate Insulator non-metallic SrTiO3 Negative charge compressibility !? Here then, it must be
  • 28. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 27https://www.facebook.com/isao.phys µ Rigid band shift ω Correlation gap closure D(ω) µ ω ρ(ω) spectral weight transfer quasi-particle spectra ~ DOS 27 Chemical potential decreases
  • 29. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 28https://www.facebook.com/isao.phys µ Rigid band shift ω D(ω) Rashba splitting µ ω ρ(ω) spectral weight transfer quasi-particle spectra ~ DOS Chemical potential decreases
  • 30. 29 N. Kumar et al., Scientific Reports 6, 25789 (2016)
  • 32. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 31https://www.facebook.com/isao.phys Band splitting due to SOC? ZHICHENG ZHONG, ANNA T ´OTH, AND KARSTEN HELD FIG. 1. (Color online) Band structure of t2g orbitals in bulk SrTiO3 calculated by (a) DFT and by (b) a TB model derived in this Rapid Communication. In the absence of spin-orbit coupling, yz, zx, and xy are degenerate at the point. SOC splits the sixfold-degenerate orbitals into + 7 and + 8 states separated by O = 29 meV. (yz term Hb 0 Its agr dee are the Zhichen Zhong et al., Phys. Rev. B 87, 161102(R) (2013) RAPID COMMUNICATIONS PHYSICAL REVIEW B 87, 161102(R) (2013)
  • 33. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 32https://www.facebook.com/isao.phys Band splitting due to SOC? Yanwu Xie et al., Solid State Commun. 197, 25 (2014) make the intercept of SH between 0 and 1. Fig. 4. (Color online) Schematic electronic orbits. (a) Fermi surface when the q2DEG consists of one light (l) and one heavy (h) subband, showing the inner light circle and the outer heavier star-shaped geometry. The dark and shaded MB1 and the yellow dashed MB2 indicate two possible magnetic breakdown (MB) orbits. The green dots indicate the MB tunneling paths. By symmetry there are 4 equivalent 2 2
  • 34. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 33https://www.facebook.com/isao.phys VG = 4V, VD = 100 mV B (T) -10 100 0 -100 100 Rxy(Ω)Temperature dep. Hall effect 0 50 100 150 200 250 300 1012 10 13 10 14 1015 nhall nins n(cm-2 ) T (K) n□(cm-2) T (K) 3001000 200 1012 1013 1014 1015 n□, Hall n□, geometric "Negative Capacitance" is seen down to 4K 4µm S D V1 V2 V3 V4 V5 V6 G ⊗B
  • 35. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 34https://www.facebook.com/isao.phys -10 100 0 -10 10 Rxy–RHB(Ω) B (T) Non-linear Hall effect Non-linearity with no hysteresis. Subtraction of linear term RHB. Not caused by magnetisation -10 -8 -6 -4 -2 0 2 4 6 8 10 -100 -80 -60 -40 -20 0 20 40 60 80 100 ρxy (Ω) H (T) 4K Fit Vd = 100 mV Vg = 4V B (T) -10 100 0 -0.1 Rxy(kΩ) 0.1 Fit by a two-band model
  • 36. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 35https://www.facebook.com/isao.phys A tale of two bands Our results 30100 20 T (K) 1014 1011 nL nH µL 100 30100 20 T (K) 0 5 10 15 20 25 30 35 1011 10 12 10 13 1014 n(cm-2 ) T (K) n1 n2 0 5 10 15 20 25 30 100 1000 µ1 µ2 µ(cm2 /Vs) T (K) n□(cm-2) 1013 1012 µH µ(cm2/Vs) 1000 µH nH high mobility & low density band µL nL low mobility & high density band J. S. Kim et al., PRB 82, 201407 (2010) For LAO/STO system 1016 1013 1000 1 ZHICHENG ZHONG, ANNA T ´OTH, AND KARSTEN HELD FIG. 1. (Color online) Band structure of t2g orbitals in bulk SrTiO3 calculated by (a) DFT and by (b) a TB model derived in this Rapid Communication. In the absence of spin-orbit coupling, yz, zx, and xy are degenerate at the point. SOC splits the sixfold-degenerate orbitals into + 7 and + 8 states separated by O = 29 meV. Along the -X(π,0,0) direction (here in units of 1/a with a = 3.92 ˚A being the calculated lattice constant of STO), the yz band has a small energy dispersion corresponding to a ???
