SlideShare a Scribd company logo
1 of 166
Download to read offline
Preparedby
Prof. V.V.S.H. Prasad, Madhav, Professor, Dept of Mechanical Engineering
Mr . C. Labesh Kumar, Assistant Professor, Dept of Mechanical Engineering
Finite Element Methods
III B Tech II Semester
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad- 500043
1
2
UNIT- 1
• Introduction to FEM:
– Stiffness equations for a axial bar element in local co-ordinates
bars
using Potential Energyapproach and Virtual energyprinciple
– Finite element analysis of uniform, stepped and tapered
subjected to mechanical and thermalloads
– Assembly of Global stiffness matrix and loadvector
– Quadratic shapefunctions
– properties of stiffnessmatrix
Axially LoadedBar
Review:
Stress:
Strain:
Deformation:
Stress:
3
Strain:
Deformation:
Axially LoadedBar
4
Review:
Stress:
Strain:
Deformation:
Axially Loaded Bar – GoverningEquations
and BoundaryConditions
• Differential Equation
• BoundaryCondition Types
• prescribeddisplacement(essential BC)
•prescribedforce/derivative of displacement
(natural BC)
dx  dx
5
d EA(x)
du   f (x) 0 0  x L
6
Axially Loaded Bar –BoundaryConditions
• Examples
• fixed end
• simplesupport
• free end
Potential Energy
- Axially loadedbar
- Elasticbody
x
Stretchedbar
• Elastic Potential Energy(PE)
- Spring case
Unstretched spring
PE 0
2
1
2
kx
PE 
undeformed:
deformed:
0
7
PE 0
1 L
PE  Adx
2
2 V
PE 
1
σT
εdv
Potential Energy
• Work Potential(WE)
B
L

WP   u  fdx  Pu
0
P
f
f: distributed force over aline
P: point force
u: displacement
A B
• T
otalPotential Energy
L
0 0
1 L
  Adx  u  fdx  PuB
2
• Principle of Minimum PotentialEnergy
Forconservative systems, of all the kinematically admissible displacementfields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is aminimum, the equilibrium state isstable.
8
Potential Energy +Rayleigh-RitzApproach
P
f
A B
Example:
Step1: assumeadisplacement field
i
i  1 to n
u  aii x
 is shapefunction / basis function
n is the order ofapproximation
Step2: calculate total potential energy
9
Potential Energy +Rayleigh-Ritz
Approach
f
Example:
P
A B
Step3:select ai sothat the total potential energy isminimum
10
Galerkin’sMethod
P
f
A
Example:
EA(x)
du
 P
dx xL
d  du
dx 
EA(x)
dx 
 f (x)  0
ux  0 0 dx
w
V
i
 P



 d du
dx 

 

dx xL

du
~
EA(x)
u~x 0 0
f ( x)dV 0

EA(x) 
B
Seekan approximation u
~so
~
In the Galerkin’s method, the weight function is chosen to be the sameasthe shape
function.
11
Galerkin’sMethod
P
f
A B
Example:

  f ( x)dV  0
dx 
du
~ 
EA(x)
 dx 
 d 
V
wi 
0 0
 0
L L
dx 0
du~L
du~dw
EA(x) i
dx  wi fdx wi EA(x)
dx dx
1 2 3
1
2
3
12
Finite Element Method –Piecewise
Approximation
x
u
x
u
13
FEM Formulation of AxiallyLoaded
Bar – Governing Equations
• WeakForm
• Differential Equation
d  du
dx 
EA(x)
dx 
 f (x)  0 0  x L
• Weighted-Integral Formulation
0



 d  du 
w EA(x)   f (x)dx  0
dx  dx 
L
0
L
du 



0  
du  

L
dw 
0   dx
EA(x)
dx
  wf (x)dx  wEA(x)
dx

14
Approximation Methods –Finite
Element Method
Example:
Step1: Discretization
Step2: Weakform of oneelement P2
P1
x1 x2
1
1
 0




 x
x 
x
du 
2
du  
 dx
EA(x)
dx
  w(x) f (x)dx  w(x) EA(x)
dx

x2
dw 
   
1 1
2 2






 P w x P  0
dx
EA(x)  w(x) f (x) dx  w x
dx
x2
dw  du  
x1
 15
Approximation Methods –Finite
Element Method
Example(cont):
Step3: Choosingshape functions
- linear shapefunctions u  1u12u2
l
x1 x2
x 
 
1
l
2
2
l
1
x  x
x  x
;  
  2
16
2

1
; 2 
1
1 
1
1
2
l
x 
 1l
 x
 
2
x  x  1;
Approximation Methods –Finite
Element Method
Example(cont):
Step4: Forming element equation
weak formbecomes
Letw 1
, 1 1 2 1 1
1
1



l
1 u  u 
l
x2
x
x2

x
  EA 2 1
dx   f dx   P   P 0
2
1
l
EA EA
l
x
x
u1  u2  1 f dx  P
1
weak formbecomes
Letw  2
, 2 2 2 2 1
1
1
 

l
u  u 
l
x2
x
x2
1
x
EA 2 1
dx   f dx   P   P  0
1
l
EA
l
EA
x2
x
 u1  u2  2 f dx  P2
1 1 1
2
P f P
x2

     
EA  1 
1u1 
  x1
 
 P   f   P
1  u  x2
l 1
   2   2   2   2 
  fdx

x1 
1 fdx

E,Aare constant
17
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Approach 1:
Element1: 0 I I I
I I
u f P
E A
lI
 f I
 PI


