SlideShare a Scribd company logo
1 of 24
Download to read offline
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
DOI : 10.14810/ijrap.2015.4201 1
AN APPROACH TO MODEL OPTIMIZATION OF MAN-
UFACTURING OF EMITTER-COUPLED LOGIC
E.L. Pankratov1,3
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod,
603950, Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65
Il'insky street, Nizhny Novgorod, 603950, Russia
3
Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-
novskoe Shosse, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we consider an approach to optimization manufacturing elements of emitter-coupled logic.
The optimization gives us possibility to decrease dimensions of these elements. The technological part
based on manufacture a heterostructure with required configuration, doping by diffusion or ion implanta-
tion of required areas of heterostructure and optimization of annealing of dopant and/or radiation defects.
The modelling part based on modified method of functional corrections, which using without crosslinking
of solutions on interfaces between layers of heterostructure.
KEYWORDS
analytical approach for modelling; emitter-coupled logic; optimization of manufacturing; decreasing of
dimensions; de-creasing of overheats
1. INTRODUCTION
Intensive development of electronic technique leads to increasing of performance of elements of
integrated circuits ant to increasing of degree of their integration (p-n-junctions, bipolar and field-
effect transistors, thyristors, ...) [1-6]. Increasing of the performance could be obtain by develop-
ment of new and optimization of existing technological processes. Another way to increase the
performance in determination of materials with higher speed of transport of charge carriers [7-
10]. Increasing of degree of integration of elements of integrated circuits leads to necessity to de-
crease dimensions of the elements. To decrease the dimensions it could be used different ap-
proaches. Two of them are laser and microwave types of annealing [11-13]. Using this types of
annealing leads to generation of inhomogenous distribution of temperature. The inhomogeneity
leads to decreasing of dimensions of elements of integrated circuits due to Arrhenius law. Anoth-
er way to decrease the dimensions is doping of epitaxial layers of heterostructures by diffusion
and ion implantation [14-17]. However in this case it is practicably to optimize annealing of do-
pant and/or radiation defects [17-24]. It is known, that using radiation processing of materials of
heterostructure and homogeneous samples leads to changing of distributions of concentrations of
dopants in them [25].
In this paper as a development of works [17-24] we consider an approach to manufacture more
compact elements of emitter-coupled logic. To illustrate the approach we consider a heterostruc-
ture, which is illustrated on Fig. 1. The heterostructure consist of a substrate and three epitaxial
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
2
layers. Some sections have been manufactured in the epitaxial layers such as it shown on the fig-
ure. After finishing of the nearest to the substrate epitaxial layer we consider doping of the sec-
tions of the layer by diffusion or ion implantation. The sections will have role of collectors during
functioning of the manufacturing device. Farther we consider annealing of dopant and/or radia-
tion defects. After finishing this annealing we consider two another epitaxial layers with appro-
priate sections (see Fig. 1). After finishing of manufacturing of each epitaxial layer all sections of
the last layer have been doped by diffusion or ion implantation. Farther we consider microwave
annealing of dopant and/or radiation defects. Frequency of electro-magnetic radiation should be
so, that thickness of scin-layer should be larger, than thickness of external epitaxial layer and
smaller, than sum of thicknesses of external and average epitaxial layers. Sections of the average
and external epitaxial layers will have roles of bases and emitter, respectively, during functioning
of the considered device. Main aim of the present paper is analysis of dynamics of redistribution
of infused and implanted dopants and/or radiation defects during annealing.
Fig. 1. Heterostructure with four layers, which consist of a substrate and three epitaxial layer with sections,
manufactured by using another materials
2. METHOD OF SOLUTION
To solve our aims we determine spatio-temporal distribution of concentration of dopant. We de-
termine the required distribution by solving the second Fick's law [1,14 -17]
       



































z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C ,
,
,
,
,
,
,
,
,
,
,
,
(1)
with initial and boundary conditions
C(x,y,z,0)=fC (x,y,z),
  0
,
,
,
0




x
x
t
z
y
x
C
,
  0
,
,
,



 x
L
x
x
t
z
y
x
C
,
  0
,
,
,
0




y
y
t
z
y
x
C
,
  0
,
,
,



 y
L
x
y
t
z
y
x
C
,
  0
,
,
,
0




z
z
t
z
y
x
C
,
  0
,
,
,



 z
L
x
z
t
z
y
x
C
.
Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; x, y and z are current
coordinates, t is the current time; T is the temperature of annealing; DС is the dopant diffusion
coefficient. Value of dopant diffusion coefficient depends on properties of materials of hetero-
structure, speed of heating and cooling of the heterostructure (with account Arrhenius law). De-
pendences of dopant diffusion coefficient on parameters could be approximated by the following
relation [26-28]
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
3
   
 
   
  
















 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C 

 

, (3)
where DL(x,y,z,T) is the spatial (due to presents several layers with different properties framework
heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coeffi-
cient; P (x,y,z,T) is the limit of solubility of dopant; parameter  depends on properties of materi-
als and could be integer in the following interval [1,3] [26]; V (x,y,z,t) is the spatio- temporal
distribution of radiation vacancies; V*
is the equilibrium distribution of vacancies. Concentration-
al dependence of dopant diffusion coefficient is describes in details in [26]. It should be noted,
that diffusion type of doping did not leads to generation of radiation defects. In this situation 1=
2=0. We determine spatio-temporal distributions of concentrations of point radiation defects as
solutions of the following system of equations [27,28]
         
         
   
         
         
   



































































t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
V
V
V
I
V
V
V
I
I
V
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
,
2
,
,




























(3)
with boundary and initial conditions
  0
,
,
,
0


x
x
t
z
y
x
I


,
  0
,
,
,

 x
L
x
x
t
z
y
x
I


,
  0
,
,
,
0


y
y
t
z
y
x
I


,
  0
,
,
,

 y
L
y
y
t
z
y
x
I


,
  0
,
,
,
0


z
z
t
z
y
x
I


,
  0
,
,
,

 z
L
z
z
t
z
y
x
I


,
  0
,
,
,
0


x
x
t
z
y
x
V


,
  0
,
,
,

 x
L
x
x
t
z
y
x
V


,
  0
,
,
,
0


y
y
t
z
y
x
V


,
  0
,
,
,

 y
L
y
y
t
z
y
x
V


,
  0
,
,
,
0


z
z
t
z
y
x
V


,
  0
,
,
,

 z
L
z
z
t
z
y
x
V


,
I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV (x,y,z). (4)
Here =I,V; I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials;
D(x,y,z,T) are the diffusion coefficients of vacancies and interstitials; terms V2
(x,y,z,t) and
I2
(x,y,z,t) correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and
kV,V(x,y,z,T) are parameters of recombination of point radiation defects and generation their com-
plexes. Spatio-temporal distributions of concentrations of simplest complexes (divacancies
V(x,y,z,t) and diinterstitials I(x,y,z,t)) of radiation defects have been determined by solving the
following system of equations [27,28]
          





 






 




y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I









 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
4
           
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, 






 
 




(6)
          





 






 




y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V









 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
           
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, 






 
 




with boundary and initial conditions
 
0
,
,
,
0





x
x
t
z
y
x

,
 
0
,
,
,




 x
L
x
x
t
z
y
x

,
 
0
,
,
,
0





y
y
t
z
y
x

,
 
0
,
,
,




 y
L
y
y
t
z
y
x

,
 
0
,
,
,
0





z
z
t
z
y
x

,
 
0
,
,
,




 z
L
z
z
t
z
y
x

,
I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (7)
Here D(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; kI(x,y,z,T) and
kV (x,y,z,T) are the parameters of decay of complexes of radiation defects.
We determine spatio-temporal distribution of temperature by solving of the second law of Fourier
[29]
            
























y
t
z
y
x
T
T
z
y
x
y
x
t
z
y
x
T
T
z
y
x
x
t
t
z
y
x
T
T
c
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,


     
t
z
y
x
p
z
t
z
y
x
T
T
z
y
x
z
,
,
,
,
,
,
,
,
, 










  , (8)
with boundary and initial conditions
  0
,
,
,
0




x
x
t
z
y
x
T
,
  0
,
,
,



 x
L
x
x
t
z
y
x
T
,
  0
,
,
,
0




y
y
t
z
y
x
T
,
  0
,
,
,



 y
L
x
y
t
z
y
x
T
,
  0
,
,
,
0




z
z
t
z
y
x
T
,
  0
,
,
,



 z
L
x
z
t
z
y
x
T
, T(x,y,z,0)=fT (x,y,z), (9)
where T(x,y,z,t) is the spatio-temporal distribution of temperature of annealing; c (T)= cass[1-
exp(-T(x,y,z,t)/Td)] is the heat capacitance (in the most interest case, when current temperature is
approximately equal or larger, than Debye temperature Td, we have possibility to consider the
following limiting case c (T)cass) [29];  is the heat conduction coefficient, which depends on
properties of materials and temperature (dependence on temperature of the heat conduction coef-
ficient could be approximated by the function (x,y,z,T)=ass(x,y,z)[1+ (Td/T(x,y,z,t))
] in the
most interesting interval of temperature [29]); p(x,y,z,t) is the volumetric density of power of
heating; (x,y,z,T)=(x, y,z,T)/c (T) is the thermal diffusivity.
First of all we calculate spatio-temporal distribution of temperature. To make the calculation we
used recently considered approach [17,20,30]. Framework the approach we transform approxima-
tion of thermal diffusivity to the following form: ass(x,y,z)=ass(x,y,z)/cass=0ass[1+T gT(x,y, z)].
Farther we determine solution of the Eq.(8) as the following power series [17,20,30]
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
5
   
 





0 0
,
,
,
,
,
,
i j
ij
j
i
T t
z
y
x
T
t
z
y
x
T 
 . (10)
Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for initial-
order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i1, j1). The
equations are presented in the Appendix. Substitution of the series (10) into boundary and initial
conditions (9) gives us possibility to obtain boundary and initial conditions for all functions
Tij(x,y,z,t) (i0, j0). The solutions are presented in the Appendix. Solutions of the equations for
the functions Tij(x,y,z,t) (i0, j 0) have been calculated by standard approaches [31,32] frame-
work the second-order approximation on parameters  and . The solutions are presented in the
Appendix. To make qualitative analysis and to obtain some quantitative results the second-order
approximation is usually enough good approximation (see, for example, [17,20,30]). Analytical
results give us possibility to obtain and demonstrably. All analytical results have been checked by
comparison with numerical one.
To determine spatio-temporal distributions of concentrations of point defects we used recently
introduces approach [17,20,30]. Framework the approach we transform approximation of their
diffusion coefficients to the following form D(x,y,z,T)=D0[1+g(x,y,z,T)], where D0 are the
average values of the diffusion coefficients, 0<1, |g(x,y,z,T)|1, =I,V. Analogous transfor-
mation of approximations of parameters of recombination of point defects and generation their
complexes has been used: kI,V(x,y,z,T)=k0I,V[1+I,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+I,I gI,I(x,y,z, T)]
and kV,V(x,y,z,T) = k0V,V [1+V,V gV,V(x,y,z,T)], where k01,2 are the appropriate average values,
0I,V< 1, 0I,I < 1, 0V,V< 1, | gI,V(x,y,z,T)|1, | gI,I(x,y,z,T)|1, |gV,V(x,y,z,T)|1. Let us introduce
following dimensionless variables:     *
,
,
,
,
,
,
~
I
t
z
y
x
I
t
z
y
x
I  ,     *
,
,
,
,
,
,
~
V
t
z
y
x
V
t
z
y
x
V  , =
x/Lx, = y/Ly, = z/Lz, 2
0
0 L
t
D
D V
I

 , V
I
V
I D
D
k
L 0
0
,
0
2

 , V
I D
D
k
L 0
0
,
0
2


 
 . The
introduction leads to following transformation of Eqs.(4) and conditions (5)
   
    















V
I
I
I
I
V
I
I
D
D
D
I
T
g
D
D
D
I
0
0
0
0
0
0 ,
,
,
~
,
,
,
1
,
,
,
~















 
     
    












































,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
1
0
0
0 I
T
g
D
D
D
I
T
g I
I
V
I
I
I
I
 
         
 
T
g
I
V
I
T
g I
I
I
I
I
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 ,
,
2
,
, 



















 



 (11)
   
    















V
I
V
V
V
V
I
V
D
D
D
V
T
g
D
D
D
V
0
0
0
0
0
0 ,
,
,
~
,
,
,
1
,
,
,
~















 
     
    
























V
I
V
V
V
V
V
D
D
D
V
T
g
V
T
g
0
0
0
,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
1




















 
         
 
T
g
V
V
I
T
g V
V
V
V
V
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 ,
,
2
,
, 



















 




  0
,
,
,
~
0











,
  0
,
,
,
~
1











,
  0
,
,
,
~
0











,
  0
,
,
,
~
1











,
  0
,
,
,
~
0











,
  0
,
,
,
~
1











,  
 
*
,
,
,
,
,
,
~









 
f
 . (12)
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
6
We solved the Eqs.(11) with conditions (12) by using the approach, considered in [17,20,30].
Framework the approach we determine solutions of the equations as the following power series
   
  







0 0 0
,
,
,
~
,
,
,
~
i j k
ijk
k
j
i











 
 . (13)
Substitution of the series (13) into Eqs.(11) and conditions (12) gives us possibility to obtain
equations for initial-order approximations of concentrations of point radiation defects
 




 ,
,
,
~
000 and corrections for them  




 ,
,
,
~
ijk , i1, j1, k1. The equations and condi-
tions for them are presented in the Appendix. The equations with account the conditions have
been solved by standard approaches (see, for example, Fourier approach [31,32]). The solutions
are presented in the Appendix.
Farther we calculate spathio-temporal distributions of concentrations of complexes of radiation
defects. To determine these distributions we transform approximations of diffusion coefficients to
the following form: D(x,y,z,T)=D0[1+g(x,y,z,T)], where D0 are the average values of
the coefficients. In this situation the Eqs. (6) have been transform to the following form
   
    






 






 I
I
I
I
D
x
t
z
y
x
T
z
y
x
g
x
D
t
t
z
y
x I
I
0
0
,
,
,
,
,
,
1
,
,
,







 
     
    





 







 

 



z
t
z
y
x
T
z
y
x
g
z
y
t
z
y
x
T
z
y
x
g
y
I
I
I
I
I
I









 ,
,
,
,
,
,
1
,
,
,
,
,
,
1
       
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
D I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
, 2
,
0 

 
   
    






 






 V
V
V
V
D
x
t
z
y
x
T
z
y
x
g
x
D
t
t
z
y
x V
V
0
0
0
0
,
,
,
,
,
,
1
,
,
,







 
     
    





 







 

 



z
t
z
y
x
T
z
y
x
g
z
y
t
z
y
x
T
z
y
x
g
y
V
V
V
V
V
V









 ,
,
,
,
,
,
1
,
,
,
,
,
,
1
       
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
D V
V
V
V
,
,
,
,
,
,
,
,
,
,
,
, 2
,
0 

  .
Let us determine solutions of the above equations in the following form
   
 





0
,
,
,
,
,
,
i
i
i
t
z
y
x
t
z
y
x 

  . (14)
Substitution of the series (14) into Eqs.(6) and appropriate boundary and initial conditions gives
us possibility to obtain equations for all functions i(x,y,z,t), i 1, boundary and initial condi-
tions for them. The equations and conditions are presented in the Appendix. The equation have
been solved by standard approaches [31,32]. The obtained solutions are presented in the Appen-
dix.
To calculate spatio-temporal distribution of concentration of dopant we transform approximation
of dopant diffusion coefficient in the following form: DL(x,y,z,T)=D0L[1+LgL(x,y,z,T)], where D0L
is the average value of dopant diffusion coefficient, 0L<1, |gL(x,y,z,T)|1. Farther we determine
solution of Eq.(1) as the following power series
   
 





