SlideShare a Scribd company logo
1 of 17
Download to read offline
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-31-47
www.ijmsi.org 31 | P a g e
The structure of determining matrices for single-delay
autonomous linear neutral control systems
Ukwu Chukwunenye
Department of Mathematics,University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria.
ABSTRACT: This paper derived and established the structure of determining matrices for single – delay
autonomous linear neutral differential systems through a sequence of lemmas, theorems and corollaries and the
exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of
summation notations, the multinomial distribution,change of variables technique and compositions of signum
and max functions. The paper also pointed out some induction pitfalls in the derivation of the main results.
The paper has extended the results on single–delay models, with more complexity in the structure of the
determining matrices.
KEYWORDS: Delay, Determining, Neutral, Structure, Systems.
I. INTRODUCTION
The importance of determining matrices stems from the fact that they constitute the optimal
instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets.
See Gabasov and Kirillova (1976) and Ukwu (1992, 1996 and 2013a). In sharp contrast to determining matrices,
the use of indices of control systems on the one hand and the application of controllability Grammians on the
other, for the investigation of the Euclidean controllability of systems can at the very best be quite
computationally challenging and at the worst, mathematically intractable. Thus, determining matrices are
beautiful brides for the interrogation of the controllability disposition of single-delay neutral control systems.
See (Ukwu 2013a).
However up-to-date review of literature on this subject reveals that there is currently no correct result on
the structure of determining matrices for single-delay neutral systems. This could be attributed to the severe
difficulty in identifying recognizable mathematical patterns needed for inductive proof of any claimed result
and induction pitfalls in the derivation of determining matrices. This paper establishes valid expressions for
the determining matrices in this area of acute research need.
II. ON DETERMINING MATRICES AND CONTROLLABILITY OF SINGLE-DELAY
AUTONOMOUS NEUTRAL CONTROL SYSTEMS
We consider the class of neutral systems:
     1 0 1( ) ( ) ( ) , 0 (1)
d
x t A x t h A x t A x t h Bu t t
dt
       where
A A A1 0 1, , are n n constant matrices with real entries and B is an n m constant matrix with the real
entries. The initial function  is in   , 0 , n
C h R equipped with sup norm. The control u is in
  10, , n
L t R . Such controls will be called admissible controls.      1
for, 0,n
x t x t h t t  R . If
  1
, , n
x C h t  R , then for  t t 0 1, we define   , 0 , n
t C hx   R by
     x s x t s s ht    , , 0 .
2.1 Existence, Uniqueness and Representation of Solutions
If A 1 0 and  is continuously differentiable on  , 0h , then there exists a unique function  : ,x h 
which coincides with  on  , 0h , is continuously differentiable and satisfies (1) except possibly at the points
The structure of determining matrices for single-delay…
www.ijmsi.org 32 | P a g e
; 0,1, 2,...jh j  . This solution x can have no more derivatives than  and continuously differentiable if and
only if the relation:
       1 0 1
0 (0) 0 (2)A h A A h Bu   
      
is satisfied. See Bellman and Cooke (1963) and theorem 7.1 in Dauer and Gahl (1977) for complete discussion
on existence, uniqueness and representations of solutions of (1).
2.2 Preliminaries on the Partial Derivatives
( , )
, 0,1,
k
k
X t
k






Let  t t, ,  0 1 for fixed t, let     t, be the unique function satisfying the matrix differential
equation:
       
 
1 0 1
, , , , (3)
subject to:
; (4)
, =
0,
0 , ; 0,1,...,
n
t t h A t A t h A
I t
t
t
t t jh j
 
   
   



 

        



    



By Tadmore (1984 , p. 80),  ,t    is analytic on   1 , , 0,1,....t j h t jh j    and hence
 , ist C  
  on these intervals.
The left and right-hand limits of  ,t    exist at   t jh , so that  ,t  is of bounded
variation on each compact interval. Cf. Banks and Jacobs (1973), Banks and Kent (1972) and Hale (1977). We
maintain the notation
 
   
  k k
t t, , ,  as in the double-delay systems.
2.3 Investigation of the Expressions and Structure of Determining Matrices for System (1)
In this section we establish the expressions and the structure of the determining matrices for system (1), as well
as their relationships with
( )
( , )k
X t  through a sequence of lemmas, theorems and corollaries and the
exploitation of key facts about permutations.
The process of obtaining necessary and sufficient conditions for the Euclidean controllability of (1) in
chapter four will be initiated in the rest of chapter three as follows:
i. Obtaining a workable expression for the determining matrices of
(1):   1
for : 0, 1, 2,.. (5)k
Q jh j t jh k  
ii.Showing that:
 
     1 1
, 1 (6)
kk
k
t jh t Q jh   
for j t jh k: , , , ,....,1 0 0 1 2  
iii.Showing that  Q t 1 is a linear combination of:
       0 1 1
, ,..., , 0, ,...., 1 (7)n
Q s Q s Q s s h n h
 
We now define the determining equation of the n n matrices,  Q sk .
For every integer k and real number s, define  Q sk by:
       1 0 1 1 1
(8)k k k k
Q s A Q s h A Q s A Q s h  
    
for k s h h 0 1 0 2, ,...; , , ,..... subject to  Q In0 0  , the n n identity matrix and
  0 for 0 or 0k
Q s k s   .
2.4 Preliminary Lemma on Determining matrices ( ),kQ s sR
In (1), assume that A 1 0, then for j k,  1,
i.  Q Ak
k
0 0
The structure of determining matrices for single-delay…
www.ijmsi.org 33 | P a g e
ii.  Q jh A
j
0 1 
iii.    
 Q h A A A A A A Ak
k
r
k
k r r
  


 
0 1
0
1
0
1
1 1 0 0
iv.      
Q jh A A A A A A Aj
r
j
r j r
1 1 0
0
1
1 0 1 1 1
1
  


  
 

v.
 
   1 1 0, 1
kk k
t t A
  
vi.
 
 1 1, 0
k
t t
 
vii.  1 1 1, j
t jh t A  
Remarks: Notice that Ar
0 can switch places with
 
Ak r
0
1 
in (iii); similarly for Ar
1 and
 
A j r

 
1
1
in
(iv), since r and  1k r  have the same range for fixed k; similarly in (iv), r and  1j r  have the same
range for fixed j.
Proof
i.From (8) we have
       
 
Q A Q h A Q A Q h
A Q
k k k k
k
0 0
0 0 0
1 0 1 1 1
0 1
    
  
  

Now,    Q A Q A I An1 0 0 0 00 0   . Assume that  Q Ak
k
0 0 for some k  1. Then,
         
 
1 1 1 0 1 1
0 0
1
0
by the induction hypotheses
0 0 0 0 0k k k k k
k
k
Q A Q h A Q A Q h A Q
A A
A
  

       


Hence,  Q Ak
k
0 0 for all k  12, ,.....; this proves (i).
         
  
0 1 0 0 1 1 1
1 0
ii 1 1
1 0 0
Q jh A Q j h A Q jh A Q j h
A Q j h
  

    
   
Hence,    Q h A Q A0 1 0 10  
The rest of the proof is by the principle of mathematical induction: Assume that  0 1
for some 1
j
Q jh A j
  .
Then
          
 
Q j h A Q jh A Q j h A Q j h
A Q jh A A Aj j
0 1 0 0 1 1 1
1 0 1 1 1
1
1 1 1
0 0
     
    
  
   

,
by induction hypothesis. So  0 1
for 1, 2,......
j
Q jh A j
 
iii From (8),
     1 1 1 0 0 1 0
1 0 0 1 1
( ) 0 0
.
Q h A Q A Q h A Q
A A A A A

 
  
  
.
Plugging in the right-hand side of iii yields
 
 
1 1
1 1
1 0 1 0 1 1 0 0 0 1 1 1 0
0
( ) r r
r
Q h A A A A A A A A A A A A

 
   

      .
Therefore the formula (iii) is valid for k  1.
Assume the validity of (iii) for some k  1. Now
The structure of determining matrices for single-delay…
www.ijmsi.org 34 | P a g e
       
 
 
 
   
Q h A Q A Q k A Q
A A A A A A A A A A A A A
A A A A A A A A A A A A
A A A A A
k k k k
k k
r
k
k r r k
k
r
k
k r r k
k
r
k
k r
  





 





 
 





  
    
    
  



1 1 1 0 1
1 0
1
0 0 1 0
0
1
0
1
1 1 0 0 1 0
0
1
1 0
0
1
0
1
1 1 0 0 1 1 0 0
0
1
1
0
1
0 1
0 0
   
   







 
 
   
1 0 0 0 1 1 0 0
0
1
1
0
0 1 1 0 0 1
A A A A A A A
A A A A A A A Q h
r k k k
k
r
k
k r r
k
.
Therefore (iii) is true for k  1 and so true for k  1 2, ,.....
iv  Q h A A A A A1 0 1 1 0 1    .
Plug in the right-hand side of (iv) to obtain
 A A A A A A A A A A A A         1 0 1
0
0 1 1 1
0
1 0 0 1 1
It follows that (iv) is true for 1.j  Assume that (iv) is valid for some j  1. Now
         
   
 
   
 
 
1 1 1 0 0 1 0
1
1
1 1 0 1 0 1 1 1
0
1
0 1 1 1
1
11 1
1 0 1 0 1 1 1 0 1 1 1
0
1
1 0 1 0 1 1 1
1
by the induction hypothesis
1 1
j
j rj r
r
j j
j
j rj r j
r
j
j r j
r
Q j h A Q jh A Q j h A Q jh
A A A A A A A A
A A A A
A A A A A A A A A A A
A A A A A A A


 
    


 

  
     


   

    
 
   
 
 
    
  


  
    
1 0 1 1 1
0
1
1 0 1 0 1 1 1 1
0
1
r r j r
r
j
j r j r
r
A A A A A
A A A A A A A Q j h
 
  

 
   

 
    
So, the formula (iv) is valid for j  1. This completes the proof that (iv) holds for all j  1 2, ,...
v. For k  1,
 
   
   
        
1
1
1
1
1 1 1 1 1
1 1 0 1 1 1 1 1 0 1 0
,
, 0. 0
, ,
, ,
k
t
t
t
t t t t t
t t A t h t A h t A A A A






 

 



 


 

    
             
by (3), noting that for  sufficiently close to t h t1 1,   ; so  t h t1 1 

.
Assume that
 
   1 1 0, 1
kk k
t t A
   for some k  1. Then
 
   
 
   
    
  
   
1
1 1 1
1
1 1 0 1 1 1 1 1 1
1 1
0 0 0
, ,
( , ) , ,
1 0 0 1
k k
t
k k k
k kk k
X t t X t
X t t A X t h t A X t h t A
A A A



 
 

 

 
 
   
     
      
Therefore,
 
   1 1 0, for all 1, 2,...
kk
X t t A k
   .
The structure of determining matrices for single-delay…
www.ijmsi.org 35 | P a g e
 
   
 1
1 1
1 1 1
lim
vi. , , 0
k k
t
t t h
X t t X t



  
  , since   t1
vii Let j be a nonnegative integer such that t jh1 0  . We integrate (3) and apply (4). Thus
 
       
 1 1
1 1 1 1 0 1 10 0
, , , ,
t jh t jh
X t X h t A d X t A X h t A d

     

 
 
             
Hence,
          
   
 1
1 1 1 1 1 1 1 1
1 0 1 10
, 1 , 0, ,
, ,
t jh
t jh t t j h t A t h t A
t A h t A d  


 


         
       
Similarly
          
    1
1 1 1 1 1 1 1 1
( )
1 0 1 10
1, 1 0, ,
, ,
, ,
t jh
X t jh t X t t j h t X t h t A
t A h t A d
A
  





      
     
Therefore
             
     
 1
1
1 1 1 1 1 1 1 1 1 1
1 0 1 1
1 1
, , 0,
, , , ,
t jh
t jh
X t jh t X t j h t A X t jh t X t j h t A
X t A X h t A d  


  
 


       
   
   
   

since  lim
0 0
a
a
f t dt

 

 
 , for any bounded integrable function f, and    1 0 1 1, ,t A h t A      
is bounded and integrable. Therefore we have deduced that
             1 1 1 1 1 1 1 1 1
1 1, , , ,X t jh t X t jh t X t j h t X t j h t A
  

