SlideShare a Scribd company logo
1 of 10
Download to read offline
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
1 | P a g e
A Pipelined Fused Processing Unit for DSP Applications
Vinay Reddy N
PG student
Dept of ECE, PSG College of Technology, Coimbatore,
Hema Chitra S
Assistant professor
Dept of ECE, PSG College of Technology, Coimbatore,
Abstract
This paper designs a processing element for FFT processor capable of operating on 32-bit
double precision floating point numbers. Pipelining is performed on the computational
elements of the DSP processor to enhance the throughput. The performance of the Processing
unit is increased by using the concept of fused architecture on the sub modules – the dot
product unit and the add sub unit. Pipelining increases the speed of the CE of the processor
while fused operations claim area optimization. The DSP applications involve FFT
Processors that make use of the butterfly operations consisting of multiplications, additions,
and subtractions of complex valued data (data is split into real part and the imaginary part).
The radix-2 and radix-4 butterflies are designed using fused architecture. The fused FFT
butterflies are to be 20 percent speedier and 30 percent smaller in area compared with the
conventional method. The processing unit covers almost all the computations necessary for
the processor.
INTRODUCTION
Most of the real time fields like medical fields involving biomedical signal values,
communication fields involving transmission and reception of real valued data etc are
floating point numbers. These values cannot be neglected, instead should be accurately
recorded and processed. Floating point arithmetic serves to give a good dynamic range,
freeing special purpose processor designers from the scaling and overflow/underflow
concerns that arise with fixed-point arithmetic. Use of the IEEE-754 standard 32-bit floating-
point format [1] facilitates the use of fast Fourier transform (FFT) processors as coprocessors
in collaboration with general purpose processors. This paper is concerned with the design of a
Processing unit that can compute FFT values necessary in almost all the digital signal
processing applications. Two fused floating-point primitive operations were developed
recently to reduce the delay and area of FFT computation units. The first primitive fused
operation is a fused floating-point dot product unit (Fused DP). The Fused DP unit is an
extension of the fused multiply-add (FMA) unit which was developed initially for the IBM
RS/6000 processor and was recently added to IEEE Std-754 [1].
The FMA unit reduces the latency of a multiplication followed by an addition leading
to the enhancement in the throughput. Also, a single FMA can be used to replace the floating-
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
2 | P a g e
point adder and the floating-point multiplier in a system. Some DSP algorithms have been
rewritten to take advantage of the presence of FMA units. For example, a radix-16 FFT
algorithm that speeds up FFTs in systems with FMA units is described in[2].
The second of the fused operations is a fused floating-point add subtract unit (Fused AS). In
FFT computations, both the sum and the difference of a pair of operands are needed
frequently. In a fused implementation, the sum and the difference operations can share a
substantial amount of operand alignment logic with the reduction of the circuit area.
In this paper, parallel implementations are considered as the baselines. In view of the
limited precision required for most DSP applications, all implementations in this paper
(discrete as well as fused) support only the 32-bit IEEE-754 standard format [1].
Fig.1. Pipelined FFT processor
FFT PROCESSOR FOR DSP
APPLICATIONS
The DSP computations require the computation of the butterfly units, cascading of the
butterfly units will build the basic architecture for FFT processing [5]. The basic structure is
shown on Fig. 1. It consists of an interleaved cascade of two types of elements. The
computational elements (identified as CE on the figure).The data reordering elements [6]
(identified as RE on the figure). The data flow is in one direction along the heavy lines,
which convey r complex data. The light lines carry r -1 complex twiddle factors from the TF
units (identified as TF on the figure) to the computational elements. The twiddle factors may
be computed or may be obtained from a memory.
In the data flow, the computational element is used first, then the two types of
elements (RE and CE) alternate ending with a computational element. There are two types of
computational elements (also called butterfly units). Decimation In Time (DIT)
computational elements consist of complex multiplication(s) followed by a sum and
difference network. Decimation In Frequency (DIF) computational elements consist of a sum
and difference network followed by complex multiplication(s).
PE
RE
TF
CE
RE
TF
CE
OUTPUTINPUT
PE
PE: Processing Element CE: Computational Element
RE: Reordering Element TF: Twiddle Factor
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
3 | P a g e
FUSED FLOATING POINT TWO-
TERM DOT - PRODUCT UNIT
The floating-point two-term fused dot product (Fused DP) unit computes a two-term
dot product
X = AB ± CD…………………. (1)
Although a conventional dot product adds the two products, the Fused DP unit also allows
forming the difference of the two products, which is useful in implementing complex
multiplication. The Fused DP unit is based on the fused multiply-add unit. The Fused dot
product unit is shown in Fig. 2. It adds a second multiplier tree, and a revised exponent
comparison circuit to the conventional FMA. From the carry save adder onward the FDP and
FMA are identical. There is a significant area reduction compared to a conventional parallel
discrete implementation of two multipliers and an adder, since the rounding and
normalization logic of both of the multipliers are eliminated.
In addition, the Fused DP unit provides slightly more accurate results because only
one rounding operation is performed compared to the three rounding operations (one at the
output of each multiplier and the other at the output of the adder) of the discrete
implementation.
Fig.2. Floating-point fused dot-product unit
A
LZA
CSA
2’s Comp
Partial Products Partial Products
Exp Comp
Align
Adder
Comp
Normalize
D BC
O
Result
Fusion
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
4 | P a g e
FUSED FLOATING POINT ADD-SUB UNIT
The floating-point fused add-subtract unit (Fused AS) performs an addition and a
subtraction in parallel on the same pair of data
X=A+B and
Y=A-B…………………. (2)
The fused add-subtract unit is based on a conventional floating point adder [8]. A
block diagram of the fused add subtract unit is shown in Fig.3. The exponent difference
calculation, significand swapping, and the significand shifting for both add and subtract
operations are performed with a single set of hardware and the results are shared by both the
operations. This significantly reduces the required circuit area. The significand swapping and
