SlideShare a Scribd company logo
1 of 9
Download to read offline
@ IJTSRD | Available Online @ www.ijtsrd.com
ISSN No: 2456
International
Research
Utilization of Melon and Sn
Carburization of Mild Steel
Adzor, S. Abella *
Department of Industrial
Metallurgy and Foundry
Engineering, Metallurgical
Training Institute PMB 1555,
Onitsha
Engineering, University of Uyo,
ABSTRACT
As long as industrial and agricultural activities go on,
wastes will continue to be generated. In view of this,
wastes recycling/or conversion to other reusable
materials that can be utilize by another
up is fast receiving worldwide attention.
research work, the assessment of the suitability of
melon and snail shell wastes mixtures
the surface hardness of mild steel
carburization method has been investigated. The
carburization process was carried out at the
temperatures of 9000
C, 9200
C and 940
soaking times of 15, 30, 45 and 60 minutes
respectively, and then quenched in water to
Thereafter, they were tempered at 2500
C
relieve the residual stresses introduced into the steel
specimens as a result of quenching. Standard method
was adopted to determine the surface hardness of the
carburized and un-carburized test specimens. Micro
structure examination was also performed using
standard metallographic techniques to observe the
microstructures formed. The results of the study
showed increase in the surface hardness of all the
carburized steel specimens in the different carburizing
media. The steel specimens carburized with
shell wastes plus 20% melon shell wastes
higher hardness values than those carburized with
100% snail shell wastes only. The maximum surface
hardness values of 118VHN, 128VHN and 129VHN
were obtained at the carburizing temperature
9000
C, 9200
C and 9400
C respectively, for the soaking
time of 60 minutes with the specimens carburized
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018
ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume
International Journal of Trend in Scientific
Research and Development (IJTSRD)
International Open Access Journal
Utilization of Melon and Snail Shell Waste Mixtures in the
Carburization of Mild Steel
Ihom, P. Aondona
Department of Mechanical
Engineering, University of Uyo,
Uyo-Nigeria
Department of Metallurgical
Engineering Technology, De
State Polytechnic, Ugwashi
agricultural activities go on,
to be generated. In view of this,
cling/or conversion to other reusable
be utilize by another industrial set-
receiving worldwide attention. In this
the suitability of
tures in enhancing
via the pack
has been investigated. The
carburization process was carried out at the
and 940o
C for the
45 and 60 minutes
in water to harden.
C for 1 hour to
relieve the residual stresses introduced into the steel
quenching. Standard method
was adopted to determine the surface hardness of the
carburized test specimens. Micro-
examination was also performed using
standard metallographic techniques to observe the
results of the study
increase in the surface hardness of all the
carburized steel specimens in the different carburizing
specimens carburized with 80% snail
20% melon shell wastes mixture had
those carburized with
The maximum surface
hardness values of 118VHN, 128VHN and 129VHN
temperatures of
C respectively, for the soaking
carburized
with snail and melon shell wastes
observed that the process variables
soaking time) significantly impacted
of carbon absorbed at the steel surface as depicted by
the surface hardness values.
research work have established the viability of melon
and snail shell wastes mixture
of carburizers in enhancing the surface hardness of
mild steel.
Keywords: Carburization, Surface hardness, Mild
steel, Melon shells, Snail shells
1. INTRODUCTION
The selection of materials for any given application
demands that such materials should possess the
requisite mechanical properties to enable it withstand
the stresses it is likely to encounter in
service condition. This is very key and should not be
compromise as long as safety and proper functioning
of engineering facility is concern
premature failure of the facility
instance, components like gears, bearings, cams,
crank shaft, rock drilling bits, etc., are expected
have unique balance of properties, where the outer
surface is expected to be hard and the inner core to be
tough in order to withstand wear
propagation, respectively [1] [2] [3]
for these applications cannot be produce
medium carbon steels because it is through
and brittle, as such unsuitable. Therefore
Apr 2018 Page: 1032
6470 | www.ijtsrd.com | Volume - 2 | Issue – 3
Scientific
(IJTSRD)
International Open Access Journal
ail Shell Waste Mixtures in the
Edibo, S.
Department of Metallurgical
Engineering Technology, Delta
State Polytechnic, Ugwashi-uku
snail and melon shell wastes mix. It was
process variables (temperature and
soaking time) significantly impacted on the quantity
the steel surface as depicted by
the surface hardness values. The results of the
stablished the viability of melon
mixture as an alternative source
enhancing the surface hardness of
Carburization, Surface hardness, Mild
steel, Melon shells, Snail shells
The selection of materials for any given application
demands that such materials should possess the
requisite mechanical properties to enable it withstand
the stresses it is likely to encounter in the proposed
. This is very key and should not be
ty and proper functioning
concern, and also to avoid
re of the facility in service. For
instance, components like gears, bearings, cams,
crank shaft, rock drilling bits, etc., are expected to
balance of properties, where the outer
surface is expected to be hard and the inner core to be
der to withstand wear and inhibit cracks
[1] [2] [3] [4] [5]. Materials
for these applications cannot be produced from
because it is through-hardened
unsuitable. Therefore, by locally
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1033
enriching the surfaces of low carbon steels, followed
by quenching in water, a hardened surface and tough
inner core can be obtained [6] [7].
Carburization is a heat treatment technique through
which certain desirable mechanical properties can be
imparted into a metallic material to enable it function
properly in the proposed service condition. There are
several carburization methods that have been utilized
to achieve a hardened surface with a tough inner core.
The effectiveness of each method is based on the
potential of the diffusing species in the carburizing
material and furnace temperature [8]. The carburizing
materials that are most often used to achieve this
purpose are agricultural wastes, animal wastes or
hydrocarbon compound while the energizing
materials are usually inorganic chemicals. The most
commonly used of these materials are barium
carbonate, sodium carbonate and calcium carbonate
[3][9]. The high cost of these materials has
necessitated the search for alternative carburizing
materials that are cheap, readily available and
abundant. Results of the proximate analysis carried
out by Abdulrazak et al., [10] showed that melon
shells contain 17.02% carbohydrate. Ademolu et al.,
[11] in their study revealed that snail shells contain
high amount of carbohydrate in the range of 83.53 -
92.76g/100g depending on the species. The relatively
high amount of carbohydrates presence in this waste
materials have made them good sources of
carbonaceous materials that could be utilize to
achieve improved surface hardness of mild steel for
use in stringent service condition requiring higher
surface hardness. Research carried out by Ihom, et al.,
[9], Adzor, et al.,[12], Olanike, et al.,[13] on the
utilization of some waste materials generated from
household, industrial and agricultural activities in the
carburization of mild steel have shown that the waste
generated from these sources have significantly
enhanced the surface hardness of mild steel.
Therefore, to properly harness what nature has
endowed us with, it is paramount that we begin to
take advantage of the numerous waste materials that
are generated in our various communities for
conversion into new products that could be used by
another industry. This will in turn create jobs for the
teeming youth, and also help solve environmental
problems arising from waste disposal.
Waste is defined as anything un-used or not used to
full capacity or excess of what is required or garbage,
rubbish or trash. [14] [15] [16]. There are wide
varieties of waste that are generated from one industry
and community to another as a result of industrial and
agricultural activities. Waste cannot be eliminated
totally from the environment as long as consistent
industrial and agricultural activities go on. Therefore,
waste should be recycled or simply converted to other
products usable by another industrial set- up as a
source of raw materials.
Available researches have shown that extensive work
has been carried out on different agricultural wastes
and marine materials to establish their suitability as
carburizing materials for the surface hardness
improvement of mild steel but it is realized that there
are numerous other waste materials especially of
agricultural products whose viability as alternative
source of carburizing material in the carburization of
mild steel for improved surface hardness are yet to be
adequately explored. The continued search for waste
materials with high carbon potential for utilization as
carburizing materials in enhancing the surface
hardness of mild steel will not only reduce the
existing high cost of carburizing mild steel using the