         
 
for any 1j  , j integer.
For j  1, we have
         1 1 1 1 1 1 1 1 1 1 1, , , , nX t h t X t h t X t t X t t A I A A
   
  
        
by (vi).
The rest of the proof is by induction on j.
Assume the validity of (vii) for j  1,..., p for some p  1.
Then
          
     
1 1 1 1 1 1
1 1 1 1 1 1 1
1 , 1 , 1 ,
, , p
X t p h t X t p h t X t p h t
X t ph t X t ph t A A A
 
 
  
       
     
 
by the induction hypothesis. So    1
1 1 11 , p
t p h t A 
    and hence (vii) is valid.
2.5 Lemma on 1
( ) and ( )k
Q h Q jh as sums of products of permutations
For any nonnegative integers and ,j k
(i)
1 11
1 11 1(1),0( ) 0( 1),1(1)( , , ) ( , , )
( ) k k
k k k k
k v v v v
v v P v v P
Q h A A A A
   
   
 
(ii)
1 1 1
1 1 11( ),0(1) 1( 1), 1(1)
1
( , , ) ( , , )
( ) jj
jj j j
v v v v
v v P v v P
Q jh A A A A
    
   
 
Proof of (i)
The structure of determining matrices for single-delay…
www.ijmsi.org 36 | P a g e
By lemma 2.4,      
 
1
1
0 1 0 1 0 1 1 0 0
0
and
k
k rj k r
k
r
Q jh A Q h A A A A A A A

 
  

   
 
 
1
1 2 1
1 1(1),0(0)
1 2 11(1),0(1) 0(1 1),1(1)
0 1 1
1 0 1 1 0 1 0 1 1 0 1
( , )
0, 1, ; 0
1 ;
v
v v v
v P
v v P v P
k j Q h A rhs A A
k Q h A A A A A rhs A A A A A A A A

 
 
   

 
      
        

 
So, the lemma is valid for {0,1}.k 
Assume the validity of the lemma for 2 ,k p  for some integer p . Then,
   
 
1
1
0 1 0 1 1 0 0
0
p
p rp r
p
r
Q h A A A A A A A

 
 

  
1 1 1
1 1 11(1),0( ) 0( 1),1(1)( , , ) ( , , )
p
pp p p
pv v v
v v P v v P
vA A A A
   
   
 
   
 
 
   
   
1 1 0
1 1 0 0
0
1
1 1
1 11
0 1 0 1 1 0 0
0
1
0 1 0 1 1 0 0
0
1
1
0 1 0 0 1 1 0 0
0
1
1 (1 )
0 1 0 0 1 1 0 0
0
1
(1
0 1 0
0
Now p
p
p rp r
r
p
p p r r
r
p
p p p r r
r
p
p p p r r
r
p
p p
r
A A A
A A A A
A
Q h A A A A A A A
A A A A A A A
A A A A A A A A
A A A A A A A A
A A A



 
  
 

 
 


 
 


  
 


 


 
   
   
 
  







    1 1 0
)
1 1 0 0 0
r r p
A A AA A A A A  
 
 
 
0 1 1
0 1 0 1
1 1 1
1 1 11(1),0( ) 0( 1),1(1)
1 1 1
1 1 11(1),0( ) 0( 1),1(1)
1
0 0
( , , ) ( , , )
1
0 0
( , , ) ( , , )
pp
pp p p
pp
pp p p
p p
v v v v
v v P v v P
p p
v v v v
v v P v v P
A A A A A A A
A A A A A A A A
A A
A A



  

  

 

 
   
   
 
  
 
 
 
 
 
 
 
0 11 2
1 2 1(1),0( 1)
1 2
1 2 1(1),0( 1) ( , , )( , , )
(with a leading ) (with a leading )
p
p p
p
p p
v v
v v P
v v
v v P
A AA AA A 
  

   
  

0 11 1 1 1
1 1 1 10( 1 1),1(1) 0( 1 1),1(1)( , , ) ( , , )
(with a leading ) (with a leading )p p
p pp p
v v v v
v v P v v P
A A A A A A 
     
  
 
 
1 2 1 1
1 2 1 11(1),0( 1) 0( ),1(1)( , , ) ( , , )
p p
p pp p
v v v v
v v P v v P
A A A A 
   
   
 
Therefore, part (i) of the lemma is valid for 1k p  , and hence valid for every nonnegative integer k .
Proof of (ii)
Using similar reasoning (ii) can be established by induction; but let us do it differently by using the expression
for 1
( )Q jh from lemma 2.4.
The structure of determining matrices for single-delay…
www.ijmsi.org 37 | P a g e
     
1
1 1 0 1 0 1 1 1
0
1
1 0 1 1 1 1
0 0
1
1
j
j r
r
j j
r r
r r
j r
j r j r
Q jh A A A A A A A
A A A A A A

   


   
 
 
  
  
 

 
1 1 1
1 1 11( ),0(1) 1( 1),1(1)( , , ) ( , , )
,jj
jj j j
v v v v
v v P v v P
A A A A
    
   
 
noting that in the first summation over r 0A occupies positions 1,2, , 1j  for 0,1, ,r j 
respectively. 0A leads only once and trails only once.; in the second summation 1A occupies positions
1,2, , j for 0,1, , 1r j  respectively. 1A leads only once and trails only once.
Remarks: Observe that 1
( )Q jh may be deduced from ( )k
Q h by (a) replacing k by j in the expression for
( )k
Q h (b) interchanging -1 and 0 in the expression for ( )k
Q h (c) replacing 0 by -1 in the summations or
permutations involving only the indices 0 and 1.
2.6 Lemma on 1( , )X t



of uncontrolled part of (1)
1
(1)
1 1 1 1 1
0 0
1
(1)
1 1 1 1 1
0 0
1
(1)
1 1 1 1 1
0 0
(i) (( ) , ) (( ( ( )) ) , )
(ii) (( ) , ) (( ( ( )) ) , )
(iii) ( , ) ( ( ( )) ), )
j
r
i
r i
j
r
i
r i
j
r
i
r i
X t jh t X t j r i h t A A
X t jh t X t j r i h t A A
X t jh t X t j r i h t A A
 

 
 

 

 
 
      
 
 
      
 
 
        
 
 
 
 
Proof of (i)
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
(1)
1 1 1 1 1 0 1 1 1 1
(1) 2
1 1 1
( ,( ) ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , )
(( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ]
(( ( 2) ) , )
X t t jh X t jh t A X t j h t A X t j h t A
X t j h t A X t j h t A X t j h t A A
X t j h t A
   

  
 


         
        
  
(1) (1)
1 1 0 1
1 0 1 0 1
(By(v)of lemma 2.4)
0 lhs ( , ) rhs; 1 lhs (( ) , )
(( ) , )
j X t t A j X t h t
X t h t A A A A
 


         
    
1 1
1 1 1 1 1 0
0 0
1 1 1 1 0 1
Let us examine yield
yield
Sum the results for these contingencies to get
yield yield
(( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) )
0, 1 ( ( , ) ; 1, 0 ; 1, 1 0.
r
i
r i
X t r i h t A A r i X t t h A
r i X t t A A r i A A r i
 

 


 
        
 
         

 
1 1
1 1 1 1 1 0 1 0 1
0 0
(( (1 ( )) ) , ) ( (( ) , )r
i
r i
X t r i h t A A X t h t A A A A 
 
 
 
        
 
 
So, the lemma is valid for 1j  . Let us explore 2j  .
(1) (1)
1 1 0 1 1 1 1
2
1 0 1 1 1 0 1 1 1 0 1
2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , )
(( 2 ) , ) (( ) , ) (( ) , )
j X t h t X t h t A X t h t A X t h t A
X t h t A X t h t A X t h t A A A A A A
   

  
  
          
        
The structure of determining matrices for single-delay…
www.ijmsi.org 38 | P a g e
2 1
1 1 1
0 0
1 1 0
1 1 1 1 1 0 1
1 1
2
0 1
Let us examine
yield
yield yield
yield
yield y
(( (2 ( )) ) , ) ;
0, 0 ( (( 2 ) , )
0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ;
1, 1 ;
2, 0 ; 2, 0
r
i
r i
X t r i h t A A
r i X t h t A
r i X t h t A r i X t h t A A
r i A A
r i A A r i


 

 



 
    
 
   
       
  
    
 
2 1
1 1 1
0 0
2
1 1 0 1 1 1 1 1 0 1 1 1 0 1
ield
Sum the results for these contingencies to get
0.
(( (2 ( )) ) , )
( (( 2 ) , ) ( (( ) , ) ( (( ) , ) .
r
i
r i
X t r i h t A A
X t h t A X t h t A X t h t A A A A A A


 
  
  
 
    
 
        
 
So, (i) of the lemma is valid for {0,1,2}.j  Assume that (i) of the lemma is valid for
3 , for some integer .j n n  Then
1
(1)
1 1 1 1 1
0 0
by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) ,
n
r
i
r i
X t nh t X t n r i h t A A 

 
 
      
 
 
(1)
1 1 1 1 0 1 1 1
(1)
1 1 1
1
(1)
1 1 1 1 1
0
1
1
1 1 1 1
0 0
Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , )
(( ) , )
(( ) , ) (( ( 1 ) ) , )
(( ( ( )) ) , ) (( ( 1
i
i
n
r
i
r i
X t n h t X t n h t A X t nh t A
X t nh t A
X t nh t A X t n i h t A
X t n r i h t A A X t n
  


 


 

 
         
 
     
 
         
 

 
1
1
0
) ) , ) i
i
i h t A


1 1
1 1 1
0 0
as desired. So (i) is true for ,and hence valid
for all .
(( ( 1 ( )) ) , ) ,
n
r
i
r i
j n
j
X t n r i h t A A



 

 
      
 
 
Proof of (ii)
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
(1)
1 1 1 1 1 0 1 1 1 1
(1) 2
1 1 1
(( ) , ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , )
(( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ]
(( ( 2) ) , )
X t jh t X t jh t A X t j h t A X t j h t A
X t j h t A X t j h t A X t j h t A A
X t j h t A
   

  
 


         
        
  
(1)
1 1
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
1 1 0
0 lhs ( , ) 0 rhs;
1 lhs (( ) , ) (( ) , ) ( , ) ( , )
(( ) , ) 0 0
j X t t
j X t h t X t h t A X t t A X t t A
X t h t A

   


    
        
    
The structure of determining matrices for single-delay…
www.ijmsi.org 39 | P a g e
1 1
1 1 1 1 1 1 0
0 0
1 1 1 1 1 0 1
Let us examine yield
yield yield yield
Sum the results for these contingenc
(( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) , )
0, 1 ( ( , ) 0; 1, 0 ( , ) 0; 1, 1 0.
r
i
r i
X t r i h t A A r i X t t h t A
r i X t t A r i X t t A A r i
 

 
 

 
        
 
         
 
1 1
1 1 1 1 1 0
0 0
ies to get
(( (1 ( )) ) , ) ( (( ) , )r
i
r i
X t r i h t A A X t h t A 

 
 
       
 
 
So, (ii) of the lemma is valid for 1j  . Let us explore 2j  .
(1) (1)
1 1 0 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1
(1) 2
1 1
1 0 1 1
2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , )
(( 2 ) , ) (( ) , ) (( ) , ) ( , )
( , )
(( 2 ) , ) (( ) , ) (( ) ,
j X t h t X t h t A X t h t A X t h t A
X t h t A X t h t A X t h t A A X t t A A
X t t A
X t h t A X t h t A X t h t
   

   
 


  
          
       

       1 0 1)A A
2 1
1 1 1
0 0
1 1 0 1 1 1
1 1 0 1
Let us examine
yield yield
yield yield yield
yield
Sum
(( (2 ( )) ) , ) ;
0, 0 ( (( 2 ) , ) ; 0, 1 ( (( ) , ) ;
1, 0 ( (( ) , ) ; 1, 1 0; 2, 0 0;
2, 1 0.
r
i
r i
X t r i h t A A
r i X t h t A r i X t h t A
r i X t h t A A r i r i
r i


 
 


 
    
 
       
       
 