shifting is done based solely on the values of the exponents (i.e., without comparing the
significand). As a result, if the exponents are equal, the smaller significand may be
misidentified as the larger operand. Within the unit, it is advantageous to treat both operands
as positive, in order to simplify the addition and the subtraction operation
Fig.3. Floating-point fused add-subtract unit
B
[22:0][30:23]
[31]
[31]
Exp Diff
Exp adj
Shift
2’s CompAdd Round & PN
Sign
Add Round & PN
Sum Diff
A
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
5 | P a g e
RADIX – 2 FFT BUTTERFLY
To demonstrate the utility of the Fused DP and Fused AS units for FFT
implementation, FFT butterfly unit designs using both the discrete and the fused units have
been made. Firstly Radix-2 decimation in frequency FFT butterfly was designed, it is shown
in Fig.4. All lines carry complex pairs of 32-bit IEEE-754 numbers and all operations are
complex.
The complex add, subtract, and multiply operations shown in Fig.5 is realized with a
discrete implementation that uses two real adders to perform the complex add or subtract and
four real multipliers and two real adders to perform the complex multiply. The complete
butterfly consists of six real adders and four real multipliers as shown on the figure. In this
and the following figure, all lines are 32-bits wide for the IEEE-754 single-precision data.
Alternatively, as shown in Fig.6, the complex add and subtract can be performed with two
fused add-subtract units (marked as FAS in the figure) and the complex multiplication can be
realized with two fused dot product units (marked as FDP).
Fig.4. Radix-2 DIF FFT butterfly unit
Fig.5. Discrete Implementation Of The Radix-2 Dif Fft Butterfly
ADD
SUB MUL
X1
X2
TF
Y1
Y2
Y1(i)
Y2(i)
Y1(r)
Y2(r)
X1(i)
X1(r)
X2(r)
X2(i)
ADD
SUB
MUL
ADD
ADD
SUB
SUB
MUL
MUL
MUL
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
6 | P a g e
Fig.6. Fused implementation of the radix-2 DIF FFT butterfly
PROPOSED PROCESSING UNIT
The computational elements ie, the fused dot product unit and the fused add sub unit of the
FFT processor is pipelined in order to perform the operations to achieve a higher throughput
compared to the conventional architecture. The processing unit designed is able to perform
26 different computations and is shown in the Fig.7 below
Fig.7. Processing Unit Design of the FFT Processor
FAS
FDP
X2(i)
Y2(i)
X1(i) Y1(i)
X2(r)
Y2(r)
Y1(r)X1(r)
FAS
FDP
TF(i) TF(r)
A
Logic
FFT
FDPFAS
Arithmetic
Shift
Shifting
OP B
Result
Processing Unit
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
7 | P a g e
The instructions handled by the processing unit is tabulated below
Table.1. Instructions handled by the Processing Unit
No Opcode Operation
1 00000 Reg <= a and b
2 00001 Reg <= a or b
3 00010 Reg <= not a
4 00011 Reg <= not b
5 00100 Reg <= a nor b
6 00101 Reg <= a nand b
7 00110 Reg<= a xor b
8 00111 Reg <= a xnor b
9 01000 Reg <= shft_l
10 01001 Reg<= shft_r;
11 01010 Reg <= rota_r
12 01011 Reg<= rota_l
13 01100 Reg<= a + b
14 01101 Reg<= a - b
15 01110 mlt <= a * b
16 01111 Reg <= a; ---- load Reg,A
17 10000 Reg <= b; ---- load Reg,B
18 10001 Temp_reg <= a; -load Reg_T,A
19 10010 Temp_reg <= b; -load Reg_T,b
20 10011 Temp_reg<= reg;-- mov temp,reg
21 10100 reg <=Temp_reg;-- mov reg,temp
22 10101 Reg <=f_add(a,b)
23 10110 Reg<=f_sub(a,b)
24 10111 Reg<=mult
25 11000 Two term Dot-product
26 11001 Radix-2 FFT
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
8 | P a g e
SIMULATION RESULTS
Simulation is performed using Modelsim 6.3E and the results are being projected
Fig.8. Simulation result for Fused Dot – product unit
Fig.9. Simulation result for Fused Add - Sub unit
Fig.10. Simulation result for Radix- 2 FFT unit using the fused architecture
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
9 | P a g e
Fig.11. Simulation result for floating point multiplication operation (Opcode = 10111) –
Processing unit
Table.2. Performance summery of the design
CONCLUSION
This paper describes the design of two new fused floating-point arithmetic units and
their application to the implementation of FFT butterfly operations. Although the fused add-
subtract unit is specific to FFT applications, the fused dot product is applicable to a wide
variety of signal processing applications. Both the fused dot product unit and the fused add-
subtract unit are smaller than parallel implementations constructed with discrete floating-
point adders and multipliers. The fused dot product is faster than the conventional
implementation, since rounding and normalization is not required as a part of each
multiplication. Due to longer interconnections, the fused add-subtract unit is slightly slower
than the discrete implementation. The fused FFT butterflies were found to be 20 percent
speeder and 30 percent smaller in area compared with the conventional method from table 2.
Also the processing unit covers almost all the computations necessary for the processor.
Module Parameter Conventional Pipelined
Fused
Add-
SUB
unit
Area
(gates)
40,147 37,291
Throughput
(1/ns)
0.083 0.22
Fused
Dot-
Product
unit
Area
(gates)
63,704 53,608
Throughput
(1/ns)
0.067 0.31
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696
VOLUME 2, ISSUE 3 MARCH2015
10 | P a g e
REFERENCES
[1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, Aug. 2008.
[2] R.K. Montoye, E. Hokenek, and S.L. Runyon, “Design of the IBM RISC System/6000
Floating-Point Execution Unit,” IBM J. Research and Development, vol. 34, pp. 59-70, 1990.
[3] E. Hokenek, R.K. Montoye, and P.W. Cook, “Second-Generation RISC Floating Point
with Multiply-Add Fused,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213, Oct.
1990.
[2] D. Takahashi, “A Radix-16 FFT Algorithm Suitable for Multiply-Add Instruction Based
on Goedecker Method,” Proc. Int’l Conf. Multimedia and Expo, vol. 2, pp. II-845-II-848,
July 2003.
[5] J.H. McClellan and R.J. Purdy, “Applications of Digital Signal Processing to Radar,”
Applications of Digital Signal Processing, A.V. Oppenheim, ed., pp. 239-329, Prentice-Hall,
1978.
[6] B. Gold and T. Bially, “Parallelism in Fast Fourier Transform Hardware,” IEEE Trans.
Audio and Electroacoustics, vol. AU-21, no. 1, pp. 5-16, Feb. 1973.
[7] H.H. Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Dot-Product Unit,” Proc.
IEEE Int’l Conf. Computer Design (ICCD), pp. 427-431, 2008.
[8] M.P. Farmwald, “On the Design of High-Performance Digital Arithmetic Units,” PhD
thesis, Stanford Univ., 1981.
[9] P.-M. Seidel and G. Even, “Delay-Optimized Implementation of IEEE
Floating-Point Addition,” IEEE Trans. Computers, vol. 53, no. 2, pp. 97-113, Feb. 2004.
[10] H. Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit,” Proc.
IEEE Midwest Symp. Circuits and Systems (MWSCAS), pp. 519- 522, 2008.
[11] H.H. Saleh, “Fused Floating-Point Arithmetic for DSP,” PhD dissertation, Univ. of
Texas, 2008.
[12] Earl E. Swartzlander Jr and Hani H.M. Saleh, “FFT Implementation with Fused
Floating-Point Operations” , 2012.