highly priced conventional energizers along with
existing carbonaceous materials, but also solve waste
pollution problem.
Ihom, et al.,[9] investigated the used of egg shell
wastes as an enhancer in the carburization of mild
steel Adzor et al.,[12] investigated the suitability of
periwinkle shells as carburizing material for the
surface hardness improvement of low carbon steel.
Olanike, et al.,[13], studied the effect of carburizing
temperature and time on the mechanical properties of
AISI/SAE 1020 Steel using carbonized palm kernel
shell. The results obtained by these researchers have
proven that some solid wastes has promising carbon
potential for enhancing the surface hardness of mild
steel.
This research work is aimed at ascertaining the
efficacy of utilizing two carbon bearing materials that
are considered waste (melon and snail shell) in the
carburization of mild steel. The concern here is as a
result of the rising cost of the conventional energizers
that are widely used by industrialist to raise the
carbon potential of many carburizing materials for the
surface hardness improvement of mild steel. The base
approach consists of correlation of the microstructure
with the mechanical property (hardness) and measure
of the surface hardness of the carburized steels to
establish the carburizing success Report [17] show
that melon seeds are grown in large quantities in
different part of Nigeria. The seeds are used in the
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1034
preparation of soup among different communities in
Nigeria. Report [18] posited that land snails are used
as food by humans in various cultures worldwide. In
Nigeria, land snails are edible delicacy in the southern
and eastern part of Nigeria. However, after the
consumption of the melon seeds and the meat of the
land snails, their shells are discarded as wastes,
thereby creating major issue of environmental
pollution. The shell of the snail contains calcium
carbonate just like eggshell. It is as a result of this,
that the authors have devoted special effort in
investigating the possibility of utilizing melon and
snail shell wastes mixture as carbonaceous materials
in the carburization of mild steel, thereby adding
value to these waste materials and at the same time
solving solid wastes disposal problem.
2. Materials and Method
2.1 Materials and Equipment
The materials and equipment utilized for the study
were; mild steel, melon shell wastes, snail shell
wastes, BS sieve (75 microns), steel boxes, muffle
furnace, optical microscope, weighing balance,
dynamic hardness tester (VHN), water, fireclay, tong,
bench vice and hack saw.
2.2 Method
The commercial grade of the mild steel used in the
study was sourced from the central store of the
Metallurgical Training Institute, Onitsha. The
chemical composition of the mild steel as-received is
shown in Table 1. Figures 1 and 2 represent the
photographs of the melon and snail shell wastes. They
were sourced locally in Ikpayongo, Gwer East local
government of Benue State, Nigeria. The snail shell
and the melon shell wastes after cleaning them, they
were packed separately in metal boxes and then
calcined in a muffle furnace at 500o
C and 550o
C
respectively, to carbonized them and thereafter
grinded and sieved through BS sieve (75 microns). A
total of 24 test specimens prepared according to
standard specification as per ASTM standard were
used for the study. The carburization operation was
performed in two stages. In the first stage, 12 test
specimens packed separately in metal boxes and
embedded in 100% powdered snail shell wastes only.
In the second stage, 12 test specimens were also
packed separately in metal boxes containing mixtures
of 80% snail shell wastes and 20% melon shell
wastes. Each of the metal boxes were sealed with
fireclay made into paste with water and allowed to dry
under the sun before placing each box in turn into the
heating chamber of the muffle furnace where they
were heated to the temperature of 900o
C, 920o
C and
940o
C and soaked for 15, 30, 45 and 60 minutes
respectively. After the carburization, they test
specimens were removed from the metal boxes and
then quenched in water to harden, thereafter, they
were tempered for 250o
C for 1 hour to relieve the
residual stresses introduced into the carburized
specimens as a result of quenching.
For effective examination of the internal structures of
the carburized steel specimens, standard
metallographic techniques were adopted. They
specimens were placed on a metallurgical microscope
which was adjusted to focus the specimens and the
microstructures were photographed, using a
magnification of x400. The hardness values were
taken at three different spots on each of the specimen
and the average value calculated.
Table 1: Chemical composition of the mild steel plate
as- received
Elements % Composition
C 0.158
Si 0.219
Mn 0.493
P 0.025
S 0.006
Cr 0.087
Ni 0.011
Mo 0.002
Al 0.030
Cu 0.051
Co 0.003
Ti 0.001
Nb 0.003
V 0.002
W 0.033
Pb 0.003
B 0.001
Sn 0.003
Zn 0.002
As 0.005
Bi 0.002
Ca 0.001
Ce 0.003
Zr 0.002
La 0.002
Fe 98.9
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1035
(a) (b)
Figure 1: (a) Photograph of the snail shell wastes and (b) Photograph of the melon shell wastes
3. Results and Discussion
The results obtained from the study are shown in
Table 2. Figure 3 to 4 show the variation of the
surface hardness with the process variables
(carburizing temperature and soaking time). The
micrographs of the un-carburized test specimen and
some of the carburized steel specimens are shown in
Figures 5to 8. Table 2 shows the effect of carburizing
temperature and soaking time on the surface hardness
of the carburized mild steel. It is clearly evident in
Table 2 that as the carburizing temperature and
soaking time was increased from 900 to 9400
C at the
time intervals of 15, 30, 45 and 60minutes, there was
a progressive increase in the surface hardness of all
the carburized steel specimens. However, the steel
specimens carburized with 80% snail shell wastes
plus 20% melon shell wastes had higher surface
hardness values than those carburized with 100%
snail shell wastes only. This implies that the melon
and snail shell wastes mixtures enhances the carbon
potential of the carburizing medium which resulted in
the higher surface hardness obtained. The melon
waste provides carbon while the calcium carbonate in
the snail shell gets decomposed at high temperature to
play the role of energizer leading to higher
carburizing potential [9]. The variation in the surface
hardness of the carburized steel specimens is expected
since the enrichment of the surface layer of the steel
with carbon increases exponentially with temperature
and the case depth increases with time although not in
direct proportion [3][9][19][20]. Also, the higher the
amount of carbon absorbed into the steel, the higher
the hardness of the martensite formed. Therefore, the
amount of carbon absorbed into the steel at the
different carburization temperatures affected the
amount, proportion and morphology of the martensite
formed during quenching. This is in consonance with
reports [12] [21] [22].
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1036
Table 2: Mechanical Property of Carburized Mild Steels
Sample Premix Carburizing Soaking Hardness
ID Composition Tempt (0
C) Time (hrs) VHN
Control 89
A1 100% Snail shell 900 15 91
A2 100% Snail shell 900 30 93
A3 100% Snail shell 900 45 97
A4 100% Snail shell 900 60 101
B1 80% Snail shell + 20%Melon shell 900 15 93
B2 80% Snail shell + 20%Melon shell 900 30 95
B3 80% Snail shell + 20%Melon shell 900 45 103
B4 80% Snail shell + 20%Melon shell 900 60 118
C1 100% Snail shell 920 15 96
C2 100% Snail shell 920 30 99
C3 100% Snail shell 920 45 117
C4 100% Snail shell 920 60 120
D1 80%Snail Shell + 20%Melon shell 920 15 101
D2 80% Snail Shell +20%Melon shell 920 30 103
D3 80% Snail Shell +20%Melon shell 920 45 121
D4 80% Snail Shell +20%Melon shell 920 60 128
E1 100% Snail Shell 940 15 98
E2 100% Snail Shell 940 30 101
E3 100% Snail Shell 940 45 120
E4 100% Snail Shell 940 60 124
F1 80% Snail Shell + 20%Melon shell 940 15 104
F2 80% Snail Shell + 20%Melon shell 940 30 110
F3 80% Snail Shell + 20%Melon shell 940 45 127
F4 80% Snail Shell + 20%Melon shell 940 60 129
Figure 3: (a) and (b) show the variation of surface
hardness with carburizing temperature of the steel
specimens carburized with snail and melon shell
wastes mix, and snail shell wastes only, respectively.
The Figures indicates that as the carburizing
temperature was increased from 9000
C-9400
C, there
was a steady increase in the surface hardness values
of all the carburized steel specimens. However, it was
observed that the steel specimens carburized with the
snail and melon shell wastes mix, exhibited higher
surface hardness increase than those carburized with
snail shell wastes only. The higher surface hardness
exhibited by the steel specimens carburized with the
melon and snail shell wastes mixtures indicates that
the melon and snail shell wastes enhances the carbon
potential of the carburizing medium, which in turn
resulted in the higher surface hardness obtained.
Report [7] stated that the maximum surface hardness
that could be attain by any carburized steel depends
on the carbon potential of the carburizing material and
the quantity of carbon that is absorb at the steel
surface. This quantity increases with increase in
temperature. The variation in the surface hardness
with carburizing temperature implies that temperature
has a strong influence on the rate of diffusion.
According to report [19] the higher the temperature of