1
 
1

  
1

1      
   

2
 
2
 
2

0  0
 0
 0 0  0
 0   0 
 0   0 
    
Element2:
1
2 2
f
uII
f II
PII
lII
 0   0 
  
0  0 
E II
AII 0 0 uII
  
II
PII

  
1
    
1

2     


 0 
 

0 

0 

0 

Element3:
1 1
III III III
III
III III III
f P
1 u f P
 0   0 
0   0 
E III
AIII 0 0   0   0   0 
 
      
     1 
0       
 1 1 0 0 uI

1 0
0 0
0 0
0 0 0
1 1
0 1 1 0
0 0 0

0 0 0
 0 0
l 0 0 1 1 u
0 1
   2   2   2 
18
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Assembled System:
4 4
19
0 0
0
0
I I II II
lI
l
0
l l
l
EII
AII
EII
AII
EIII
AIII
EIII
AIII
lII
0
lIII
EIII
AIII
EIII
AIII
lIII
lIII
 E I
AI
I I
 E A
 lI




 f1 
u1 

EI
AI
E I
AI

E II
AII
II II
 E A
 3  
  
lII
lIII













2 1 2 1
2 1 2 1
I I
II
II III II III
f1 P
1
f III
PIII
   
P1
 f I  PI 
u   f  P  f II 
 P 

 2    2    2     
u   f  P  
f  f P  P
3  3
 
 
 


  

u 
 
 f 
 
P 
 
4  2   2 
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Approach 2: Element connectivitytable Element 1 Element 2 Element 3
1 1 2 3
2 2 3 4
global node index
(I,J)
local node
(i,j)
ij
20
IJ
k e
 K
Approximation Methods –Finite
Element Method
Example(cont):
Step6: Imposing boundary conditions and forming condensesystem
Condensedsystem:
0
lI
lII
lII
lII
0
lIII
lIII
EIII
AIII
lIII
lIII
 E I
AI

E II
AII
II II
 E A 

u2   f2  0
E II
AII

E III
AIII 
E A        
III III
u3   f3  0
 f  P
 u 
 4   


 EII
AII
 

 E III
AIII
  4 
lII

 
  21
Approximation Methods –Finite
Element Method
Example(cont):
Step7: solution
Step8: post calculation
2
dx 1
dx
d2
dx
 
du
 u
d1
u
1 1 2 2
u  u   u  2
1
dx
d2
dx
  E  Eu
d1
Eu
22
Summary - Major Steps inFEM
• Discretization
• Derivation of element equation
•weak form
•constructform of approximation solution
overone element
•derive finite element model
• Assembling– putting elements together
• Imposingboundary conditions
• Solvingequations
• Postcomputation
23
Exercises – LinearElement
Example1:
E=100 GPa,A=1 cm2
24
Linear Formulation for BarElement
 
 2   2   12 22 u2 
K
K
K12 u1 
P   f 
P1

 f1 

K11

 1
1
x2

x
i
x2

x
ji i
ij  dx dx 
EA i j
dx  K , f 
where K  f dx
 d d 
x=x1 x=x2
 2
1

x
x=x1 x=x2
u1 u2
P1 P2
f(x)
L= x2-x1
u
x
25
Higher Order Formulation for BarElement
u(x) u11(x) u22 (x) u33 (x)
1 3
u1 u3
u
x
u2
2
u1 u4
u
x
u2 u3
1 2 3 4
u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )
u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )  unn ( x )
n
u1 un
u
x
u2 u3 u4
26
…
…
…
…
…
1 2 3 4 …
…
…
…
…
Natural Coordinates and InterpolationFunctions
  1
2
, 2 
  1
2
1  
Natural (or Normal)Coordinate:
x=x1 x=x2
=-1 =1
x

x  0 x  l
l /2
x  x  x1
x  x1  x2
  2
1 3
2

1
=-1
2
=1

=-1 =1
1 4
2

=-1 =1
3
2
2
3
2
1
 1
    1  1,  
 1
  ,
2
1

3 

3 16

3

16    
1 ,  
27
 1
1 1

  
9  
1  
1   

27






3

3
16
 
3
16
4
3
  
27
 1
1  1,  
9
 1
1  
1
Quadratic Formulation for BarElement
   
i i i
l
2
 f
and f   f dx  
1
1
1
x2
x 1
 d d   d d  2
 dx dx 
1
 d d l
d, i, j  1, 2, 3
where Kij   EA
i
 dx   EA
i
 d  K
j j
ji


 
2 
33  3 
13 23
23 
22
12
3  3 
 2   2 
u 
u 
K
K13 u1 
K11 K12
P   f 
P    f   K K K
K K
P1   f1 
=-1 =0 =1

x2

x1


28
Quadratic Formulation for BarElement
u1 u3
u2
f(x)
P3
P1
P2
x1
=-1
x2
=0
x3
=1
2
2
3
2
1
3 3
2 2
1 1
 1
 u  1 1u
 1
)  u  (  ) u
( ) u  (
u( )  u 
2
2
3
2
1
 1
,     1  1,  
  1
 
l l
dx l d dx l d l dx l d
d1

2 d1

2 1
, d2

2 d2
 
4,
d3

2 d3

2 1
l /2
x  x1  x2
  2 l d  dx
2
d 2

dx l
29
Exercises – Quadratic Element
30
Example2:
E=100 GPa,A1=1 cm2;A1=2cm2
Some Issues
Non-constant crosssection:
Interior loadpoint:
Mixed boundary condition:
k
31
32
UNIT – 2
Finite Element Analysis of Trusses
Plane TrussProblems
33
Example1: Find forces inside each member.All members have
the samelength.
F
Arbitrarily Oriented 1-D Bar Element on 2-DPlane
Q2, v2
P1,u1