 
2 1
1 1 1
0 0
1 1 0 1 1 1 1 1 0 1
the results for these contingencies to get
(( (2 ( )) ) , )
( (( 2 ) , ) ( (( ) , ) ( (( ) , ) .
r
i
r i
X t r i h t A A
X t h t A X t h t A X t h t A A


 
  

 
    
 
      
 
So, (ii) of the lemma is valid for {0,1,2}.j  Assume that (ii) of the lemma is valid for
3 , for some integer .j n n  Then
1
(1)
1 1 1 1 1
0 0
by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) ,
n
r
i
r i
X t nh t X t n r i h t A A 

 
 
      
 
 
(1)
1 1 1 1 0 1 1 1
(1)
1 1 1
1
(1)
1 1 1 1 1
0
1
1
1 1 1 1
0 0
Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , )
(( ) , )
(( ) , ) (( ( 1 ) ) , )
(( ( ( )) ) , ) (( ( 1
i
i
n
r
i
r i
X t n h t X t n h t A X t nh t A
X t nh t A
X t nh t A X t n i h t A
X t n r i h t A A X t n
  


 


 

 
         
 
     
 
         
 

 
1
1
0
) ) , ) i
i
i h t A


1 1
1 1 1
0 0
as desired. So (ii) is true for 1,and
hence true for all
(( ( 1 ( )) ) , ) ,
.
n
r
i
r i
j nX t n r i h t A A
j



 
 
 
      
 
 
Proof of (iii)
The proof follows by noting that
(1) (1) (1)
1 1 1 1 1 1( , ) (( ) , ) (( ) , )X t jh t X t jh t X t jh t 
      and then
using (i) and (ii) to deduce that
The structure of determining matrices for single-delay…
www.ijmsi.org 40 | P a g e
1
(1)
1 1 1 1 1 1 1
0 0
1 1
( )
1 1 1 1 1
0 0 0 0
( ,( )) (( ( ( )) ) , ) (( ( ( )) ) , )
(( ( ( )) ), )
j
r
i
r i
j j
r j r i r
i i
r i r i
X t t jh X t j r i h t X t j r i h t A A
X t j r i h t A A A A A
 

 
 
  
   
 
             
 
   
         
   
 
   
2.7 Lemma on
( )
1 1( ,(( ))k
X t t jh  recursions
1
( ) ( 1)
1 1 1 1 1
0 0
( , ) (( ( ( )) ), )
j
k k r
i
r i
X t jh t X t j r i h t A A

 
 
       
 
 
Proof
1
( ) ( 1)
1 1 0 1 1
0
( 1) ( 1) 1 1
1 1 0 1 1 1 0 0 0 (by lemma 2.4)
If 0,then 0; lhs ( , ) ( 1) ,rhs ( , )
( , ) ( , ) ( 1)( 1) 0 ( 1)
k k k k
i
i
k k k k k k
j r X t t A X t ih t A
X t t A X t h t A A A A


   
 
         
 
          

( ) ( 1) ( 1)
1 1 1 1 1 0 1 1 1
( ) ( 1) 1 1
1 1 1 1 1 0 0 1
( 1) 1 1
0 1 1 1 0 0
If 1, then using lemma 2.4,
lhs ( (1 1) , ) ( , ) ( , )
( (1 1) , ) ( , ) ( 1)
( 1) [ ( , ) ( 1)
k k k
k k k k
k k k k k
j
X t h t A X t h t A X t t A
X t h t A X t h t A A A
A A X t h t A A
 

  

  


          
         
       1 (by 2.4).A
1
( 1)
1 1 1
0 0
( 1) 0 ( 1) ( 1) 1 ( 1)
1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
( 1) 1 1 1
1 1 0 0 1 0
Rhs (( ( ( )) ), )
(( ), ) ( , ) ( , ) ( , )
(( ), ) ( 1) ( 1)
j
k r
i
r i
k k k k
k k k k k
X t j r i h t A A
X t h t A A X t t A X t t A A X t h t A A
X t h t A A A A


 
   
  
   
 
     
 
                
         
 
1 1
0 1
( 1) 1 1
0 1 1 1 0 0 1
0
( 1) (( ), ) ( 1)k k k k k
A A
A A X t h t A A A


  

  
        
So, lhs = rhs. Therefore the lemma is valid for j = 1. Assume the validity of the lemma for 2 j m  for
some integer m .
1
( ) ( 1)
1 1 1 1 1
0 0
Then (( ), ) (( ( ( )) ), )
m
k k r
i
r i
X t mh t X t m r i h t A A

 
 
       
 
 
( )
1 1
( 1) ( 1)
1 1 0 1 1 1
( )
1 1 1
1 1
( 1) ( 1) 1
1 1 1 1 1
0 0 0
Now (( ( 1) ), )
(( ( 1) ), ) ( , )
( , )
(( ( 1 ) ), ) (( ( ( )) , )
k
k k
k
m
k k r
i i
i r i
X t m h t
X t m h t A X t mh t A
X t mh t A
X t m i h t A X t m r i h t A A
 

  

  
  
        
  
 
          
 
  
1 1 1
( 1) ( 1) 1 1
1 1 1 1 1
0 1 0
(( ( 1 ) ), ) (( ( ( 1 )) , )
m
k k r
i i
i r i
X t m i h t A X t m r i h t A A

   

  
 
           
 
  
1 1 1
( 1) ( 1)
1 1 1 1 1
0 0 0
1 1 1
( 1) ( 1)
1 1 1 1 1
0 0 0
(( ( 1 ) ), ) (( ( 1 ( )) , )
(( ( 1 ) ), ) (( ( 1 ( )) , )
m
k k r
i i
i r i
m
k k r
i i
i r i
X t m i h t A X t m r i h t A A
X t m i h t A X t m r i h t A A

 

  

 

  
 
           
 
 
           
 
  
  
The structure of determining matrices for single-delay…
www.ijmsi.org 41 | P a g e
(We used the change of variables 1r r  in the r  summand, 1r r  in the limits).r 
So the lemma is valid for 1j m  . This completes the desired proof.
The following major theorem gives explicit computable expressions for ( ),k
Q jh based on painstakingly and
rigorously observed ( )k
Q jh patterns for various ,j k contingencies.
III. THEOREM ON EXPLICIT COMPUTABLE EXPRESSION FOR DETERMINING
MATRICES OF (1)
Let andj k be nonnegative integers. If 1, thenj k 
1
1
1
1
1
1 11( ),0( ) 1( ),1( )
1 1( ),0( ),1( )
( , , ) ( , , )
( , , )
Q ( )
j r
k
k
v
r
j
jj k j k j k k
j r r j k r k r
v
v
j kv v
v v P v v P
v v P
v
jh
A A
A A A A



   
    

 




 
  


 
1 1
1 11( ),0( ) 0( ),1( )
1
1 1( ),0( ),1( )
( , , ) ( , , )
1
1 ( , , )
If 1, then
Q ( )k
j k k
j k j k k k j j
k r
k r r r k j j r
v v v v
v v P v v P
j
v v
r v v P
k j
jh
A A A A
A A

  

    
 

 
 
 

 
 
 

 

Proof
Case j k .
0 0 1
1
1 1 0 1 0 1 1 1
0
1
1 0 1 0 1 1
0
( 1)
If 0, then ( ) (0) , by ( 4); 0 ( ) ( ) (by (ii) of lemma 2.4).
1, 1 ( ) ( ) ( ) ,(by (iv) of lemma 2.4)
k n k
j
j r
k
r
j
j
r
r
j r
j r j r
j k Q jh Q I k Q jh Q jh A
j k Q jh Q jh A A A A A A A
A A A A A A


   


   

 

       
      
  


1
1 1
0
1 1 1
1 1( 1),1(1)1 1 1( ),0(1)
( 1)
( , , )( , , )
j
r
jj
j jj j
j r
v v v v
v v Pv v P
A A A A A A




  
 

   

 
1 3 1 2
1 2 11 3
2 1 2 0 1 1 1
1 1
0 0 1
1 3 1 21(1),0(2) 0(1),1(1)
1 3 1 2 1 21(2),0(1) 1(1),1(1) 1(1),0(
( , , ) ( , )
( , , ) ( , ) ( , )
If 2, then ( ) (2 ) ( ) (2 ) ( )k
v v v v
v v vv v
v v P v v P
v v P v v P v v P
j k Q jh Q h A Q h A Q h A Q h
A A A A A A
A A A A A A A A

 

  
 
  
     
 
  
 
 



 2 11
11) 1(1)
v v
v P
A A A

 
1 4 1 3
1 4 1 2 1 2
2
1
2 1
1
1 4 1 31(2),0(2) 1(1),0(1),1(1)
1 4 1 2 1 21(2),0(2) 1(2 2),1(2) 1( ),0( ),1(2 )
( , , ) ( , , )
( , , ) ( , ) ( , , )
r
v v v v
v v
r r s r r r
v v v v
v v P v v P
v v P v v P v v P
A A A A A
A A A A A A 


 
    
 
  
 
  
 
   
 
 
 
 
Therefore the theorem is valid for , {0, 1, 2}.j k  In particular it is valid for 0 2.k j  
1
The cases : ( ) and ( ) have been established already. We need only prove the remaining cases.k
Q jh Q h
The structure of determining matrices for single-delay…
www.ijmsi.org 42 | P a g e
Case :j k Assume that the theorem is valid for all pairs of triples
, , ( ); , , ( ) for which ,for some 3, and 2.k k
j k Q jh j k Q jh j k j k j k    
    Then apply the induction
principle to the right-hand side of the determining equation:
0 1 1 1 1
([ 1] ) ([ 1] ) ( ) ( ),noting that 1 ,
1 1, 1.
k k k k
Q j h A Q j h A Q jh A Q jh j k j k
j k j k
  
        
    
,
Therefore:
1
1
1 1
1 1
1 1 11( 1),0( 1) 1( 1 ( 1)),1( 1)
1
1 1 1( 1 ( 1),0( ),1( 1 )
1
1 1(
0 0
1 1
0
1
1 1
( , , ) ( , , )
( , , )
( , , )
Q ([ 1] )
j
jj k
jj k j k j k k
j r
j r r j k r k r
j k
j
k
v
k
v
r
v v v
v v v
v v P v v P
v
v v P
v
v v P
j h
A A A A A A
A A A
A A A A A A

        
 
        
 

 

 







 
 
 


 

 
1
1
1 1 1( ),0( 1) ( 1)),1( 1)
1
1 11( ),0( ) 1( ),1( )
1
1
1
1
1 1
1
1 1( ( 1),0( ),1( 1 )
1
( , , )
( , , ) ( , , )
( , , )
( , , )
j r
j k j k j k k
jj k
jj k j k j k k
k r
v v
s
v
j r r j k r k r
j r
j r
v v P
v v v
v v P v v P
v
v v P
v
v v
A A A
A A A A A A
A A A

      

   
 

 

      



 




 
 
 

 



 

1
1 1( ),0( ),1( )
k
r r j k r k rP

    


















 
1 1 11
1 1 1 11( 1),0( ) 1( 1 ),1( )
1 1
1 1 1( 2 ),0( ),1( 1 )
0
1 { 1,1}
0 01 1
1 1 1( 2 ),1( 1)
( , , ) ( , , )
( , , )( , , )
(9)
(10)
jj k
iL iL
j jj k j k k
j r r j k r k r
i i
r
j j r
j j k k
v v v v
v v P v v P
v v
v v P
v v
v v P
A A A A
A A A A A A
 
     
       
  
  
    
 

 
 
   
 
 

 
 
1
2
1
2
1 1
1
1
1
1
1 1
1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 )
1
1 1( ),0( ),1( )
( , , ) ( , , )
( , , )
(11)
(12)
k
k
r
k
r
j rj k
j rj k j k r j k r k r
j r
j r r j k r k r
vv v v
v v P v v P
v v
v v P
A A A A A A
A A A







 
         

    
 




  
 
 

 

 
1 1 11
1 1 1 11( 1),0( ) 1( 1 ),1( )( , , ) ( , , )
The expression 9 yields:
(13)jj k
j jj k j k k
v v v v
v v P v v P
A A A A  
      
  
 
1 1
1
1 1( 1 ),0( ),1( )
1
1 ( , , )
The expression:
is immediate from (12)
(14)j r
L
j r r j k r k r
k
r
v v
v v P
A A  