heating, the higher the solubility of carbon in
austenite iron, and the higher the surface hardness that
will be attain by the steel when it is quench in water.
This is in agreement with reports [23][24].
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1037
(a) (b)
Figure 3: (a) Variation of surface hardness with carburizing temperature of steel carburized with snail and
melon shell wastes mix and (b) Variation of surface hardness with carburizing temperature of steel carburized
with snail shell wastes only.
Figure 4: (a) and (b) shows the variation of surface hardness with soaking time of the steel specimens
carburized with melon and snail shell wastes mix, and with snail shell wastes only, respectively. The Figures
clearly show that at any given carburizing temperature as the soaking time was increased from 15-60 minutes,
the surface hardness of the carburized steel specimens’ increases. The variation in the surface hardness with
soaking time is expected since report [24] stated that at any given temperature, the quantity of carbon absorbed
by any carburized steel increases with time. Report [25] stated that, the amount of carbon that could be picked
up by steel is a function of time and the available carbon potential in the furnace atmosphere. Therefore, the
high carbon potential arising from the snail and melon shell wastes mix is largely responsible for the highly
improved surface hardness obtained by the steel specimens carburized in the snail and melon shell wastes mix
carburizing medium compared to those carburized in the snail shell wastes carburizing medium.
(a) (b)
0
20
40
60
80
100
120
140
15 30 45 60
SurfaceHardness(VHN)
Soaking Time(min)
900⁰C
920⁰C
940⁰C
0
20
40
60
80
100
120
140
15 30 45 60
surfacehardness(VHN)
900⁰C
920⁰C
940⁰C
0
20
40
60
80
100
120
140
900 920 940
surfacehardness(VHN)
carburizing temperature (⁰C)
15 mins.
30 mins.
45 mins.
60 mins.
0
20
40
60
80
100
120
140
900 920 940
surfacehardness(VHN)
carburizing temperature (⁰C)
15 mins.
30 mins.
45 mins.
60 mins.
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1038
Figure 4: (a) Variation of surface hardness with soaking time of steel carburized with snail and melon shell
wastes mix and (b) Variation of surface hardness with soaking time of steel carburized with snail shell wastes
only.
Figure 5 revealed the micrograph of the un-carburized (untreated) as-received. The micrograph indicates the
presence of pearlite in ferrite matrix. The coarse grain size of the microstructure clearly accounts for the lower
surface hardness of the un-carburized steel specimens as compared to the carburized steel specimens.
Figures 6-8 show the micrographs of the steel specimens carburized at 9000
C, 9200
Cand 9400
C, and soaked for
60 minutes. They micrographs consist of tempered martensite and dispersed carbide in ferrite matrix. However,
the micrographs of the steel specimens carburized with 80% snail shell wastes plus 20% melon shell wastes
revealed the presence of more proportion of tempered martensite with varying degree of dispersed carbide
along the ferrite grain boundary as compared to the micrographs of the steel specimens carburized with 100%
snail shell wastes only. Hence, the higher surface hardness values obtained by the specimens carburized with
snail and melon shell mix.
Figure 5: Micrograph of un-carburized (untreated) steel as-received. X400
(a) X400 (b) X400
Figure 6: (a) Micrograph of steel carburized with 100% snail shell wastes onlyand (b) Micrograph of
steel carburized with snail and melon shell wastes mix. (Carburized at 9000
C, soaked for 60 minutes)
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1039
(a) X400 (b) X400
Figure 7: Micrograph of steel carburized using 100% snail shell wastes onlyand (b) Micrograph of steel
carburized with snail and melon shell wastes mix. (Carburized at 9200
C, soaked for 60 minutes)
(a) X400 (b) X400
Figure 8: (a) Micrograph of steel carburized using 100% snail shell wastes only and (b) Micrograph of
steel carburized with snail and melon shell wastes mix (Carburized at 9400
C, soaked for 60 minutes)
4. Conclusion
On the basis of the overall results of the study, the
following conclusions have been drawn:
1. The study observed that the surface hardness of all
the carburized steel specimens’ increases steadily
as the carburizing temperature and soaking time
was increased. This implies that temperature and
soaking time had strong influences on the rate of
absorption and diffusion of carbon into the steel
surface.
2. It was also observed that the steel specimens
carburized with snail and melon shell wastes
mixtures exhibited higher surface hardness values
than those carburized with snail shell wastes only.
This suggests that the melon and snail shell wastes
mixtures raised the carbon potential of the
carburizing medium.
3. The study has open a new door for the utilization
of melon and snail shell wastes mixture as a
cheap, readily available and good alternative
source of carbonaceous materials to be used alone,
without the addition of the highly priced
conventional energizers for the surface hardness
improvement of mild steel for use in stringent
service condition requiring higher surface
hardness.
References
1) Mallick, A. (2011). Principles of Physical
Metallurgy, published by Viva Books private
limited, New Delhi. Pp.324
2) Smith, W. F., Hashemi, J. and Prakash (2008).
Materials science and engineering (4th
ed.).
Published in India for McGraw-Hill, Inc., New
York. Pp184.
International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1040
3) Khanna, O. P. (2008). Material Science and
Metallurgy. Published by Ish Kapur for
DahanpatRai publications (p) Ltd. New Delhi. pp.
44-3.
4) Singh, V. (2011), Physical Metallurgy, published
by A. K. Jain for Standard publishers Distributors,
New Delhi. Pp.571
5) Sanjib, K. J (2009), Heat Treatment of Low
Carbon Steel, Undergraduate Degree
Project. Department Mechanical Engineering,
National Institute of Technology. Pp. 13-
14. Retrieved August 12, 2016 from
ethesis.nitrkl.ac.in/1138/1/
6) George, F. V. and Gabriel, M. L. (2009).
Microstructural Characterization of
Carburized Steels. Heat Treating Process. Pp.
37.
7) Degarmo, E. P., Black, J.T. and Kohser, R. A.
(1997) Materials and Processes in manufacturing
(8th
ed.) published by Prentice-Hall, India. Pp.
132. Retrieved December 16, from
https://www.amazon.com
8) Nor, A. N. (2007). Effect of Carburization on
Mechanical Properties of Low Carbon Steel.
Undergraduate Degree Project, Department of
Mechanical Engineering,
FakultiKejuruteraanMekanikal, Universiti
Teknikal, Malaysia, Melaka. Pp.5-6.
Retrieved from eprints.utem.edu.my/18449
9) Ihom, A. P., Nyior, G. B., Nor, I. J. and Ogbodo,
N. J. (2013). Investigation of Egg Shell
Waste as an Enhancer in the Carburization of Mild
Steel. American Journal Materials Science and
Engineering, 1(2), pp. 29-33
10) Abdulrazak, S., Otie, D. and Oniwapele, Y. A.
(2014) Proximate Analysis and Anti-
Nutritional Factors of Groundnut and Melon
Husk. Online Journal of Animal and Feed
Research, vol. 4, issue 2, pp. 27.
11) Ademolu, K. O., Akintola, M. Y., Olalonye, A. O.
and Adelabu, B. A. (2015) Tradional
Utilization and Biochemical Composition of
Six Mollusc Shells in Nigeria. Rev. boil.
Trop, vol. 63, no. 2 San Jose
12) Adzor, S. A., Nwoke, V. U. and Akaluzia, R. O.
(2016). Investigation of the suitability of
Periwinkle Shell as Carburizing Material for the
Surface Hardness Improvement of Low Carbon
Steel. European Journal of Material
Sciences, vol. 3, No. 2, pp. 13-23
13) Olanike, M. O., Samuel, R. O., Iyiola, O. O. and
Fatai, O. A. (2015). Effect of Carburizing
temperature and time on the Mechanical
properties of AISI/SAE 1020 Steel using
carbonized palm kernel. Leonardo EIJ Pract.
Technol. 2015(27), pp. 41-56
14) Definition of waste. Retrieved February 7, 2017
from www.wastedictionary.com
15) What is waste? Retrieved February 7, 2017 from
www.fullcycle.co.za/index.php
16) Zero waste. Retrieved 7, February 2017 from
www.zerowasteamerica.org
17) Ogbe, A. O., Alu, S. E., Moses, A. and Obeka, A.
D. (2013). Utilization of melon shell husk with
mushroom as enzyme supplement: Effect on
performance of boiler chicken. International
Journal of Research Studies in Biosciences
(IJRSB) vol. 1, issue 2, pp. 2
18) Land snails.Retrieved February 10, from
https://en.wikipedia.org/wiki/land_snail
19) Singh, V. (2007). Heat Treatment of Metals.
Published by A. K. Jain for Standard
Publishers Distributors, New Delhi. pp. 276,
334, 335 and 336.
20) Singh, V. (2011). Physical Metallurgy. Published
by A. K. Jain for Standard Publishers
Distributor, New Delhi. pp. 570-571.
21) Nwoke, V. U., Nnuka, E. E., Odo, J. U. and
Obiorah, S. M. O. (2014). Effect of
process variables on the mechanical
properties of surface hardened mild steel
quenched in different Media. Journal of
Scientific and Technological Researh, Vol. 3,
Issue 4. Pp.390-393.
22) Raghavan,V. (1989). Physical Metallurgy:
Principles and Practice. Published by Prentice-
Hall of India, New Delhi. pp.135.
23) Jaykant, G. (2009). Mechanical and wear
properties of carburized mild steel samples Master
of Engineering Thesis, National Institute of
Technology, Rourkela. Pp.36-42. Retrieved June,
1, 2015, from www.docstoc.com.
24) Yang, C. E., Chiu, L. H. and Wu, J. K. (1995).
Effect of carburization and hydrogenation
on the impact toughness of AISI4118 steel.
Surface and Coating Technology, 73, pp. 18-
22.
25) Rajput, R. K. (2010). Material Science and
Engineering. Published by S. K. Kataria and
Sons, New Delhi. Pp.336-337.