P2 ,u2
P2, u2
34
Q1, v1
P1,u1
Relationship Between Local Coordinates andGlobal
Coordinates
 





 
   


 1 
2
1
0
0
0
0 v 
u1 
v2 0
u
u1
cosv2


sin u2 

v  0 sin
sin 0
cos 0
0 cos
0 sin
 cos
35
Relationship Between Local Coordinates andGlobal
Coordinates

36




   
2 
 1 
2  0
0
0
0


0 

 0 Q 
 P1

P

P1
cosQ2


sin  P 
sin
sin 0
cos 0
0 cos
0 sin
 cos
Stiffness Matrix of 1-D Bar Element on 2-D Plane



 




 1 
2 
 1  
0
0
0
0
0
0
0
u2
v 
u1 
K 

Q2

 
 P 
Q 
 P1
ij
sin 
0 cos
0 sin cosv2


0  sin
sin 0
cos 0
 cos
sin
cos 
0 cos
0 sin
sin
sin 0
cos 0
cos



 0
 0
0 0
0 0
 1 0 1 0

L 1 0 1 0
0 0
AE
K
ij
Q2, v2
P1,u1

P2 ,u2
P2, u2
Q1, v1
P1,u1
 






1 
2
2
2
2 
 1 
v2


v 
L

AE
Q2


 P 
Q 
 P1
sin2

sin cos
sin cos
sin  cos
u2 
cos 
sin cos
sin2

 cos 
sin2

sin cos
sin cos sin 
sin cosu1 
 cos2

sin cos
cos2

37
Arbitrarily Oriented 1-D Bar Element in 3-DSpace



  
  



2

2 
1 
y

y
y
x 
x
x
y
y
y
2
2
1
 0
   0
0 w1 
0  v 
0  u1
w2  0 0
 0
v
u
w1  0
 0
v
u1
 z w2

 v 
 
u 
0 0  
0 0  
0 0 z z
z z
z

x  x 0 0
  0 0
0 0
 x
-x,-x,-xare the Direction
Cosinesof the bar in thex-
y-zcoordinatesystem
P1,u1
2 2
P , u
x
x
y
z
2
1
-
x
-
x
-
 
38



 
  
 


2 
1 
 2  
1
1
 0
  0
0 R1
0 Q 
0  P1
R2 0
Q2  0
P
R 0
Q 0
 P
1 
x 
x
x
z
y
y
y
 z R2

 y
Q2

  P
0 0  
0 0 y y
0 0 0 z z
 z z
 

x x x 0 0
0 0
0 0
Stiffness Matrix of 1-D Bar Element in 3-D Space





 
 











 
 
 
 
 
 
 2 
2
1
2
1
w
v 
2
u
w1 
v1
 u
L
AE
R2

Q2

P2
R
Q1
 P1
x 
x x
x x
x
x x
x x
x x
x
x x
x x
x
x x
x x 
x x
x
x x
x x
x
 x xx xxx x x x x

x x 
x
x x x x
x
x x
x x

x x
x x
x
2
 
    2
 
 
 
2
 2
    
  
   
2
    

      2
2
 
 
 2
  
    
2
 
    
  2
x x x
 
2
1 1
P , u
2 2
P , u
x
x
x
y
z
2
1
-
-
x
-

39



 



 
 
 

 0
 0
0
0 0 0 0 0w  0
0v
 0
0
0 0  1 0
0 0 0 0
 1
L  1 0 0 1 0
AE  0
R  0
Q  0
0 0 0 0 0 v2  0
 0 0 0 0 0 0w2  0
u2
1
1
 
u1
R2 0
 P2 
Q2  0
1
1
 P1 
Matrix Assembly of Multiple Bar Elements
 



 1 
2 
 1  
0v2


0 u2 

0v 
0u1 
L 1

AE  0
 P 
Q 
 P1
Element I
Element II
Element III
 

 



 1 0 1
0 0
0 1
 0 0 0


2 
3 
 2 
1  3 1
v3


3
u3 
 3
v 
3 u2 
4L

1
AE

 3 3 3
3 1 
3 3  3 3
Q3


 P 
Q 
Q2


P2 
 
40

 



1 
3 
 1 
 3 1

 3 3 3 3
1
v3


3
u3 
 3
v 
3 1  3u1 
4L

1
AE

3 3  3
Q3


 P
Q 
 P1
Matrix Assembly of Multiple Bar Elements
 
 







 
 

 
1 
2
1 
4 0 4 0 0
0
0 0 00 00
4 0 4 0 0
0
0 0 0 0 0
0
0 0 0 0 0 0
0 0 0 0 0 0
u3

v2 
u2 
v 
u1 
4L 


AE
P3

Q2
P
Q 
 P1
Element I
 
 




 
 

 
1 
2
1 
0
0 1  3 1
0
 3 3 3
0 1 3 1 

0
0
0
0
v3

0
0
0
0

0 0 0
0 0
v3

 3 v2 
3u3

3 u2 
v 
u1 
4L 0
AE
P3

Q2
P
Q 
Q3

 P1










0 0 3 3  3 3


 
 

 
1 
2
1 
1
3
3
3
0
0
0
0
1
 3
 3
3
0
0
0
0
0
0
0
0
0
0
0
0


1
3
 3
3
0
0
0
0
1
3
3
3 v3

v2 
u 
3
u2 
v 
u1 
4L 




AE
Q3

P3

Q2
P
Q 
Q3

 P1
Element II
Element III
41
Matrix Assembly of Multiple Bar Elements







 


 2 
1 
2 
1 
v3

v 
u2 
v 
u1 
3
  3  3
3u3

3 1 1 3 
 3 3  3 3 3
 1  3 1
3
 3
0 4  1 0  3 1
0 0  3 0  3 3
 3
 3

0  3 0 3
 3
1
0
0
 4 1 0  3 4
0

4L


S3 

R3

S 
R2 

AE  4
0
 S 
R1 

42













 

 
 0
v
v ?
5 3
3 3
 4
0
0
0


1
3
 3
 3
 4 0
0 0
5
 3
 3
3
 1
3
3
 3
 1  3
 3  3
 1
3
3
 3
2
0
0
6
 ?  4 L

 S
 S  0 
v3 0

u  0
3
 2
u2 ?
1
u1  0


S3  ?