     

 
 


The structure of determining matrices for single-delay…
www.ijmsi.org 43 | P a g e
 
1 1 1 1
1 1 1 11( 2 ),1( 1) 1( 2 ),0( ),1( 1 )
1 1
1 1
2
0 0
1
0
( , , ) ( , , )
( , , )
We use the change of variables technique in the expression 10 to get:
(15)j j r
j j rj k k r j k r k r
j
j
k
r
v v v v
v v P v v P
v v
v v
A A A A A A
A A A
  
           



 



   

 
 1 1 1
1 1 11( 2 ),1( 1) 1( 1 2 ),0( 1),1( 1 ( 1))
1 1 1 1 1
1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( )
1
0
2
1
0 0
2
( , , )
( , , ) ( , , )
j r
j rj k k r j k r k r
j j r
j j rj k k r j k r k r
k
r
k
r
v v
P v v P
v v v v
v v P v v P
A A A
A A A A A A
  
              
   
            





 

 
  
  

 

 
1 1 1 1 1
1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( )
1 1 1 1 1 1 1
1 1 1 1 1 1 11(1 1 ),0(1 1),1( 1)
1
0 0
1
0 0
( , , ) ( , , )
( , , ) ( , , )
j j r
j j rj k k r j k r k r
j j r
j j rj k k
k
v
r
v v v
v v P v v P
v v v v
v v P v v P
A A A A A A
A A A A A A
   
            
     
          

 
 
 
 
  

 
 
 
 
1( 1 ),0( 1),1( )
1 1
0
1 1 1( 1 ),0( ),1( )
1
1
1
1 ( , , )
(16)
r j k r k r
j r
L
j r r j k r k r
k
r
k
r
v v
v v P
A A
     
 
      



 

 
 


 
11 1
1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 )
1 1
1 1 1( ),0( 1)
2
1 1
1
1 1 1
( , , ) ( , , )
( , , )
We are left with expression 11 , which yields:
(17)j rj k
j rj k j k r j k r k r
jj k
j k j k
k
v v
r
v v
v v P v v P
v v v
v v P
v
A A A A A A
A A A A A A
 
         
 
   

 


 
  

 

 
 
1 1( 1 ),0( ),1( 1 )
1 1
1 11( 1 1 ),0( 1),1( 1 ( 1)) 1( 1 ),0( ),1( 1 )
1 1
1 1 1( 1
1
1
1
1 1
1
( , , )
( , , ) ( , , )
( , , )
r
j r r j k r k r
j r j r
j r j rk j k k k k r j k r k r
j r
j r r j
k
r
k
r
v v P
v v v v
v v P v v P
v v
v v P
A A A A A A
A A

      
 
               
 
    





 

 

 
  

 

 

1
),0( ),1( )
1
1
(18)
L
k r k r
k
r  


 
The resulting expressions (13), (14), (16) and (18) add up to yield:
11
1
1
1
1 11 1( 1),0( ) 1( 1 ),1( )
1
1 1 1( 1 ),0( ),1( )
( , , ) ( , , )
( , , )
Q ([ 1] )
(19)
j
k
j k v v
k
r
jj k j k j k k
j r
j r r j k r k r
v v
v
v v P v v P
v
v v P
j h
A A A A
A A



      
 
      
 


 

 
 
 

 

This concludes the inductive proof for the case .j k
We proceed to furnish the inductive proof for the case .k j
Theorem 3 is already proved for , {1,2,3,4.}, .j k k j 
Therefore the theorem is valid for , {0, 1, 2, 3,4}.j k  Assume that the theorem is valid for all pairs of
triples , , ( ); , , ( ) for which ,for some 3, and 4.k k
j k Q jh j k Q jh j k j k j k    
    Then apply the induction
principle to the right-hand side of the determining equation:
The structure of determining matrices for single-delay…
www.ijmsi.org 44 | P a g e
1 0 1 1 1
( ) ( ) ([ 1] ) ([ 1] ),noting that k 1 ,
1 1, 1. Therefore:
k k k k
Q jh A Q jh A Q j h A Q j h j k j
k j k j
  
        
    
1 1
1 11( ),0( ) 0( )),1( )
1
1 1( ),0( ),1( )
1 11
1 1 11 0( ( 1)),1( 1)
1
0 0
1
0
1
1 1
( , , ) ( , , )
( , , )
( , , ) ( , , )
Q ( )
kj k
j k j k k k j j
k r
j r r r k j j r
j k k
jj k k j j
k
v v v
j
r
v
v v P v v P
v v
v v P
v v v v
v v v v P
jh
A A A A A A
A A A
A A A A A A

  

    
 
    



 

 




 
 

 

 
 

 
1( 1),0( )
1
1 1( ),0( ( 1)),1( 1 )
1 1 1
1 11( 1),0( 1) 0( 1 ( 1)),1( 1)
1 1
1 1 1( ),0(
1
1
1
1 1
1
( , , )
( , , ) ( , , )
( , , )
j k
k r
k r r r k j j r
j k k
jj k j k k j j
k r
k r r r
j r
r
P
v v
v v P
v v v v
v v P v v P
v v
v v P
A A A
A A A A A A
A A A
 

      
 
       
 
   
 

 


 





 
 

 


 

1 ( 1)),1( 1 )
2
1 k j j r
j
r     




















 
1 11 1
1 1 11 1( ),0( 1) 0( 1 ),1( )
1
1 1( ),0( ),1( )
1 1
1 1 1( 1),0( )
0 1
1 0
1
0
1
1 1
( , , ) ( , , )
( , , )
( , , )
(20)
(21)
j k k
iL iL
jj k j k k j j
k r
k r r r k j j r
j k
j k j k
i i
j
r
v v v v
v v P v v P
v v
v v P
v v
v v P
A A A A
A A A
A A A A A
  
     

    
 
   
 


 


 


   
 

 


 

 1
1 1( ),0( 1 ),1( 1 )
1 12 1
1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 )
2
1
2
1 1
1
( , , )
( , , ) ( , , )
(22)
(23)
k r
k r r r k j j r
k j k r
k k j j k r r r k j j r
j
r
j
r
v v
v v P
v v v v
v v P v v P
A
A A A A A A

      
   
           



 


 
 
 
  

 

 
 
1 1 11
1 1 1 11( ),0( 1) 0( 1 ),1( )( , , ) ( , , )
The expression 20 yields:
(24)jj k
j jj k k j j
v v v v
v v P v v P
A A A A  
     
  
 
1
1
1 1
0
1 1 1( ),0( 1 ),1( )( , , )
The expression:
is immediate from (21)
(25)
j
r
k r
L
k r r r k j j r
v v
v v P
A A


 
      
 


The structure of determining matrices for single-delay…
www.ijmsi.org 45 | P a g e
2
1 1
1
1
1 11
1 11 1( 1),0( ) 1( ),0( 1 ),1( 1 )
1 1
1 1 1( 1),0(
( , , ) ( , , )
( , , )
We use the addition and subtraction technique in (22) to get:
=
j
r
j k k r
j k j k k r r r k j j r
j k
j k j
v v v v
v v P v v P
v v
v v P
A A A A A A
A A A


  
          
 
   
 



   

 

1
1
1
1
1
1
1
1
1) 1( ),0( 1 ),1( 1 )
1
1 1 1( 1),0( 1 1 ),1( 1 ( 1))
1 1
1
1 1( ),0( 1 ),1( )
( , , )
( , , )
( , , )
(26)
j
r
j
r
k r
k k r r r k j j r
k j
k j j j k j j j
k r
L
k r r r k j j r
v
v v
v v P
v
v v P
v v
v v P
A A A
A A A
A A





      
 
          
 
     





  

 






We are left with expression (23), which, using the change of variables technique yields:
1 1
1 1 1 1( 1),0( 1
2
1 1
1
1 1
1 12 1
1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 )
2 1 1
1 1 0( 2 ),0( 1) ( , , )
( , , ) ( , , )
( , , )
=
k r r r k
j
r
k j k r
k k j j k r r r k j j r
k j k r
k k j j
v v
v v P
v v v v
v v P v v P
v v
v v P
A A A A A A
A A A A A A
       

 

 
   
           
    
    
 



  
 
 

 
 
2 ),1( 1 ( 1))
1 12
1 1 1 1( 1),0( 1 2 ),1( 1 ( 1))
1
1
2
1
1 1
1
1
1 1
1 1 0( 2 ),0( 1)
1 1 1
1 1 1 1 1(1 1),0(1 1 2 ),1
( , , )( , , )
( , , )
j j r
k j
k r r r k j j r
j
r
j
r
k r
k k j j
k
k k j
v v v
v v P
v
v
v v P
v
v v P
A A A A A A
A A A
   
 
           



 


  
   
  
        


 

 
  

 

1
1
( 1 (1 1))
1 1
1
1 1 1( ),0( 1 ),1( )( , , )
(27)
j
r
j
k r
L
k r r r k j j r
v v
v v P
A A


  
 

      


 


The resulting expressions (24), (25), (26) and (27) add up to yield:
1
1 1 1
1 11 1( ),0( 1) 1 0( 1 ),1( )
1 1
1 1 1( ),0( 1 ),1( )
1
1
( , , ) ( , , )
( , , )
Q ( )
(28)
k
j k k
j k j k k k j j
k r
j r r r k j j r
j
r
v v v v
v v P v v P
v v
v v P
jh
A A A A
A A

 
      
 
      


 

 

 
 
 

 

This concludes the inductive proof for the case , completing the proof of the theorem.k j
The cases andj k k j  , in the preceding theorem can be unified by using a composition of the max and the
signum functions as follows:
IV. INDUCTION PITFALLS IN THE DERIVATION OF THE DETERMINING
MATRICES
In the development of ( )kQ jh for the single – delay neutral system (1) we had proposed, based on the observed
pattern for ( )k
Q jh for 0 min{ , } 2,j k  that for 1,j k 
The structure of determining matrices for single-delay…
www.ijmsi.org 46 | P a g e
1
1
1 1
1
1 11( ),0( ) 1( ),1( )
1
1 2 1( ),0( ),1( )
( , , ) ( , , )
( , , )
Q ( ) ; 1
; 2
jk
k k r
r s
j k
jj k j k j k k
j r
r j k s r j k r s
v vv v
v v P v v P
v v
v v P
jh k
A A k
A A A A
 
 

   

     
 

 
 

 
  


 
and for 1,k j 
1
1
1
1 1
1 0( ),1( )
2
1
1 1( ),0( )
1 2 1( ),0( ),1( )
( , , )( , , )
( , , )
; 1
; 2
Q ( )
j j r
v
r s
k k j j
r k j s
vk j k k
j k j k
r k j s r r k j s
v v P
v
v v v
v v P
v v P
j
A A j
jh A A A A
 
 

  

 
     




 
 
 


 
This formula is valid for all , :1 min{ , } 2.j k j k  However it turns out to be false for all
, :min{ , } 3.j k j k  This revelelation came to the fore following the discovery of some fallacy in the proof of
the expressions for ( ),kQ jh which could never be overcome; it became imperative to examine 3 (3 )Q h from
the determining equations for ( ).kQ jh The formula was found to be inconsistent with the true result from the
determining equations. Therefore the formula had to be abandoned after so much effort.
Further long and sustained research effort led to the conjecture
1
1 1
1 1( ),1( )
1
1 2 1( ),0( ),1( )
1
1 2 1( ),0( ),1( )
1 1
1 1( ),0( )
( , , )
( , , )
( , , )
( , , )
Q ( ) ; 1
; 2, ,
; 2
k
k k r
r s
j
j j k k
j r
r j k s r j k r s
j r
r j k s r j k r s
j k
j k j k
v v P
v v
v v P
v v
v v P
v v v v
v v P
jh k
A A k j k
A A j k
A A A A
 
 
 

     

     

 




 
 

 

 

 





 
1
1 max{1, 1 2 }
k k r
r s k r
 
   







 
as well as the analogous expression for ( )k
Q jh for 1.k j 
The formula was found to be valid for , :1 min{ , } 2,j k j k  as in the aborted formula. Furthermore
3
(3 )Q h obtained from the postulated formula agreed with the corresponding result (sum of 63 permutation
products) obtained directly from the determining equations. Unfortunately, the proof for arbitrary j and k could
not push through; there was no way to apply induction on the lower limit for s, not to talk of dealing with the
piece–wise nature of the third component summations.
Above pitfalls provided object lessons that integer–based mathematical claims should never be
accepted without error-free proofs by mathematical induction. There is no other way to ascertain that a pattern
will persist –no matter the number of terms for which it has remained valid.
V. CONCLUSION
The results in this article bear eloquent testimony to the fact that we have comprehensively extended
the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the
unfolding of intricate inter–play multiple summations and permutation objects in the course of deriving the
expressions for the determining matrices.
By using the change of variables technique, deft application of mathematical induction principles and
careful avoidance of some induction pitfalls, we were able to obtain the structure of the determining matrices for
the single–delay neutral control model, without which the computational investigation of Euclidean
controllability would be impossible.
The structure of determining matrices for single-delay…
www.ijmsi.org 47 | P a g e
REFERENCES
[1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976).
[2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in
Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992.
[3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276-
285.
[4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional
differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In
progress).
[5] Bellman, R. and Cooke, K. Differential-difference equations. Acad. Press, New York, (1963).
[6] Dauer, J. P. and Gahl, R. D. Controllability of nonlinear delay systems. J.O.T.A. Vol. 21, No. 1, January (1977).
[7] G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J.
Differential equations, ,Vol. 51, No. 2, 1984,Pp. 151-181.
[8] Banks, H. T. and Jacobs, M. An attainable sets approach to optimal control of functional differential equations with
function space terminal conditions. Journal of differential equations, 13, 1973, 121- 149.
[9] Banks, H. T. and Kent G. A. Control of functional differential equations of retarded and neutral type to targets in function
space, SIAM J. Control, Vol. 10, November 4, 1972.
[10] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.