More Related Content

What's hot

HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGS
HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGSHOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGS
HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGSHARKULVINDER84
 
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...IRJET Journal
 
Experimental Investigation of Properties of Concrete with Partial Replacement...
Experimental Investigation of Properties of Concrete with Partial Replacement...Experimental Investigation of Properties of Concrete with Partial Replacement...
Experimental Investigation of Properties of Concrete with Partial Replacement...ijtsrd
 
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...IJAEMSJORNAL
 
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET Journal
 
Wear Analysis on 410 Stainless Steel Material by Hardening Process
Wear Analysis on 410 Stainless Steel Material by Hardening ProcessWear Analysis on 410 Stainless Steel Material by Hardening Process
Wear Analysis on 410 Stainless Steel Material by Hardening ProcessIJAEMSJORNAL
 
Experimental Study on Effect of Wood Ash on Strength of Concrete
Experimental Study on Effect of Wood Ash on Strength of ConcreteExperimental Study on Effect of Wood Ash on Strength of Concrete
Experimental Study on Effect of Wood Ash on Strength of ConcreteIRJET Journal
 
Review on Erosion and Corrosion Studies on Steel Weldments
Review on Erosion and Corrosion Studies on Steel WeldmentsReview on Erosion and Corrosion Studies on Steel Weldments
Review on Erosion and Corrosion Studies on Steel WeldmentsIRJET Journal
 
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...IRJET Journal
 
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...YogeshIJTSRD
 
SURFACE ENGINEERING AND COATING PROCESSES 2
SURFACE ENGINEERING AND COATING PROCESSES 2SURFACE ENGINEERING AND COATING PROCESSES 2
SURFACE ENGINEERING AND COATING PROCESSES 2sheikh shahjada
 
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET Journal
 
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...IRJET Journal
 
Functional surfaces for corrosion protection – current challenges and future ...
Functional surfaces for corrosion protection – current challenges and future ...Functional surfaces for corrosion protection – current challenges and future ...
Functional surfaces for corrosion protection – current challenges and future ...Tomasz Liskiewicz
 
Dry machining of aluminum for proper selection of cutting tool tool performa...
Dry machining of aluminum for proper selection of cutting tool  tool performa...Dry machining of aluminum for proper selection of cutting tool  tool performa...
Dry machining of aluminum for proper selection of cutting tool tool performa...Dillip Mohanta
 
Utilization of Industrial Waste Material in GSB Layer
Utilization of Industrial Waste Material in GSB LayerUtilization of Industrial Waste Material in GSB Layer
Utilization of Industrial Waste Material in GSB LayerIJERA Editor
 
Surface engineering 2013-english
Surface engineering 2013-englishSurface engineering 2013-english
Surface engineering 2013-englishAIN TECH
 
Time dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteTime dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteeSAT Publishing House
 

What's hot (20)

HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGS
HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGSHOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGS
HOT CORROSION RESISTANCE OF ALLOY AND COMPOSITE COATINGS
 
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...
A Review Study of Investigation on Titanium Alloy Coatings for Wear Resistanc...
 
Experimental Investigation of Properties of Concrete with Partial Replacement...
Experimental Investigation of Properties of Concrete with Partial Replacement...Experimental Investigation of Properties of Concrete with Partial Replacement...
Experimental Investigation of Properties of Concrete with Partial Replacement...
 
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...
Corrosion Measursement, Friction testing and XRD Analysis of Single Layer CrN...
 
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
 
Wear Analysis on 410 Stainless Steel Material by Hardening Process
Wear Analysis on 410 Stainless Steel Material by Hardening ProcessWear Analysis on 410 Stainless Steel Material by Hardening Process
Wear Analysis on 410 Stainless Steel Material by Hardening Process
 
Experimental Study on Effect of Wood Ash on Strength of Concrete
Experimental Study on Effect of Wood Ash on Strength of ConcreteExperimental Study on Effect of Wood Ash on Strength of Concrete
Experimental Study on Effect of Wood Ash on Strength of Concrete
 
Review on Erosion and Corrosion Studies on Steel Weldments
Review on Erosion and Corrosion Studies on Steel WeldmentsReview on Erosion and Corrosion Studies on Steel Weldments
Review on Erosion and Corrosion Studies on Steel Weldments
 
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...
IRJET- Tribological Behavior of Silicon Nitride on Addition of Hexagonal Boro...
 