 R3  ?
2
R2  F 

AE 
1
 R1  ? 
Applyknownboundary conditions
Solution Procedures









 

 
 0

?
3
 3  3
0
6
  1  3  1 3 2
 3 0
 3
v ?
0  3
3
5  3 1
0
  4 0
3
 ?  4 L

 S
 S  0 
v3 0

u  0
3
 2
5 3  4 0 1  3u2
0 0  3 3 3  3
v
1
3 u1 0


S3  ?

 R3  ?
2
 R1  ? 

AE
1
R2  F
u2=4FL/5AE,v1=0





43











 

 
u  0
5 AE

4FL
v  0
6 


 3  3
  1 
0
3  4 0  1 

0  3 3 3  3
3  32 0
1
3  3 0
5
3
3 
5  3  1
0 0  3  3 
  4 0
3
 ?  4 L

 S
3
v3  0
 v2  0
3 u2 
1
u1  0


S3  ?

 R3  ? 
2
 R1  ? 

AE 
 S1  0 
R2  F
Recovery of AxialForces
 







 
0
  4 
 4
5

0
0 
1
2 
v2  0
5AE
  0 
0 4FL  F
u2 
v  0
u1  0
 1 0 1
0 0 0
L 1 0 1
 0 0 0
Q2


 P 
Q1 

AE 0
 P1
Element I
Element II
Element III



 5 
 
 




 










5
3
 5

3
1
5
3
 3 
3
3
3 3  3 3
3 
1  3 1
3
1
3
3 
2
 
  F 
 1
v  0
2
u3  0
v  0
5AE

4FL 
u2
AE  3
Q3


 P  
4L  1
Q2
 P 
   
44
   

 


 0

0

0
  5 
  

 

0
 3 1

 3 3 3 3
3 1 
1
1
3 
 1 
v3
 0
3
u3 0
3
v  0
3u1 0
4L

1
AE

3 3  3
Q3


 P
Q 
 P1
Stresses insidemembers
Element I
Element II
Element III
5A
4F
 
4F
P1 
5
4F
P2 
5
5
2
P 
1
F
3
Q2 
5
F
3
F
5
3
Q 
5
45
3
P 
1
F
46
Finite Element Analysis of
Beams
BendingBeam
Normal strain:
Purebending problems:
Normal stress:
Normal stress with bendingmoment:
Moment-curvature relationship:
Flexure formula:
y
Review

x
  
y
Ey
 x  

M M
x
x ydA M


EI
1 M
I
x
 
My
 
I  y2
dA
1 d2
y
M  EI

 EI
dx2
47
BendingBeam
Review
Deflection:
Signconvention:
q(x)
x
Relationship between shear force, bending moment and
transverse load:
y
dx
dV
 q
dx
dM
V
 q
EI
dx4
d4
y
+ -
M M M
+ -
V
48
V V
Governing Equation and BoundaryCondition
• Governing Equation
• BoundaryConditions -----
2 
  ?,

at x 0
dx
d2
v 
EI
dx
d 
 ?& EI  ?&
dv d2
v
v  ? &
EssentialBCs– if vor
Natural BCs–if or
isspecdifviedat theboundary.
dx
{
dx
dx
dv


dx  dx


d 
at x  L
  ?,
 ?& EI
v  ? &  ?& EI 2
d2
v 
dx2
dx2
d2
v
d2
v
EI
dx2


2
dx
EI

dx
is
d
sp
ecifi
d
ed2
v
a
tthe boundary.
2 

 

 q(x)  0,
dx2
d2
v(x) 
EI
dx
d2
0<x<L
49
Weak Formulation for BeamElement
• Governing Equation
2



 q(x)  0,

dx2
d2
v(x) 
EI
dx
d2
• Weighted-Integral Formulation for one element



 

 

2
x2
dx2
d2
v(x) 
EI  q(x)dx
dx
 d2
0  w(x)
x1
• WeakFormfrom Integration-by-Parts ----- (1st time)
2
1
50
2
dx
dx
dx
dx dx

 x
x
d2
v 
2
EI

d 




x1 
x2


EI  wq dx w

dw d  d2
v 

0  
2
1
x  x  x
Weak Formulation
• WeakFormfrom Integration-by-Parts ----- (2nd time)
1
1
2
2
2
x
x
dx
dx
dx
dx
dx


x x
d2
v 
2
dw  d2
v 
2
EI   EI
  
d 



x1 
 wq dx w



x2
d2
w  d2
v 
0   dx2 EI
V(x2)
x=x1
M(x2)
q(x)
y
x
x=x2
V(x1)
M(x1)
L= x2-x1
2
51
x1
dx
dw
dx
EI 

x

2



wV  M



x1 
 wq dx


d 2
v


x2
d2
w 
0   dx2
Weak Formulation
• WeakForm
Q4  M x2 
Q1 Vx1 ,
2
1
1 1 2 3
2
dx
dw dw
dx
Q2 
dx
Q4
)Q 