More Related Content

What's hot

IRJET- Efficient Design of Radix Booth Multiplier
IRJET- Efficient Design of Radix Booth MultiplierIRJET- Efficient Design of Radix Booth Multiplier
IRJET- Efficient Design of Radix Booth MultiplierIRJET Journal
 
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor Design of Processing Element (PE3) for Implementing Pipeline FFT Processor
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor ijcisjournal
 
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization and
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization andIaetsd fpga implementation of cordic algorithm for pipelined fft realization and
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization andIaetsd Iaetsd
 
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...Journal For Research
 
Iaetsd finger print recognition by cordic algorithm and pipelined fft
Iaetsd finger print recognition by cordic algorithm and pipelined fftIaetsd finger print recognition by cordic algorithm and pipelined fft
Iaetsd finger print recognition by cordic algorithm and pipelined fftIaetsd Iaetsd
 
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...IRJET Journal
 
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLE
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLEA SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLE
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLEEditor IJMTER
 
A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier
A High Speed Transposed Form FIR Filter Using Floating Point Dadda MultiplierA High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier
A High Speed Transposed Form FIR Filter Using Floating Point Dadda MultiplierIJRES Journal
 
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...IRJET Journal
 
JOURNAL PAPER
JOURNAL PAPERJOURNAL PAPER
JOURNAL PAPERRaj kumar
 
Parallel Hardware Implementation of Convolution using Vedic Mathematics
Parallel Hardware Implementation of Convolution using Vedic MathematicsParallel Hardware Implementation of Convolution using Vedic Mathematics
Parallel Hardware Implementation of Convolution using Vedic MathematicsIOSR Journals
 
Implementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adderImplementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adderVLSICS Design
 
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...IOSR Journals
 
High Performance Baugh Wooley Multiplier Using Carry Skip Adder Structure
High Performance Baugh Wooley Multiplier Using Carry Skip Adder StructureHigh Performance Baugh Wooley Multiplier Using Carry Skip Adder Structure
High Performance Baugh Wooley Multiplier Using Carry Skip Adder StructureIRJET Journal
 
High Performance MAC Unit for FFT Implementation
High Performance MAC Unit for FFT Implementation High Performance MAC Unit for FFT Implementation
High Performance MAC Unit for FFT Implementation IJMER
 
Paper id 37201520
Paper id 37201520Paper id 37201520
Paper id 37201520IJRAT
 

What's hot (19)

IRJET- Efficient Design of Radix Booth Multiplier
IRJET- Efficient Design of Radix Booth MultiplierIRJET- Efficient Design of Radix Booth Multiplier
IRJET- Efficient Design of Radix Booth Multiplier
 
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor Design of Processing Element (PE3) for Implementing Pipeline FFT Processor
Design of Processing Element (PE3) for Implementing Pipeline FFT Processor
 
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization and
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization andIaetsd fpga implementation of cordic algorithm for pipelined fft realization and
Iaetsd fpga implementation of cordic algorithm for pipelined fft realization and
 
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...
DESIGN AND VHDL IMPLEMENTATION OF 64-POINT FFT USING TWO STRUCTURE 8-POINT FF...
 
Iaetsd finger print recognition by cordic algorithm and pipelined fft
Iaetsd finger print recognition by cordic algorithm and pipelined fftIaetsd finger print recognition by cordic algorithm and pipelined fft
Iaetsd finger print recognition by cordic algorithm and pipelined fft
 
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
 
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLE
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLEA SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLE
A SURVEY - COMPARISON OF MULTIPLIERS USING DIFFERENT LOGIC STYLE
 
A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier
A High Speed Transposed Form FIR Filter Using Floating Point Dadda MultiplierA High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier
A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier
 
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
 
JOURNAL PAPER
JOURNAL PAPERJOURNAL PAPER
JOURNAL PAPER
 
Parallel Hardware Implementation of Convolution using Vedic Mathematics
Parallel Hardware Implementation of Convolution using Vedic MathematicsParallel Hardware Implementation of Convolution using Vedic Mathematics
Parallel Hardware Implementation of Convolution using Vedic Mathematics
 
Implementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adderImplementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adder
 
Design Radix-4 64-Point Pipeline FFT/IFFT Processor for Wireless Application
Design Radix-4 64-Point Pipeline FFT/IFFT Processor for Wireless ApplicationDesign Radix-4 64-Point Pipeline FFT/IFFT Processor for Wireless Application
Design Radix-4 64-Point Pipeline FFT/IFFT Processor for Wireless Application
 
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...
Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filt...
 
Id2514581462
Id2514581462Id2514581462
Id2514581462
 
High Performance Baugh Wooley Multiplier Using Carry Skip Adder Structure
High Performance Baugh Wooley Multiplier Using Carry Skip Adder StructureHigh Performance Baugh Wooley Multiplier Using Carry Skip Adder Structure
High Performance Baugh Wooley Multiplier Using Carry Skip Adder Structure
 
High Performance MAC Unit for FFT Implementation
High Performance MAC Unit for FFT Implementation High Performance MAC Unit for FFT Implementation
High Performance MAC Unit for FFT Implementation
 
F011123134
F011123134F011123134
F011123134
 
Paper id 37201520
Paper id 37201520Paper id 37201520
Paper id 37201520
 

Similar to Pipelined Fused FFT

High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...
High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...
High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...IRJET Journal
 
IRJET - Design and Implementation of Double Precision FPU for Optimised Speed
IRJET - Design and Implementation of Double Precision FPU for Optimised SpeedIRJET - Design and Implementation of Double Precision FPU for Optimised Speed
IRJET - Design and Implementation of Double Precision FPU for Optimised SpeedIRJET Journal
 
An Area Efficient Mixed Decimation MDF Architecture for Radix 22 Parallel FFT
An Area Efficient Mixed Decimation MDF Architecture for Radix 22  Parallel FFTAn Area Efficient Mixed Decimation MDF Architecture for Radix 22  Parallel FFT
An Area Efficient Mixed Decimation MDF Architecture for Radix 22 Parallel FFTIRJET Journal
 
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET Journal
 
Design and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpgaDesign and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpgaVLSICS Design
 
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible Gate
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible GateIRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible Gate
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible GateIRJET Journal
 
IRJET- Implementation of Reversible Radix-2 FFT VLSI Architecture using P...
IRJET-  	  Implementation of Reversible Radix-2 FFT VLSI Architecture using P...IRJET-  	  Implementation of Reversible Radix-2 FFT VLSI Architecture using P...
IRJET- Implementation of Reversible Radix-2 FFT VLSI Architecture using P...IRJET Journal
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Design and Analysis of High Performance Floating Point Arithmetic Unit
Design and Analysis of High Performance Floating Point Arithmetic UnitDesign and Analysis of High Performance Floating Point Arithmetic Unit
Design and Analysis of High Performance Floating Point Arithmetic Unitijtsrd
 