0 1
,
,
,
,
,
,
i j
ij
j
i
L t
z
y
x
C
t
z
y
x
C 
 . (15)
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
7
Substitution of the series in the Eq.(1) and condition (2) gives us possibility to obtain equation for
initial-order approximation of dopant concentration C00(x,y,z,t), equations for corrections for them
Cij(x,y,z,t) (i 1, j 1), boundary and initial conditions for all functions Cij(x,y,z,t) (i0, j 0). The
equations and conditions are presented in the Appendix. The equations have been solved by
standard approaches (see, for example, [31,32]). The solutions are presented in the Appendix.
Analysis of spatiotemporal distributions of concentrations of dopant and radiation defects and
temperature have been done analytically by using the second-order approximations on all consid-
ered parameters. The approximations are usually enough good approximations to make qualita-
tive analysis and to obtain some quantitative results (see, for example, [17,20,30]). Analytical
results give us possibility to obtain and demonstrably. All analytical results have been checked by
comparison with numerical one.
3. Discussion
In this section we analyzed dynamic of redistribution of dopant and radiation defects in the con-
sidered heterostructure during their annealing by using calculated in the previous section rela-
tions. Typical distributions of concentrations of dopant in heterostructures are presented on Figs.
2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calcu-
lated for the case, when value of dopant diffusion coefficient in doped area is larger, than in near-
est areas. The figures show, that inhomogeneity of heterostructure gives us possibility to increase
sharpness of p-n-junctions. At the same time one can find increasing of homogeneity of dopant
distribution in doped part of epitaxial layer. Increasing of sharpness of p-n-junctions gives us pos-
sibility to decrease their switching time. Increasing of homogeneity of dopant distribution in
doped are gives us possibility to decrease local overheat of doped material during functioning of
p-n-junction or decreasing of dimensions of the p-n-junction for fixed maximal value of local
overheat. On the other hand inhomogeneity of doping of base of transistor leads to generation an
electric field in the base. The electric field gives us possibility to accelerate transport of charge
carriers. The acceleration gives us possibility to increase performance of the transistor.
Fig.2. Distributions of concentration of infused dopant in heterostructure from Fig. 1 in direction, which is
perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to
increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under
condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu-
sion coefficient in substrate
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
8
x
0.0
0.5
1.0
1.5
2.0
C(x,

)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Distributions of concentration of implanted dopant in heterostructure from Fig. 1 in direction, which
is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing
time =0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corresponds to annealing time =0.0057(Lx
2
+Ly
2
+Lz
2
)/D0.
Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to heterostructure under
condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu-
sion coefficient in substrate
To help in manufacturing of the drift transistors it could be used microwave annealing. Using this
type of annealing give us possibility to generate inhomogenous distribution of temperature. The
inhomogeneity gives us possibility to form more inhomogenous distribution of concentration of
dopant due to Arrhenius law [33]. Using microwave annealing leads to necessity to choose fre-
quency of electro-magnetic irradiation so, that thickness of scin-layer should be larger, than
thickness of external epitaxial layer, and smaller, than sum of thicknesses of external and average
epitaxial layers.
It should be noted, that increasing of annealing time leads to increasing of homogeneity of distri-
bution of concentration of dopant. In this situation the distribution became too large. If annealing
time is too small, dopant has not time to achieve nearest interface between materials of hetero-
structure. In this situation distribution of concentration of dopant has not any changing. In this
situation it is attracted an interest optimization of annealing. We consider the optimization of an-
nealing framework recently introduced criterion [17-24,33]. Framework the criterion we approx-
imate real distributions of concentrations of dopants by step-wise function  (x,y,z). Farther we
minimize the following mean-squared error to optimize annealing time
   
 
   


x y z
L L L
z
y
x
x
d
y
d
z
d
z
y
x
z
y
x
C
L
L
L
U
0 0 0
,
,
,
,
,
1
 . (16)
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
9
0.0 0.1 0.2 0.3 0.4 0.5
a/L, , , 
0.0
0.1
0.2
0.3
0.4
0.5

D
0
L
-2
3
2
4
1
Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been ob-
tained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimen-
sionless optimal annealing time on the relation a/L and ==0 for equal to each other values of dopant dif-
fusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal an-
nealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of dimensionless
optimal annealing time on value of parameter  for a/L=1/2 and  =  =0. Curve 4 is the dependence of di-
mensionless optimal annealing time on value of parameter  for a/L=1/2 and ==0
0.0 0.1 0.2 0.3 0.4 0.5
a/L, , , 
0.00
0.04
0.08
0.12

D
0
L
-2
3
2
4
1
Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have
been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of
dimensionless optimal annealing time on the relation a/L and  =  = 0 for equal to each other values of
dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless op-
timal annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of di-
mensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 4 is the de-
pendence of dimensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0
Dependences of optimal values of annealing time are presented on Figs. 4 and 5. Optimal values
of annealing time of implanted dopant is smaller, than optimal values of annealing time of infused
dopant. The difference existing due to necessity of annealing of radiation defects. During anneal-
ing radiation defects one can find spreading of distribution of concentration of dopant. In the ideal
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
10
case during annealing of radiation defects should achieves interface between materials of hetero-
structure. If dopant has no time to achieve the interface, additional annealing of dopant attracted
an interest. The Fig. 5 shows exactly dependences of time of additional annealing.
4. CONCLUSIONS
In this paper we consider an approach to manufacture more compact elements of emitter-coupled
logic. The approach based on manufacturing a heterostructure with required configuration, doping
of required areas of the heterostructure by diffusion or ion implantation and optimization of an-
nealing of dopant and/or radiation defects.
ACKNOWLEDGEMENTS
This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,
grant of Scientific School of Russia, the agreement of August 27, 2013 № 02.В.49.21.0003 be-
tween The Ministry of education and science of the Russian Federation and Lobachevsky State
University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-
gorod State University of Architecture and Civil Engineering.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.
[2] A. Polishscuk. Analog integrated circuits Anadigm: the whole range of analog electronics on a single
chip. The first acquaintance. Modern Electronics. Issue 12. P. 8-11 (2004).
[3] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.
P. 10-17 (2006).
[4] A. Kerentsev, V. Lanin, Constructive-technological features of MOSFET-transistors. Power Electron-
ics. Issue 1. P. 34 (2008).
[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M.
Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx-n-6H-SiC Schottky barrier diodes: the features of
current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009).
[7] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For-
mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc-
tors. Vol. 32 (9). P. 1029-1032 (1998).
[8] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in
CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol.
43 (8). P. 1016-1020 (2009).
[9] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[10] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
[11] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the re-
crys-tallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 89
(17). P. 172111-172114 (2006).
[12] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9).
P. 094901-094905 (2006).
[13] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.
Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[14] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).
[15] A.G. Alexenko, I.I. Shagurin. Microcircuitry. Moscow: Radio and communication, 1990.
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
11
[16] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
[17] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[18] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-
ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.
187–197 (2008).
[19] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[20] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[21] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver-
tical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[22] E.L. Pankratov, E.A. Bulaeva. Optimization of doping of heterostructure during manufacturing of p-i-
n-diodes. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7-14 (2013).
[23] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer-
sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).
[24] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture a heterobipolar transistors in thin film
structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1-2). P. 17-31
(2013).
[25] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[26] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. 1989. Vol. 61. № 2. P. 289-388.
[29] K.V. Shalimova. Fisics of semiconductors (Energoatomizdat, Moscow, 1985, in Russian).
[30] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction
rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130 (2012).
[31] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in
Rus-sian).
[32] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964).
[33] E.L. Pankratov. Redistribution of dopant during microwave annealing of a multilayer structure for
production p-n-junction. J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008).
Appendix
Equations for initial-order approximation of temperature T00(x,y,z,t), corrections for the approxi-
mation Tij(x,y,z,t) (i0, j0), boundary and initial conditions for them have been obtain by substi-
tution of the series (10) into Eqs.(8) and conditions (9) and equating of coefficients at equal pow-
ers of parameters, which have been used in the series (10). The equations and conditions could be
written as
         
ass
ass
t
z
y
x
p
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T
t
t
z
y
x
T


,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
00
2
2
00
2
2
00
2
0
00


















        

















2
0
2
2
0
2
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T
t
t
z
y
x
T i
i
i
ass
i

           






















 


z
t
z
y
x
T
z
g
z
y
t
z
y
x
T
x
g
x
t
z
y
x
T
z
g i
T
i
T
i
T
ass
,
,
,
,
,
,
,
,
, 10
2
10
2
2
10
2
0
 , i1
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
12
       
 



















t
z
y
x
T
T
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T
t
t
z
y
x
T d
ass
ass
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
00
0
2
01
2
2
01
2
2
01
2
0
01




     
 
 






























2
00
00
0
2
00
2
2
00
2
2
00
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
x
t
z
y
x
T
t
z
y
x
T
T
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T d
ass



   























2
00
2
00 ,
,
,
,
,
,
z
t
z
y
x
T
y
t
z
y
x
T
       
 



















t
z
y
x
T
T
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T
t
t
z
y
x
T d
ass
ass
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
00
0
2
02
2
2
02
2
2
02
2
0
02




     
 
 





















 
x
t
z
y
x
T
t
z
y
x
T
T
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T d
ass ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
1
00
0
2
01
2
2
01
2
2
01
2




         
















z
t
z
y
x
T
z
t
z
y
x
T
y
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 01
00
01
00
01
     
 
   












2
00
2
00
01
0
2
11
2
0
11 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
x
t
z
y
x
T
T
z
y
x
g
t
z
y
x
T
t
z
y
x
T
x
t
z
y
x
T
t
t
z
y
x
T
T
ass
ass 

         























 2
01
2
00
2
00
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
x
t
z
y
x
T
z
t
z
y
x
T
T
z
y
x
g
z
y
t
z
y
x
T
T
z
y
x
g T
T
     
     
 
















 T
z
y
x
g
y
t
z
y
x
T
T
z
y
x
g
x
t
z
y
x
T
T
z
y
x
g
x
T
T
T ,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
, 2
01
2
01
   
 
   
 
 















 
 2
00
2
1
00
10
2
00
2
1
00
10
0
2
01
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
y
t
z
y
x
T
t
z
y
x
T
t
z
y
x
T
x
t
z
y
x
T
t
z
y
x
T
t
z
y
x
T
z
t
z
y
x
T
ass 


 
 
 
 
   















  2
10
2
2
10
2
00
0
0
2
00
2
1
00
10 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
y
t
z
y
x
T
x
t
z
y
x
T
t
z
y
x
T
T
T
z
t
z
y
x
T
t
z
y
x
T
t
z
y
x
T d
ass
d
ass 





 
 
     













 T
z
y
x
g
x
t
z
y
x
T
T
z
y
x
g
t
z
y
x
T
T
z
t
z
y
x
T
T
T
d
ass
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
10
2
00
0
2
10
2



         


























x
t
z
y
x
T
x
t
z
y
x
T
z
t
z
y
x
T
T
z
y
x
g
z
y
t
z
y
x
T
T
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
10
00
2
10
2
       
 













 
t
z
y
x
T
T
z
t
z
y
x
T
z
t
z
y
x
T
y
t
z
y
x
T
y
t
z
y
x
T d
ass
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
00
0
00
10
00
10




 
 
     




































 
2
00
2
00
2
00
1
00
0
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
T
y
t
z
y
x
T
x
t
z
y
x
T
t
z
y
x
T
T
z
y
x
g
T T
d
ass 


 .
Conditions for the functions Tij(x,y,z,t) (i0, j0)
 
0
,
,
,
0




x
ij
x
t
z
y
x
T
,
 
0
,
,
,



 x
L
x
ij
x
t
z
y
x
T
,
 
0
,
,
,
0




y
ij
y
t
z
y
x
T
,
 
0
,
,
,



 y
L
x
ij
y
t
z
y
x
T
,
 
0
,
,
,
0




z
ij
z
t
z
y
x
T
,
 
0
,
,
,



 z
L
x
ij
z
t
z
y
x
T
, T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i1, j1.
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
13
Solutions of the above equations with account boundary and initial conditions for them have been
calculated by using standard Fourier approach [31,32]. Using the approach leads to the following
result
           


  


1
0 0 0
00
2
,
,
1
,
,
,
n
nT
n
n
n
z
y
x
L L L
T
z
y
x
t
e
z
c
y
c
x
c
L
L
L
u
d
v
d
w
d
w
v
u
f
L
L
L
t
z
y
x
T
x y z
          
   

  

t L L L
ass
z
y
x
L L L
T
n
n
n
x y z
x y z
d
u
d
v
d
w
d
w
v
u
p
L
L
L
u
d
v
d
w
d
w
v
u
f
w
c
v
c
u
c
0 0 0 0
0 0 0
,
,
,
1
,
, 


                 
    



1 0 0 0 0
,
,
,
2
n
t L L L
ass
n
n
n
nT
nT
n
n
n
z
y
x
x y z
d
u
d
v
d
w
d
w
v
u
p
w
c
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L



 ,
where cn()=cos(n/L),  



















 2
2
2
0
2
2 1
1
1
exp
z
y
x
ass
nT
L
L
L
t
n
t
e 
 ;
                 
    



1 0 0 0 0
2
0
0 ,
,
,
2
,
,
,
n
t L L L
T
n
n
nT
nT
n
n
n
z
y
x
ass
i
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
n
L
L
L
t
z
y
x
T 


             
  







1 0
2
0
10
2
,
,
,
n
t
nT
nT
n
n
n
z
y
x
ass
i
n e
t
e
z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
T
w
c 




              


  






1
2
0
0 0 0
10
2
,
,
,
,
,
,
n
n
n
z
y
x
ass
L L L
i
n
T
n
n y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
T
w
c
T
w
v
u
g
v
s
u
c
x y z 



               
   



 
t L L L
i
T
n
n
n
nT
nT
n
x y z
d
u
d
v
d
w
d
w
w
v
u
T
T
w
v
u
g
w
s
v
c
u
c
e
t
e
z
c
0 0 0 0
10 ,
,
,
,
,
, 

 , i1,
where sn()=sin(n/L);
                 
    



1 0 0 0 0
2
0
01
2
,
,
,
n
t L L L
n
n
n
nT
nT
n
n
n
z
y
x
d
ass
x y z
w
c
v
c
u
s
e
t
e
z
c
y
c
x
c
n
L
L
L
T
t
z
y
x
T 



 
 
         
  





1 0
2
0
00
2
00
2
2
,
,
,
,
,
,
n
t
nT
nT
n
n
n
z
y
x
d
ass e
t
e
z
c
y
c
x
c
n
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
u
w
v
u
T





 

       
 
     


  




1
2
0
0 0 0 00
2
00
2
2
,
,
,
,
,
,
n
n
n
n
z
y
x
d
ass
L L L
n
n
n z
c
y
c
x
c
n
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
v
w
v
u
T
w
c
v
s
u
c
x y z 






           
 
 


   





1
0
0 0 0 0 00
2
00
2
2
,
,
,
,
,
,
n
n
z
y
x
ass
t L L L
n
n
n
nT
nT x
c
L
L
L
w
v
u
T
d
u
d
v
d
w
d
u
w
v
u
T
w
s
v
c
u
c
e
t
e
x y z 




 
               
 

    








 
t L L L
n
n
n
nT
nT
n
n
d
x y z
w
v
u
T
d
u
d
v
d
w
d
u
w
v
u
T
w
c
v
c
u
c
e
t
e
z
c
y
c
T
0 0 0 0
1
00
2
00
,
,
,
,
,
,



 

                  
     










1 0 0 0 0
2
00
0 ,
,
,
2
n
t L L L
n
n
n
nT
nT
n
n
n
z
y
x
d
ass
x y z
v
w
v
u
T
w
c
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T 




 
             
   






1 0 0 0
0
1
00
2
,
,
, n
t L L
n
n
nT
nT
n
n
n
z
y
x
ass
d
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d




 

   
 
 







 
z
L
n
w
v
u
T
d
u
d
v
d
w
d
w
w
v
u
T
w
c
0
1
00
2
00
,
,
,
,
,
,




;
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
14
                 
    



1 0 0 0 0
2
0
02
2
,
,
,
n
t L L L
n
n
n
nT
nT
n
n
n
z
y
x
d
ass
x y z
w
c
v
c
u
s
e
t
e
z
c
y
c
x
c
n
L
L
L
T
t
z
y
x
T 



 
 
           
  






1 0 0
2
0
00
2
01
2
2
,
,
,
,
,
,
n
t L
n
nT
nT
n
n
n
z
y
x
d
ass
x
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
u
w
v
u
T





 

     
 
     
 

 




1
2
0
0 0 00
2
01
2
2
,
,
,
,
,
,
n
nT
n
n
z
y
x
d
ass
L L
n
n t
e
y
c
x
c
n
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
v
w
v
u
T
w
c
v
s
n
y z







           
 