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
 
SURFACE ENGINEERING AND COATING PROCESSES 2
SURFACE ENGINEERING AND COATING PROCESSES 2SURFACE ENGINEERING AND COATING PROCESSES 2
SURFACE ENGINEERING AND COATING PROCESSES 2
 
A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
 
Ak4201243249
Ak4201243249Ak4201243249
Ak4201243249
 
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
 
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...
IRJET- Preparation of Autoclaved Aerated Concrete (AAC) Block by using Alumin...
 
Functional surfaces for corrosion protection – current challenges and future ...
Functional surfaces for corrosion protection – current challenges and future ...Functional surfaces for corrosion protection – current challenges and future ...
Functional surfaces for corrosion protection – current challenges and future ...
 
Dry machining of aluminum for proper selection of cutting tool tool performa...
Dry machining of aluminum for proper selection of cutting tool  tool performa...Dry machining of aluminum for proper selection of cutting tool  tool performa...
Dry machining of aluminum for proper selection of cutting tool tool performa...
 
Utilization of Industrial Waste Material in GSB Layer
Utilization of Industrial Waste Material in GSB LayerUtilization of Industrial Waste Material in GSB Layer
Utilization of Industrial Waste Material in GSB Layer
 
Surface engineering 2013-english
Surface engineering 2013-englishSurface engineering 2013-english
Surface engineering 2013-english
 
Time dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteTime dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concrete
 

Similar to Utilization of Melon and Snail Shell Waste Mixtures in the Carburization of Mild Steel

Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...IRJET Journal
 
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...theijes
 
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...IAEME Publication
 
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...ijtsrd
 
Wear behavior of stepped austempered ductile iron balls in grinding iron ore
Wear behavior of stepped austempered ductile iron balls in grinding iron oreWear behavior of stepped austempered ductile iron balls in grinding iron ore
Wear behavior of stepped austempered ductile iron balls in grinding iron oreeSAT Publishing House
 
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...IAEME Publication
 
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...ijtsrd
 
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...ijiert bestjournal
 
technologies-07-00063.pdf
technologies-07-00063.pdftechnologies-07-00063.pdf
technologies-07-00063.pdfSamraj Ravi
 
Analyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesAnalyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesIRJET Journal
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...IRJET Journal
 
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITES
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITESTRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITES
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITESIRJET Journal
 
IRJET - A Review on Use of Steel Slag in Asphalt Road Construction
IRJET - A Review on Use of Steel Slag in Asphalt Road ConstructionIRJET - A Review on Use of Steel Slag in Asphalt Road Construction
IRJET - A Review on Use of Steel Slag in Asphalt Road ConstructionIRJET Journal
 
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...IAEME Publication
 
Assessment of heavy metal concentrations in surface water sources
Assessment of heavy metal concentrations in surface water sourcesAssessment of heavy metal concentrations in surface water sources
Assessment of heavy metal concentrations in surface water sourcesManoj Kumar Tiwari
 

Similar to Utilization of Melon and Snail Shell Waste Mixtures in the Carburization of Mild Steel (20)

Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
 
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
 
30120140505008
3012014050500830120140505008
30120140505008
 
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...
AN APPROACH FOR ENERGY CONSERVATION ON PARTIALLY LATERISED KHONDALITE ROCKS U...
 
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...
Reinforcement of Pond Ash Bed with Recron 3S and Analysis of Its Geotechnical...
 
Wear behavior of stepped austempered ductile iron balls in grinding iron ore
Wear behavior of stepped austempered ductile iron balls in grinding iron oreWear behavior of stepped austempered ductile iron balls in grinding iron ore
Wear behavior of stepped austempered ductile iron balls in grinding iron ore
 
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...
EFFECT OF SILICON OXIDE (SIO2) REINFORCED PARTICLES ON AGEING BEHAVIOR OF Al-...
 
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...
Experimental Investigation of the Wear Behaviour of Excavator Bucket Teeth by...
 
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...
USE OF AIR COOLED BLAST FURNANCE SLAG (ACBFS) AS COARSE AGGREGATES‐ A CASE ST...
 
technologies-07-00063.pdf
technologies-07-00063.pdftechnologies-07-00063.pdf
technologies-07-00063.pdf
 
Analyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesAnalyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samples
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...
IRJET- Experimental Study on Partial Replacement of Steel Slag with Fine Aggr...
 
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITES
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITESTRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITES
TRIBOLOGICAL STUDY ON HEAT-TREATEDALUMINIUM MATRIX COMPOSITES
 
IRJET - A Review on Use of Steel Slag in Asphalt Road Construction
IRJET - A Review on Use of Steel Slag in Asphalt Road ConstructionIRJET - A Review on Use of Steel Slag in Asphalt Road Construction
IRJET - A Review on Use of Steel Slag in Asphalt Road Construction
 
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...
Effect of silicon oxide sio2 reinforced particles on ageing behavior of al 20...
 
Stainless steel
Stainless steelStainless steel
Stainless steel
 
Assessment of heavy metal concentrations in surface water sources
Assessment of heavy metal concentrations in surface water sourcesAssessment of heavy metal concentrations in surface water sources
Assessment of heavy metal concentrations in surface water sources
 
Reduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt processReduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt process
 

More from ijtsrd

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementationijtsrd
 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...ijtsrd
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospectsijtsrd
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...ijtsrd
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...ijtsrd
 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...ijtsrd
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Studyijtsrd
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...ijtsrd
 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...ijtsrd
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...ijtsrd
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...ijtsrd
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...ijtsrd
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadikuijtsrd
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...ijtsrd
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...ijtsrd
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Mapijtsrd
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Societyijtsrd
 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...ijtsrd
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...ijtsrd
 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learningijtsrd
 

More from ijtsrd (20)

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation
 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Study
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Map
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Society
 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learning
 

Recently uploaded

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Recently uploaded (20)

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

Utilization of Melon and Snail Shell Waste Mixtures in the Carburization of Mild Steel