x1  
EI  wq dx  w(x )Q w(x

x2
d2
w  d2
v 
 dx2
2
x1
dx
dw
dx 

x

2



 M


x1 
 wq dx wV


d2
v 


x2
d2
w 
0   dx2 EI
Q3
Q4

q(x)
y(v)
x
x=x2
Q1
Q2
x=x1 L=x2-x1
Q2  M x1 , Q3  Vx2 ,
52
Ritz Method forApproximation
n
j1
Let v(x)  u jj (x) and n  4
4
2
2
1
1 1 2 3
4
Q
dx
dw
dx
dw
dx2
j
dx2
j Q 





x1 
 wq dx  w(x )Q  w(x )Q 





x2 d2
w 
 EIu
j1
d2
 
Letw(x)= i (x), i =1, 2, 3,4
4
2
2
1
4
Q
Q
u
EI i 1 1 i 2 3
i
j
dx2
i
dx2
d
d
 i
 i
dx dx
(x )Q   (x )Q





x1 
 q dx 



d2
 



x2  d 2
 
  j
j1
Q3
Q4
y(v)
x
x=x2
Q1 q(x)
Q2
x=x1 L= x2-x1
where
3 2 4
53
1 1 2
dx
dx xx2
xx1
u  vx ; u 
dv
; u  vx ; u 
dv
;
Ritz Method forApproximation
i
i
q





Q    K u

 dx
 i

Q

 dx

Q

4
 j1
4 ij j
2
1
 x2 
i x2
3
 x1 
i x1
 d
 
 
Q
 d







x2
x1
i
i
x2

x1
j
ij
 dx2
dx2
EI i
where K  dx and q  qdx
 d 2
 d2
 
Q3
x=x1
y(v)
x
x=x2
Q1
Q2
L= x2-x1
54
Q4
Ritz Method forApproximation
  


   

 
  
 
 



















 







 







  













2
4
4
4
3
3
2
2
2
 1
 1
2 
 1 
 2 
 1 
2 
2
 1 
1
q3
q1 
u2  q2
K44 u4
 q4


K41
K34 u3 
3 K31
K14 u1 
K12 K13
K21 K22 K23 K24
K32 K33
K42 K43
K11
Q4


 Q
Q
Q1 
 dx
 dx
 dx
 dx
 dx
 dx
 dx
 dx
x
x2
x
x1
x
x2
x
x1
x
x
x
 x2 

1 x2
 x1 
1 x1
d
d
d

3 

4 
d

3
d

2 
x
d


 


 
d

 
d


where K  K 
ij ji
Q3
x=x1
y(v)
x
x=x2
Q1
Q2
L= x2-x1
55
Q4
Selection of ShapeFunction
















 

 









 








 













0

0

1 0 0 0
0 1 0 0
0 1
0 0 0 1
2 
 1 
 2 
 1 
2  
2
 1 
1
 2 

 1 
4
4
4
3
3
2
2
2
 1
 1
1
x
x2
x
x1
x
x2
x
x1
x
x
x
x
x2
x
x1
 dx
 dx
 dx
 dx
 dx
 dx
 dx
 dx
d
d
d

3 

4 
d
d

2 
x
d
d

1 
d
 

 

3 

 


 3 
2   2 
34
 3
33
23
13
24 
23
22
12
3 
 2  
q1 
   
u q
u  q 
K24 K34 K44 u4

 q4


K
K K K
K K K
K14 u1 
K12 K13
K11

Q4

 K14
 
Q
Q  K
Q1
Thebestsituation is -----
Interpolation
Properties
56
v()  u11 u22  u33 u44
Derivation of Shape Functionfor Beam Element–
LocalCoordinates
Howto select i???
2 4
2 4
d 1
d d 3
d d
dv()
 u
d1 d  u
d3 d
 u u
and
where 1 2
4
dv dv
d d
u1  v1 u2  u3  v2 u 
Let
57
3
2
i
i  ai  bi ci  d
Find coefficients to satisfy the interpolationproperties.
Derivation of Shape Function for BeamElement
Howto selecti???
e.g. Let 3
1
2
1 1 1 1
  a  b  c   d
  2 
1 
1
4
2
1
Similarly 1
4
1
4
1
4
58
2
2
2
3
2
2
1  1
 
2 
1 
 
1
1 
 
Derivation of Shape Function for BeamElement
In the globalcoordinates:
4
59
2
1
1 1
2 dx
l dv
2 dx
l dv
 ( x)
2(x)  v23(x) 
v(x)  v  (x) 























 
2
 2 1  2 1 
1
1

3

2

2
1
1

3

2
3 
2
1
 

2
 2 1 
3 1 
2
 2 1 
 1 3 1 
x  x 

1


 x  x  x 
 x
x x
x x 
l
 x1 
 x2
 x  x
 x1 
 x2
 x  x
x2  x1 
x x
x  x 1



 l



 x1 
 x2
 x  x
 x1 
 x2
 x  x
4


 

 
Element Equations of 4th Order 1-DModel
u3
x=x1
u4
y(v)
x
x=x2
u1 q(x)
u2
L= x2-x1
 

 
2 
33
23
13
24 
23
22
12
3  3 
 2   2  
34
u3 
u 
K44 u4


K24 K34
K
K K K
K K K
K14 u1 
K12 K13
K11
q1 

Q4

 
q4

 K14
   
Q q
Q  q  K
Q1




x2
x1
i
i
x2

x1
ji
ij
j dx  K
 dx2
dx2
EI i
where K  and q   qdx
 d2
 d2
 
x=x2
x=x1
1 1
1
3
2
4
60
Element Equations of 4th Order 1-DModel
u3
x=x1
u4
y(v)
x
x=x2
u1 q(x)
u2
L= x2-x1
61
x2
where qi  i qdx
x1