   




z
y
x
ass
d
t L L L
n
n
n
nT
n
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
w
w
v
u
T
w
s
v
c
u
c
e
z
c
x y z
2
0
0 0 0 0 00
2
01
2
2
,
,
,
,
,
, 




 

                 
    







1 0 0 0 0
01
00 ,
,
,
,
,
,
n
t L L L
n
n
nT
nT
n
n
n
x y z
u
w
v
u
T
u
w
v
u
T
v
c
u
c
e
t
e
z
c
y
c
x
c



 
 
           
  






1 0 0
2
0
1
00
2
,
,
, n
t L
n
nT
nT
n
n
n
z
y
x
ass
d
n
x
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
w
c 



 

       
 
 


 








1
2
0
0 0
1
00
01
00
2
,
,
,
,
,
,
,
,
,
n
n
z
y
x
ass
d
L L
n
n x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
v
w
v
u
T
v
w
v
u
T
w
c
v
c
y z 




 

                 
 
   





 
t L L L
n
n
n
nT
nT
n
n
x y z
w
v
u
T
d
u
d
v
d
w
d
w
w
v
u
T
w
w
v
u
T
w
c
v
c
u
c
e
t
e
z
c
y
c
0 0 0 0
1
00
01
00
,
,
,
,
,
,
,
,
,




 
;
                   
    









1 0 0 0 0
2
00
2
0
11
,
,
,
2
,
,
,
n
t L L L
n
n
n
nT
nT
n
n
n
z
y
x
ass
x y z
w
w
v
u
T
w
c
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
t
z
y
x
T



           
 




















 




d
u
d
v
d
w
d
w
v
u
T
w
v
u
T
w
w
v
u
T
w
g
w
v
w
v
u
T
T
w
v
u
g
T
w
v
u
g T
T
T
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
00
01
00
2
00
2
                   
    












1 0 0 0 0
2
01
2
2
01
2
0 ,
,
,
,
,
,
2
n
t L L L
n
n
n
nT
nT
n
n
n
z
y
x
ass
x y z
u
w
v
u
T
u
w
v
u
T
w
c
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L




 
   
        





















 


d
u
d
v
d
w
d
w
w
v
u
T
T
w
v
u
g
w
v
w
v
u
T
T
w
v
u
g
T
w
v
u
g T
T
T
,
,
,
,
,
,
,
,
,
,
,
,
1
,
,
,
1 01
2
01
2
               
 
 
     











1 0 0 0 0
2
00
2
1
00
10
0 ,
,
,
,
,
,
,
,
,
2
n
t L L L
n
n
nT
nT
n
n
n
z
y
x
d
ass
x y z
u
w
v
u
T
w
v
u
T
w
v
u
T
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T 






 
 
   
 
    









 

z
y
x
d
ass
n
L
L
L
T
d
u
d
v
d
w
d
w
c
w
w
v
u
T
w
v
u
T
w
v
u
T
v
w
v
u
T
w
v
u
T
w
v
u
T 









 0
2
00
2
1
00
10
2
00
2
1
00
10
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
               
 
    
















1 0 0 0 0
2
10
2
2
10
2
2
10
2
,
,
,
,
,
,
,
,
,
n
t L L L
n
n
n
nT
nT
x y z
w
w
v
u
T
v
w
v
u
T
u
w
v
u
T
w
c
v
c
u
c
e
t
e




 
                   
   




1 0 0 0
0
00
2
2
,
,
, n
t L L
n
n
nT
nT
n
n
n
z
y
x
d
ass
n
n
n
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
z
c
y
c
x
c
w
v
u
T
d
u
d
v
d
w
d



 

           
























z
L
T
T
n
v
w
v
u
T
w
w
v
u
T
T
w
v
u
g
w
u
w
v
u
T
T
w
v
u
g
w
c
0
2
00
2
00
2
00
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,



 
 
              
   




1 0 0 0
0
00
2
,
,
,
,
,
,
n
t L L
n
n
nT
nT
n
n
n
z
y
x
d
ass
T
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
T
w
v
u
g 



 

International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
15
            
 















z
L
n
w
w
v
u
T
v
w
v
u
T
v
w
v
u
T
u
w
v
u
T
u
w
v
u
T
w
c
0
10
00
10
00
10 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 




 
 
             
   











1 0 0 0
0
1
00
00
2
,
,
,
,
,
,
n
t L L
n
n
nT
nT
n
n
n
z
y
x
d
ass
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
L
L
L
T
w
v
u
T
d
u
d
v
d
w
d
w
w
v
u
T





 

       
 





































 
z
L
n
w
v
u
T
d
u
d
v
d
w
d
w
w
v
u
T
v
w
v
u
T
u
w
v
u
T
w
c
0
1
00
2
00
2
00
2
00
,
,
,
,
,
,
,
,
,
,
,
,






.
Equations for initial-order approximation of concentrations of point radiation defects
 



 ,
,
,
~
000
I and  



 ,
,
,
~
000
V , corrections for the approximation  



 ,
,
,
~
ijk
I and
 



 ,
,
,
~
ijk
V (i1, j1, k1), boundary and initial conditions for them have been obtain by sub-
stitution of the series (13) into Eqs.(4) and conditions (5) and equating of coefficients at equal
powers of parameters, which have been used in the series (13). The equations and conditions
could be written as
       
2
000
2
0
0
2
000
2
0
0
2
000
2
0
0
000 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~






























 I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
       
2
000
2
0
0
2
000
2
0
0
2
000
2
0
0
000 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~






























 V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V ;
        















 
















 ,
,
,
~
,
,
,
,
,
,
~
,
~
100
0
0
2
00
2
0
0
00 i
I
V
I
i
V
I
i I
T
g
D
D
I
D
D
I
      













 













 ,
,
,
~
,
,
,
,
,
,
~
100
0
0
2
00
2
0
0 i
I
V
I
i
V
I I
T
g
D
D
I
D
D
     













 













 ,
,
,
~
,
,
,
,
,
,
~
100
0
0
2
00
2
0
0 i
I
V
I
i
V
I I
T
g
D
D
I
D
D
        















 
















 ,
,
,
~
,
,
,
,
,
,
~
,
~
100
0
0
2
00
2
0
0
00 i
V
I
V
i
I
V
i V
T
g
D
D
V
D
D
V
      













 













 ,
,
,
~
,
,
,
,
,
,
~
100
0
0
2
00
2
0
0 i
V
I
V
i
I
V V
T
g
D
D
V
D
D
     













 













 ,
,
,
~
,
,
,
,
,
,
~
100
0
0
2
00
2
0
0 i
V
I
V
i
I
V V
T
g
D
D
V
D
D
, i1;
     








2
010
2
0
0
2
010
2
0
0
010 ,
,
,
~
,
,
,
~
,
,
,
~














 I
D
D
I
D
D
I
V
I
V
I
   
     

















,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
000
000
,
,
2
010
2
0
0
V
I
T
g
I
D
D
V
I
V
I
V
I





     








2
010
2
0
0
2
010
2
0
0
010 ,
,
,
~
,
,
,
~
,
,
,
~














 V
D
D
V
D
D
V
I
V
I
V
   
     

















,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
000
000
,
,
2
010
2
0
0
V
I
T
g
V
D
D
V
I
V
I
I
V




 ;
       











2
020
2
0
0
2
020
2
0
0
2
020
2
0
0
020 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
16
 
         
 



















 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 010
000
000
010
,
, V
I
V
I
T
g V
I
V
I 


       











2
020
2
0
0
2
020
2
0
0
2
020
2
0
0
020 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 V
D
D
V
D
D
V
D
D
V
V
I
V
I
V
I
 
         
 



















 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 010
000
000
010
,
, V
I
V
I
T
g V
I
V
I 

 ;
     








2
001
2
0
0
2
001
2
0
0
001 ,
,
,
~
,
,
,
~
,
,
,
~














 I
D
D
I
D
D
I
V
I
V
I
   
   













,
,
,
~
,
,
,
1
,
,
,
~
2
000
,
,
2
001
2
0
0
I
T
g
I
D
D
I
I
I
I
V
I





     








2
001
2
0
0
2
001
2
0
0
001 ,
,
,
~
,
,
,
~
,
,
,
~














 V
D
D
V
D
D
V
I
V
I
V
   
   













,
,
,
~
,
,
,
1
,
,
,
~
2
000
,
,
2
001
2
0
0
V
T
g
V
D
D
I
I
I
I
I
V




 ;
        

















V
I
I
V
I
V
I
D
D
I
T
g
D
D
I
D
D
I
0
0
010
0
0
2
110
2
0
0
110 ,
,
,
~
,
,
,
,
,
,
~
,
,
,
~



















       
















 2
110
2
0
0
010
0
0
2
110
2
,
,
,
~
,
,
,
~
,
,
,
,
,
,
~


















 I
D
D
I
T
g
D
D
I
V
I
I
V
I
     
 












 T
g
I
T
g
D
D
I
I
I
I
I
V
I
,
,
,
1
,
,
,
~
,
,
, ,
,
010
0
0













       
 















 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
100
000
000
100 V
I
V
I 

        

















I
V
V
I
V
I
V
D
D
V
T
g
D
D
V
D
D
V
0
0
010
0
0
2
110
2
0
0
110 ,
,
,
~
,
,
,
,
,
,
~
,
,
,
~



















       
















 2
110
2
0
0
010
0
0
2
110
2
,
,
,
~
,
,
,
~
,
,
,
,
,
,
~


















 V
D
D
V
T
g
D
D
V
I
V
V
I
V
     
 












 T
g
V
T
g
D
D
V
V
V
V
V
I
V
,
,
,
1
,
,
,
~
,
,
, ,
,
010
0
0













       
 















 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
100
000
000
100 I
V
I
V 
 ;
       











2
002
2
0
0
2
002
2
0
0
2
002
2
0
0
002 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
 
     











 ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, I
I
T
g I
I
I
I


       











2
002
2
0
0
2
002
2
0
0
2
002
2
0
0
002 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
 
     











 ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, V
V
Е
g V
V
V
V

 ;
        

















V
I
V
I
I
V
I
D
D
D
D
I
T
g
I
D
D
I
0
0
0
0
001
2
101
2
0
0
101 ,
,
,
~
,
,
,
,
,
,
~
,
,
,
~



















       
















 2
101
2
0
0
001
0
0
2
101
2
,
,
,
~
,
,
,
~
,
,
,
,
,
,
~


















 I
D
D
I
T
g
D
D
I
V
I
I
V
I
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
17
     
     





















,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
, 000
100
001
0
0
V
I
T
g
I
T
g
D
D
I
I
I
V
I













        

















I
V
I
V
V
I
V
D
D
D
D
V
T
g
V
D
D
V
0
0
0
0
001
2
101
2
0
0
101 ,
,
,
~
,
,
,
,
,
,
~
,
,
,
~



















       
















 2
101
2
0
0
001
0
0
2
101
2
,
,
,
~
,
,
,
~
,
,
,
,
,
,
~


















 V
D
D
V
T
g
D
D
V
I
V
V
I
V
     
     





















,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
, 100
000
001
0
0
V
I
T
g
V
T
g
D
D
V
V
V
I
V












 ;
       











2
011
2
0
0
2
011
2
0
0
2
011
2
0
0
011 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
 
     

 










 ,
,
,
~
,
,
,
~
,
,
,
1 010
000
,
, I
I
T
g I
I
I
I
 
     











 ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, V
I
T
g V
I
V
I


       











2
011
2
0
0
2
011
2
0
0
2
011
2
0
0
011 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~



















 V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
 
     

 










 ,
,
,
~
,
,
,
~
,
,
,
1 010
000
,
, V
V
T
g V
V
V
V
 
     











 ,
,
,
~
,
,
,
~
,
,
,
1 001
000
,
, V
I
t
g V
I
V
I

 ;
 
0
,
,
,
~
0




x
ijk






,
 
0
,
,
,
~
1




x
ijk






,
 
0
,
,
,
~
0










ijk
,
 
0
,
,
,
~
1










ijk
,
 
0
,
,
,
~
0










ijk
,
 
0
,
,
,
~
1










ijk
(i0, j0, k0);     *
000 ,
,
0
,
,
,
~ 






 
f
 ,
  0
0
,
,
,
~ 



ijk (i0, j0, k0).
Solutions of the above equations with account boundary and initial conditions for them have been
calculated by using standard Fourier approach [31,32]. Using the approach leads to the following
result
         




1
000
2
1
,
,
,
~
n
n
n e
c
c
c
F
L
L








 
 ,
where        
  

1
0
1
0
1
0
*
,
,
cos
cos
cos
1
u
d
v
d
w
d
w
v
u
f
w
n
v
n
u
n
F n
n 
 



,    
I
V
nI D
D
n
e 0
0
2
2
exp 

 
 ,
   
V
I
nV D
D
n
e 0
0
2
2
exp 

 
 , cn()=cos(n);
                 
    




1 0
1
0
1
0
1
0
0
0
00 ,
,
,
2
,
,
,
~
n
I
n
n
nI
nI
n
V
I
i T
w
v
u
g
v
c
u
s
e
e
c
c
c
D
D
I











             
  







1 0
0
0
100
2
,
,
,
~
n
nI
nI
n
V
I
i
n e
e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
I
w
c
n









           


  






1
0
0
1
0
1
0
1
0
100
2
,
,
,
~
,
,
,
n
n
V
I
i
I
n
n
n c
n
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
w
c
v
s
u
c 



                 
   



 







0
1
0
1
0
1
0
100 ,
,
,
~
,
,
, d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
w
s
v
c
u
c
e
e
c
c i
I
n
n
n
nI
nI
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
18
                 
 
   




1 0
1
0
1
0
1
0
0
0
00 ,
,
,
2
,
,
,
~
n
V
n
n
nI
nV
n
I
V
i T
w
v
u
g
v
c
u
s
e
e
c
c
c
n
D
D
V











               
 
 








1 0
1
0
0
0
100
2
,
~
n
n
nI
nV
n
I
V
i
n u
c
e
e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
u
V
w
c
n









               


 






1
0
0
1
0
1
0
100
2
,
~
,
,
,
n
nV
n
I
V
i
V
n
n e
c
c
c
D
D
d
u
d
v
d
w
d
v
u
V
T
w
v
u
g
w
c
v
s 






           
   



 




0
1
0
1
0
1
0
100 ,
~
,
,
, d
u
d
v
d
w
d
w
u
V
T
w
v
u
g
w
s
v
c
u
c
e
n i
V
n
n
n
nI , i1,
where sn()=sin(n);
                 
     




1 0
1
0
1
0
1
0
010 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c


 









 
      


 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
T
w
v
u
g V
I
V
I ,
,
,
~
,
,
,
~
,
,
,
1 000
000
,
,

 ;
             
 
     




1 0
1
0
1
0
1
0
,
,
0
0
020 ,
,
,
1
2
,
,
,
~
n
V
I
V
I
n
n
n
n
n
V
I
T
w
v
u
g
e
e
c
c
c
D
D 

 










             
  



 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
w
v
u
V
w
v
u
I
w
c
v
c
u
c n
n
n ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
010
000
000
010 
 ;
                 
    




1 0
1
0
1
0
1
0
001 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c


 









 
    


 


 d
u
d
v
d
w
d
w
v
u
T
w
v
u
g ,
,
,
~
,
,
,
1 2
000
,
,

 ;
                 
   
 




1 0
1
0
1
0
1
0
002 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c


 









 
      




 


 d
u
d
v
d
w
d
w
v
u
w
v
u
T
w
v
u
g ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
,

 ;
                 
    




1 0
1
0
1
0
1
0
0
0
110 2
,
,
,
~
n
n
n
n
nI
nI
n
n
n
V
I
u
c
v
c
u
s
e
e
c
c
c
n
D
D
I











           








1
0
0
100
2
,
,
,
~
,
,
,
n
nI
n
n
n
V
I
i
I e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
I
T
w
v
u
g 






            

   



 
V
I
i
I
n
n
n
nI
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
u
c
v
s
u
c
e
0
0
0
1
0
1
0
1
0
100
2
,
,
,
~
,
,
, 




              
    







1 0
1
0
1
0
1
0
100 ,
,
,
~
,
,
,
n
i
I
n
n
n
nI
nI d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
u
s
v
c
u
c
e
e
n





                     
 
    




1 0
1
0
1
0
1
0
100 ,
,
,
~
2
n
n
n
nI
n
n
nI
n
n
n
n w
v
u
I
v
c
u
c
e
c
c
e
c
c
c
c