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...iosrjce
 
Area and power performance analysis of floating point ALU using pipelining
Area and power performance analysis of floating point  ALU using pipeliningArea and power performance analysis of floating point  ALU using pipelining
Area and power performance analysis of floating point ALU using pipeliningIRJET Journal
 
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...Design of Scalable FFT architecture for Advanced Wireless Communication Stand...
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...IOSRJECE
 
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...IJERA Editor
 
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...IOSRJVSP
 

Similar to Pipelined Fused FFT (20)

High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...
High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...
High Speed and Area Efficient Matrix Multiplication using Radix-4 Booth Multi...
 
IRJET - Design and Implementation of Double Precision FPU for Optimised Speed
IRJET - Design and Implementation of Double Precision FPU for Optimised SpeedIRJET - Design and Implementation of Double Precision FPU for Optimised Speed
IRJET - Design and Implementation of Double Precision FPU for Optimised Speed
 
An Area Efficient Mixed Decimation MDF Architecture for Radix 22 Parallel FFT
An Area Efficient Mixed Decimation MDF Architecture for Radix 22  Parallel FFTAn Area Efficient Mixed Decimation MDF Architecture for Radix 22  Parallel FFT
An Area Efficient Mixed Decimation MDF Architecture for Radix 22 Parallel FFT
 
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
 
H010414651
H010414651H010414651
H010414651
 
Id2514581462
Id2514581462Id2514581462
Id2514581462
 
Design and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpgaDesign and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpga
 
At36276280
At36276280At36276280
At36276280
 
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible Gate
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible GateIRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible Gate
IRJET- Review Paper on Radix-2 DIT Fast Fourier Transform using Reversible Gate
 
IRJET- Implementation of Reversible Radix-2 FFT VLSI Architecture using P...
IRJET-  	  Implementation of Reversible Radix-2 FFT VLSI Architecture using P...IRJET-  	  Implementation of Reversible Radix-2 FFT VLSI Architecture using P...
IRJET- Implementation of Reversible Radix-2 FFT VLSI Architecture using P...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
FPGA Implementation of High Speed FIR Filters and less power consumption stru...
FPGA Implementation of High Speed FIR Filters and less power consumption stru...FPGA Implementation of High Speed FIR Filters and less power consumption stru...
FPGA Implementation of High Speed FIR Filters and less power consumption stru...
 
Design and Analysis of High Performance Floating Point Arithmetic Unit
Design and Analysis of High Performance Floating Point Arithmetic UnitDesign and Analysis of High Performance Floating Point Arithmetic Unit
Design and Analysis of High Performance Floating Point Arithmetic Unit
 
Comparative study of single precision floating point division using differen...
Comparative study of single precision floating point division  using differen...Comparative study of single precision floating point division  using differen...
Comparative study of single precision floating point division using differen...
 
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
 
Aw4102359364
Aw4102359364Aw4102359364
Aw4102359364
 
Area and power performance analysis of floating point ALU using pipelining
Area and power performance analysis of floating point  ALU using pipeliningArea and power performance analysis of floating point  ALU using pipelining
Area and power performance analysis of floating point ALU using pipelining
 
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...Design of Scalable FFT architecture for Advanced Wireless Communication Stand...
Design of Scalable FFT architecture for Advanced Wireless Communication Stand...
 
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
 
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...
Design and Power Measurement of 2 And 8 Point FFT Using Radix-2 Algorithm for...
 

More from ijiert bestjournal

CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP
 CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP
CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMPijiert bestjournal
 
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...ijiert bestjournal
 
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAF
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAFCOMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAF
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAFijiert bestjournal
 
POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE
 POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE
POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINEijiert bestjournal
 
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY ijiert bestjournal
 
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAIN
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAINREVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAIN
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAINijiert bestjournal
 
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...ijiert bestjournal
 
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...ijiert bestjournal
 
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...ijiert bestjournal
 
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR ijiert bestjournal
 
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFT
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFTDESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFT
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFTijiert bestjournal
 
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...ijiert bestjournal
 
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENTHEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENTijiert bestjournal
 
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH ijiert bestjournal
 
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW ijiert bestjournal
 
DESIGN OF WELDING FIXTURES AND POSITIONERS
DESIGN OF WELDING FIXTURES AND POSITIONERSDESIGN OF WELDING FIXTURES AND POSITIONERS
DESIGN OF WELDING FIXTURES AND POSITIONERSijiert bestjournal
 
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...ijiert bestjournal
 
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...ijiert bestjournal
 
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...ijiert bestjournal
 

More from ijiert bestjournal (20)

CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP
 CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP
CRACKS IN STEEL CASTING FOR VOLUTE CASING OF A PUMP
 
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...
A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAI...
 