 4 2 
2
3
2 1

2
3

4  4 
3
2
   2  
u 
u   
 3Lu  v 
L2
3L  u1  v1 
 6 3L  6
 2L2
 3L
 6  3L 6
3L L2
 3L 2L

L3
2EI 3L
 q 
 q 
 
q
q1
Q

Q 
Q 
Q1
FiniteElement Analysis of 1-D Problems-
Applications
F
L
L
L
Example1.
Governingequation:
dx
dx 


EI


0  x L
 q(x)  0
2
d2
v 
2
d2
Weakform for oneelement
1 1
62
1



 Q4  0
dx
dw
Q2  wx2 Q3 
dx
dw
 wx Q 
 wqdx
dx2
dx2
d2
w d2
v
EI
x2
x1
x2

x 
where Q1 V(x1) Q2  M(x1 ) Q3  V(x2 ) Q4  M (x2 )
FiniteElement Analysis of 1-DProblems
Example1.
Approximation function:
3
1
x=x12
x=x2























 
2
 2 1  2 1 
4
1
1

3

2

2
1
1

3

2
3 
2
1
 

2
3 1   2 1 
1
2
 2 1 
 1 3 1 
x  x 

1


 x  x  x 
 x
x x
x x 
l
 x1 
 x2
 x  x
 x1 
 x2
 x  x
x2  x1 
x x
x  x 



 l



 x1 
 x2
 x  x
 x1 
 x2
 x  x
4


 

 
4
63
2
2 3
2
1
1 1
2 dx
2 dx
l dv l dv
 ( x)
 (x)  v  (x) 
v(x)  v  (x) 
FiniteElement Analysis of 1-DProblems
Example 1.
Finite element model:






 2 
2
1

2
4
3
2
 

 3Lv 
L2  
3L v1 
 6 3L  6
 2L2
 3L
 6  3L 6
3L L2
 3L 2L
L3
2EI 3L
Q

Q 
Q 
Q1
P1, v1
P2, v2 P3, v3 P4, v4
M1 ,1 M2 ,2
M3 ,3 M4 ,4
I II III
64
Discretization:
Matrix Assembly of Multiple Beam Elements
Element I
Element II
2 2
1
0
QI
L2
L3
QI
 0v1 

1
   
 2     
QI 
 6 3L 6 3L 0 0 0
3L 2L 3L L 0 0 0
6 3L 6 3L 0 0 0 0v2 

3
    
QI
 
2EI 3L 3L 2L2
0 0 0 0

4


2

 0 0v3 

0
 0 
 0  0
  

   3

 0
 0  0v4 

0
 0  0
  
1
2
3
3
4
0 0 0 0 0 0
0 0 0
0 0 0
0
0
0 0
0 0
II
II
Q
Q L3
QII
0 0 3L L2
 
 0 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
 0 0 0 0 0 0
0 0 0 0 0 0 0
  4 
0v1 
 0  0 0  
1 
    
QII
 3L 0 0 v 
2

  
  2EI 0 0  
 
2

0
0 0 6 3L 6
 0 3L 2L2
3L L2
0
0 6 3L 6 3L 0
 0 v 
 

 

 0  
3L 2L2
0
     3

0
 0 

0


0 
    4 
0v4 
0
  
65
Matrix Assembly of Multiple Beam Elements
Element III
3
2
3
2
0 0 0 0 0 0
III
L2
QIII
Q 
 0  0 v1 
 0  0 0   
  1 

 0 
0 0 0 0 0 0 0
 0 0 0 0 0 0
0 0 0 0 0 0 0 0 v2 
 0 
2EI
0 0   
2 
 
  
 III    
Q1 
QIII 

 
0 3L v




 
L

0 0 0 0 6 3L 6 3L
 v3 
0 0 0 0 3L 2L2
3L
0 0 0 6 3L 6
0 0 0 0 3L L2
3L 2L
 
3

  4 
 
 



















 4 
3

3 
2 
1 
2
2 2
4
3

3 
 2  
1 
0
0
0
0
0 0
0 0
0 0
0 0
0
0
0
0
  4 
0
0
0
0
0
0
0
6
 4 
6

 
 
 
0 v2 
v1 
6
3L
 3L 6 3Lv4 
L2
 3L 2L
L2
6
3L
 6 3L v 
 3L
6  6  3L  3L
 3L 3L 2L2
2L2
3L
L2
L2
 3L
L
2L 2
 3L  3L
L2
3L
3L
6  6  3L  3L
 3L
3L
L2
6 3L
3L 2L2
 6 3L
L3
2EI

M

 P4
M 
 P 
M 
 P2
 M 
 P1
66
Solution Procedures







 

 

 




 



 

0
 0
 0
0
6
0
 0

 0 
 0
 4 
3
3
2
1
2
4
3
3
2
1
  ?
  ?
0   ?
  0
v2  0
0 v1 0
0 0 0 6
0 0 0 3L
0 4L2
3L
L2
L2
0 0 3L
12 0  6 3L v  0
0  6 3L
0 4L2
3L
L2
L2
0 0 0 0
6 3L 0 0
 3L 12 0
L2
3L 2L2
3L
 6 3L  6 3L 0 0
L3
2EI
3L


M
P4  F
 M
 P  ? 
 M
 P2 ? 
 M  ? 
 P1 ? 
Applyknownboundary conditions

67


 


 

 

 

 



0
0
0
0 0 0
0 0 0
 6

 0
 0
 0
 0 
4
3
2
1
2
2
1
4
3
3  ?
  ?
  0

v  ?

v  0
v1 0
3L 4 ?
 6 3L 0
12 0 6
3L  6 3L
3L 2L2
 3L L2
 6  3L 12 0

 0 0  6 3L
L2
0 0 0 3L  3L 2L
 3Lv2 0
0
L2
 3L 6  3Lv4 ?
 L2
 3L 2L
3L L2
0 4L2
 3L L2
0
0 3L L2
0 4L2
3L
0 0 0  6  3L 6
L3
2EI

0


P3 ? 