       
    



 d
u
d
v
d
w
d
v
c
T
w
v
u
g
w
v
u
V
w
v
u
I
w
v
u
V n
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
~
,
,
100
000
000 


                 
    




1 0
1
0
1
0
1
0
0
0
110 2
,
,
,
~
n
n
n
n
nV
nV
n
n
n
I
V
u
c
v
c
u
s
e
e
c
c
c
n
D
D
V











           








1
0
0
100
2
,
,
,
~
,
,
,
n
nV
n
n
n
I
V
i
V e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
V
T
w
v
u
g 






            

   



 
I
V
i
V
n
n
n
nV
D
D
d
u
d
v
d
w
d
v
w
v
u
V
T
w
v
u
g
u
c
v
s
u
c
e
0
0
0
1
0
1
0
1
0
100
2
,
,
,
~
,
,
, 




International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
19
              
    







1 0
1
0
1
0
1
0
100 ,
,
,
~
,
,
,
n
i
V
n
n
n
nV
nV d
u
d
v
d
w
d
w
w
v
u
V
T
w
v
u
g
u
s
v
c
u
c
e
e
n





                     

     




1 0
1
0
1
0
1
0
100 ,
,
,
~
2
n
n
n
nV
nI
n
n
n
n
n
n w
v
u
I
v
c
u
c
e
e
c
c
c
c
c
c










       
    



 d
u
d
v
d
w
d
v
c
T
w
v
u
g
w
v
u
V
w
v
u
I
w
v
u
V n
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
~
,
,
100
000
000 

 ;
                 
    




1 0
1
0
1
0
1
0
0
0
101 2
,
,
,
~
n
n
n
n
nI
nI
n
n
n
V
I
w
c
v
c
u
s
e
e
c
c
c
n
D
D
I











           






1
0
0
001
2
,
,
,
~
,
,
,
n
nI
n
n
n
V
I
I e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
I
T
w
v
u
g 






            

   




V
I
I
n
n
n
nI
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
w
c
v
s
u
c
e
0
0
0
1
0
1
0
1
0
001
2
,
,
,
~
,
,
, 




              
    





1 0
1
0
1
0
1
0
001 ,
,
,
~
,
,
,
n
I
n
n
n
nI
nI d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
w
s
v
c
u
c
e
e
n





                 
 
   




1 0
1
0
,
, ,
,
,
1
2
n
V
I
V
I
nI
nI
n
n
n
n
n
n T
w
v
u
g
e
e
c
c
c
c
c
c










      

 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
u
cn ,
,
,
~
,
,
,
~
000
100

                 
    




1 0
1
0
1
0
1
0
0
0
101 2
,
,
,
~
n
n
n
n
nV
nV
n
n
n
I
V
w
c
v
c
u
s
e
e
c
c
c
n
D
D
V











           






1
0
0
001
2
,
,
,
~
,
,
,
n
nV
n
n
n
I
V
V e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
V
T
w
v
u
g 






            

   




I
V
V
n
n
n
nV
D
D
d
u
d
v
d
w
d
v
w
v
u
V
T
w
v
u
g
w
c
v
s
u
c
e
0
0
0
1
0
1
0
1
0
001
2
,
,
,
~
,
,
, 




              
    





1 0
1
0
1
0
1
0
001 ,
,
,
~
,
,
,
n
V
n
n
n
nV
nV d
u
d
v
d
w
d
w
w
v
u
V
T
w
v
u
g
w
s
v
c
u
c
e
e
n





                     
    




1 0
1
0
1
0
1
0
000 ,
,
,
~
2
n
n
n
nV
nV
n
n
n
n
n
n w
v
u
I
v
c
u
c
e
e
c
c
c
c
c
c










   
    

 d
u
d
v
d
w
d
w
v
u
V
T
w
v
u
g
w
c V
I
V
I
n ,
,
,
~
,
,
,
1 100
,
,

 ;
                   
 

     





1 0
1
0
1
0
1
0
,
,
011 ,
,
,
1
2
,
,
,
~
n
I
I
I
I
n
n
n
nI
nI
n
n
n T
w
v
u
g
w
c
v
c
u
c
e
e
c
c
c
I











     
      




 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
T
w
v
u
g
w
v
u
I
w
v
u
I V
I
V
I ,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
~
000
001
,
,
010
000 


                   
 

     





1 0
1
0
1
0
1
0
,
,
011 ,
,
,
1
2
,
,
,
~
n
V
V
V
V
n
n
n
nV
nV
n
n
n T
w
v
u
g
w
c
v
c
u
c
e
e
c
c
c
V











     
      




 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
T
w
v
u
g
w
v
u
V
w
v
u
V V
I
V
I ,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
~
001
000
,
,
010
000 

 .
Equations for initial-order approximation of concentrations of simplest complexes of radiation
defects 0(x,y,z,t), corrections for the approximation i(x,y,z,t) (i1), boundary and initial con-
ditions for them have been obtain by substitution of the series (14) into Eqs.(6) and conditions (7)
and equating of coefficients at equal powers of parameters, which have been used in the series
(14). The equations and conditions could be written as
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
20
       









 2
0
2
0
2
0
2
0
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x I
I
I
I
I
I
I








       
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k I
I
I ,
,
,
,
,
,
,
,
,
,
,
, 2
, 

       









 2
0
2
0
2
0
2
0
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x V
V
V
V
V
V
V








       
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k V
V
V ,
,
,
,
,
,
,
,
,
,
,
, 2
, 
 ;
       










 2
2
0
2
2
0
2
2
0
,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x i
I
I
i
I
I
i
I
I
i
I








 
 
 
 






 






 







y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
i
I
I
I
i
I
I
I







 ,
,
,
,
,
,
,
,
,
,
,
,
1
0
1
0
 
 





 




z
t
z
y
x
T
z
y
x
g
z
D
i
I
I
I



 ,
,
,
,
,
,
1
0
       










 2
2
0
2
2
0
2
2
0
,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x i
V
V
i
V
V
i
V
V
i
V








 
 
 
 






 






 







y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
i
V
V
V
i
V
V
V







 ,
,
,
,
,
,
,
,
,
,
,
,
1
0
1
0
 
 





 




z
t
z
y
x
T
z
y
x
g
z
D
i
V
V
V



 ,
,
,
,
,
,
1
0 , i1;
 
0
,
,
,
0





x
i
x
t
z
y
x

,
 
0
,
,
,




 x
L
x
i
x
t
z
y
x

,
 
0
,
,
,
0





y
i
y
t
z
y
x

,
 
0
,
,
,




 y
L
y
i
y
t
z
y
x

,
 
0
,
,
,
0





z
i
z
t
z
y
x

,
 
0
,
,
,




 z
L
z
i
z
t
z
y
x

, i>0; 0(x,y,z,0)=f (x,y,z), i(x,y,z,0)=0, i>1.
Solutions of the above equations with account boundary and initial conditions for them have been
calculated by using standard Fourier approach [31,32]. Using the approach leads to the following
result
               












1
1
0
2
2
1
,
,
,
n
n
n
n
n
n
n
n
n
n
z
y
x
z
y
x
z
c
y
c
x
c
n
L
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x 


               
 
    


 

t L L L
I
I
I
n
n
n
n
x y z
w
v
u
I
T
w
v
u
k
w
v
u
I
T
w
v
u
k
v
c
u
c
e
t
e
0 0 0 0
2
, ,
,
,
,
,
,
,
,
,
,
,
, 




  
d
u
d
v
d
w
d
w
cn
 ,
where  



















 
 2
2
2
0
2
2 1
1
1
exp
z
y
x
n
L
L
L
t
D
n
t
e 

 ,      
   
 

x y z
L L L
n
n
n w
v
u
f
v
c
u
c
F
0 0 0
,
,


  u
d
v
d
w
d
w
cn
 , cn(x)=cos(nx/Lx);
                 
    









1 0 0 0 0
2
,
,
,
2
,
,
,
n
t L L L
n
n
n
n
n
n
n
z
y
x
i
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
n
L
L
L
t
z
y
x 





 
 
            
  









1 0 0
2
1 2
,
,
,
n
t L
n
n
n
n
n
n
z
y
x
i
I
n
x
u
c
e
t
e
z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
w
c 








International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
21
     
 
     


 







1
2
0 0
1 2
,
,
,
,
,
,
n
n
n
n
z
y
x
L L
i
I
n
n t
e
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
T
w
v
u
g
w
c
v
s
y z








           
 
   






t L L L
i
I
n
n
n
n
n
x y z
d
u
d
v
d
w
d
w
w
v
u
T
w
v
u
g
w
s
v
c
u
c
e
z
c
0 0 0 0
1 ,
,
,
,
,
, 



 


, i1,
where sn(x)=sin(nx/Lx).
Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for the
approximation Cij(x,y,z,t) (i1, j1), boundary and initial conditions for them have been obtain by
substitution of the series (15) into Eqs.(1) and conditions (2) and equating of coefficients at equal
powers of parameters, which have been used in the series (15). The equations and conditions
could be written as
       
2
00
2
0
2
00
2
0
2
00
2
0
00 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C
L
L
L











;
       











2
0
2
0
2
0
2
0
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C i
L
i
L
i
L
i
        





















 

y
t
z
y
x
C
T
z
y
x
g
y
D
x
t
z
y
x
C
T
z
y
x
g
x
D i
L
L
i
L
L
,
,
,
,
,
,
,
,
,
,
,
, 10
0
10
0
   










 
z
t
z
y
x
C
T
z
y
x
g
z
D i
L
L
,
,
,
,
,
, 10
0 , i1;
       











2
01
2
0
2
01
2
0
2
01
2
0
01 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C
L
L
L
 
 
   
 
  






















y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
D
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
x
D L
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
00
0
00
00
0 



 
 
 











z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
D L
,
,
,
,
,
,
,
,
, 00
00
0 

;
       











2
02
2
0
2
02
2
0
2
02
2
0
02 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C
L
L
L
   
 
     
 




















T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
y
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
x
D L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
00
01
00
1
00
01
0 



     
 
  



















L
L
L D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
z
D
D
y
t
z
y
x
C
0
00
1
00
01
0
0
00 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,


 
 
   
 
  






















y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
D
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
x
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 01
00
0
01
00




 
 
 











z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
D L
,
,
,
,
,
,
,
,
, 01
00
0 

;
       











2
11
2
0
2
11
2
0
2
11
2
0
11 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C
L
L
L
International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
22
   
 
     
 




















T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
y
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
x
D L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
00
10
00
1
00
10
0 



     
 
  



















L
L
L D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
z
D
D
y
t
z
y
x
C
0
00
1
00
10
0
0
00 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,


 
 
   
 
  






















y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
D
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
x
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 10
00
0
10
00




 
 
      






















x
t
z
y
x
C
T
z
y
x
g
x
D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
D L
L
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 01
0
10
00
0 

       






















z
t
z
y
x
C
T
z
y
x
g
z
D
y
t
z
y
x
C
T
z
y
x
g
y
D L
L
L
L
,
,
,
,
,
,
,
,
,
,
,
, 01
0
01
0 ;
 
0
,
,
,
0


x
ij
x
t
z
y
x
C


,
 
0
,
,
,

 x
L
x
ij
x
t
z
y
x
C


,
 
0
,
,
,
0


y
ij
y
t
z
y
x
C


,
 
0
,
,
,

 y
L
y
ij
y
t
z
y
x
C


,
 
0
,
,
,
0


z
ij
z
t
z
y
x
C


,
 
0
,
,
,

 z
L
z
ij
z
t
z
y
x
C


, i0, j0;
C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i1, j1.
Solutions of the above equations with account boundary and initial conditions for them have been
calculated by using standard Fourier approach [31,32]. Using the approach leads to the following
result
         




1
00
2
1
,
,
,
n
nC
n
n
n
nC
z
y
x
z
y
x
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x
C ,
where  



















 
 2
2
2
0
2
2 1
1
1
exp
z
y
x
n
L
L
L
t
D
n
t
e 

 ,      
   

x y z
L L L
C
n
n
nC w
v
u
f
v
c
u
c
F
0 0 0
,
,
  u
d
v
d
w
d
w
cn
 ;
                 
    




1 0 0 0 0
2
0 ,
,
,
2
,
,
,
n
t L L L
L
n
n
nC
nC
n
n
n
nC
z
y
x
i
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C 

               
  








1 0 0
2
10 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
i
n
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
v
c 



              


 






1
2
0 0
10 2
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
i
L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
g
v
c
v
s
y z 


             
   



 
t L L L
i
L
n
n
n
nC
nC
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
g
v
s
v
c
u
c
e
t
e
0 0 0 0
10 ,
,
,
,
,
, 

 , i1;
                 
 

    




1 0 0 0 0
00
2
01
,
,
,
,
,
,
2
,
,
,
n
t L L L
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
T
w
v
u
P
w
v
u
C
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C 




                
  






1 0 0
2
00 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
n
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
w
c 



     
 
        


 




1
2
0 0
00
00 2
,
,
,
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
y z 





International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
23
           
 
 
   




t L L L
n
n
n
nC
nC
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
s
v
c
u
c
e
t
e
0 0 0 0
00
00 ,
,
,
,
,
,
,
,
,



 

;
                 
    




1 0 0 0 0
2
02
2
,
,
,
n
t L L L
n
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
w
c
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C 

   
 
     








1
2
00
1
00
01
2
,
,
,
,
,
,
,
,
,
,
,
,
n
n
n
nC
z
y
x
y
c
x
c
F
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C




 

             
 
 
   





t L L L
n
n
nC
nC
n
x y z
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
v
s
u
c
e
t
e
z
c
n
0 0 0 0
00
1
00
01
,
,
,
,
,
,
,
,
,
,
,
,



 

               
   




1 0 0 0
2
2
n
t L L
n
n
nC
nC
n
n
n
nC
z
y
x
n
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
w
c 


     
 
   









1
2
0
00
1
00
01
2
,
,
,
,
,
,
,
,
,
,
,
,
n
n
z
y
x
L
n x
c
n
L
L
L
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
s
z 



 

               
 
 
    





t L L L
n
n
nC
nC
n
n
x y z
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
v
c
u
s
e
t
e
z
c
y
c
0 0 0 0
00
1
00
01
,
,
,
,
,
,
,
,
,
,
,
,



 

             
  





1 0
2
00 2
,
,
,
n
t
nC
nC
n
n
n
z
y
x
n
nC e
t
e
z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
w
c
F 



         
 
  
  




x y z
L L L
n
n
n
nC d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
c
v
s
u
c
F
0 0 0
00
1
00
01
,
,
,
,
,
,
,
,
,
,
,
, 


 

                 
    



1 0 0 0 0
01
2
,
,
,
2
n
t L L L
n
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
w
v
u
C
w
s
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L



 
 
          








1
2
00
1
00 2
,
,
,
,
,
,
,
,
,
n
nC
n
n
n
z
y
x
t
e
z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C 





         
 
  

   



 2
0 0 0 0
01
00 2
,
,
,
,
,
,
,
,
,
y
x
t L L L
n
n
n
nC
nC
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
c
u
s
e
F
x y z 



 

           
 
  
    





1 0 0 0 0
01
00 ,
,
,
,
,
,
,
,
,
1
n
t L L L
n
n
n
nC
nC
z
x y z
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
u
c
e
t
e
L



 

                   
   




1 0 0 0
2
2
n
t L L
n
n
nC
nC
n
n
n
nC
z
y
x
n
n
n
nC
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
z
c
y
c
x
c
F
n 

   
 
 




z
L
n d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
s
0
01
00 ,
,
,
,
,
,
,
,
,





;
                 
    




1 0 0 0 0
2
11
2
,
,
,
n
t L L L
n
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
w
c
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C 

           






1
2
01 2
,
,
,
,
,
,
n
nC
n
n
n
nC
z
y
x
L t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
g



            

   



 2
0 0 0 0
01 2
,
,
,
,
,
,
z
y
x
t L L L
L
n
n
n
nC
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
g
w
c
v
s
u
c
e
x y z 



                  
    





1 0 0 0 0
01 ,
,
,
,
,
,
n
t L L L
L
n
n
nC
nC
n
n
n
nC
x y z
w
w
v
u
C
T
w
v
u
g
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n


International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015
24
               
   




1 0 0 0
2
2
n
t L L
n
n
nC
nC
n
n
n
nC
z
y
x
n
x y
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
w
s 


   
 
       







1
2
0
10
00 2
,
,
,
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
z 





           
 
  

   




x
t L L L
n
n
n
nC
nC
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
u
c
e
t
e
x y z 2
,
,
,
,
,
,
,
,
,
0 0 0 0
10
00



 

               
 
 
    





1 0 0 0 0
10
00 ,
,
,
,
,
,
,
,
,
n
t L L L
n
n
nC
nC
n
n
n
nC
x y z
w
w
v
u
C
T
w
v
u
P
w
v
u
C
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n


 

             
  




1 0 0
2
2
2
n
t L
n
nC
nC
n
n
n
nC
z
y
x
z
y
n
x
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
L
L
d
u
d
v
d
w
d
w
s 



       
 
  

 




z
y
x
L L
n
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
c
v
c
y z
2
0 0
00
1
00
10
2
,
,
,
,
,
,
,
,
,
,
,
,




 

               
 
  
    







1 0 0 0 0
00
1
00 ,
,
,
,
,
,
,
,
,
n
t L L L
n
n
nC
nC
n
n
n
x y z
v
w
v
u
C
T
w
v
u
P
w
v
u
C
v
s
u
c
e
t
e
z
c
y
c
x
c
n


 

           




1
2
10
2
,
,
,
n
nC
n
n
n
nC
z
y
x
nC
n t
e
z
c
y
c
x
c
F
n
L
L
L
F
d
u
d
v
d
w
d
w
v
u
C
w
c



           
 
 
   





t L L L
n
n
n
nC
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
s
v
c
u
c
e
0 0 0 0
00
1
00
10
,
,
,
,
,
,
,
,
,
,
,
, 



 

.
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor
course in Radiophysical Department of Nizhny Novgorod State University. He has 105 published papers in
area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2).
She has 52 published papers in area of her researches.