More Related Content

What's hot

On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditionsresearchinventy
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESurender Singh
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricKomal Goyal
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...hirokazutanaka
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...Alexander Decker
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster Samuel Gbari
 
Stochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest wayStochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest wayIOSR Journals
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsAI Publications
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeSteven Duplij (Stepan Douplii)
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMatthew Leingang
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivativesmath265
 
Introduction to FDA and linear models
 Introduction to FDA and linear models Introduction to FDA and linear models
Introduction to FDA and linear modelstuxette
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01laboratoridalbasso
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...hirokazutanaka
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...IOSR Journals
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 

What's hot (19)

On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
 
Stochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest wayStochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest way
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problems
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
 
Introduction to FDA and linear models
 Introduction to FDA and linear models Introduction to FDA and linear models
Introduction to FDA and linear models
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

Viewers also liked

韓文子音Part1 完整版
韓文子音Part1 完整版韓文子音Part1 完整版
韓文子音Part1 完整版rose781224
 
Science and Medicine of the 1940s
Science and Medicine of the 1940sScience and Medicine of the 1940s
Science and Medicine of the 1940sskippyma22
 
Nabuur Camp Agenda
Nabuur Camp AgendaNabuur Camp Agenda
Nabuur Camp Agendapelleaardema
 
地理簡報
地理簡報地理簡報
地理簡報r11190
 
Evaluating Single Group Visits to The Noguchi Museum
Evaluating Single Group Visits to The Noguchi MuseumEvaluating Single Group Visits to The Noguchi Museum
Evaluating Single Group Visits to The Noguchi MuseumRebecca Herz
 
Pay attention!
Pay attention!Pay attention!
Pay attention!adsobba
 
still another test
still another teststill another test
still another testnuvole
 
Hadoop Online Training By Intellipaat
Hadoop Online Training By IntellipaatHadoop Online Training By Intellipaat
Hadoop Online Training By IntellipaatRiya S
 
Trekking+ final presentation
Trekking+ final presentationTrekking+ final presentation
Trekking+ final presentationlluis_r
 
How v!go embraces windows 8 tables - Stefan Van de Poel
How v!go embraces windows 8 tables - Stefan Van de PoelHow v!go embraces windows 8 tables - Stefan Van de Poel
How v!go embraces windows 8 tables - Stefan Van de PoelInspireX
 
Decimononic - Entrevista - MundoSteampunk.net 2014
Decimononic - Entrevista - MundoSteampunk.net 2014Decimononic - Entrevista - MundoSteampunk.net 2014
Decimononic - Entrevista - MundoSteampunk.net 2014Decimononic
 

Viewers also liked (20)

韓文子音Part1 完整版
韓文子音Part1 完整版韓文子音Part1 完整版
韓文子音Part1 完整版
 
Blue Ocean Gallery
Blue Ocean GalleryBlue Ocean Gallery
Blue Ocean Gallery
 
Science and Medicine of the 1940s
Science and Medicine of the 1940sScience and Medicine of the 1940s
Science and Medicine of the 1940s
 
instructiuni MS
instructiuni MSinstructiuni MS
instructiuni MS
 
UKWAUG Hackathon
UKWAUG HackathonUKWAUG Hackathon
UKWAUG Hackathon
 
Nabuur Camp Agenda
Nabuur Camp AgendaNabuur Camp Agenda
Nabuur Camp Agenda
 
地理簡報
地理簡報地理簡報
地理簡報
 
Evaluating Single Group Visits to The Noguchi Museum
Evaluating Single Group Visits to The Noguchi MuseumEvaluating Single Group Visits to The Noguchi Museum
Evaluating Single Group Visits to The Noguchi Museum
 
Webmaster Report.
Webmaster Report.Webmaster Report.
Webmaster Report.
 
Pay attention!
Pay attention!Pay attention!
Pay attention!
 
still another test
still another teststill another test
still another test
 
Hadoop Online Training By Intellipaat
Hadoop Online Training By IntellipaatHadoop Online Training By Intellipaat
Hadoop Online Training By Intellipaat
 
Trekking+ final presentation
Trekking+ final presentationTrekking+ final presentation
Trekking+ final presentation
 
Presentation1
Presentation1Presentation1
Presentation1
 
Casey Golf Logo Ball Hunt
Casey Golf Logo Ball HuntCasey Golf Logo Ball Hunt
Casey Golf Logo Ball Hunt
 
How v!go embraces windows 8 tables - Stefan Van de Poel
How v!go embraces windows 8 tables - Stefan Van de PoelHow v!go embraces windows 8 tables - Stefan Van de Poel
How v!go embraces windows 8 tables - Stefan Van de Poel
 
Posters
PostersPosters
Posters
 
Eunoia Market segmentation
Eunoia Market segmentationEunoia Market segmentation
Eunoia Market segmentation
 
Decimononic - Entrevista - MundoSteampunk.net 2014
Decimononic - Entrevista - MundoSteampunk.net 2014Decimononic - Entrevista - MundoSteampunk.net 2014
Decimononic - Entrevista - MundoSteampunk.net 2014
 
Windows xp
Windows xpWindows xp
Windows xp
 

Similar to D023031047

Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...inventionjournals
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic Systemijtsrd
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...inventy
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemesinventy
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfAshikAhmed42
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...inventionjournals
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 

Similar to D023031047 (20)

A02402001011
A02402001011A02402001011
A02402001011
 
D025030035
D025030035D025030035
D025030035
 
F023064072
F023064072F023064072
F023064072
 
E028047054
E028047054E028047054
E028047054
 
C024015024
C024015024C024015024
C024015024
 
B02404014
B02404014B02404014
B02404014
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
 
B02609013
B02609013B02609013
B02609013
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic System
 
A03401001005
A03401001005A03401001005
A03401001005
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdf
 
Paper 7 (s.k. ashour)
Paper 7 (s.k. ashour)Paper 7 (s.k. ashour)
Paper 7 (s.k. ashour)
 
Presentation
PresentationPresentation
Presentation
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 

Recently uploaded

08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 

Recently uploaded (20)