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAF
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAFCOMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAF
COMPARATIVE ANALYSIS OF CONVENTIONAL LEAF SPRING AND COMPOSITE LEAF
 
POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE
 POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE
POWER GENERATION BY DIFFUSER AUGMENTED WIND TURBINE
 
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY
FINITE ELEMENT ANALYSIS OF CONNECTING ROD OF MG-ALLOY
 
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAIN
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAINREVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAIN
REVIEW ON CRITICAL SPEED IMPROVEMENT IN SINGLE CYLINDER ENGINE VALVE TRAIN
 
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...
ENERGY CONVERSION PHENOMENON IN IMPLEMENTATION OF WATER LIFTING BY USING PEND...
 
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...
SCUDERI SPLIT CYCLE ENGINE: REVOLUTIONARY TECHNOLOGY & EVOLUTIONARY DESIGN RE...
 
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...
EXPERIMENTAL EVALUATION OF TEMPERATURE DISTRIBUTION IN JOURNAL BEARING OPERAT...
 
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR
STUDY OF SOLAR THERMAL CAVITY RECEIVER FOR PARABOLIC CONCENTRATING COLLECTOR
 
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFT
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFTDESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFT
DESIGN, OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF CRANKSHAFT
 
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...
ELECTRO CHEMICAL MACHINING AND ELECTRICAL DISCHARGE MACHINING PROCESSES MICRO...
 
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENTHEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT
HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT
 
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH
MODIFICATION AND OPTIMIZATION IN STEEL SANDWICH PANELS USING ANSYS WORKBENCH
 
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW
IMPACT ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PANEL BUMPER BEAM: A REVIEW
 
DESIGN OF WELDING FIXTURES AND POSITIONERS
DESIGN OF WELDING FIXTURES AND POSITIONERSDESIGN OF WELDING FIXTURES AND POSITIONERS
DESIGN OF WELDING FIXTURES AND POSITIONERS
 
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...
ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANS...
 
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...
REVIEW ON MECHANICAL PROPERTIES OF NON-ASBESTOS COMPOSITE MATERIAL USED IN BR...
 
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...
PERFORMANCE EVALUATION OF TRIBOLOGICAL PROPERTIES OF COTTON SEED OIL FOR MULT...
 