More Related Content

What's hot

Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...
Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...
Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...IJERA Editor
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...IOSR Journals
 
Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Said Benramache
 
Deterioration of short channel effects
Deterioration of short channel effectsDeterioration of short channel effects
Deterioration of short channel effectsijistjournal
 
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...ijeei-iaes
 
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...IOSR Journals
 
DC Conductivity of Composite Silicon Thin Films
DC Conductivity of Composite Silicon Thin FilmsDC Conductivity of Composite Silicon Thin Films
DC Conductivity of Composite Silicon Thin FilmsScientific Review SR
 
Quantum Matter Paper_05QM03-1329
Quantum Matter Paper_05QM03-1329Quantum Matter Paper_05QM03-1329
Quantum Matter Paper_05QM03-1329Aniruddha Mukherjee
 
MS_1st draft.pdf
MS_1st draft.pdfMS_1st draft.pdf
MS_1st draft.pdfjaykumar207
 
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave FrequenciesDielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave Frequenciestheijes
 
Effect of solvent on of 4 phenyl-7-hydroxy coumarin - p –chloro anilide
Effect of solvent on of 4  phenyl-7-hydroxy coumarin - p –chloro anilideEffect of solvent on of 4  phenyl-7-hydroxy coumarin - p –chloro anilide
Effect of solvent on of 4 phenyl-7-hydroxy coumarin - p –chloro anilideAlexander Decker
 
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...theijes
 
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...IJERA Editor
 
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...IOSR Journals
 
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystals
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystalsDielectric properties of pure and ni2+ doped glycine sodium sulfate crystals
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystalseSAT Journals
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Alexander Decker
 

What's hot (20)

2
22
2
 
Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...
Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...
Studying the Structure and the Optical Properties of Pd Nanoparticles Affecte...
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
 
Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70
 
Deterioration of short channel effects
Deterioration of short channel effectsDeterioration of short channel effects
Deterioration of short channel effects
 
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
 
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...
Synthesis and Study of Structural, Optical Properties of CoxZn1-xS Semiconduc...
 
DC Conductivity of Composite Silicon Thin Films
DC Conductivity of Composite Silicon Thin FilmsDC Conductivity of Composite Silicon Thin Films
DC Conductivity of Composite Silicon Thin Films
 
Quantum Matter Paper_05QM03-1329
Quantum Matter Paper_05QM03-1329Quantum Matter Paper_05QM03-1329
Quantum Matter Paper_05QM03-1329
 
MS_1st draft.pdf
MS_1st draft.pdfMS_1st draft.pdf
MS_1st draft.pdf
 
MoS2.pdf
MoS2.pdfMoS2.pdf
MoS2.pdf
 
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave FrequenciesDielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
 
1
11
1
 
structural-analysis-poly
structural-analysis-polystructural-analysis-poly
structural-analysis-poly
 
Effect of solvent on of 4 phenyl-7-hydroxy coumarin - p –chloro anilide
Effect of solvent on of 4  phenyl-7-hydroxy coumarin - p –chloro anilideEffect of solvent on of 4  phenyl-7-hydroxy coumarin - p –chloro anilide
Effect of solvent on of 4 phenyl-7-hydroxy coumarin - p –chloro anilide
 
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
 
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
 
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...
Thermoelectric Power Studies of Ni-Co Nano Ferrites Synthesized By Citrate-Ge...
 
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystals
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystalsDielectric properties of pure and ni2+ doped glycine sodium sulfate crystals
Dielectric properties of pure and ni2+ doped glycine sodium sulfate crystals
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
 

Similar to An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic

ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...antjjournal
 
Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...ijcsa
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...antjjournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logicalijcsa
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...csijjournal
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 

Similar to An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic (20)

ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logical
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...
On Increasing of Density of Elements of Double Boost DC-DC Converter. Influen...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 

More from ijrap

Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...ijrap
 
Dark Energy Discriminant Theory
Dark Energy Discriminant TheoryDark Energy Discriminant Theory
Dark Energy Discriminant Theoryijrap
 
International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...ijrap
 
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESSOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESijrap
 
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHMASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHijrap
 
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...ijrap
 
3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)ijrap
 
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSA SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSijrap
 
9320ijrap01.pdf
9320ijrap01.pdf9320ijrap01.pdf
9320ijrap01.pdfijrap
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVEijrap
 
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...ijrap
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVEijrap
 
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)ijrap
 
The Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African PerspectiveThe Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African Perspectiveijrap
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)ijrap
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?ijrap
 

More from ijrap (20)

Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
Gravity Also Redshifts Light – the Missing Phenomenon That Could Resolve Most...
 
Dark Energy Discriminant Theory
Dark Energy Discriminant TheoryDark Energy Discriminant Theory
Dark Energy Discriminant Theory
 
International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...International Journal on Soft Computing, Artificial Intelligence and Applicat...
International Journal on Soft Computing, Artificial Intelligence and Applicat...
 
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURESSOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
SOME THEORETICAL ASPECTS OF HYDROGEN DIFFUSION IN BCC METALS AT LOW TEMPERATURES
 
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHMASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
 
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
PHENOMENOLOGICAL METHOD REGARDING A THIRD THEORY OF PHYSICS “THE EVENT:THE TH...
 
3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)3rd International Conference on Integrating Technology in Education (ITE 2022)
3rd International Conference on Integrating Technology in Education (ITE 2022)
 
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESSA SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
A SPECIAL RELATIONSHIP BETWEEN MATTER, ENERGY, INFORMATION, AND CONSCIOUSNESS
 
9320ijrap01.pdf
9320ijrap01.pdf9320ijrap01.pdf
9320ijrap01.pdf
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
 
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
Learning to Pronounce as Measuring Cross Lingual Joint Orthography Phonology ...
 
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVETHE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
THE CONCEPT OF SPACE AND TIME: AN AFRICAN PERSPECTIVE
 
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
 
The Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African PerspectiveThe Concept of Space and Time: An African Perspective
The Concept of Space and Time: An African Perspective
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)Call For Papers - International Journal of Recent advances in Physics (IJRAP)
Call For Papers - International Journal of Recent advances in Physics (IJRAP)
 
IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?IS A FIELD AN INTELLIGENT SYSTEM?
IS A FIELD AN INTELLIGENT SYSTEM?
 

Recently uploaded

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 

Recently uploaded (20)