  • 1. @ IJTSRD | Available Online @ www.ijtsrd.com ISSN No: 2456 International Research Utilization of Melon and Sn Carburization of Mild Steel Adzor, S. Abella * Department of Industrial Metallurgy and Foundry Engineering, Metallurgical Training Institute PMB 1555, Onitsha Engineering, University of Uyo, ABSTRACT As long as industrial and agricultural activities go on, wastes will continue to be generated. In view of this, wastes recycling/or conversion to other reusable materials that can be utilize by another up is fast receiving worldwide attention. research work, the assessment of the suitability of melon and snail shell wastes mixtures the surface hardness of mild steel carburization method has been investigated. The carburization process was carried out at the temperatures of 9000 C, 9200 C and 940 soaking times of 15, 30, 45 and 60 minutes respectively, and then quenched in water to Thereafter, they were tempered at 2500 C relieve the residual stresses introduced into the steel specimens as a result of quenching. Standard method was adopted to determine the surface hardness of the carburized and un-carburized test specimens. Micro structure examination was also performed using standard metallographic techniques to observe the microstructures formed. The results of the study showed increase in the surface hardness of all the carburized steel specimens in the different carburizing media. The steel specimens carburized with shell wastes plus 20% melon shell wastes higher hardness values than those carburized with 100% snail shell wastes only. The maximum surface hardness values of 118VHN, 128VHN and 129VHN were obtained at the carburizing temperature 9000 C, 9200 C and 9400 C respectively, for the soaking time of 60 minutes with the specimens carburized @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume International Journal of Trend in Scientific Research and Development (IJTSRD) International Open Access Journal Utilization of Melon and Snail Shell Waste Mixtures in the Carburization of Mild Steel Ihom, P. Aondona Department of Mechanical Engineering, University of Uyo, Uyo-Nigeria Department of Metallurgical Engineering Technology, De State Polytechnic, Ugwashi agricultural activities go on, to be generated. In view of this, cling/or conversion to other reusable be utilize by another industrial set- receiving worldwide attention. In this the suitability of tures in enhancing via the pack has been investigated. The carburization process was carried out at the and 940o C for the 45 and 60 minutes in water to harden. C for 1 hour to relieve the residual stresses introduced into the steel quenching. Standard method was adopted to determine the surface hardness of the carburized test specimens. Micro- examination was also performed using standard metallographic techniques to observe the results of the study increase in the surface hardness of all the carburized steel specimens in the different carburizing specimens carburized with 80% snail 20% melon shell wastes mixture had those carburized with The maximum surface hardness values of 118VHN, 128VHN and 129VHN temperatures of C respectively, for the soaking carburized with snail and melon shell wastes observed that the process variables soaking time) significantly impacted of carbon absorbed at the steel surface as depicted by the surface hardness values. research work have established the viability of melon and snail shell wastes mixture of carburizers in enhancing the surface hardness of mild steel. Keywords: Carburization, Surface hardness, Mild steel, Melon shells, Snail shells 1. INTRODUCTION The selection of materials for any given application demands that such materials should possess the requisite mechanical properties to enable it withstand the stresses it is likely to encounter in service condition. This is very key and should not be compromise as long as safety and proper functioning of engineering facility is concern premature failure of the facility instance, components like gears, bearings, cams, crank shaft, rock drilling bits, etc., are expected have unique balance of properties, where the outer surface is expected to be hard and the inner core to be tough in order to withstand wear propagation, respectively [1] [2] [3] for these applications cannot be produce medium carbon steels because it is through and brittle, as such unsuitable. Therefore Apr 2018 Page: 1032 6470 | www.ijtsrd.com | Volume - 2 | Issue – 3 Scientific (IJTSRD) International Open Access Journal ail Shell Waste Mixtures in the Edibo, S. Department of Metallurgical Engineering Technology, Delta State Polytechnic, Ugwashi-uku snail and melon shell wastes mix. It was process variables (temperature and soaking time) significantly impacted on the quantity the steel surface as depicted by the surface hardness values. The results of the stablished the viability of melon mixture as an alternative source enhancing the surface hardness of Carburization, Surface hardness, Mild steel, Melon shells, Snail shells The selection of materials for any given application demands that such materials should possess the requisite mechanical properties to enable it withstand the stresses it is likely to encounter in the proposed . This is very key and should not be ty and proper functioning concern, and also to avoid re of the facility in service. For instance, components like gears, bearings, cams, crank shaft, rock drilling bits, etc., are expected to balance of properties, where the outer surface is expected to be hard and the inner core to be der to withstand wear and inhibit cracks [1] [2] [3] [4] [5]. Materials for these applications cannot be produced from because it is through-hardened unsuitable. Therefore, by locally
  • 2. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1033 enriching the surfaces of low carbon steels, followed by quenching in water, a hardened surface and tough inner core can be obtained [6] [7]. Carburization is a heat treatment technique through which certain desirable mechanical properties can be imparted into a metallic material to enable it function properly in the proposed service condition. There are several carburization methods that have been utilized to achieve a hardened surface with a tough inner core. The effectiveness of each method is based on the potential of the diffusing species in the carburizing material and furnace temperature [8]. The carburizing materials that are most often used to achieve this purpose are agricultural wastes, animal wastes or hydrocarbon compound while the energizing materials are usually inorganic chemicals. The most commonly used of these materials are barium carbonate, sodium carbonate and calcium carbonate [3][9]. The high cost of these materials has necessitated the search for alternative carburizing materials that are cheap, readily available and abundant. Results of the proximate analysis carried out by Abdulrazak et al., [10] showed that melon shells contain 17.02% carbohydrate. Ademolu et al., [11] in their study revealed that snail shells contain high amount of carbohydrate in the range of 83.53 - 92.76g/100g depending on the species. The relatively high amount of carbohydrates presence in this waste materials have made them good sources of carbonaceous materials that could be utilize to achieve improved surface hardness of mild steel for use in stringent service condition requiring higher surface hardness. Research carried out by Ihom, et al., [9], Adzor, et al.,[12], Olanike, et al.,[13] on the utilization of some waste materials generated from household, industrial and agricultural activities in the carburization of mild steel have shown that the waste generated from these sources have significantly enhanced the surface hardness of mild steel. Therefore, to properly harness what nature has endowed us with, it is paramount that we begin to take advantage of the numerous waste materials that are generated in our various communities for conversion into new products that could be used by another industry. This will in turn create jobs for the teeming youth, and also help solve environmental problems arising from waste disposal. Waste is defined as anything un-used or not used to full capacity or excess of what is required or garbage, rubbish or trash. [14] [15] [16]. There are wide varieties of waste that are generated from one industry and community to another as a result of industrial and agricultural activities. Waste cannot be eliminated totally from the environment as long as consistent industrial and agricultural activities go on. Therefore, waste should be recycled or simply converted to other products usable by another industrial set- up as a source of raw materials. Available researches have shown that extensive work has been carried out on different agricultural wastes and marine materials to establish their suitability as carburizing materials for the surface hardness improvement of mild steel but it is realized that there are numerous other waste materials especially of agricultural products whose viability as alternative source of carburizing material in the carburization of mild steel for improved surface hardness are yet to be adequately explored. The continued search for waste materials with high carbon potential for utilization as carburizing materials in enhancing the surface hardness of mild steel will not only reduce the existing high cost of carburizing mild steel using the highly priced conventional energizers along with existing carbonaceous materials, but also solve waste pollution problem. Ihom, et al.,[9] investigated the used of egg shell wastes as an enhancer in the carburization of mild steel Adzor et al.,[12] investigated the suitability of periwinkle shells as carburizing material for the surface hardness improvement of low carbon steel. Olanike, et al.,[13], studied the effect of carburizing temperature and time on the mechanical properties of AISI/SAE 1020 Steel using carbonized palm kernel shell. The results obtained by these researchers have proven that some solid wastes has promising carbon potential for enhancing the surface hardness of mild steel. This research work is aimed at ascertaining the efficacy of utilizing two carbon bearing materials that are considered waste (melon and snail shell) in the carburization of mild steel. The concern here is as a result of the rising cost of the conventional energizers that are widely used by industrialist to raise the carbon potential of many carburizing materials for the surface hardness improvement of mild steel. The base approach consists of correlation of the microstructure with the mechanical property (hardness) and measure of the surface hardness of the carburized steels to establish the carburizing success Report [17] show that melon seeds are grown in large quantities in different part of Nigeria. The seeds are used in the