08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 

D023031047

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-31-47 www.ijmsi.org 31 | P a g e The structure of determining matrices for single-delay autonomous linear neutral control systems Ukwu Chukwunenye Department of Mathematics,University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria. ABSTRACT: This paper derived and established the structure of determining matrices for single – delay autonomous linear neutral differential systems through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of summation notations, the multinomial distribution,change of variables technique and compositions of signum and max functions. The paper also pointed out some induction pitfalls in the derivation of the main results. The paper has extended the results on single–delay models, with more complexity in the structure of the determining matrices. KEYWORDS: Delay, Determining, Neutral, Structure, Systems. I. INTRODUCTION The importance of determining matrices stems from the fact that they constitute the optimal instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets. See Gabasov and Kirillova (1976) and Ukwu (1992, 1996 and 2013a). In sharp contrast to determining matrices, the use of indices of control systems on the one hand and the application of controllability Grammians on the other, for the investigation of the Euclidean controllability of systems can at the very best be quite computationally challenging and at the worst, mathematically intractable. Thus, determining matrices are beautiful brides for the interrogation of the controllability disposition of single-delay neutral control systems. See (Ukwu 2013a). However up-to-date review of literature on this subject reveals that there is currently no correct result on the structure of determining matrices for single-delay neutral systems. This could be attributed to the severe difficulty in identifying recognizable mathematical patterns needed for inductive proof of any claimed result and induction pitfalls in the derivation of determining matrices. This paper establishes valid expressions for the determining matrices in this area of acute research need. II. ON DETERMINING MATRICES AND CONTROLLABILITY OF SINGLE-DELAY AUTONOMOUS NEUTRAL CONTROL SYSTEMS We consider the class of neutral systems:      1 0 1( ) ( ) ( ) , 0 (1) d x t A x t h A x t A x t h Bu t t dt        where A A A1 0 1, , are n n constant matrices with real entries and B is an n m constant matrix with the real entries. The initial function  is in   , 0 , n C h R equipped with sup norm. The control u is in   10, , n L t R . Such controls will be called admissible controls.      1 for, 0,n x t x t h t t  R . If   1 , , n x C h t  R , then for  t t 0 1, we define   , 0 , n t C hx   R by      x s x t s s ht    , , 0 . 2.1 Existence, Uniqueness and Representation of Solutions If A 1 0 and  is continuously differentiable on  , 0h , then there exists a unique function  : ,x h  which coincides with  on  , 0h , is continuously differentiable and satisfies (1) except possibly at the points
  • 2. The structure of determining matrices for single-delay… www.ijmsi.org 32 | P a g e ; 0,1, 2,...jh j  . This solution x can have no more derivatives than  and continuously differentiable if and only if the relation:        1 0 1 0 (0) 0 (2)A h A A h Bu           is satisfied. See Bellman and Cooke (1963) and theorem 7.1 in Dauer and Gahl (1977) for complete discussion on existence, uniqueness and representations of solutions of (1). 2.2 Preliminaries on the Partial Derivatives ( , ) , 0,1, k k X t k       Let  t t, ,  0 1 for fixed t, let     t, be the unique function satisfying the matrix differential equation:           1 0 1 , , , , (3) subject to: ; (4) , = 0, 0 , ; 0,1,..., n t t h A t A t h A I t t t t t jh j                                     By Tadmore (1984 , p. 80),  ,t    is analytic on   1 , , 0,1,....t j h t jh j    and hence  , ist C     on these intervals. The left and right-hand limits of  ,t    exist at   t jh , so that  ,t  is of bounded variation on each compact interval. Cf. Banks and Jacobs (1973), Banks and Kent (1972) and Hale (1977). We maintain the notation         k k t t, , ,  as in the double-delay systems. 2.3 Investigation of the Expressions and Structure of Determining Matrices for System (1) In this section we establish the expressions and the structure of the determining matrices for system (1), as well as their relationships with ( ) ( , )k X t  through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The process of obtaining necessary and sufficient conditions for the Euclidean controllability of (1) in chapter four will be initiated in the rest of chapter three as follows: i. Obtaining a workable expression for the determining matrices of (1):   1 for : 0, 1, 2,.. (5)k Q jh j t jh k   ii.Showing that:        1 1 , 1 (6) kk k t jh t Q jh    for j t jh k: , , , ,....,1 0 0 1 2   iii.Showing that  Q t 1 is a linear combination of:        0 1 1 , ,..., , 0, ,...., 1 (7)n Q s Q s Q s s h n h   We now define the determining equation of the n n matrices,  Q sk . For every integer k and real number s, define  Q sk by:        1 0 1 1 1 (8)k k k k Q s A Q s h A Q s A Q s h        for k s h h 0 1 0 2, ,...; , , ,..... subject to  Q In0 0  , the n n identity matrix and   0 for 0 or 0k Q s k s   . 2.4 Preliminary Lemma on Determining matrices ( ),kQ s sR In (1), assume that A 1 0, then for j k,  1, i.  Q Ak k 0 0
  • 3. The structure of determining matrices for single-delay… www.ijmsi.org 33 | P a g e ii.  Q jh A j 0 1  iii.      Q h A A A A A A Ak k r k k r r        0 1 0 1 0 1 1 1 0 0 iv.       Q jh A A A A A A Aj r j r j r 1 1 0 0 1 1 0 1 1 1 1            v.      1 1 0, 1 kk k t t A    vi.    1 1, 0 k t t   vii.  1 1 1, j t jh t A   Remarks: Notice that Ar 0 can switch places with   Ak r 0 1  in (iii); similarly for Ar 1 and   A j r    1 1 in (iv), since r and  1k r  have the same range for fixed k; similarly in (iv), r and  1j r  have the same range for fixed j. Proof i.From (8) we have           Q A Q h A Q A Q h A Q k k k k k 0 0 0 0 0 1 0 1 1 1 0 1             Now,    Q A Q A I An1 0 0 0 00 0   . Assume that  Q Ak k 0 0 for some k  1. Then,             1 1 1 0 1 1 0 0 1 0 by the induction hypotheses 0 0 0 0 0k k k k k k k Q A Q h A Q A Q h A Q A A A               Hence,  Q Ak k 0 0 for all k  12, ,.....; this proves (i).              0 1 0 0 1 1 1 1 0 ii 1 1 1 0 0 Q jh A Q j h A Q jh A Q j h A Q j h              Hence,    Q h A Q A0 1 0 10   The rest of the proof is by the principle of mathematical induction: Assume that  0 1 for some 1 j Q jh A j   . Then              Q j h A Q jh A Q j h A Q j h A Q jh A A Aj j 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0                    , by induction hypothesis. So  0 1 for 1, 2,...... j Q jh A j   iii From (8),      1 1 1 0 0 1 0 1 0 0 1 1 ( ) 0 0 . Q h A Q A Q h A Q A A A A A          . Plugging in the right-hand side of iii yields     1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 ( ) r r r Q h A A A A A A A A A A A A               . Therefore the formula (iii) is valid for k  1. Assume the validity of (iii) for some k  1. Now
  • 4. The structure of determining matrices for single-delay… www.ijmsi.org 34 | P a g e                   Q h A Q A Q k A Q A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A k k k k k k r k k r r k k r k k r r k k r k k r                                            1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0                        1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 A A A A A A A A A A A A A A Q h r k k k k r k k r r k . Therefore (iii) is true for k  1 and so true for k  1 2, ,..... iv  Q h A A A A A1 0 1 1 0 1    . Plug in the right-hand side of (iv) to obtain  A A A A A A A A A A A A         1 0 1 0 0 1 1 1 0 1 0 0 1 1 It follows that (iv) is true for 1.j  Assume that (iv) is valid for some j  1. Now                         1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 11 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 by the induction hypothesis 1 1 j j rj r r j j j j rj r j r j j r j r Q j h A Q jh A Q j h A Q jh A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A                                                                1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 r r j r r j j r j r r A A A A A A A A A A A A Q j h                     So, the formula (iv) is valid for j  1. This completes the proof that (iv) holds for all j  1 2, ,... v. For k  1,                    1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 , , 0. 0 , , , , k t t t t t t t t t t A t h t A h t A A A A                                         by (3), noting that for  sufficiently close to t h t1 1,   ; so  t h t1 1   . Assume that      1 1 0, 1 kk k t t A    for some k  1. Then                         1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 , , ( , ) , , 1 0 0 1 k k t k k k k kk k X t t X t X t t A X t h t A X t h t A A A A                                 Therefore,      1 1 0, for all 1, 2,... kk X t t A k    .
  • 5. The structure of determining matrices for single-delay… www.ijmsi.org 35 | P a g e        1 1 1 1 1 1 lim vi. , , 0 k k t t t h X t t X t         , since   t1 vii Let j be a nonnegative integer such that t jh1 0  . We integrate (3) and apply (4). Thus            1 1 1 1 1 1 0 1 10 0 , , , , t jh t jh X t X h t A d X t A X h t A d                           Hence,                 1 1 1 1 1 1 1 1 1 1 0 1 10 , 1 , 0, , , , t jh t jh t t j h t A t h t A t A h t A d                           Similarly                1 1 1 1 1 1 1 1 1 ( ) 1 0 1 10 1, 1 0, , , , , , t jh X t jh t X t t j h t X t h t A t A h t A d A                      Therefore                      1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 , , 0, , , , , t jh t jh X t jh t X t j h t A X t jh t X t j h t A X t A X h t A d                                 since  lim 0 0 a a f t dt        , for any bounded integrable function f, and    1 0 1 1, ,t A h t A       is bounded and integrable. Therefore we have deduced that              1 1 1 1 1 1 1 1 1 1 1, , , ,X t jh t X t jh t X t j h t X t j h t A                 for any 1j  , j integer. For j  1, we have          1 1 1 1 1 1 1 1 1 1 1, , , , nX t h t X t h t X t t X t t A I A A                 by (vi). The rest of the proof is by induction on j. Assume the validity of (vii) for j  1,..., p for some p  1. Then                  1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 , , , p X t p h t X t p h t X t p h t X t ph t X t ph t A A A                        by the induction hypothesis. So    1 1 1 11 , p t p h t A      and hence (vii) is valid. 2.5 Lemma on 1 ( ) and ( )k Q h Q jh as sums of products of permutations For any nonnegative integers and ,j k (i) 1 11 1 11 1(1),0( ) 0( 1),1(1)( , , ) ( , , ) ( ) k k k k k k k v v v v v v P v v P Q h A A A A           (ii) 1 1 1 1 1 11( ),0(1) 1( 1), 1(1) 1 ( , , ) ( , , ) ( ) jj jj j j v v v v v v P v v P Q jh A A A A            Proof of (i)
  • 6. The structure of determining matrices for single-delay… www.ijmsi.org 36 | P a g e By lemma 2.4,         1 1 0 1 0 1 0 1 1 0 0 0 and k k rj k r k r Q jh A Q h A A A A A A A                1 1 2 1 1 1(1),0(0) 1 2 11(1),0(1) 0(1 1),1(1) 0 1 1 1 0 1 1 0 1 0 1 1 0 1 ( , ) 0, 1, ; 0 1 ; v v v v v P v v P v P k j Q h A rhs A A k Q h A A A A A rhs A A A A A A A A                                So, the lemma is valid for {0,1}.k  Assume the validity of the lemma for 2 ,k p  for some integer p . Then,       1 1 0 1 0 1 1 0 0 0 p p rp r p r Q h A A A A A A A          1 1 1 1 1 11(1),0( ) 0( 1),1(1)( , , ) ( , , ) p pp p p pv v v v v P v v P vA A A A                           1 1 0 1 1 0 0 0 1 1 1 1 11 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 (1 ) 0 1 0 0 1 1 0 0 0 1 (1 0 1 0 0 Now p p p rp r r p p p r r r p p p p r r r p p p p r r r p p p r A A A A A A A A Q h A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A                                                             1 1 0 ) 1 1 0 0 0 r r p A A AA A A A A         0 1 1 0 1 0 1 1 1 1 1 1 11(1),0( ) 0( 1),1(1) 1 1 1 1 1 11(1),0( ) 0( 1),1(1) 1 0 0 ( , , ) ( , , ) 1 0 0 ( , , ) ( , , ) pp pp p p pp pp p p p p v v v v v v P v v P p p v v v v v v P v v P A A A A A A A A A A A A A A A A A A A                                            0 11 2 1 2 1(1),0( 1) 1 2 1 2 1(1),0( 1) ( , , )( , , ) (with a leading ) (with a leading ) p p p p p p v v v v P v v v v P A AA AA A              0 11 1 1 1 1 1 1 10( 1 1),1(1) 0( 1 1),1(1)( , , ) ( , , ) (with a leading ) (with a leading )p p p pp p v v v v v v P v v P A A A A A A               1 2 1 1 1 2 1 11(1),0( 1) 0( ),1(1)( , , ) ( , , ) p p p pp p v v v v v v P v v P A A A A            Therefore, part (i) of the lemma is valid for 1k p  , and hence valid for every nonnegative integer k . Proof of (ii) Using similar reasoning (ii) can be established by induction; but let us do it differently by using the expression for 1 ( )Q jh from lemma 2.4.