MAGNETIC ABRASIVE FINISHING
MAGNETIC ABRASIVE FINISHINGMAGNETIC ABRASIVE FINISHING
MAGNETIC ABRASIVE FINISHING
 

Recently uploaded

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 

Pipelined Fused FFT

  • 1. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 1 | P a g e A Pipelined Fused Processing Unit for DSP Applications Vinay Reddy N PG student Dept of ECE, PSG College of Technology, Coimbatore, Hema Chitra S Assistant professor Dept of ECE, PSG College of Technology, Coimbatore, Abstract This paper designs a processing element for FFT processor capable of operating on 32-bit double precision floating point numbers. Pipelining is performed on the computational elements of the DSP processor to enhance the throughput. The performance of the Processing unit is increased by using the concept of fused architecture on the sub modules – the dot product unit and the add sub unit. Pipelining increases the speed of the CE of the processor while fused operations claim area optimization. The DSP applications involve FFT Processors that make use of the butterfly operations consisting of multiplications, additions, and subtractions of complex valued data (data is split into real part and the imaginary part). The radix-2 and radix-4 butterflies are designed using fused architecture. The fused FFT butterflies are to be 20 percent speedier and 30 percent smaller in area compared with the conventional method. The processing unit covers almost all the computations necessary for the processor. INTRODUCTION Most of the real time fields like medical fields involving biomedical signal values, communication fields involving transmission and reception of real valued data etc are floating point numbers. These values cannot be neglected, instead should be accurately recorded and processed. Floating point arithmetic serves to give a good dynamic range, freeing special purpose processor designers from the scaling and overflow/underflow concerns that arise with fixed-point arithmetic. Use of the IEEE-754 standard 32-bit floating- point format [1] facilitates the use of fast Fourier transform (FFT) processors as coprocessors in collaboration with general purpose processors. This paper is concerned with the design of a Processing unit that can compute FFT values necessary in almost all the digital signal processing applications. Two fused floating-point primitive operations were developed recently to reduce the delay and area of FFT computation units. The first primitive fused operation is a fused floating-point dot product unit (Fused DP). The Fused DP unit is an extension of the fused multiply-add (FMA) unit which was developed initially for the IBM RS/6000 processor and was recently added to IEEE Std-754 [1]. The FMA unit reduces the latency of a multiplication followed by an addition leading to the enhancement in the throughput. Also, a single FMA can be used to replace the floating-
  • 2. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 2 | P a g e point adder and the floating-point multiplier in a system. Some DSP algorithms have been rewritten to take advantage of the presence of FMA units. For example, a radix-16 FFT algorithm that speeds up FFTs in systems with FMA units is described in[2]. The second of the fused operations is a fused floating-point add subtract unit (Fused AS). In FFT computations, both the sum and the difference of a pair of operands are needed frequently. In a fused implementation, the sum and the difference operations can share a substantial amount of operand alignment logic with the reduction of the circuit area. In this paper, parallel implementations are considered as the baselines. In view of the limited precision required for most DSP applications, all implementations in this paper (discrete as well as fused) support only the 32-bit IEEE-754 standard format [1]. Fig.1. Pipelined FFT processor FFT PROCESSOR FOR DSP APPLICATIONS The DSP computations require the computation of the butterfly units, cascading of the butterfly units will build the basic architecture for FFT processing [5]. The basic structure is shown on Fig. 1. It consists of an interleaved cascade of two types of elements. The computational elements (identified as CE on the figure).The data reordering elements [6] (identified as RE on the figure). The data flow is in one direction along the heavy lines, which convey r complex data. The light lines carry r -1 complex twiddle factors from the TF units (identified as TF on the figure) to the computational elements. The twiddle factors may be computed or may be obtained from a memory. In the data flow, the computational element is used first, then the two types of elements (RE and CE) alternate ending with a computational element. There are two types of computational elements (also called butterfly units). Decimation In Time (DIT) computational elements consist of complex multiplication(s) followed by a sum and difference network. Decimation In Frequency (DIF) computational elements consist of a sum and difference network followed by complex multiplication(s). PE RE TF CE RE TF CE OUTPUTINPUT PE PE: Processing Element CE: Computational Element RE: Reordering Element TF: Twiddle Factor
  • 3. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 3 | P a g e FUSED FLOATING POINT TWO- TERM DOT - PRODUCT UNIT The floating-point two-term fused dot product (Fused DP) unit computes a two-term dot product X = AB ± CD…………………. (1) Although a conventional dot product adds the two products, the Fused DP unit also allows forming the difference of the two products, which is useful in implementing complex multiplication. The Fused DP unit is based on the fused multiply-add unit. The Fused dot product unit is shown in Fig. 2. It adds a second multiplier tree, and a revised exponent comparison circuit to the conventional FMA. From the carry save adder onward the FDP and FMA are identical. There is a significant area reduction compared to a conventional parallel discrete implementation of two multipliers and an adder, since the rounding and normalization logic of both of the multipliers are eliminated. In addition, the Fused DP unit provides slightly more accurate results because only one rounding operation is performed compared to the three rounding operations (one at the output of each multiplier and the other at the output of the adder) of the discrete implementation. Fig.2. Floating-point fused dot-product unit A LZA CSA 2’s Comp Partial Products Partial Products Exp Comp Align Adder Comp Normalize D BC O Result Fusion