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 

An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic

  • 1. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 DOI : 10.14810/ijrap.2015.4201 1 AN APPROACH TO MODEL OPTIMIZATION OF MAN- UFACTURING OF EMITTER-COUPLED LOGIC E.L. Pankratov1,3 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia 3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi- novskoe Shosse, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we consider an approach to optimization manufacturing elements of emitter-coupled logic. The optimization gives us possibility to decrease dimensions of these elements. The technological part based on manufacture a heterostructure with required configuration, doping by diffusion or ion implanta- tion of required areas of heterostructure and optimization of annealing of dopant and/or radiation defects. The modelling part based on modified method of functional corrections, which using without crosslinking of solutions on interfaces between layers of heterostructure. KEYWORDS analytical approach for modelling; emitter-coupled logic; optimization of manufacturing; decreasing of dimensions; de-creasing of overheats 1. INTRODUCTION Intensive development of electronic technique leads to increasing of performance of elements of integrated circuits ant to increasing of degree of their integration (p-n-junctions, bipolar and field- effect transistors, thyristors, ...) [1-6]. Increasing of the performance could be obtain by develop- ment of new and optimization of existing technological processes. Another way to increase the performance in determination of materials with higher speed of transport of charge carriers [7- 10]. Increasing of degree of integration of elements of integrated circuits leads to necessity to de- crease dimensions of the elements. To decrease the dimensions it could be used different ap- proaches. Two of them are laser and microwave types of annealing [11-13]. Using this types of annealing leads to generation of inhomogenous distribution of temperature. The inhomogeneity leads to decreasing of dimensions of elements of integrated circuits due to Arrhenius law. Anoth- er way to decrease the dimensions is doping of epitaxial layers of heterostructures by diffusion and ion implantation [14-17]. However in this case it is practicably to optimize annealing of do- pant and/or radiation defects [17-24]. It is known, that using radiation processing of materials of heterostructure and homogeneous samples leads to changing of distributions of concentrations of dopants in them [25]. In this paper as a development of works [17-24] we consider an approach to manufacture more compact elements of emitter-coupled logic. To illustrate the approach we consider a heterostruc- ture, which is illustrated on Fig. 1. The heterostructure consist of a substrate and three epitaxial
  • 2. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 2 layers. Some sections have been manufactured in the epitaxial layers such as it shown on the fig- ure. After finishing of the nearest to the substrate epitaxial layer we consider doping of the sec- tions of the layer by diffusion or ion implantation. The sections will have role of collectors during functioning of the manufacturing device. Farther we consider annealing of dopant and/or radia- tion defects. After finishing this annealing we consider two another epitaxial layers with appro- priate sections (see Fig. 1). After finishing of manufacturing of each epitaxial layer all sections of the last layer have been doped by diffusion or ion implantation. Farther we consider microwave annealing of dopant and/or radiation defects. Frequency of electro-magnetic radiation should be so, that thickness of scin-layer should be larger, than thickness of external epitaxial layer and smaller, than sum of thicknesses of external and average epitaxial layers. Sections of the average and external epitaxial layers will have roles of bases and emitter, respectively, during functioning of the considered device. Main aim of the present paper is analysis of dynamics of redistribution of infused and implanted dopants and/or radiation defects during annealing. Fig. 1. Heterostructure with four layers, which consist of a substrate and three epitaxial layer with sections, manufactured by using another materials 2. METHOD OF SOLUTION To solve our aims we determine spatio-temporal distribution of concentration of dopant. We de- termine the required distribution by solving the second Fick's law [1,14 -17]                                            z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C , , , , , , , , , , , , (1) with initial and boundary conditions C(x,y,z,0)=fC (x,y,z),   0 , , , 0     x x t z y x C ,   0 , , ,     x L x x t z y x C ,   0 , , , 0     y y t z y x C ,   0 , , ,     y L x y t z y x C ,   0 , , , 0     z z t z y x C ,   0 , , ,     z L x z t z y x C . Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; x, y and z are current coordinates, t is the current time; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials of hetero- structure, speed of heating and cooling of the heterostructure (with account Arrhenius law). De- pendences of dopant diffusion coefficient on parameters could be approximated by the following relation [26-28]
  • 3. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 3                               2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C      , (3) where DL(x,y,z,T) is the spatial (due to presents several layers with different properties framework heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coeffi- cient; P (x,y,z,T) is the limit of solubility of dopant; parameter  depends on properties of materi- als and could be integer in the following interval [1,3] [26]; V (x,y,z,t) is the spatio- temporal distribution of radiation vacancies; V* is the equilibrium distribution of vacancies. Concentration- al dependence of dopant diffusion coefficient is describes in details in [26]. It should be noted, that diffusion type of doping did not leads to generation of radiation defects. In this situation 1= 2=0. We determine spatio-temporal distributions of concentrations of point radiation defects as solutions of the following system of equations [27,28]                                                                                                                    t z y x V T z y x k t z y x V t z y x I T z y x k z t z y x V T z y x D z y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V t z y x I T z y x k t z y x V t z y x I T z y x k z t z y x I T z y x D z y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I V V V I V V V I I V I I I I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 , , 2 , ,                             (3) with boundary and initial conditions   0 , , , 0   x x t z y x I   ,   0 , , ,   x L x x t z y x I   ,   0 , , , 0   y y t z y x I   ,   0 , , ,   y L y y t z y x I   ,   0 , , , 0   z z t z y x I   ,   0 , , ,   z L z z t z y x I   ,   0 , , , 0   x x t z y x V   ,   0 , , ,   x L x x t z y x V   ,   0 , , , 0   y y t z y x V   ,   0 , , ,   y L y y t z y x V   ,   0 , , , 0   z z t z y x V   ,   0 , , ,   z L z z t z y x V   , I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV (x,y,z). (4) Here =I,V; I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; D(x,y,z,T) are the diffusion coefficients of vacancies and interstitials; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) are parameters of recombination of point radiation defects and generation their com- plexes. Spatio-temporal distributions of concentrations of simplest complexes (divacancies V(x,y,z,t) and diinterstitials I(x,y,z,t)) of radiation defects have been determined by solving the following system of equations [27,28]                               y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I           , , , , , , , , , , , , , , ,
  • 4. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 4             t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 ,                (6)                               y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V           , , , , , , , , , , , , , , ,             t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 ,                with boundary and initial conditions   0 , , , 0      x x t z y x  ,   0 , , ,      x L x x t z y x  ,   0 , , , 0      y y t z y x  ,   0 , , ,      y L y y t z y x  ,   0 , , , 0      z z t z y x  ,   0 , , ,      z L z z t z y x  , I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (7) Here D(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of complexes of radiation defects. We determine spatio-temporal distribution of temperature by solving of the second law of Fourier [29]                                      y t z y x T T z y x y x t z y x T T z y x x t t z y x T T c , , , , , , , , , , , , , , ,         t z y x p z t z y x T T z y x z , , , , , , , , ,              , (8) with boundary and initial conditions   0 , , , 0     x x t z y x T ,   0 , , ,     x L x x t z y x T ,   0 , , , 0     y y t z y x T ,   0 , , ,     y L x y t z y x T ,   0 , , , 0     z z t z y x T ,   0 , , ,     z L x z t z y x T , T(x,y,z,0)=fT (x,y,z), (9) where T(x,y,z,t) is the spatio-temporal distribution of temperature of annealing; c (T)= cass[1- exp(-T(x,y,z,t)/Td)] is the heat capacitance (in the most interest case, when current temperature is approximately equal or larger, than Debye temperature Td, we have possibility to consider the following limiting case c (T)cass) [29];  is the heat conduction coefficient, which depends on properties of materials and temperature (dependence on temperature of the heat conduction coef- ficient could be approximated by the function (x,y,z,T)=ass(x,y,z)[1+ (Td/T(x,y,z,t)) ] in the most interesting interval of temperature [29]); p(x,y,z,t) is the volumetric density of power of heating; (x,y,z,T)=(x, y,z,T)/c (T) is the thermal diffusivity. First of all we calculate spatio-temporal distribution of temperature. To make the calculation we used recently considered approach [17,20,30]. Framework the approach we transform approxima- tion of thermal diffusivity to the following form: ass(x,y,z)=ass(x,y,z)/cass=0ass[1+T gT(x,y, z)]. Farther we determine solution of the Eq.(8) as the following power series [17,20,30]
  • 5. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 5            0 0 , , , , , , i j ij j i T t z y x T t z y x T   . (10) Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for initial- order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i1, j1). The equations are presented in the Appendix. Substitution of the series (10) into boundary and initial conditions (9) gives us possibility to obtain boundary and initial conditions for all functions Tij(x,y,z,t) (i0, j0). The solutions are presented in the Appendix. Solutions of the equations for the functions Tij(x,y,z,t) (i0, j 0) have been calculated by standard approaches [31,32] frame- work the second-order approximation on parameters  and . The solutions are presented in the Appendix. To make qualitative analysis and to obtain some quantitative results the second-order approximation is usually enough good approximation (see, for example, [17,20,30]). Analytical results give us possibility to obtain and demonstrably. All analytical results have been checked by comparison with numerical one. To determine spatio-temporal distributions of concentrations of point defects we used recently introduces approach [17,20,30]. Framework the approach we transform approximation of their diffusion coefficients to the following form D(x,y,z,T)=D0[1+g(x,y,z,T)], where D0 are the average values of the diffusion coefficients, 0<1, |g(x,y,z,T)|1, =I,V. Analogous transfor- mation of approximations of parameters of recombination of point defects and generation their complexes has been used: kI,V(x,y,z,T)=k0I,V[1+I,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+I,I gI,I(x,y,z, T)] and kV,V(x,y,z,T) = k0V,V [1+V,V gV,V(x,y,z,T)], where k01,2 are the appropriate average values, 0I,V< 1, 0I,I < 1, 0V,V< 1, | gI,V(x,y,z,T)|1, | gI,I(x,y,z,T)|1, |gV,V(x,y,z,T)|1. Let us introduce following dimensionless variables:     * , , , , , , ~ I t z y x I t z y x I  ,     * , , , , , , ~ V t z y x V t z y x V  , = x/Lx, = y/Ly, = z/Lz, 2 0 0 L t D D V I   , V I V I D D k L 0 0 , 0 2   , V I D D k L 0 0 , 0 2      . The introduction leads to following transformation of Eqs.(4) and conditions (5)                         V I I I I V I I D D D I T g D D D I 0 0 0 0 0 0 , , , ~ , , , 1 , , , ~                                                                         , , , ~ , , , 1 , , , ~ , , , 1 0 0 0 I T g D D D I T g I I V I I I I               T g I V I T g I I I I I V I V I , , , 1 , , , ~ , , , ~ , , , ~ , , , 1 , , 2 , ,                           (11)                         V I V V V V I V D D D V T g D D D V 0 0 0 0 0 0 , , , ~ , , , 1 , , , ~                                                     V I V V V V V D D D V T g V T g 0 0 0 , , , ~ , , , 1 , , , ~ , , , 1                                   T g V V I T g V V V V V V I V I , , , 1 , , , ~ , , , ~ , , , ~ , , , 1 , , 2 , ,                             0 , , , ~ 0            ,   0 , , , ~ 1            ,   0 , , , ~ 0            ,   0 , , , ~ 1            ,   0 , , , ~ 0            ,   0 , , , ~ 1            ,     * , , , , , , ~            f  . (12)
  • 6. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 6 We solved the Eqs.(11) with conditions (12) by using the approach, considered in [17,20,30]. Framework the approach we determine solutions of the equations as the following power series               0 0 0 , , , ~ , , , ~ i j k ijk k j i               . (13) Substitution of the series (13) into Eqs.(11) and conditions (12) gives us possibility to obtain equations for initial-order approximations of concentrations of point radiation defects        , , , ~ 000 and corrections for them        , , , ~ ijk , i1, j1, k1. The equations and condi- tions for them are presented in the Appendix. The equations with account the conditions have been solved by standard approaches (see, for example, Fourier approach [31,32]). The solutions are presented in the Appendix. Farther we calculate spathio-temporal distributions of concentrations of complexes of radiation defects. To determine these distributions we transform approximations of diffusion coefficients to the following form: D(x,y,z,T)=D0[1+g(x,y,z,T)], where D0 are the average values of the coefficients. In this situation the Eqs. (6) have been transform to the following form                         I I I I D x t z y x T z y x g x D t t z y x I I 0 0 , , , , , , 1 , , ,                                           z t z y x T z y x g z y t z y x T z y x g y I I I I I I           , , , , , , 1 , , , , , , 1         t z y x I T z y x k t z y x I T z y x k D I I I I , , , , , , , , , , , , 2 , 0                             V V V V D x t z y x T z y x g x D t t z y x V V 0 0 0 0 , , , , , , 1 , , ,                                           z t z y x T z y x g z y t z y x T z y x g y V V V V V V           , , , , , , 1 , , , , , , 1         t z y x V T z y x k t z y x V T z y x k D V V V V , , , , , , , , , , , , 2 , 0     . Let us determine solutions of the above equations in the following form            0 , , , , , , i i i t z y x t z y x     . (14) Substitution of the series (14) into Eqs.(6) and appropriate boundary and initial conditions gives us possibility to obtain equations for all functions i(x,y,z,t), i 1, boundary and initial condi- tions for them. The equations and conditions are presented in the Appendix. The equation have been solved by standard approaches [31,32]. The obtained solutions are presented in the Appen- dix. To calculate spatio-temporal distribution of concentration of dopant we transform approximation of dopant diffusion coefficient in the following form: DL(x,y,z,T)=D0L[1+LgL(x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0L<1, |gL(x,y,z,T)|1. Farther we determine solution of Eq.(1) as the following power series            0 1 , , , , , , i j ij j i L t z y x C t z y x C   . (15)
  • 7. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 7 Substitution of the series in the Eq.(1) and condition (2) gives us possibility to obtain equation for initial-order approximation of dopant concentration C00(x,y,z,t), equations for corrections for them Cij(x,y,z,t) (i 1, j 1), boundary and initial conditions for all functions Cij(x,y,z,t) (i0, j 0). The equations and conditions are presented in the Appendix. The equations have been solved by standard approaches (see, for example, [31,32]). The solutions are presented in the Appendix. Analysis of spatiotemporal distributions of concentrations of dopant and radiation defects and temperature have been done analytically by using the second-order approximations on all consid- ered parameters. The approximations are usually enough good approximations to make qualita- tive analysis and to obtain some quantitative results (see, for example, [17,20,30]). Analytical results give us possibility to obtain and demonstrably. All analytical results have been checked by comparison with numerical one. 3. Discussion In this section we analyzed dynamic of redistribution of dopant and radiation defects in the con- sidered heterostructure during their annealing by using calculated in the previous section rela- tions. Typical distributions of concentrations of dopant in heterostructures are presented on Figs. 2 and 3 for diffusion and ion types of doping, respectively. These distributions have been calcu- lated for the case, when value of dopant diffusion coefficient in doped area is larger, than in near- est areas. The figures show, that inhomogeneity of heterostructure gives us possibility to increase sharpness of p-n-junctions. At the same time one can find increasing of homogeneity of dopant distribution in doped part of epitaxial layer. Increasing of sharpness of p-n-junctions gives us pos- sibility to decrease their switching time. Increasing of homogeneity of dopant distribution in doped are gives us possibility to decrease local overheat of doped material during functioning of p-n-junction or decreasing of dimensions of the p-n-junction for fixed maximal value of local overheat. On the other hand inhomogeneity of doping of base of transistor leads to generation an electric field in the base. The electric field gives us possibility to accelerate transport of charge carriers. The acceleration gives us possibility to increase performance of the transistor. Fig.2. Distributions of concentration of infused dopant in heterostructure from Fig. 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu- sion coefficient in substrate
  • 8. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 8 x 0.0 0.5 1.0 1.5 2.0 C(x,  ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Distributions of concentration of implanted dopant in heterostructure from Fig. 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time =0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time =0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu- sion coefficient in substrate To help in manufacturing of the drift transistors it could be used microwave annealing. Using this type of annealing give us possibility to generate inhomogenous distribution of temperature. The inhomogeneity gives us possibility to form more inhomogenous distribution of concentration of dopant due to Arrhenius law [33]. Using microwave annealing leads to necessity to choose fre- quency of electro-magnetic irradiation so, that thickness of scin-layer should be larger, than thickness of external epitaxial layer, and smaller, than sum of thicknesses of external and average epitaxial layers. It should be noted, that increasing of annealing time leads to increasing of homogeneity of distri- bution of concentration of dopant. In this situation the distribution became too large. If annealing time is too small, dopant has not time to achieve nearest interface between materials of hetero- structure. In this situation distribution of concentration of dopant has not any changing. In this situation it is attracted an interest optimization of annealing. We consider the optimization of an- nealing framework recently introduced criterion [17-24,33]. Framework the criterion we approx- imate real distributions of concentrations of dopants by step-wise function  (x,y,z). Farther we minimize the following mean-squared error to optimize annealing time             x y z L L L z y x x d y d z d z y x z y x C L L L U 0 0 0 , , , , , 1  . (16)