P  ?

 M1  ? 
 P  ? 
 M
P4  F
 M
 M2  0 
Solution Procedures

 





 
  0 4
3
2
4
3
2
4?
?
 ?
3L  v ?
L2
4L2
L2
0 0
 4L2
3L L2
3L 6

 0 L2
3L 2L2
L3
2EI

M4 0

P F
 M 0
 M 0




 

4
3

2
 2
3
2
1
1
 0

4


 
 
 v
3L
0 0 0
0 0 0
3L 0 0
0 6 3L
L
 3L
L3
2EI

P? 

P ?
M ?
P? 

68


 


 

 

 

 



0
0
0
 6

 0
 0
 0
 0 
4
2
3
1
2
2
1
4
3
3  ?
  ?
  0

v  ?

v  0
v1 0
3L 4 ?
3L 0 0
L2
0 0
 6 0 3L 0
12  3L 0 6
L2
0 0 3L 0  3L 2L
3L  6 0
3L 2L2
 3L 0
 6  3L 12

 0 0  6
 3Lv2 0
0
L2
4L2
L2
0
L2
4L2
3L
0  3L 6
3L L2
0 3L
0 3L 0
0 0 6
L3
2EI

0


P3 ? 


P  ?

 M1  ? 
 P  ? 
 M
P4  F
 M
 M2  0 
Shear Resultant &Bending Moment Diagram
1
FL
7
FL
9
F
2
FL
7
7
3
F
7
P2
F
69
PlaneFlame
Frame: combination of bar andbeam
E,A,I, L
Q1, v1
Q3, v2
Q2, 1
P1, u1
Q4, 2
P2, u2
 
70
 
 

 
























 

2
1
1

2
2 
2
1
 
0
0
0
0
0
0
0
0
0
2
1
v
u2 
v
L
4EI 
L2
 6EI
L
2EI
L2
L2
6EI
12EI
L3
L2
12EI 6EI
L3
6EI
L
0
0 
AE
L
0 
AE
L
L2
L
L
L2
6EI 
u 
L3
6EI 2EI
12EI
L2
4EI
L3
6EI
0 0
12EI 6EI
L
0 
 AE
L
0
 AE
Q4
Q3

 P 
Q 
Q1
 P 
 x
FiniteElement Modelof an Arbitrarily Oriented
Frame
y
 x
y
71
FiniteElement Modelof an Arbitrarily Oriented
Frame




















 



2

1
1

3

2 
1
 
0
2
1
v 
u2 
v

u 
L
4EI 
L2
L
L2
 
6EI
L
0
0
AE
L
0
0
AE
L2
0
6EI 
L3
0
6EI
L2
0
2EI
L3
0
12EI
L
2EI  
L L2
6EI 12EI
6EI
L
0
AE
L
0
0
AE
L2
0
 6EI 
L3
0
6EI
 12EI
L2
0
4EI
 6EI
L3
0
 12EI
Q4
Q 
 P 
Q2 
  L2
Q1
 P 
local
72
global
Plane FrameAnalysis -Example
RigidJoint HingeJoint
BeamII
BeamI Beam
Bar
F F F F
73
Plane FrameAnalysis

 
 



















 




2

1
1

3

2 
1
 
0
0 
 2
 1
 v 
 u2
v

u 
L
4EI 
L2
L
L2
 
6EI
L
0
0
AE
L
0
AE
L2
0
6EI  
L3
0
6EI
L2
0
2EI
L3
0
12EI
L
2EI
L L2
6EI 12EI
4EI
6EI
L
0
AE
L
0
0 
AE
L2
0
L3
0
6EI
L2
0
6EI 12EI
L3
0
 12EI
Q4 
Q 
 P 
Q2 
  L2
Q1 
6EI 
I
 P 
I
P2,u2
Q,
4 2
P1, u1
Q2, 1
Q1, v1
Q3, v2
74
Plane FrameAnalysis
P1, u2
Q3, v3
Q2, 2
Q4, 3
Q1, v2
P2,u3
 
75
 




















 

3
3 
2
2

2 
1
 
0
0
0
0
0
0
0
0
0
4
2
v
u 
v
L
4EI 
L2
 6EI
L
2EI
L2
L2
6EI
12EI
L3
L2
12EI 6EI
L3
6EI
L
0
0 
AE
L
0 
AE
L
L2
L
  L2
6EI
L2
6EI 
u 
L3
6EI 2EI  
12EI
L2
4EI
L3
0 0
12EI 6EI
L
0 
 AE
L
0
 AE
Q4
Q3

 P 
Q2
Q2

 P 
II 


Plane FrameAnalysis
  















  2

1

3




2 
1
 
0
 2 


 1 
 v 
 u2 
v

u 
AE
L
0
L2
0
2EI
L
6EI
L3
0
6EI
L2
12EI
12EI
0 
6EI
L3
L2
0
AE
0
L
 6EI
0
4EI
L2
L

12EI
0 
6EI
L3
L2
0 
AE
0
L
6EI
0
2EI
L2
L
12EI
0
L3
0
AE
L
6EI
0
L2
6EI
L2
0
4EI
L
Q4
Q 
 P 
Q2 

Q1

I

 P 
I
 
76

 