  • 7. The structure of determining matrices for single-delay… www.ijmsi.org 37 | P a g e       1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 j j r r j j r r r r j r j r j r Q jh A A A A A A A A A A A A A                           1 1 1 1 1 11( ),0(1) 1( 1),1(1)( , , ) ( , , ) ,jj jj j j v v v v v v P v v P A A A A            noting that in the first summation over r 0A occupies positions 1,2, , 1j  for 0,1, ,r j  respectively. 0A leads only once and trails only once.; in the second summation 1A occupies positions 1,2, , j for 0,1, , 1r j  respectively. 1A leads only once and trails only once. Remarks: Observe that 1 ( )Q jh may be deduced from ( )k Q h by (a) replacing k by j in the expression for ( )k Q h (b) interchanging -1 and 0 in the expression for ( )k Q h (c) replacing 0 by -1 in the summations or permutations involving only the indices 0 and 1. 2.6 Lemma on 1( , )X t    of uncontrolled part of (1) 1 (1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 (i) (( ) , ) (( ( ( )) ) , ) (ii) (( ) , ) (( ( ( )) ) , ) (iii) ( , ) ( ( ( )) ), ) j r i r i j r i r i j r i r i X t jh t X t j r i h t A A X t jh t X t j r i h t A A X t jh t X t j r i h t A A                                                       Proof of (i) (1) (1) 1 1 1 1 0 1 1 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 (1) 2 1 1 1 ( ,( ) ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , ) (( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ] (( ( 2) ) , ) X t t jh X t jh t A X t j h t A X t j h t A X t j h t A X t j h t A X t j h t A A X t j h t A                                   (1) (1) 1 1 0 1 1 0 1 0 1 (By(v)of lemma 2.4) 0 lhs ( , ) rhs; 1 lhs (( ) , ) (( ) , ) j X t t A j X t h t X t h t A A A A                    1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 Let us examine yield yield Sum the results for these contingencies to get yield yield (( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) ) 0, 1 ( ( , ) ; 1, 0 ; 1, 1 0. r i r i X t r i h t A A r i X t t h A r i X t t A A r i A A r i                                  1 1 1 1 1 1 1 0 1 0 1 0 0 (( (1 ( )) ) , ) ( (( ) , )r i r i X t r i h t A A X t h t A A A A                     So, the lemma is valid for 1j  . Let us explore 2j  . (1) (1) 1 1 0 1 1 1 1 2 1 0 1 1 1 0 1 1 1 0 1 2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , ) (( 2 ) , ) (( ) , ) (( ) , ) j X t h t X t h t A X t h t A X t h t A X t h t A X t h t A X t h t A A A A A A                               
  • 8. The structure of determining matrices for single-delay… www.ijmsi.org 38 | P a g e 2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 2 0 1 Let us examine yield yield yield yield yield y (( (2 ( )) ) , ) ; 0, 0 ( (( 2 ) , ) 0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ; 1, 1 ; 2, 0 ; 2, 0 r i r i X t r i h t A A r i X t h t A r i X t h t A r i X t h t A A r i A A r i A A r i                                          2 1 1 1 1 0 0 2 1 1 0 1 1 1 1 1 0 1 1 1 0 1 ield Sum the results for these contingencies to get 0. (( (2 ( )) ) , ) ( (( 2 ) , ) ( (( ) , ) ( (( ) , ) . r i r i X t r i h t A A X t h t A X t h t A X t h t A A A A A A                               So, (i) of the lemma is valid for {0,1,2}.j  Assume that (i) of the lemma is valid for 3 , for some integer .j n n  Then 1 (1) 1 1 1 1 1 0 0 by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) , n r i r i X t nh t X t n r i h t A A                  (1) 1 1 1 1 0 1 1 1 (1) 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 1 1 0 0 Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , ) (( ) , ) (( ) , ) (( ( 1 ) ) , ) (( ( ( )) ) , ) (( ( 1 i i n r i r i X t n h t X t n h t A X t nh t A X t nh t A X t nh t A X t n i h t A X t n r i h t A A X t n                                                  1 1 0 ) ) , ) i i i h t A   1 1 1 1 1 0 0 as desired. So (i) is true for ,and hence valid for all . (( ( 1 ( )) ) , ) , n r i r i j n j X t n r i h t A A                    Proof of (ii) (1) (1) 1 1 1 1 0 1 1 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 (1) 2 1 1 1 (( ) , ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , ) (( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ] (( ( 2) ) , ) X t jh t X t jh t A X t j h t A X t j h t A X t j h t A X t j h t A X t j h t A A X t j h t A                                   (1) 1 1 (1) (1) 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 lhs ( , ) 0 rhs; 1 lhs (( ) , ) (( ) , ) ( , ) ( , ) (( ) , ) 0 0 j X t t j X t h t X t h t A X t t A X t t A X t h t A                          
  • 9. The structure of determining matrices for single-delay… www.ijmsi.org 39 | P a g e 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 Let us examine yield yield yield yield Sum the results for these contingenc (( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) , ) 0, 1 ( ( , ) 0; 1, 0 ( , ) 0; 1, 1 0. r i r i X t r i h t A A r i X t t h t A r i X t t A r i X t t A A r i                                  1 1 1 1 1 1 1 0 0 0 ies to get (( (1 ( )) ) , ) ( (( ) , )r i r i X t r i h t A A X t h t A                   So, (ii) of the lemma is valid for 1j  . Let us explore 2j  . (1) (1) 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 (1) 2 1 1 1 0 1 1 2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , ) (( 2 ) , ) (( ) , ) (( ) , ) ( , ) ( , ) (( 2 ) , ) (( ) , ) (( ) , j X t h t X t h t A X t h t A X t h t A X t h t A X t h t A X t h t A A X t t A A X t t A X t h t A X t h t A X t h t                                            1 0 1)A A 2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 Let us examine yield yield yield yield yield yield Sum (( (2 ( )) ) , ) ; 0, 0 ( (( 2 ) , ) ; 0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ; 1, 1 0; 2, 0 0; 2, 1 0. r i r i X t r i h t A A r i X t h t A r i X t h t A r i X t h t A A r i r i r i                                      2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 the results for these contingencies to get (( (2 ( )) ) , ) ( (( 2 ) , ) ( (( ) , ) ( (( ) , ) . r i r i X t r i h t A A X t h t A X t h t A X t h t A A                           So, (ii) of the lemma is valid for {0,1,2}.j  Assume that (ii) of the lemma is valid for 3 , for some integer .j n n  Then 1 (1) 1 1 1 1 1 0 0 by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) , n r i r i X t nh t X t n r i h t A A                  (1) 1 1 1 1 0 1 1 1 (1) 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 1 1 0 0 Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , ) (( ) , ) (( ) , ) (( ( 1 ) ) , ) (( ( ( )) ) , ) (( ( 1 i i n r i r i X t n h t X t n h t A X t nh t A X t nh t A X t nh t A X t n i h t A X t n r i h t A A X t n                                                  1 1 0 ) ) , ) i i i h t A   1 1 1 1 1 0 0 as desired. So (ii) is true for 1,and hence true for all (( ( 1 ( )) ) , ) , . n r i r i j nX t n r i h t A A j                     Proof of (iii) The proof follows by noting that (1) (1) (1) 1 1 1 1 1 1( , ) (( ) , ) (( ) , )X t jh t X t jh t X t jh t        and then using (i) and (ii) to deduce that
  • 10. The structure of determining matrices for single-delay… www.ijmsi.org 40 | P a g e 1 (1) 1 1 1 1 1 1 1 0 0 1 1 ( ) 1 1 1 1 1 0 0 0 0 ( ,( )) (( ( ( )) ) , ) (( ( ( )) ) , ) (( ( ( )) ), ) j r i r i j j r j r i r i i r i r i X t t jh X t j r i h t X t j r i h t A A X t j r i h t A A A A A                                                         2.7 Lemma on ( ) 1 1( ,(( ))k X t t jh  recursions 1 ( ) ( 1) 1 1 1 1 1 0 0 ( , ) (( ( ( )) ), ) j k k r i r i X t jh t X t j r i h t A A                  Proof 1 ( ) ( 1) 1 1 0 1 1 0 ( 1) ( 1) 1 1 1 1 0 1 1 1 0 0 0 (by lemma 2.4) If 0,then 0; lhs ( , ) ( 1) ,rhs ( , ) ( , ) ( , ) ( 1)( 1) 0 ( 1) k k k k i i k k k k k k j r X t t A X t ih t A X t t A X t h t A A A A                                 ( ) ( 1) ( 1) 1 1 1 1 1 0 1 1 1 ( ) ( 1) 1 1 1 1 1 1 1 0 0 1 ( 1) 1 1 0 1 1 1 0 0 If 1, then using lemma 2.4, lhs ( (1 1) , ) ( , ) ( , ) ( (1 1) , ) ( , ) ( 1) ( 1) [ ( , ) ( 1) k k k k k k k k k k k k j X t h t A X t h t A X t t A X t h t A X t h t A A A A A X t h t A A                                         1 (by 2.4).A 1 ( 1) 1 1 1 0 0 ( 1) 0 ( 1) ( 1) 1 ( 1) 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 ( 1) 1 1 1 1 1 0 0 1 0 Rhs (( ( ( )) ), ) (( ), ) ( , ) ( , ) ( , ) (( ), ) ( 1) ( 1) j k r i r i k k k k k k k k k X t j r i h t A A X t h t A A X t t A X t t A A X t h t A A X t h t A A A A                                                       1 1 0 1 ( 1) 1 1 0 1 1 1 0 0 1 0 ( 1) (( ), ) ( 1)k k k k k A A A A X t h t A A A                   So, lhs = rhs. Therefore the lemma is valid for j = 1. Assume the validity of the lemma for 2 j m  for some integer m . 1 ( ) ( 1) 1 1 1 1 1 0 0 Then (( ), ) (( ( ( )) ), ) m k k r i r i X t mh t X t m r i h t A A                  ( ) 1 1 ( 1) ( 1) 1 1 0 1 1 1 ( ) 1 1 1 1 1 ( 1) ( 1) 1 1 1 1 1 1 0 0 0 Now (( ( 1) ), ) (( ( 1) ), ) ( , ) ( , ) (( ( 1 ) ), ) (( ( ( )) , ) k k k k m k k r i i i r i X t m h t X t m h t A X t mh t A X t mh t A X t m i h t A X t m r i h t A A                                            1 1 1 ( 1) ( 1) 1 1 1 1 1 1 1 0 1 0 (( ( 1 ) ), ) (( ( ( 1 )) , ) m k k r i i i r i X t m i h t A X t m r i h t A A                             1 1 1 ( 1) ( 1) 1 1 1 1 1 0 0 0 1 1 1 ( 1) ( 1) 1 1 1 1 1 0 0 0 (( ( 1 ) ), ) (( ( 1 ( )) , ) (( ( 1 ) ), ) (( ( 1 ( )) , ) m k k r i i i r i m k k r i i i r i X t m i h t A X t m r i h t A A X t m i h t A X t m r i h t A A                                                    
  • 11. The structure of determining matrices for single-delay… www.ijmsi.org 41 | P a g e (We used the change of variables 1r r  in the r  summand, 1r r  in the limits).r  So the lemma is valid for 1j m  . This completes the desired proof. The following major theorem gives explicit computable expressions for ( ),k Q jh based on painstakingly and rigorously observed ( )k Q jh patterns for various ,j k contingencies. III. THEOREM ON EXPLICIT COMPUTABLE EXPRESSION FOR DETERMINING MATRICES OF (1) Let andj k be nonnegative integers. If 1, thenj k  1 1 1 1 1 1 11( ),0( ) 1( ),1( ) 1 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ( ) j r k k v r j jj k j k j k k j r r j k r k r v v j kv v v v P v v P v v P v jh A A A A A A                             1 1 1 11( ),0( ) 0( ),1( ) 1 1 1( ),0( ),1( ) ( , , ) ( , , ) 1 1 ( , , ) If 1, then Q ( )k j k k j k j k k k j j k r k r r r k j j r v v v v v v P v v P j v v r v v P k j jh A A A A A A                               Proof Case j k . 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 ( 1) If 0, then ( ) (0) , by ( 4); 0 ( ) ( ) (by (ii) of lemma 2.4). 1, 1 ( ) ( ) ( ) ,(by (iv) of lemma 2.4) k n k j j r k r j j r r j r j r j r j k Q jh Q I k Q jh Q jh A j k Q jh Q jh A A A A A A A A A A A A A                                     1 1 1 0 1 1 1 1 1( 1),1(1)1 1 1( ),0(1) ( 1) ( , , )( , , ) j r jj j jj j j r v v v v v v Pv v P A A A A A A                  1 3 1 2 1 2 11 3 2 1 2 0 1 1 1 1 1 0 0 1 1 3 1 21(1),0(2) 0(1),1(1) 1 3 1 2 1 21(2),0(1) 1(1),1(1) 1(1),0( ( , , ) ( , ) ( , , ) ( , ) ( , ) If 2, then ( ) (2 ) ( ) (2 ) ( )k v v v v v v vv v v v P v v P v v P v v P v v P j k Q jh Q h A Q h A Q h A Q h A A A A A A A A A A A A A A                                2 11 11) 1(1) v v v P A A A    1 4 1 3 1 4 1 2 1 2 2 1 2 1 1 1 4 1 31(2),0(2) 1(1),0(1),1(1) 1 4 1 2 1 21(2),0(2) 1(2 2),1(2) 1( ),0( ),1(2 ) ( , , ) ( , , ) ( , , ) ( , ) ( , , ) r v v v v v v r r s r r r v v v v v v P v v P v v P v v P v v P A A A A A A A A A A A                                   Therefore the theorem is valid for , {0, 1, 2}.j k  In particular it is valid for 0 2.k j   1 The cases : ( ) and ( ) have been established already. We need only prove the remaining cases.k Q jh Q h