  • 9. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 9 0.0 0.1 0.2 0.3 0.4 0.5 a/L, , ,  0.0 0.1 0.2 0.3 0.4 0.5  D 0 L -2 3 2 4 1 Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been ob- tained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimen- sionless optimal annealing time on the relation a/L and ==0 for equal to each other values of dopant dif- fusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal an- nealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  =0. Curve 4 is the dependence of di- mensionless optimal annealing time on value of parameter  for a/L=1/2 and ==0 0.0 0.1 0.2 0.3 0.4 0.5 a/L, , ,  0.00 0.04 0.08 0.12  D 0 L -2 3 2 4 1 Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and  =  = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless op- timal annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 is the dependence of di- mensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 4 is the de- pendence of dimensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0 Dependences of optimal values of annealing time are presented on Figs. 4 and 5. Optimal values of annealing time of implanted dopant is smaller, than optimal values of annealing time of infused dopant. The difference existing due to necessity of annealing of radiation defects. During anneal- ing radiation defects one can find spreading of distribution of concentration of dopant. In the ideal
  • 10. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 10 case during annealing of radiation defects should achieves interface between materials of hetero- structure. If dopant has no time to achieve the interface, additional annealing of dopant attracted an interest. The Fig. 5 shows exactly dependences of time of additional annealing. 4. CONCLUSIONS In this paper we consider an approach to manufacture more compact elements of emitter-coupled logic. The approach based on manufacturing a heterostructure with required configuration, doping of required areas of the heterostructure by diffusion or ion implantation and optimization of an- nealing of dopant and/or radiation defects. ACKNOWLEDGEMENTS This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of Scientific School of Russia, the agreement of August 27, 2013 № 02.В.49.21.0003 be- tween The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov- gorod State University of Architecture and Civil Engineering. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001. [2] A. Polishscuk. Analog integrated circuits Anadigm: the whole range of analog electronics on a single chip. The first acquaintance. Modern Electronics. Issue 12. P. 8-11 (2004). [3] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2. P. 10-17 (2006). [4] A. Kerentsev, V. Lanin, Constructive-technological features of MOSFET-transistors. Power Electron- ics. Issue 1. P. 34 (2008). [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx-n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009). [7] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For- mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc- tors. Vol. 32 (9). P. 1029-1032 (1998). [8] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol. 43 (8). P. 1016-1020 (2009). [9] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [10] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013). [11] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the re- crys-tallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 89 (17). P. 172111-172114 (2006). [12] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9). P. 094901-094905 (2006). [13] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [14] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980). [15] A.G. Alexenko, I.I. Shagurin. Microcircuitry. Moscow: Radio and communication, 1990.
  • 11. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 11 [16] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). [17] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39. [18] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc- ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [19] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [20] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [21] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver- tical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [22] E.L. Pankratov, E.A. Bulaeva. Optimization of doping of heterostructure during manufacturing of p-i- n-diodes. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7-14 (2013). [23] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer- sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013). [24] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture a heterobipolar transistors in thin film structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1-2). P. 17-31 (2013). [25] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [26] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991). [27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. № 2. P. 289-388. [29] K.V. Shalimova. Fisics of semiconductors (Energoatomizdat, Moscow, 1985, in Russian). [30] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130 (2012). [31] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in Rus-sian). [32] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964). [33] E.L. Pankratov. Redistribution of dopant during microwave annealing of a multilayer structure for production p-n-junction. J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008). Appendix Equations for initial-order approximation of temperature T00(x,y,z,t), corrections for the approxi- mation Tij(x,y,z,t) (i0, j0), boundary and initial conditions for them have been obtain by substi- tution of the series (10) into Eqs.(8) and conditions (9) and equating of coefficients at equal pow- ers of parameters, which have been used in the series (10). The equations and conditions could be written as           ass ass t z y x p z t z y x T y t z y x T x t z y x T t t z y x T   , , , , , , , , , , , , , , , 2 00 2 2 00 2 2 00 2 0 00                                             2 0 2 2 0 2 2 0 2 0 0 , , , , , , , , , , , , z t z y x T y t z y x T x t z y x T t t z y x T i i i ass i                                        z t z y x T z g z y t z y x T x g x t z y x T z g i T i T i T ass , , , , , , , , , 10 2 10 2 2 10 2 0  , i1
  • 12. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 12                              t z y x T T z t z y x T y t z y x T x t z y x T t t z y x T d ass ass , , , , , , , , , , , , , , , 00 0 2 01 2 2 01 2 2 01 2 0 01                                             2 00 00 0 2 00 2 2 00 2 2 00 2 , , , , , , , , , , , , , , , x t z y x T t z y x T T z t z y x T y t z y x T x t z y x T d ass                               2 00 2 00 , , , , , , z t z y x T y t z y x T                              t z y x T T z t z y x T y t z y x T x t z y x T t t z y x T d ass ass , , , , , , , , , , , , , , , 00 0 2 02 2 2 02 2 2 02 2 0 02                                      x t z y x T t z y x T T z t z y x T y t z y x T x t z y x T d ass , , , , , , , , , , , , , , , 00 1 00 0 2 01 2 2 01 2 2 01 2                               z t z y x T z t z y x T y t z y x T y t z y x T x t z y x T , , , , , , , , , , , , , , , 01 00 01 00 01                         2 00 2 00 01 0 2 11 2 0 11 , , , , , , , , , , , , , , , , , , x t z y x T T z y x g t z y x T t z y x T x t z y x T t t z y x T T ass ass                                     2 01 2 00 2 00 2 , , , , , , , , , , , , , , , x t z y x T z t z y x T T z y x g z y t z y x T T z y x g T T                                T z y x g y t z y x T T z y x g x t z y x T T z y x g x T T T , , , 1 , , , , , , 1 , , , , , , 2 01 2 01                                 2 00 2 1 00 10 2 00 2 1 00 10 0 2 01 2 , , , , , , , , , , , , , , , , , , , , , y t z y x T t z y x T t z y x T x t z y x T t z y x T t z y x T z t z y x T ass                                 2 10 2 2 10 2 00 0 0 2 00 2 1 00 10 , , , , , , , , , , , , , , , , , , y t z y x T x t z y x T t z y x T T T z t z y x T t z y x T t z y x T d ass d ass                               T z y x g x t z y x T T z y x g t z y x T T z t z y x T T T d ass , , , , , , , , , , , , , , , 2 10 2 00 0 2 10 2                                        x t z y x T x t z y x T z t z y x T T z y x g z y t z y x T T , , , , , , , , , , , , , , , 00 10 00 2 10 2                          t z y x T T z t z y x T z t z y x T y t z y x T y t z y x T d ass , , , , , , , , , , , , , , , 1 00 0 00 10 00 10                                                     2 00 2 00 2 00 1 00 0 , , , , , , , , , , , , , , , z t z y x T y t z y x T x t z y x T t z y x T T z y x g T T d ass     . Conditions for the functions Tij(x,y,z,t) (i0, j0)   0 , , , 0     x ij x t z y x T ,   0 , , ,     x L x ij x t z y x T ,   0 , , , 0     y ij y t z y x T ,   0 , , ,     y L x ij y t z y x T ,   0 , , , 0     z ij z t z y x T ,   0 , , ,     z L x ij z t z y x T , T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i1, j1.
  • 13. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 13 Solutions of the above equations with account boundary and initial conditions for them have been calculated by using standard Fourier approach [31,32]. Using the approach leads to the following result                    1 0 0 0 00 2 , , 1 , , , n nT n n n z y x L L L T z y x t e z c y c x c L L L u d v d w d w v u f L L L t z y x T x y z                     t L L L ass z y x L L L T n n n x y z x y z d u d v d w d w v u p L L L u d v d w d w v u f w c v c u c 0 0 0 0 0 0 0 , , , 1 , ,                              1 0 0 0 0 , , , 2 n t L L L ass n n n nT nT n n n z y x x y z d u d v d w d w v u p w c v c u c e t e z c y c x c L L L     , where cn()=cos(n/L),                       2 2 2 0 2 2 1 1 1 exp z y x ass nT L L L t n t e   ;                           1 0 0 0 0 2 0 0 , , , 2 , , , n t L L L T n n nT nT n n n z y x ass i x y z T w v u g v c u s e t e z c y c x c n L L L t z y x T                            1 0 2 0 10 2 , , , n t nT nT n n n z y x ass i n e t e z c y c x c n L L L d u d v d w d u w v u T w c                                1 2 0 0 0 0 10 2 , , , , , , n n n z y x ass L L L i n T n n y c x c n L L L d u d v d w d v w v u T w c T w v u g v s u c x y z                              t L L L i T n n n nT nT n x y z d u d v d w d w w v u T T w v u g w s v c u c e t e z c 0 0 0 0 10 , , , , , ,    , i1, where sn()=sin(n/L);                           1 0 0 0 0 2 0 01 2 , , , n t L L L n n n nT nT n n n z y x d ass x y z w c v c u s e t e z c y c x c n L L L T t z y x T                           1 0 2 0 00 2 00 2 2 , , , , , , n t nT nT n n n z y x d ass e t e z c y c x c n L L L T w v u T d u d v d w d u w v u T                                  1 2 0 0 0 0 00 2 00 2 2 , , , , , , n n n n z y x d ass L L L n n n z c y c x c n L L L T w v u T d u d v d w d v w v u T w c v s u c x y z                                   1 0 0 0 0 0 00 2 00 2 2 , , , , , , n n z y x ass t L L L n n n nT nT x c L L L w v u T d u d v d w d u w v u T w s v c u c e t e x y z                                          t L L L n n n nT nT n n d x y z w v u T d u d v d w d u w v u T w c v c u c e t e z c y c T 0 0 0 0 1 00 2 00 , , , , , ,                                          1 0 0 0 0 2 00 0 , , , 2 n t L L L n n n nT nT n n n z y x d ass x y z v w v u T w c v c u c e t e z c y c x c L L L T                                1 0 0 0 0 1 00 2 , , , n t L L n n nT nT n n n z y x ass d x y v c u c e t e z c y c x c L L L T w v u T d u d v d w d                         z L n w v u T d u d v d w d w w v u T w c 0 1 00 2 00 , , , , , ,     ;
  • 14. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 14                           1 0 0 0 0 2 0 02 2 , , , n t L L L n n n nT nT n n n z y x d ass x y z w c v c u s e t e z c y c x c n L L L T t z y x T                              1 0 0 2 0 00 2 01 2 2 , , , , , , n t L n nT nT n n n z y x d ass x u c e t e z c y c x c L L L T w v u T d u d v d w d u w v u T                                1 2 0 0 0 00 2 01 2 2 , , , , , , n nT n n z y x d ass L L n n t e y c x c n L L L T w v u T d u d v d w d v w v u T w c v s n y z                                z y x ass d t L L L n n n nT n L L L T w v u T d u d v d w d w w v u T w s v c u c e z c x y z 2 0 0 0 0 0 00 2 01 2 2 , , , , , ,                                       1 0 0 0 0 01 00 , , , , , , n t L L L n n nT nT n n n x y z u w v u T u w v u T v c u c e t e z c y c x c                             1 0 0 2 0 1 00 2 , , , n t L n nT nT n n n z y x ass d n x u c e t e z c y c x c L L L T w v u T d u d v d w d w c                                1 2 0 0 0 1 00 01 00 2 , , , , , , , , , n n z y x ass d L L n n x c L L L T w v u T d u d v d w d v w v u T v w v u T w c v c y z                                        t L L L n n n nT nT n n x y z w v u T d u d v d w d w w v u T w w v u T w c v c u c e t e z c y c 0 0 0 0 1 00 01 00 , , , , , , , , ,       ;                                   1 0 0 0 0 2 00 2 0 11 , , , 2 , , , n t L L L n n n nT nT n n n z y x ass x y z w w v u T w c v c u c e t e z c y c x c L L L t z y x T                                            d u d v d w d w v u T w v u T w w v u T w g w v w v u T T w v u g T w v u g T T T , , , , , , , , , , , , , , , , , , 00 01 00 2 00 2                                      1 0 0 0 0 2 01 2 2 01 2 0 , , , , , , 2 n t L L L n n n nT nT n n n z y x ass x y z u w v u T u w v u T w c v c u c e t e z c y c x c L L L                                             d u d v d w d w w v u T T w v u g w v w v u T T w v u g T w v u g T T T , , , , , , , , , , , , 1 , , , 1 01 2 01 2                                      1 0 0 0 0 2 00 2 1 00 10 0 , , , , , , , , , 2 n t L L L n n nT nT n n n z y x d ass x y z u w v u T w v u T w v u T v c u c e t e z c y c x c L L L T                                   z y x d ass n L L L T d u d v d w d w c w w v u T w v u T w v u T v w v u T w v u T w v u T            0 2 00 2 1 00 10 2 00 2 1 00 10 2 , , , , , , , , , , , , , , , , , ,                                        1 0 0 0 0 2 10 2 2 10 2 2 10 2 , , , , , , , , , n t L L L n n n nT nT x y z w w v u T v w v u T u w v u T w c v c u c e t e                                   1 0 0 0 0 00 2 2 , , , n t L L n n nT nT n n n z y x d ass n n n x y v c u c e t e z c y c x c L L L T z c y c x c w v u T d u d v d w d                                           z L T T n v w v u T w w v u T T w v u g w u w v u T T w v u g w c 0 2 00 2 00 2 00 2 , , , , , , , , , , , , , , ,                               1 0 0 0 0 00 2 , , , , , , n t L L n n nT nT n n n z y x d ass T x y v c u c e t e z c y c x c L L L T w v u T d u d v d w d T w v u g       
  • 15. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 15                               z L n w w v u T v w v u T v w v u T u w v u T u w v u T w c 0 10 00 10 00 10 , , , , , , , , , , , , , , ,                                       1 0 0 0 0 1 00 00 2 , , , , , , n t L L n n nT nT n n n z y x d ass x y v c u c e t e z c y c x c L L L T w v u T d u d v d w d w w v u T                                                          z L n w v u T d u d v d w d w w v u T v w v u T u w v u T w c 0 1 00 2 00 2 00 2 00 , , , , , , , , , , , ,       . Equations for initial-order approximation of concentrations of point radiation defects       , , , ~ 000 I and       , , , ~ 000 V , corrections for the approximation       , , , ~ ijk I and       , , , ~ ijk V (i1, j1, k1), boundary and initial conditions for them have been obtain by sub- stitution of the series (13) into Eqs.(4) and conditions (5) and equating of coefficients at equal powers of parameters, which have been used in the series (13). The equations and conditions could be written as         2 000 2 0 0 2 000 2 0 0 2 000 2 0 0 000 , , , ~ , , , ~ , , , ~ , , , ~                                I D D I D D I D D I V I V I V I         2 000 2 0 0 2 000 2 0 0 2 000 2 0 0 000 , , , ~ , , , ~ , , , ~ , , , ~                                V D D V D D V D D V I V I V I V ;                                            , , , ~ , , , , , , ~ , ~ 100 0 0 2 00 2 0 0 00 i I V I i V I i I T g D D I D D I                                     , , , ~ , , , , , , ~ 100 0 0 2 00 2 0 0 i I V I i V I I T g D D I D D                                    , , , ~ , , , , , , ~ 100 0 0 2 00 2 0 0 i I V I i V I I T g D D I D D                                            , , , ~ , , , , , , ~ , ~ 100 0 0 2 00 2 0 0 00 i V I V i I V i V T g D D V D D V                                     , , , ~ , , , , , , ~ 100 0 0 2 00 2 0 0 i V I V i I V V T g D D V D D                                    , , , ~ , , , , , , ~ 100 0 0 2 00 2 0 0 i V I V i I V V T g D D V D D , i1;               2 010 2 0 0 2 010 2 0 0 010 , , , ~ , , , ~ , , , ~                I D D I D D I V I V I                            , , , ~ , , , ~ , , , 1 , , , ~ 000 000 , , 2 010 2 0 0 V I T g I D D V I V I V I                    2 010 2 0 0 2 010 2 0 0 010 , , , ~ , , , ~ , , , ~                V D D V D D V I V I V                            , , , ~ , , , ~ , , , 1 , , , ~ 000 000 , , 2 010 2 0 0 V I T g V D D V I V I I V      ;                    2 020 2 0 0 2 020 2 0 0 2 020 2 0 0 020 , , , ~ , , , ~ , , , ~ , , , ~                     I D D I D D I D D I V I V I V I
  • 16. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 16                                   , , , ~ , , , ~ , , , ~ , , , ~ , , , 1 010 000 000 010 , , V I V I T g V I V I                       2 020 2 0 0 2 020 2 0 0 2 020 2 0 0 020 , , , ~ , , , ~ , , , ~ , , , ~                     V D D V D D V D D V V I V I V I                                   , , , ~ , , , ~ , , , ~ , , , ~ , , , 1 010 000 000 010 , , V I V I T g V I V I    ;               2 001 2 0 0 2 001 2 0 0 001 , , , ~ , , , ~ , , , ~                I D D I D D I V I V I                      , , , ~ , , , 1 , , , ~ 2 000 , , 2 001 2 0 0 I T g I D D I I I I V I                    2 001 2 0 0 2 001 2 0 0 001 , , , ~ , , , ~ , , , ~                V D D V D D V I V I V                      , , , ~ , , , 1 , , , ~ 2 000 , , 2 001 2 0 0 V T g V D D I I I I I V      ;                           V I I V I V I D D I T g D D I D D I 0 0 010 0 0 2 110 2 0 0 110 , , , ~ , , , , , , ~ , , , ~                                             2 110 2 0 0 010 0 0 2 110 2 , , , ~ , , , ~ , , , , , , ~                    I D D I T g D D I V I I V I                      T g I T g D D I I I I I V I , , , 1 , , , ~ , , , , , 010 0 0                                        , , , ~ , , , ~ , , , ~ , , , ~ 100 000 000 100 V I V I                             I V V I V I V D D V T g D D V D D V 0 0 010 0 0 2 110 2 0 0 110 , , , ~ , , , , , , ~ , , , ~                                             2 110 2 0 0 010 0 0 2 110 2 , , , ~ , , , ~ , , , , , , ~                    V D D V T g D D V I V V I V                      T g V T g D D V V V V V I V , , , 1 , , , ~ , , , , , 010 0 0                                        , , , ~ , , , ~ , , , ~ , , , ~ 100 000 000 100 I V I V   ;                    2 002 2 0 0 2 002 2 0 0 2 002 2 0 0 002 , , , ~ , , , ~ , , , ~ , , , ~                     I D D I D D I D D I V I V I V I                     , , , ~ , , , ~ , , , 1 000 001 , , I I T g I I I I                      2 002 2 0 0 2 002 2 0 0 2 002 2 0 0 002 , , , ~ , , , ~ , , , ~ , , , ~                     V D D V D D V D D V I V I V I V                     , , , ~ , , , ~ , , , 1 000 001 , , V V Е g V V V V   ;                           V I V I I V I D D D D I T g I D D I 0 0 0 0 001 2 101 2 0 0 101 , , , ~ , , , , , , ~ , , , ~                                             2 101 2 0 0 001 0 0 2 101 2 , , , ~ , , , ~ , , , , , , ~                    I D D I T g D D I V I I V I