  • 4. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 4 | P a g e FUSED FLOATING POINT ADD-SUB UNIT The floating-point fused add-subtract unit (Fused AS) performs an addition and a subtraction in parallel on the same pair of data X=A+B and Y=A-B…………………. (2) The fused add-subtract unit is based on a conventional floating point adder [8]. A block diagram of the fused add subtract unit is shown in Fig.3. The exponent difference calculation, significand swapping, and the significand shifting for both add and subtract operations are performed with a single set of hardware and the results are shared by both the operations. This significantly reduces the required circuit area. The significand swapping and shifting is done based solely on the values of the exponents (i.e., without comparing the significand). As a result, if the exponents are equal, the smaller significand may be misidentified as the larger operand. Within the unit, it is advantageous to treat both operands as positive, in order to simplify the addition and the subtraction operation Fig.3. Floating-point fused add-subtract unit B [22:0][30:23] [31] [31] Exp Diff Exp adj Shift 2’s CompAdd Round & PN Sign Add Round & PN Sum Diff A
  • 5. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 5 | P a g e RADIX – 2 FFT BUTTERFLY To demonstrate the utility of the Fused DP and Fused AS units for FFT implementation, FFT butterfly unit designs using both the discrete and the fused units have been made. Firstly Radix-2 decimation in frequency FFT butterfly was designed, it is shown in Fig.4. All lines carry complex pairs of 32-bit IEEE-754 numbers and all operations are complex. The complex add, subtract, and multiply operations shown in Fig.5 is realized with a discrete implementation that uses two real adders to perform the complex add or subtract and four real multipliers and two real adders to perform the complex multiply. The complete butterfly consists of six real adders and four real multipliers as shown on the figure. In this and the following figure, all lines are 32-bits wide for the IEEE-754 single-precision data. Alternatively, as shown in Fig.6, the complex add and subtract can be performed with two fused add-subtract units (marked as FAS in the figure) and the complex multiplication can be realized with two fused dot product units (marked as FDP). Fig.4. Radix-2 DIF FFT butterfly unit Fig.5. Discrete Implementation Of The Radix-2 Dif Fft Butterfly ADD SUB MUL X1 X2 TF Y1 Y2 Y1(i) Y2(i) Y1(r) Y2(r) X1(i) X1(r) X2(r) X2(i) ADD SUB MUL ADD ADD SUB SUB MUL MUL MUL
  • 6. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 6 | P a g e Fig.6. Fused implementation of the radix-2 DIF FFT butterfly PROPOSED PROCESSING UNIT The computational elements ie, the fused dot product unit and the fused add sub unit of the FFT processor is pipelined in order to perform the operations to achieve a higher throughput compared to the conventional architecture. The processing unit designed is able to perform 26 different computations and is shown in the Fig.7 below Fig.7. Processing Unit Design of the FFT Processor FAS FDP X2(i) Y2(i) X1(i) Y1(i) X2(r) Y2(r) Y1(r)X1(r) FAS FDP TF(i) TF(r) A Logic FFT FDPFAS Arithmetic Shift Shifting OP B Result Processing Unit
  • 7. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 7 | P a g e The instructions handled by the processing unit is tabulated below Table.1. Instructions handled by the Processing Unit No Opcode Operation 1 00000 Reg <= a and b 2 00001 Reg <= a or b 3 00010 Reg <= not a 4 00011 Reg <= not b 5 00100 Reg <= a nor b 6 00101 Reg <= a nand b 7 00110 Reg<= a xor b 8 00111 Reg <= a xnor b 9 01000 Reg <= shft_l 10 01001 Reg<= shft_r; 11 01010 Reg <= rota_r 12 01011 Reg<= rota_l 13 01100 Reg<= a + b 14 01101 Reg<= a - b 15 01110 mlt <= a * b 16 01111 Reg <= a; ---- load Reg,A 17 10000 Reg <= b; ---- load Reg,B 18 10001 Temp_reg <= a; -load Reg_T,A 19 10010 Temp_reg <= b; -load Reg_T,b 20 10011 Temp_reg<= reg;-- mov temp,reg 21 10100 reg <=Temp_reg;-- mov reg,temp 22 10101 Reg <=f_add(a,b) 23 10110 Reg<=f_sub(a,b) 24 10111 Reg<=mult 25 11000 Two term Dot-product 26 11001 Radix-2 FFT
  • 8. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 8 | P a g e SIMULATION RESULTS Simulation is performed using Modelsim 6.3E and the results are being projected Fig.8. Simulation result for Fused Dot – product unit Fig.9. Simulation result for Fused Add - Sub unit Fig.10. Simulation result for Radix- 2 FFT unit using the fused architecture
  • 9. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 9 | P a g e Fig.11. Simulation result for floating point multiplication operation (Opcode = 10111) – Processing unit Table.2. Performance summery of the design CONCLUSION This paper describes the design of two new fused floating-point arithmetic units and their application to the implementation of FFT butterfly operations. Although the fused add- subtract unit is specific to FFT applications, the fused dot product is applicable to a wide variety of signal processing applications. Both the fused dot product unit and the fused add- subtract unit are smaller than parallel implementations constructed with discrete floating- point adders and multipliers. The fused dot product is faster than the conventional implementation, since rounding and normalization is not required as a part of each multiplication. Due to longer interconnections, the fused add-subtract unit is slightly slower than the discrete implementation. The fused FFT butterflies were found to be 20 percent speeder and 30 percent smaller in area compared with the conventional method from table 2. Also the processing unit covers almost all the computations necessary for the processor. Module Parameter Conventional Pipelined Fused Add- SUB unit Area (gates) 40,147 37,291 Throughput (1/ns) 0.083 0.22 Fused Dot- Product unit Area (gates) 63,704 53,608 Throughput (1/ns) 0.067 0.31
  • 10. NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 2, ISSUE 3 MARCH2015 10 | P a g e REFERENCES [1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, Aug. 2008. [2] R.K. Montoye, E. Hokenek, and S.L. Runyon, “Design of the IBM RISC System/6000 Floating-Point Execution Unit,” IBM J. Research and Development, vol. 34, pp. 59-70, 1990. [3] E. Hokenek, R.K. Montoye, and P.W. Cook, “Second-Generation RISC Floating Point with Multiply-Add Fused,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213, Oct. 1990. [2] D. Takahashi, “A Radix-16 FFT Algorithm Suitable for Multiply-Add Instruction Based on Goedecker Method,” Proc. Int’l Conf. Multimedia and Expo, vol. 2, pp. II-845-II-848, July 2003. [5] J.H. McClellan and R.J. Purdy, “Applications of Digital Signal Processing to Radar,” Applications of Digital Signal Processing, A.V. Oppenheim, ed., pp. 239-329, Prentice-Hall, 1978. [6] B. Gold and T. Bially, “Parallelism in Fast Fourier Transform Hardware,” IEEE Trans. Audio and Electroacoustics, vol. AU-21, no. 1, pp. 5-16, Feb. 1973. [7] H.H. Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Dot-Product Unit,” Proc. IEEE Int’l Conf. Computer Design (ICCD), pp. 427-431, 2008. [8] M.P. Farmwald, “On the Design of High-Performance Digital Arithmetic Units,” PhD thesis, Stanford Univ., 1981. [9] P.-M. Seidel and G. Even, “Delay-Optimized Implementation of IEEE Floating-Point Addition,” IEEE Trans. Computers, vol. 53, no. 2, pp. 97-113, Feb. 2004. [10] H. Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit,” Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS), pp. 519- 522, 2008. [11] H.H. Saleh, “Fused Floating-Point Arithmetic for DSP,” PhD dissertation, Univ. of Texas, 2008. [12] Earl E. Swartzlander Jr and Hani H.M. Saleh, “FFT Implementation with Fused Floating-Point Operations” , 2012.