  • 3. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1034 preparation of soup among different communities in Nigeria. Report [18] posited that land snails are used as food by humans in various cultures worldwide. In Nigeria, land snails are edible delicacy in the southern and eastern part of Nigeria. However, after the consumption of the melon seeds and the meat of the land snails, their shells are discarded as wastes, thereby creating major issue of environmental pollution. The shell of the snail contains calcium carbonate just like eggshell. It is as a result of this, that the authors have devoted special effort in investigating the possibility of utilizing melon and snail shell wastes mixture as carbonaceous materials in the carburization of mild steel, thereby adding value to these waste materials and at the same time solving solid wastes disposal problem. 2. Materials and Method 2.1 Materials and Equipment The materials and equipment utilized for the study were; mild steel, melon shell wastes, snail shell wastes, BS sieve (75 microns), steel boxes, muffle furnace, optical microscope, weighing balance, dynamic hardness tester (VHN), water, fireclay, tong, bench vice and hack saw. 2.2 Method The commercial grade of the mild steel used in the study was sourced from the central store of the Metallurgical Training Institute, Onitsha. The chemical composition of the mild steel as-received is shown in Table 1. Figures 1 and 2 represent the photographs of the melon and snail shell wastes. They were sourced locally in Ikpayongo, Gwer East local government of Benue State, Nigeria. The snail shell and the melon shell wastes after cleaning them, they were packed separately in metal boxes and then calcined in a muffle furnace at 500o C and 550o C respectively, to carbonized them and thereafter grinded and sieved through BS sieve (75 microns). A total of 24 test specimens prepared according to standard specification as per ASTM standard were used for the study. The carburization operation was performed in two stages. In the first stage, 12 test specimens packed separately in metal boxes and embedded in 100% powdered snail shell wastes only. In the second stage, 12 test specimens were also packed separately in metal boxes containing mixtures of 80% snail shell wastes and 20% melon shell wastes. Each of the metal boxes were sealed with fireclay made into paste with water and allowed to dry under the sun before placing each box in turn into the heating chamber of the muffle furnace where they were heated to the temperature of 900o C, 920o C and 940o C and soaked for 15, 30, 45 and 60 minutes respectively. After the carburization, they test specimens were removed from the metal boxes and then quenched in water to harden, thereafter, they were tempered for 250o C for 1 hour to relieve the residual stresses introduced into the carburized specimens as a result of quenching. For effective examination of the internal structures of the carburized steel specimens, standard metallographic techniques were adopted. They specimens were placed on a metallurgical microscope which was adjusted to focus the specimens and the microstructures were photographed, using a magnification of x400. The hardness values were taken at three different spots on each of the specimen and the average value calculated. Table 1: Chemical composition of the mild steel plate as- received Elements % Composition C 0.158 Si 0.219 Mn 0.493 P 0.025 S 0.006 Cr 0.087 Ni 0.011 Mo 0.002 Al 0.030 Cu 0.051 Co 0.003 Ti 0.001 Nb 0.003 V 0.002 W 0.033 Pb 0.003 B 0.001 Sn 0.003 Zn 0.002 As 0.005 Bi 0.002 Ca 0.001 Ce 0.003 Zr 0.002 La 0.002 Fe 98.9
  • 4. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1035 (a) (b) Figure 1: (a) Photograph of the snail shell wastes and (b) Photograph of the melon shell wastes 3. Results and Discussion The results obtained from the study are shown in Table 2. Figure 3 to 4 show the variation of the surface hardness with the process variables (carburizing temperature and soaking time). The micrographs of the un-carburized test specimen and some of the carburized steel specimens are shown in Figures 5to 8. Table 2 shows the effect of carburizing temperature and soaking time on the surface hardness of the carburized mild steel. It is clearly evident in Table 2 that as the carburizing temperature and soaking time was increased from 900 to 9400 C at the time intervals of 15, 30, 45 and 60minutes, there was a progressive increase in the surface hardness of all the carburized steel specimens. However, the steel specimens carburized with 80% snail shell wastes plus 20% melon shell wastes had higher surface hardness values than those carburized with 100% snail shell wastes only. This implies that the melon and snail shell wastes mixtures enhances the carbon potential of the carburizing medium which resulted in the higher surface hardness obtained. The melon waste provides carbon while the calcium carbonate in the snail shell gets decomposed at high temperature to play the role of energizer leading to higher carburizing potential [9]. The variation in the surface hardness of the carburized steel specimens is expected since the enrichment of the surface layer of the steel with carbon increases exponentially with temperature and the case depth increases with time although not in direct proportion [3][9][19][20]. Also, the higher the amount of carbon absorbed into the steel, the higher the hardness of the martensite formed. Therefore, the amount of carbon absorbed into the steel at the different carburization temperatures affected the amount, proportion and morphology of the martensite formed during quenching. This is in consonance with reports [12] [21] [22].
  • 5. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1036 Table 2: Mechanical Property of Carburized Mild Steels Sample Premix Carburizing Soaking Hardness ID Composition Tempt (0 C) Time (hrs) VHN Control 89 A1 100% Snail shell 900 15 91 A2 100% Snail shell 900 30 93 A3 100% Snail shell 900 45 97 A4 100% Snail shell 900 60 101 B1 80% Snail shell + 20%Melon shell 900 15 93 B2 80% Snail shell + 20%Melon shell 900 30 95 B3 80% Snail shell + 20%Melon shell 900 45 103 B4 80% Snail shell + 20%Melon shell 900 60 118 C1 100% Snail shell 920 15 96 C2 100% Snail shell 920 30 99 C3 100% Snail shell 920 45 117 C4 100% Snail shell 920 60 120 D1 80%Snail Shell + 20%Melon shell 920 15 101 D2 80% Snail Shell +20%Melon shell 920 30 103 D3 80% Snail Shell +20%Melon shell 920 45 121 D4 80% Snail Shell +20%Melon shell 920 60 128 E1 100% Snail Shell 940 15 98 E2 100% Snail Shell 940 30 101 E3 100% Snail Shell 940 45 120 E4 100% Snail Shell 940 60 124 F1 80% Snail Shell + 20%Melon shell 940 15 104 F2 80% Snail Shell + 20%Melon shell 940 30 110 F3 80% Snail Shell + 20%Melon shell 940 45 127 F4 80% Snail Shell + 20%Melon shell 940 60 129 Figure 3: (a) and (b) show the variation of surface hardness with carburizing temperature of the steel specimens carburized with snail and melon shell wastes mix, and snail shell wastes only, respectively. The Figures indicates that as the carburizing temperature was increased from 9000 C-9400 C, there was a steady increase in the surface hardness values of all the carburized steel specimens. However, it was observed that the steel specimens carburized with the snail and melon shell wastes mix, exhibited higher surface hardness increase than those carburized with snail shell wastes only. The higher surface hardness exhibited by the steel specimens carburized with the melon and snail shell wastes mixtures indicates that the melon and snail shell wastes enhances the carbon potential of the carburizing medium, which in turn resulted in the higher surface hardness obtained. Report [7] stated that the maximum surface hardness that could be attain by any carburized steel depends on the carbon potential of the carburizing material and the quantity of carbon that is absorb at the steel surface. This quantity increases with increase in temperature. The variation in the surface hardness with carburizing temperature implies that temperature has a strong influence on the rate of diffusion. According to report [19] the higher the temperature of heating, the higher the solubility of carbon in austenite iron, and the higher the surface hardness that will be attain by the steel when it is quench in water. This is in agreement with reports [23][24].