  • 17. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 17                                  , , , ~ , , , ~ , , , 1 , , , ~ , , , 000 100 001 0 0 V I T g I T g D D I I I V I                                        I V I V V I V D D D D V T g V D D V 0 0 0 0 001 2 101 2 0 0 101 , , , ~ , , , , , , ~ , , , ~                                             2 101 2 0 0 001 0 0 2 101 2 , , , ~ , , , ~ , , , , , , ~                    V D D V T g D D V I V V I V                                  , , , ~ , , , ~ , , , 1 , , , ~ , , , 100 000 001 0 0 V I T g V T g D D V V V I V              ;                    2 011 2 0 0 2 011 2 0 0 2 011 2 0 0 011 , , , ~ , , , ~ , , , ~ , , , ~                     I D D I D D I D D I V I V I V I                       , , , ~ , , , ~ , , , 1 010 000 , , I I T g I I I I                     , , , ~ , , , ~ , , , 1 000 001 , , V I T g V I V I                      2 011 2 0 0 2 011 2 0 0 2 011 2 0 0 011 , , , ~ , , , ~ , , , ~ , , , ~                     V D D V D D V D D V I V I V I V                       , , , ~ , , , ~ , , , 1 010 000 , , V V T g V V V V                     , , , ~ , , , ~ , , , 1 001 000 , , V I t g V I V I   ;   0 , , , ~ 0     x ijk       ,   0 , , , ~ 1     x ijk       ,   0 , , , ~ 0           ijk ,   0 , , , ~ 1           ijk ,   0 , , , ~ 0           ijk ,   0 , , , ~ 1           ijk (i0, j0, k0);     * 000 , , 0 , , , ~          f  ,   0 0 , , , ~     ijk (i0, j0, k0). Solutions of the above equations with account boundary and initial conditions for them have been calculated by using standard Fourier approach [31,32]. Using the approach leads to the following result               1 000 2 1 , , , ~ n n n e c c c F L L            , where             1 0 1 0 1 0 * , , cos cos cos 1 u d v d w d w v u f w n v n u n F n n       ,     I V nI D D n e 0 0 2 2 exp      ,     V I nV D D n e 0 0 2 2 exp      , cn()=cos(n);                            1 0 1 0 1 0 1 0 0 0 00 , , , 2 , , , ~ n I n n nI nI n V I i T w v u g v c u s e e c c c D D I                                    1 0 0 0 100 2 , , , ~ n nI nI n V I i n e e c c c n D D d u d v d w d u w v u I w c n                                 1 0 0 1 0 1 0 1 0 100 2 , , , ~ , , , n n V I i I n n n c n D D d u d v d w d v w v u I T w v u g w c v s u c                                       0 1 0 1 0 1 0 100 , , , ~ , , , d u d v d w d w w v u I T w v u g w s v c u c e e c c i I n n n nI nI
  • 18. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 18                             1 0 1 0 1 0 1 0 0 0 00 , , , 2 , , , ~ n V n n nI nV n I V i T w v u g v c u s e e c c c n D D V                                        1 0 1 0 0 0 100 2 , ~ n n nI nV n I V i n u c e e c c c n D D d u d v d w d u u V w c n                                    1 0 0 1 0 1 0 100 2 , ~ , , , n nV n I V i V n n e c c c D D d u d v d w d v u V T w v u g w c v s                                 0 1 0 1 0 1 0 100 , ~ , , , d u d v d w d w u V T w v u g w s v c u c e n i V n n n nI , i1, where sn()=sin(n);                             1 0 1 0 1 0 1 0 010 2 , , , ~ n n n n n n n n n w c v c u c e e c c c                          d u d v d w d w v u V w v u I T w v u g V I V I , , , ~ , , , ~ , , , 1 000 000 , ,   ;                           1 0 1 0 1 0 1 0 , , 0 0 020 , , , 1 2 , , , ~ n V I V I n n n n n V I T w v u g e e c c c D D                                    d u d v d w d w v u V w v u I w v u V w v u I w c v c u c n n n , , , ~ , , , ~ , , , ~ , , , ~ 010 000 000 010   ;                            1 0 1 0 1 0 1 0 001 2 , , , ~ n n n n n n n n n w c v c u c e e c c c                            d u d v d w d w v u T w v u g , , , ~ , , , 1 2 000 , ,   ;                             1 0 1 0 1 0 1 0 002 2 , , , ~ n n n n n n n n n w c v c u c e e c c c                                d u d v d w d w v u w v u T w v u g , , , ~ , , , ~ , , , 1 000 001 , ,   ;                            1 0 1 0 1 0 1 0 0 0 110 2 , , , ~ n n n n nI nI n n n V I u c v c u s e e c c c n D D I                                1 0 0 100 2 , , , ~ , , , n nI n n n V I i I e c c c n D D d u d v d w d u w v u I T w v u g                               V I i I n n n nI D D d u d v d w d v w v u I T w v u g u c v s u c e 0 0 0 1 0 1 0 1 0 100 2 , , , ~ , , ,                                 1 0 1 0 1 0 1 0 100 , , , ~ , , , n i I n n n nI nI d u d v d w d w w v u I T w v u g u s v c u c e e n                                       1 0 1 0 1 0 1 0 100 , , , ~ 2 n n n nI n n nI n n n n w v u I v c u c e c c e c c c c                            d u d v d w d v c T w v u g w v u V w v u I w v u V n V I V I , , , 1 , , , ~ , , , ~ , , , ~ , , 100 000 000                               1 0 1 0 1 0 1 0 0 0 110 2 , , , ~ n n n n nV nV n n n I V u c v c u s e e c c c n D D V                                1 0 0 100 2 , , , ~ , , , n nV n n n I V i V e c c c n D D d u d v d w d u w v u V T w v u g                               I V i V n n n nV D D d u d v d w d v w v u V T w v u g u c v s u c e 0 0 0 1 0 1 0 1 0 100 2 , , , ~ , , ,     
  • 19. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 19                            1 0 1 0 1 0 1 0 100 , , , ~ , , , n i V n n n nV nV d u d v d w d w w v u V T w v u g u s v c u c e e n                                       1 0 1 0 1 0 1 0 100 , , , ~ 2 n n n nV nI n n n n n n w v u I v c u c e e c c c c c c                            d u d v d w d v c T w v u g w v u V w v u I w v u V n V I V I , , , 1 , , , ~ , , , ~ , , , ~ , , 100 000 000    ;                            1 0 1 0 1 0 1 0 0 0 101 2 , , , ~ n n n n nI nI n n n V I w c v c u s e e c c c n D D I                              1 0 0 001 2 , , , ~ , , , n nI n n n V I I e c c c n D D d u d v d w d u w v u I T w v u g                              V I I n n n nI D D d u d v d w d v w v u I T w v u g w c v s u c e 0 0 0 1 0 1 0 1 0 001 2 , , , ~ , , ,                               1 0 1 0 1 0 1 0 001 , , , ~ , , , n I n n n nI nI d u d v d w d w w v u I T w v u g w s v c u c e e n                                  1 0 1 0 , , , , , 1 2 n V I V I nI nI n n n n n n T w v u g e e c c c c c c                    d u d v d w d w v u V w v u I u cn , , , ~ , , , ~ 000 100                             1 0 1 0 1 0 1 0 0 0 101 2 , , , ~ n n n n nV nV n n n I V w c v c u s e e c c c n D D V                              1 0 0 001 2 , , , ~ , , , n nV n n n I V V e c c c n D D d u d v d w d u w v u V T w v u g                              I V V n n n nV D D d u d v d w d v w v u V T w v u g w c v s u c e 0 0 0 1 0 1 0 1 0 001 2 , , , ~ , , ,                               1 0 1 0 1 0 1 0 001 , , , ~ , , , n V n n n nV nV d u d v d w d w w v u V T w v u g w s v c u c e e n                                     1 0 1 0 1 0 1 0 000 , , , ~ 2 n n n nV nV n n n n n n w v u I v c u c e e c c c c c c                      d u d v d w d w v u V T w v u g w c V I V I n , , , ~ , , , 1 100 , ,   ;                                   1 0 1 0 1 0 1 0 , , 011 , , , 1 2 , , , ~ n I I I I n n n nI nI n n n T w v u g w c v c u c e e c c c I                              d u d v d w d w v u V w v u I T w v u g w v u I w v u I V I V I , , , ~ , , , ~ , , , 1 , , , ~ , , , ~ 000 001 , , 010 000                                      1 0 1 0 1 0 1 0 , , 011 , , , 1 2 , , , ~ n V V V V n n n nV nV n n n T w v u g w c v c u c e e c c c V                              d u d v d w d w v u V w v u I T w v u g w v u V w v u V V I V I , , , ~ , , , ~ , , , 1 , , , ~ , , , ~ 001 000 , , 010 000    . Equations for initial-order approximation of concentrations of simplest complexes of radiation defects 0(x,y,z,t), corrections for the approximation i(x,y,z,t) (i1), boundary and initial con- ditions for them have been obtain by substitution of the series (14) into Eqs.(6) and conditions (7) and equating of coefficients at equal powers of parameters, which have been used in the series (14). The equations and conditions could be written as
  • 20. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 20                   2 0 2 0 2 0 2 0 2 0 2 0 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x I I I I I I I                 t z y x I T z y x k t z y x I T z y x k I I I , , , , , , , , , , , , 2 ,                     2 0 2 0 2 0 2 0 2 0 2 0 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x V V V V V V V                 t z y x V T z y x k t z y x V T z y x k V V V , , , , , , , , , , , , 2 ,   ;                    2 2 0 2 2 0 2 2 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x i I I i I I i I I i I                                        y t z y x T z y x g y D x t z y x T z y x g x D i I I I i I I I         , , , , , , , , , , , , 1 0 1 0                z t z y x T z y x g z D i I I I     , , , , , , 1 0                    2 2 0 2 2 0 2 2 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x i V V i V V i V V i V                                        y t z y x T z y x g y D x t z y x T z y x g x D i V V V i V V V         , , , , , , , , , , , , 1 0 1 0                z t z y x T z y x g z D i V V V     , , , , , , 1 0 , i1;   0 , , , 0      x i x t z y x  ,   0 , , ,      x L x i x t z y x  ,   0 , , , 0      y i y t z y x  ,   0 , , ,      y L y i y t z y x  ,   0 , , , 0      z i z t z y x  ,   0 , , ,      z L z i z t z y x  , i>0; 0(x,y,z,0)=f (x,y,z), i(x,y,z,0)=0, i>1. Solutions of the above equations with account boundary and initial conditions for them have been calculated by using standard Fourier approach [31,32]. Using the approach leads to the following result                             1 1 0 2 2 1 , , , n n n n n n n n n n z y x z y x z c y c x c n L t e z c y c x c F L L L L L L t z y x                                t L L L I I I n n n n x y z w v u I T w v u k w v u I T w v u k v c u c e t e 0 0 0 0 2 , , , , , , , , , , , , ,         d u d v d w d w cn  , where                         2 2 2 0 2 2 1 1 1 exp z y x n L L L t D n t e    ,              x y z L L L n n n w v u f v c u c F 0 0 0 , ,     u d v d w d w cn  , cn(x)=cos(nx/Lx);                                 1 0 0 0 0 2 , , , 2 , , , n t L L L n n n n n n n z y x i x y z T w v u g v c u s e t e z c y c x c n L L L t z y x                                    1 0 0 2 1 2 , , , n t L n n n n n n z y x i I n x u c e t e z c y c x c n L L L d u d v d w d u w v u w c         
  • 21. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 21                          1 2 0 0 1 2 , , , , , , n n n n z y x L L i I n n t e y c x c n L L L d u d v d w d v w v u T w v u g w c v s y z                                 t L L L i I n n n n n x y z d u d v d w d w w v u T w v u g w s v c u c e z c 0 0 0 0 1 , , , , , ,         , i1, where sn(x)=sin(nx/Lx). Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for the approximation Cij(x,y,z,t) (i1, j1), boundary and initial conditions for them have been obtain by substitution of the series (15) into Eqs.(1) and conditions (2) and equating of coefficients at equal powers of parameters, which have been used in the series (15). The equations and conditions could be written as         2 00 2 0 2 00 2 0 2 00 2 0 00 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C L L L            ;                    2 0 2 0 2 0 2 0 2 0 2 0 0 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C i L i L i L i                                  y t z y x C T z y x g y D x t z y x C T z y x g x D i L L i L L , , , , , , , , , , , , 10 0 10 0                 z t z y x C T z y x g z D i L L , , , , , , 10 0 , i1;                    2 01 2 0 2 01 2 0 2 01 2 0 01 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C L L L                                    y t z y x C T z y x P t z y x C y D x t z y x C T z y x P t z y x C x D L L , , , , , , , , , , , , , , , , , , 00 00 0 00 00 0                      z t z y x C T z y x P t z y x C z D L , , , , , , , , , 00 00 0   ;                    2 02 2 0 2 02 2 0 2 02 2 0 02 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C L L L                                   T z y x P t z y x C t z y x C y x t z y x C T z y x P t z y x C t z y x C x D L , , , , , , , , , , , , , , , , , , , , , 1 00 01 00 1 00 01 0                                   L L L D z t z y x C T z y x P t z y x C t z y x C z D D y t z y x C 0 00 1 00 01 0 0 00 , , , , , , , , , , , , , , ,                                      y t z y x C T z y x P t z y x C y D x t z y x C T z y x P t z y x C x L , , , , , , , , , , , , , , , , , , 01 00 0 01 00                      z t z y x C T z y x P t z y x C z D L , , , , , , , , , 01 00 0   ;                    2 11 2 0 2 11 2 0 2 11 2 0 11 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C L L L
  • 22. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 22                                   T z y x P t z y x C t z y x C y x t z y x C T z y x P t z y x C t z y x C x D L , , , , , , , , , , , , , , , , , , , , , 1 00 10 00 1 00 10 0                                   L L L D z t z y x C T z y x P t z y x C t z y x C z D D y t z y x C 0 00 1 00 10 0 0 00 , , , , , , , , , , , , , , ,                                      y t z y x C T z y x P t z y x C y D x t z y x C T z y x P t z y x C x L , , , , , , , , , , , , , , , , , , 10 00 0 10 00                                      x t z y x C T z y x g x D z t z y x C T z y x P t z y x C z D L L L , , , , , , , , , , , , , , , 01 0 10 00 0                                 z t z y x C T z y x g z D y t z y x C T z y x g y D L L L L , , , , , , , , , , , , 01 0 01 0 ;   0 , , , 0   x ij x t z y x C   ,   0 , , ,   x L x ij x t z y x C   ,   0 , , , 0   y ij y t z y x C   ,   0 , , ,   y L y ij y t z y x C   ,   0 , , , 0   z ij z t z y x C   ,   0 , , ,   z L z ij z t z y x C   , i0, j0; C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i1, j1. Solutions of the above equations with account boundary and initial conditions for them have been calculated by using standard Fourier approach [31,32]. Using the approach leads to the following result               1 00 2 1 , , , n nC n n n nC z y x z y x t e z c y c x c F L L L L L L t z y x C , where                         2 2 2 0 2 2 1 1 1 exp z y x n L L L t D n t e    ,            x y z L L L C n n nC w v u f v c u c F 0 0 0 , ,   u d v d w d w cn  ;                            1 0 0 0 0 2 0 , , , 2 , , , n t L L L L n n nC nC n n n nC z y x i x y z T w v u g v c u s e t e z c y c x c F n L L L t z y x C                              1 0 0 2 10 2 , , , n t L n nC nC n n n nC z y x i n x u c e t e z c y c x c F n L L L d u d v d w d u w v u C v c                              1 2 0 0 10 2 , , , , , , n n n n nC z y x L L i L n n z c y c x c F n L L L d u d v d w d v w v u C T w v u g v c v s y z                           t L L L i L n n n nC nC x y z d u d v d w d w w v u C T w v u g v s v c u c e t e 0 0 0 0 10 , , , , , ,    , i1;                               1 0 0 0 0 00 2 01 , , , , , , 2 , , , n t L L L n n nC nC n n n nC z y x x y z T w v u P w v u C v c u s e t e z c y c x c F n L L L t z y x C                                1 0 0 2 00 2 , , , n t L n nC nC n n n nC z y x n x u c e t e z c y c x c F n L L L d u d v d w d u w v u C w c                              1 2 0 0 00 00 2 , , , , , , , , , n n n n nC z y x L L n n z c y c x c F n L L L d u d v d w d v w v u C T w v u P w v u C w c v s y z      
  • 23. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 23                         t L L L n n n nC nC x y z d u d v d w d w w v u C T w v u P w v u C w s v c u c e t e 0 0 0 0 00 00 , , , , , , , , ,       ;                            1 0 0 0 0 2 02 2 , , , n t L L L n n n nC nC n n n nC z y x x y z w c v c u s e t e z c y c x c F n L L L t z y x C                       1 2 00 1 00 01 2 , , , , , , , , , , , , n n n nC z y x y c x c F L L L d u d v d w d u w v u C T w v u P w v u C w v u C                                   t L L L n n nC nC n x y z v w v u C T w v u P w v u C w v u C v s u c e t e z c n 0 0 0 0 00 1 00 01 , , , , , , , , , , , ,                               1 0 0 0 2 2 n t L L n n nC nC n n n nC z y x n x y v c u c e t e z c y c x c F n L L L d u d v d w d w c                         1 2 0 00 1 00 01 2 , , , , , , , , , , , , n n z y x L n x c n L L L d u d v d w d w w v u C T w v u P w v u C w v u C w s z                                      t L L L n n nC nC n n x y z u w v u C T w v u P w v u C w v u C v c u s e t e z c y c 0 0 0 0 00 1 00 01 , , , , , , , , , , , ,                             1 0 2 00 2 , , , n t nC nC n n n z y x n nC e t e z c y c x c n L L L d u d v d w d u w v u C w c F                           x y z L L L n n n nC d u d v d w d v w v u C T w v u P w v u C w v u C w c v s u c F 0 0 0 00 1 00 01 , , , , , , , , , , , ,                                 1 0 0 0 0 01 2 , , , 2 n t L L L n n n nC nC n n n nC z y x x y z w v u C w s v c u c e t e z c y c x c F n L L L                           1 2 00 1 00 2 , , , , , , , , , n nC n n n z y x t e z c y c x c n L L L d u d v d w d w w v u C T w v u P w v u C                               2 0 0 0 0 01 00 2 , , , , , , , , , y x t L L L n n n nC nC L L d u d v d w d u w v u C T w v u P w v u C w c v c u s e F x y z                                   1 0 0 0 0 01 00 , , , , , , , , , 1 n t L L L n n n nC nC z x y z d u d v d w d v w v u C T w v u P w v u C w c v s u c e t e L                                   1 0 0 0 2 2 n t L L n n nC nC n n n nC z y x n n n nC x y v c u c e t e z c y c x c F n L L L z c y c x c F n               z L n d u d v d w d w w v u C T w v u P w v u C w s 0 01 00 , , , , , , , , ,      ;                            1 0 0 0 0 2 11 2 , , , n t L L L n n n nC nC n n n nC z y x x y z w c v c u s e t e z c y c x c F n L L L t z y x C                     1 2 01 2 , , , , , , n nC n n n nC z y x L t e z c y c x c F n L L L d u d v d w d u w v u C T w v u g                          2 0 0 0 0 01 2 , , , , , , z y x t L L L L n n n nC L L L d u d v d w d v w v u C T w v u g w c v s u c e x y z                                  1 0 0 0 0 01 , , , , , , n t L L L L n n nC nC n n n nC x y z w w v u C T w v u g v c u c e t e z c y c x c F n  
  • 24. International Journal of Recent advances in Physics (IJRAP) Vol.4, No.2, May 2015 24                         1 0 0 0 2 2 n t L L n n nC nC n n n nC z y x n x y v c u s e t e z c y c x c F n L L L d u d v d w d w s                         1 2 0 10 00 2 , , , , , , , , , n n n n nC z y x L n z c y c x c F n L L L d u d v d w d u w v u C T w v u P w v u C w c z                                 x t L L L n n n nC nC L d u d v d w d v w v u C T w v u P w v u C w c v s u c e t e x y z 2 , , , , , , , , , 0 0 0 0 10 00                                     1 0 0 0 0 10 00 , , , , , , , , , n t L L L n n nC nC n n n nC x y z w w v u C T w v u P w v u C v c u c e t e z c y c x c F n                           1 0 0 2 2 2 n t L n nC nC n n n nC z y x z y n x u s e t e z c y c x c F n L L L L L d u d v d w d w s                         z y x L L n n L L L d u d v d w d u w v u C T w v u P w v u C w v u C w c v c y z 2 0 0 00 1 00 10 2 , , , , , , , , , , , ,                                         1 0 0 0 0 00 1 00 , , , , , , , , , n t L L L n n nC nC n n n x y z v w v u C T w v u P w v u C v s u c e t e z c y c x c n                      1 2 10 2 , , , n nC n n n nC z y x nC n t e z c y c x c F n L L L F d u d v d w d w v u C w c                             t L L L n n n nC x y z d u d v d w d w w v u C T w v u P w v u C w v u C w s v c u c e 0 0 0 0 00 1 00 10 , , , , , , , , , , , ,        . Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 105 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2). She has 52 published papers in area of her researches.