  • 37. M. Lee et al., PRL 107, 256601 (2011) What is the origin of the Kondo effect? Magnetic impurity?? Our data 100 R□(kΩ) 1.20 0.96 1.12 1.04 10 T (K) R□(kΩ) 100 T (K) 3002000 1013 103 n□=9.8×1013 cm-2 isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 36https://www.facebook.com/isao.phys Kondo effect appears !
  • 38. isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 M. Lee et al., PRL 107, 256601 (2011) 37https://www.facebook.com/isao.phys This Kondo effect is unusual R□–R□,5K(Ω) 200 0 T (K) 10 increasing carrier density R□–R□,5K(Ω) T (K) 10010 200 0 n□=9.4×1013 cm-2 n□=9.8×1013 cm-2 increasing carrier density Originated in two bands of itinerant and nearly localised? (orbital Kondo?) VG n□ TK ➡ TK Our preliminary data Or, TK increase as n□ increases due to Rashba effect? c.f., D. Mastrogiuseppe et al., PRB 90, 035426 (2014)
  • 39. 36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 38 zzz high-k/Parylene to protect surface Summary https://www.facebook.com/isao.phys Miniaturisation Limit Use Metal-Insulator Transition to overcome the scaling limit. Extremely good FETwith MIT Negative Capacitance"Kondo" effect nonlinear Hall effect two bands
  • 40. 36isaocaius@gmail.com http://staff.aist.go.jp/i.inoue/ Superstripes 2016 @ Ischia, Italy June 2016 39 Ongoing/future researches https://www.facebook.com/isao.phys VO2 (111) SrTiO3 NiO RNiO3 RMnO3 SrTi(18O,16O)3 etc 4µm G S D HfO2/Parylene/SrTiO3 FET Artificial synapse & neuron utilising 2D MI transition. 4µm S D V1 V2 V3 V4 V5 V6 G ⊗B spin degree of freedom is no longer the spin itself but the so-called chirality, which for a given band and wave vector k characterizes the orientation of the eigenspinor, which we label by + and −. The resulting Fermi surface is formed by two circles (ellipses for the anisotropic bands) and shown in Fig. 9. The peculiar spin structure will be important when we consider the effect of a magnetic field parallel to the interface. The anisotropic bands have each two minima at ka 0 = ±mhα/ 2 on the axis corresponding to the heavy mass. The separated minima become a ring of radius ki 0 = mlα/ 2 in the isotropic band. A schematic view of the resulting band structure is given in Fig. 3. We will see in the following how, due to the density- dependent Rashba coupling, the band structure, and in par- ticular its (local) minima ϵi,a 0 = αki,a 0 /2 are functions of the electron density. D. Field-dependent Rashba coupling Concerning the dependence of the Rashba coupling on the electric field, in the absence of compelling first-principles calculations, we borrow its functional form from semicon- ductor physics, while the appearing parameters are inferred FIG. 3. (Color online) Schematic view of the STO band structure formed by an isotropic Rashba band (grey) and two anisotropic bands (orange and blue). The isotropic band has a ring of minima at ki 0 = m∗ α/ 2 , while the anisotropic bands have each two minima at ka 0 = ±mhα/ 2 , where ka 0 is along the direction with the heavy mass mh. 19Multi-band due to Rashba effect may explain the weird phenomena of our SrTiO3 FET? "Quantum phenomena" 1. Quantum oscillation of SrTiO3 2. Quantum Hall effect of SrTiO3 3. Quantum critical point (QCP) of ferroelectricitsy of SrTi(18O,16O)3 4. Superconductivity of SrTiO3 and SrTi(18O,16O)3