  • 6. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1037 (a) (b) Figure 3: (a) Variation of surface hardness with carburizing temperature of steel carburized with snail and melon shell wastes mix and (b) Variation of surface hardness with carburizing temperature of steel carburized with snail shell wastes only. Figure 4: (a) and (b) shows the variation of surface hardness with soaking time of the steel specimens carburized with melon and snail shell wastes mix, and with snail shell wastes only, respectively. The Figures clearly show that at any given carburizing temperature as the soaking time was increased from 15-60 minutes, the surface hardness of the carburized steel specimens’ increases. The variation in the surface hardness with soaking time is expected since report [24] stated that at any given temperature, the quantity of carbon absorbed by any carburized steel increases with time. Report [25] stated that, the amount of carbon that could be picked up by steel is a function of time and the available carbon potential in the furnace atmosphere. Therefore, the high carbon potential arising from the snail and melon shell wastes mix is largely responsible for the highly improved surface hardness obtained by the steel specimens carburized in the snail and melon shell wastes mix carburizing medium compared to those carburized in the snail shell wastes carburizing medium. (a) (b) 0 20 40 60 80 100 120 140 15 30 45 60 SurfaceHardness(VHN) Soaking Time(min) 900⁰C 920⁰C 940⁰C 0 20 40 60 80 100 120 140 15 30 45 60 surfacehardness(VHN) 900⁰C 920⁰C 940⁰C 0 20 40 60 80 100 120 140 900 920 940 surfacehardness(VHN) carburizing temperature (⁰C) 15 mins. 30 mins. 45 mins. 60 mins. 0 20 40 60 80 100 120 140 900 920 940 surfacehardness(VHN) carburizing temperature (⁰C) 15 mins. 30 mins. 45 mins. 60 mins.
  • 7. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1038 Figure 4: (a) Variation of surface hardness with soaking time of steel carburized with snail and melon shell wastes mix and (b) Variation of surface hardness with soaking time of steel carburized with snail shell wastes only. Figure 5 revealed the micrograph of the un-carburized (untreated) as-received. The micrograph indicates the presence of pearlite in ferrite matrix. The coarse grain size of the microstructure clearly accounts for the lower surface hardness of the un-carburized steel specimens as compared to the carburized steel specimens. Figures 6-8 show the micrographs of the steel specimens carburized at 9000 C, 9200 Cand 9400 C, and soaked for 60 minutes. They micrographs consist of tempered martensite and dispersed carbide in ferrite matrix. However, the micrographs of the steel specimens carburized with 80% snail shell wastes plus 20% melon shell wastes revealed the presence of more proportion of tempered martensite with varying degree of dispersed carbide along the ferrite grain boundary as compared to the micrographs of the steel specimens carburized with 100% snail shell wastes only. Hence, the higher surface hardness values obtained by the specimens carburized with snail and melon shell mix. Figure 5: Micrograph of un-carburized (untreated) steel as-received. X400 (a) X400 (b) X400 Figure 6: (a) Micrograph of steel carburized with 100% snail shell wastes onlyand (b) Micrograph of steel carburized with snail and melon shell wastes mix. (Carburized at 9000 C, soaked for 60 minutes)
  • 8. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1039 (a) X400 (b) X400 Figure 7: Micrograph of steel carburized using 100% snail shell wastes onlyand (b) Micrograph of steel carburized with snail and melon shell wastes mix. (Carburized at 9200 C, soaked for 60 minutes) (a) X400 (b) X400 Figure 8: (a) Micrograph of steel carburized using 100% snail shell wastes only and (b) Micrograph of steel carburized with snail and melon shell wastes mix (Carburized at 9400 C, soaked for 60 minutes) 4. Conclusion On the basis of the overall results of the study, the following conclusions have been drawn: 1. The study observed that the surface hardness of all the carburized steel specimens’ increases steadily as the carburizing temperature and soaking time was increased. This implies that temperature and soaking time had strong influences on the rate of absorption and diffusion of carbon into the steel surface. 2. It was also observed that the steel specimens carburized with snail and melon shell wastes mixtures exhibited higher surface hardness values than those carburized with snail shell wastes only. This suggests that the melon and snail shell wastes mixtures raised the carbon potential of the carburizing medium. 3. The study has open a new door for the utilization of melon and snail shell wastes mixture as a cheap, readily available and good alternative source of carbonaceous materials to be used alone, without the addition of the highly priced conventional energizers for the surface hardness improvement of mild steel for use in stringent service condition requiring higher surface hardness. References 1) Mallick, A. (2011). Principles of Physical Metallurgy, published by Viva Books private limited, New Delhi. Pp.324 2) Smith, W. F., Hashemi, J. and Prakash (2008). Materials science and engineering (4th ed.). Published in India for McGraw-Hill, Inc., New York. Pp184.
  • 9. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1040 3) Khanna, O. P. (2008). Material Science and Metallurgy. Published by Ish Kapur for DahanpatRai publications (p) Ltd. New Delhi. pp. 44-3. 4) Singh, V. (2011), Physical Metallurgy, published by A. K. Jain for Standard publishers Distributors, New Delhi. Pp.571 5) Sanjib, K. J (2009), Heat Treatment of Low Carbon Steel, Undergraduate Degree Project. Department Mechanical Engineering, National Institute of Technology. Pp. 13- 14. Retrieved August 12, 2016 from ethesis.nitrkl.ac.in/1138/1/ 6) George, F. V. and Gabriel, M. L. (2009). Microstructural Characterization of Carburized Steels. Heat Treating Process. Pp. 37. 7) Degarmo, E. P., Black, J.T. and Kohser, R. A. (1997) Materials and Processes in manufacturing (8th ed.) published by Prentice-Hall, India. Pp. 132. Retrieved December 16, from https://www.amazon.com 8) Nor, A. N. (2007). Effect of Carburization on Mechanical Properties of Low Carbon Steel. Undergraduate Degree Project, Department of Mechanical Engineering, FakultiKejuruteraanMekanikal, Universiti Teknikal, Malaysia, Melaka. Pp.5-6. Retrieved from eprints.utem.edu.my/18449 9) Ihom, A. P., Nyior, G. B., Nor, I. J. and Ogbodo, N. J. (2013). Investigation of Egg Shell Waste as an Enhancer in the Carburization of Mild Steel. American Journal Materials Science and Engineering, 1(2), pp. 29-33 10) Abdulrazak, S., Otie, D. and Oniwapele, Y. A. (2014) Proximate Analysis and Anti- Nutritional Factors of Groundnut and Melon Husk. Online Journal of Animal and Feed Research, vol. 4, issue 2, pp. 27. 11) Ademolu, K. O., Akintola, M. Y., Olalonye, A. O. and Adelabu, B. A. (2015) Tradional Utilization and Biochemical Composition of Six Mollusc Shells in Nigeria. Rev. boil. Trop, vol. 63, no. 2 San Jose 12) Adzor, S. A., Nwoke, V. U. and Akaluzia, R. O. (2016). Investigation of the suitability of Periwinkle Shell as Carburizing Material for the Surface Hardness Improvement of Low Carbon Steel. European Journal of Material Sciences, vol. 3, No. 2, pp. 13-23 13) Olanike, M. O., Samuel, R. O., Iyiola, O. O. and Fatai, O. A. (2015). Effect of Carburizing temperature and time on the Mechanical properties of AISI/SAE 1020 Steel using carbonized palm kernel. Leonardo EIJ Pract. Technol. 2015(27), pp. 41-56 14) Definition of waste. Retrieved February 7, 2017 from www.wastedictionary.com 15) What is waste? Retrieved February 7, 2017 from www.fullcycle.co.za/index.php 16) Zero waste. Retrieved 7, February 2017 from www.zerowasteamerica.org 17) Ogbe, A. O., Alu, S. E., Moses, A. and Obeka, A. D. (2013). Utilization of melon shell husk with mushroom as enzyme supplement: Effect on performance of boiler chicken. International Journal of Research Studies in Biosciences (IJRSB) vol. 1, issue 2, pp. 2 18) Land snails.Retrieved February 10, from https://en.wikipedia.org/wiki/land_snail 19) Singh, V. (2007). Heat Treatment of Metals. Published by A. K. Jain for Standard Publishers Distributors, New Delhi. pp. 276, 334, 335 and 336. 20) Singh, V. (2011). Physical Metallurgy. Published by A. K. Jain for Standard Publishers Distributor, New Delhi. pp. 570-571. 21) Nwoke, V. U., Nnuka, E. E., Odo, J. U. and Obiorah, S. M. O. (2014). Effect of process variables on the mechanical properties of surface hardened mild steel quenched in different Media. Journal of Scientific and Technological Researh, Vol. 3, Issue 4. Pp.390-393. 22) Raghavan,V. (1989). Physical Metallurgy: Principles and Practice. Published by Prentice- Hall of India, New Delhi. pp.135. 23) Jaykant, G. (2009). Mechanical and wear properties of carburized mild steel samples Master of Engineering Thesis, National Institute of Technology, Rourkela. Pp.36-42. Retrieved June, 1, 2015, from www.docstoc.com. 24) Yang, C. E., Chiu, L. H. and Wu, J. K. (1995). Effect of carburization and hydrogenation on the impact toughness of AISI4118 steel. Surface and Coating Technology, 73, pp. 18- 22. 25) Rajput, R. K. (2010). Material Science and Engineering. Published by S. K. Kataria and Sons, New Delhi. Pp.336-337.