  • 12. The structure of determining matrices for single-delay… www.ijmsi.org 42 | P a g e Case :j k Assume that the theorem is valid for all pairs of triples , , ( ); , , ( ) for which ,for some 3, and 2.k k j k Q jh j k Q jh j k j k j k         Then apply the induction principle to the right-hand side of the determining equation: 0 1 1 1 1 ([ 1] ) ([ 1] ) ( ) ( ),noting that 1 , 1 1, 1. k k k k Q j h A Q j h A Q jh A Q jh j k j k j k j k                  , Therefore: 1 1 1 1 1 1 1 1 11( 1),0( 1) 1( 1 ( 1)),1( 1) 1 1 1 1( 1 ( 1),0( ),1( 1 ) 1 1 1( 0 0 1 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) Q ([ 1] ) j jj k jj k j k j k k j r j r r j k r k r j k j k v k v r v v v v v v v v P v v P v v v P v v v P j h A A A A A A A A A A A A A A A                                                  1 1 1 1 1( ),0( 1) ( 1)),1( 1) 1 1 11( ),0( ) 1( ),1( ) 1 1 1 1 1 1 1 1 1( ( 1),0( ),1( 1 ) 1 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) j r j k j k j k k jj k jj k j k j k k k r v v s v j r r j k r k r j r j r v v P v v v v v P v v P v v v P v v v A A A A A A A A A A A A                                                   1 1 1( ),0( ),1( ) k r r j k r k rP                           1 1 11 1 1 1 11( 1),0( ) 1( 1 ),1( ) 1 1 1 1 1( 2 ),0( ),1( 1 ) 0 1 { 1,1} 0 01 1 1 1 1( 2 ),1( 1) ( , , ) ( , , ) ( , , )( , , ) (9) (10) jj k iL iL j jj k j k k j r r j k r k r i i r j j r j j k k v v v v v v P v v P v v v v P v v v v P A A A A A A A A A A                                                1 2 1 2 1 1 1 1 1 1 1 1 1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 ) 1 1 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) (11) (12) k k r k r j rj k j rj k j k r j k r k r j r j r r j k r k r vv v v v v P v v P v v v v P A A A A A A A A A                                             1 1 11 1 1 1 11( 1),0( ) 1( 1 ),1( )( , , ) ( , , ) The expression 9 yields: (13)jj k j jj k j k k v v v v v v P v v P A A A A               1 1 1 1 1( 1 ),0( ),1( ) 1 1 ( , , ) The expression: is immediate from (12) (14)j r L j r r j k r k r k r v v v v P A A                
  • 13. The structure of determining matrices for single-delay… www.ijmsi.org 43 | P a g e   1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 2 ),0( ),1( 1 ) 1 1 1 1 2 0 0 1 0 ( , , ) ( , , ) ( , , ) We use the change of variables technique in the expression 10 to get: (15)j j r j j rj k k r j k r k r j j k r v v v v v v P v v P v v v v A A A A A A A A A                                1 1 1 1 1 11( 2 ),1( 1) 1( 1 2 ),0( 1),1( 1 ( 1)) 1 1 1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( ) 1 0 2 1 0 0 2 ( , , ) ( , , ) ( , , ) j r j rj k k r j k r k r j j r j j rj k k r j k r k r k r k r v v P v v P v v v v v v P v v P A A A A A A A A A                                                          1 1 1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( ) 1 1 1 1 1 1 1 1 1 1 1 1 1 11(1 1 ),0(1 1),1( 1) 1 0 0 1 0 0 ( , , ) ( , , ) ( , , ) ( , , ) j j r j j rj k k r j k r k r j j r j j rj k k k v r v v v v v P v v P v v v v v v P v v P A A A A A A A A A A A A                                                        1( 1 ),0( 1),1( ) 1 1 0 1 1 1( 1 ),0( ),1( ) 1 1 1 1 ( , , ) (16) r j k r k r j r L j r r j k r k r k r k r v v v v P A A                              11 1 1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 ) 1 1 1 1 1( ),0( 1) 2 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) We are left with expression 11 , which yields: (17)j rj k j rj k j k r j k r k r jj k j k j k k v v r v v v v P v v P v v v v v P v A A A A A A A A A A A A                                     1 1( 1 ),0( ),1( 1 ) 1 1 1 11( 1 1 ),0( 1),1( 1 ( 1)) 1( 1 ),0( ),1( 1 ) 1 1 1 1 1( 1 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) r j r r j k r k r j r j r j r j rk j k k k k r j k r k r j r j r r j k r k r v v P v v v v v v P v v P v v v v P A A A A A A A A                                                         1 ),0( ),1( ) 1 1 (18) L k r k r k r       The resulting expressions (13), (14), (16) and (18) add up to yield: 11 1 1 1 1 11 1( 1),0( ) 1( 1 ),1( ) 1 1 1 1( 1 ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ([ 1] ) (19) j k j k v v k r jj k j k j k k j r j r r j k r k r v v v v v P v v P v v v P j h A A A A A A                                     This concludes the inductive proof for the case .j k We proceed to furnish the inductive proof for the case .k j Theorem 3 is already proved for , {1,2,3,4.}, .j k k j  Therefore the theorem is valid for , {0, 1, 2, 3,4}.j k  Assume that the theorem is valid for all pairs of triples , , ( ); , , ( ) for which ,for some 3, and 4.k k j k Q jh j k Q jh j k j k j k         Then apply the induction principle to the right-hand side of the determining equation:
  • 14. The structure of determining matrices for single-delay… www.ijmsi.org 44 | P a g e 1 0 1 1 1 ( ) ( ) ([ 1] ) ([ 1] ),noting that k 1 , 1 1, 1. Therefore: k k k k Q jh A Q jh A Q j h A Q j h j k j k j k j                  1 1 1 11( ),0( ) 0( )),1( ) 1 1 1( ),0( ),1( ) 1 11 1 1 11 0( ( 1)),1( 1) 1 0 0 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) Q ( ) kj k j k j k k k j j k r j r r r k j j r j k k jj k k j j k v v v j r v v v P v v P v v v v P v v v v v v v v P jh A A A A A A A A A A A A A A A                                             1( 1),0( ) 1 1 1( ),0( ( 1)),1( 1 ) 1 1 1 1 11( 1),0( 1) 0( 1 ( 1)),1( 1) 1 1 1 1 1( ),0( 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) j k k r k r r r k j j r j k k jj k j k k j j k r k r r r j r r P v v v v P v v v v v v P v v P v v v v P A A A A A A A A A A A A                                                     1 ( 1)),1( 1 ) 2 1 k j j r j r                            1 11 1 1 1 11 1( ),0( 1) 0( 1 ),1( ) 1 1 1( ),0( ),1( ) 1 1 1 1 1( 1),0( ) 0 1 1 0 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) (20) (21) j k k iL iL jj k j k k j j k r k r r r k j j r j k j k j k i i j r v v v v v v P v v P v v v v P v v v v P A A A A A A A A A A A A                                                 1 1 1( ),0( 1 ),1( 1 ) 1 12 1 1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 ) 2 1 2 1 1 1 ( , , ) ( , , ) ( , , ) (22) (23) k r k r r r k j j r k j k r k k j j k r r r k j j r j r j r v v v v P v v v v v v P v v P A A A A A A A                                                 1 1 11 1 1 1 11( ),0( 1) 0( 1 ),1( )( , , ) ( , , ) The expression 20 yields: (24)jj k j jj k k j j v v v v v v P v v P A A A A              1 1 1 1 0 1 1 1( ),0( 1 ),1( )( , , ) The expression: is immediate from (21) (25) j r k r L k r r r k j j r v v v v P A A               
  • 15. The structure of determining matrices for single-delay… www.ijmsi.org 45 | P a g e 2 1 1 1 1 1 11 1 11 1( 1),0( ) 1( ),0( 1 ),1( 1 ) 1 1 1 1 1( 1),0( ( , , ) ( , , ) ( , , ) We use the addition and subtraction technique in (22) to get: = j r j k k r j k j k k r r r k j j r j k j k j v v v v v v P v v P v v v v P A A A A A A A A A                                    1 1 1 1 1 1 1 1 1) 1( ),0( 1 ),1( 1 ) 1 1 1 1( 1),0( 1 1 ),1( 1 ( 1)) 1 1 1 1 1( ),0( 1 ),1( ) ( , , ) ( , , ) ( , , ) (26) j r j r k r k k r r r k j j r k j k j j j k j j j k r L k r r r k j j r v v v v v P v v v P v v v v P A A A A A A A A                                                   We are left with expression (23), which, using the change of variables technique yields: 1 1 1 1 1 1( 1),0( 1 2 1 1 1 1 1 1 12 1 1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 ) 2 1 1 1 1 0( 2 ),0( 1) ( , , ) ( , , ) ( , , ) ( , , ) = k r r r k j r k j k r k k j j k r r r k j j r k j k r k k j j v v v v P v v v v v v P v v P v v v v P A A A A A A A A A A A A                                                          2 ),1( 1 ( 1)) 1 12 1 1 1 1( 1),0( 1 2 ),1( 1 ( 1)) 1 1 2 1 1 1 1 1 1 1 1 1 0( 2 ),0( 1) 1 1 1 1 1 1 1 1(1 1),0(1 1 2 ),1 ( , , )( , , ) ( , , ) j j r k j k r r r k j j r j r j r k r k k j j k k k j v v v v v P v v v v P v v v P A A A A A A A A A                                                           1 1 ( 1 (1 1)) 1 1 1 1 1 1( ),0( 1 ),1( )( , , ) (27) j r j k r L k r r r k j j r v v v v P A A                      The resulting expressions (24), (25), (26) and (27) add up to yield: 1 1 1 1 1 11 1( ),0( 1) 1 0( 1 ),1( ) 1 1 1 1 1( ),0( 1 ),1( ) 1 1 ( , , ) ( , , ) ( , , ) Q ( ) (28) k j k k j k j k k k j j k r j r r r k j j r j r v v v v v v P v v P v v v v P jh A A A A A A                                      This concludes the inductive proof for the case , completing the proof of the theorem.k j The cases andj k k j  , in the preceding theorem can be unified by using a composition of the max and the signum functions as follows: IV. INDUCTION PITFALLS IN THE DERIVATION OF THE DETERMINING MATRICES In the development of ( )kQ jh for the single – delay neutral system (1) we had proposed, based on the observed pattern for ( )k Q jh for 0 min{ , } 2,j k  that for 1,j k 
  • 16. The structure of determining matrices for single-delay… www.ijmsi.org 46 | P a g e 1 1 1 1 1 1 11( ),0( ) 1( ),1( ) 1 1 2 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ( ) ; 1 ; 2 jk k k r r s j k jj k j k j k k j r r j k s r j k r s v vv v v v P v v P v v v v P jh k A A k A A A A                                  and for 1,k j  1 1 1 1 1 1 0( ),1( ) 2 1 1 1( ),0( ) 1 2 1( ),0( ),1( ) ( , , )( , , ) ( , , ) ; 1 ; 2 Q ( ) j j r v r s k k j j r k j s vk j k k j k j k r k j s r r k j s v v P v v v v v v P v v P j A A j jh A A A A                                This formula is valid for all , :1 min{ , } 2.j k j k  However it turns out to be false for all , :min{ , } 3.j k j k  This revelelation came to the fore following the discovery of some fallacy in the proof of the expressions for ( ),kQ jh which could never be overcome; it became imperative to examine 3 (3 )Q h from the determining equations for ( ).kQ jh The formula was found to be inconsistent with the true result from the determining equations. Therefore the formula had to be abandoned after so much effort. Further long and sustained research effort led to the conjecture 1 1 1 1 1( ),1( ) 1 1 2 1( ),0( ),1( ) 1 1 2 1( ),0( ),1( ) 1 1 1 1( ),0( ) ( , , ) ( , , ) ( , , ) ( , , ) Q ( ) ; 1 ; 2, , ; 2 k k k r r s j j j k k j r r j k s r j k r s j r r j k s r j k r s j k j k j k v v P v v v v P v v v v P v v v v v v P jh k A A k j k A A j k A A A A                                                1 1 max{1, 1 2 } k k r r s k r                as well as the analogous expression for ( )k Q jh for 1.k j  The formula was found to be valid for , :1 min{ , } 2,j k j k  as in the aborted formula. Furthermore 3 (3 )Q h obtained from the postulated formula agreed with the corresponding result (sum of 63 permutation products) obtained directly from the determining equations. Unfortunately, the proof for arbitrary j and k could not push through; there was no way to apply induction on the lower limit for s, not to talk of dealing with the piece–wise nature of the third component summations. Above pitfalls provided object lessons that integer–based mathematical claims should never be accepted without error-free proofs by mathematical induction. There is no other way to ascertain that a pattern will persist –no matter the number of terms for which it has remained valid. V. CONCLUSION The results in this article bear eloquent testimony to the fact that we have comprehensively extended the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the unfolding of intricate inter–play multiple summations and permutation objects in the course of deriving the expressions for the determining matrices. By using the change of variables technique, deft application of mathematical induction principles and careful avoidance of some induction pitfalls, we were able to obtain the structure of the determining matrices for the single–delay neutral control model, without which the computational investigation of Euclidean controllability would be impossible.
  • 17. The structure of determining matrices for single-delay… www.ijmsi.org 47 | P a g e REFERENCES [1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976). [2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992. [3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276- 285. [4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In progress). [5] Bellman, R. and Cooke, K. Differential-difference equations. Acad. Press, New York, (1963). [6] Dauer, J. P. and Gahl, R. D. Controllability of nonlinear delay systems. J.O.T.A. Vol. 21, No. 1, January (1977). [7] G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J. Differential equations, ,Vol. 51, No. 2, 1984,Pp. 151-181. [8] Banks, H. T. and Jacobs, M. An attainable sets approach to optimal control of functional differential equations with function space terminal conditions. Journal of differential equations, 13, 1973, 121- 149. [9] Banks, H. T. and Kent G. A. Control of functional differential equations of retarded and neutral type to targets in function space, SIAM J. Control, Vol. 10, November 4, 1972. [10] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.