 

 
2


2

2


3









1
 
1

0 
0
0
2

v 
u3
v

u 
L
L

L2 4
6EI 
 3

12EI
L3

6EI 4EI
AE
L
0
AE
L
0
0
0
12EI
L3
6EI
L2
0
6EI
 AE
L
0
0
0
 12EI
L3
 6EI
L2
0
6EI
L2
2EI
L
L2
4EI
L
 A
E
L
0
0
0
 12EI
L3
6EI
L2
0
 6EI
L2
2EI
L
Q4
Q 
P2
  Q2
Q2
 P 
II
Plane FrameAnalysis
1
FL
8
1
F
2
1
F
2
3
FL
8
77
UNIT- 3
Finite element analysisconstant
strain triangle
78
Finiteelement formulation for2D:
x
y
S
u
S
T
u
v
x
px
Step 1:Divide the body into finite elements connected toeach
other through special points(“nodes”)
py
3
2
1
4
x
2
u1
u2
u3
u4
v4
v3
3
v2
Element‘e’
4
v1
y
1
v
u

79

 4 
3

2

2

1
 
u4 
v 
u3 
v 
v 
v1 
u 
u 
d  
N3(x,y)u3 N4(x,y)u4
N3(x,y)v3 N4(x,y)v4
u(x,y) N1(x,y)u1  N2(x,y)u2
v(x,y) N1(x,y)v1  N2(x,y)v2


 4 
 2 
1 
4  3 
3
2
1
4
3
2
1
v 
v3

 
u4 
u2 
v 
u1 
N u 
N 0 N 0 N 0
 0
0 

v

0 N 0 N 0 N
v (x,y)
u (x, y) N
u    
u  N d
80
TASK2:APPROXIMATETHESTRAINand STRESSWITHINEACH
ELEMENT
1
81
1
xy
4
3
2
4
3
2
......

N1(x, y)
v

N4 (x,y)
v

N3(x, y)
v
N2 (x, y)
v


N4 (x, y)
u
x

u (x, y)

v (x, y)

N1(x, y)
u
y x y
y
y
y
y y 1
y
x
x
x x 1
x x

v (x, y)

N1(x, y)
v



Approximation of the strain in element ‘e’

u (x, y)

N1(x, y)
u 
N2 (x,y)
u 
N3(x, y)
u




 

 4 
4
3 
2

1 
B
 1
v 

u

4
v3

u 
v 
u1 
,y)
N (x, y)
N4 (x,y)v2 
0 u 
N (x,y)
0
N3(x,y)
N (x,y)
0
N2(x,y)
N (x,y)
0
N1(x,y)
N (x, y)

N (x, y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x
x y x y x y x

 y
y
y y y
 1 1 2 2 3 3 4
4
x
0
3
x
0
2
x
0
x
0
y


xy


 
  x 

ε  B d
82
Strain approximation in terms of strain-displacement matrix
Stressapproximation
Summary: Foreachelement
Displacement approximation in terms ofshape functions
Element stiffnessmatrix
Element nodal loadvector
u  N d
  DB d
ε  B d
e
V
k  B DB dV
T
S
e
b f
ST
S
f
V
T T
N T dS
f   e
N X dV  
83
Constant Strain Triangle (CST) :Simplest 2Dfinite element
y
v
v1
u1
3
1
(x,y)
84
v
u
1 1
v2
(x ,y)
2 (x ,y )
u2
2 2
x
• 3 nodes per element
• 2 dofs per node (each node canmove in x- and y-directions)
• Hence6 dofs per element
3
(x3,y3)
u3
u 21  N26 d61
 

  
1 
1
3  2 
2
1
v3

u3

v 
u 
N v 
 0
0 u 2 
0 N2 0 N3
N 0 N 0
v (x,y)
u 
u (x, y)

N1
Thedisplacement approximation in terms of shape functionsis
85
 3 
2
1
N 
 0
0 N2 0 N3 0 
N 0 N 0
N 
N1
u (x,y)  N1u1  N2u2 N3u3
v(x,y)  N1v1  N2 v2  N3v3
N
2A
3
2
1 1 1
1
N 
a2  b2x  c2 y
2A

a3  b3x  c3 y
2A
a b x  c y
N 
2
x3
2
b1  y2
b2  y3
b3  y1
 x3 y2
 x1 y3
 x2 y1
a1  x2 y3
a2  x3 y1
a3  x1 y2
y 
2 
y3 

1
 y3 c1  x3  x2
 y1 c2  x1  x3
 y2 c3  x2  x1
1 x1 y1 
A  area of triangle 
1
det1 x
where
x
y
u3
v3
Formula for the shape functionsare
v1
u1
u2
3
1
(x,y)
86
v
u
1 1
v2
(x ,y)
2 2
2 (x ,y)
3 3
(x ,y)
Properties of the shapefunctions:
1.Theshape functions N1, N2 and N3 are linear functions of xand
y
x
y
2
3
1
1
N1
2
3
1
N2
1
2
3
1
1
N3

at node 'i'
0 at other nodes
N 
1
i
87
2.At every point in thedomain
 y
 x
3
i1
3
Ni yi
i1
Ni xi
i1
3
1
Ni
88
3.Geometric interpretation of the shapefunctions
At any point P(x,y) that theshape functions are evaluated,
y
2
x
3
1
P (x,y)
A3
A2
A1
3
2
1
N
N
N 
A1
A

A2
A

A3
A
89
Approximation of thestrains
xy

 x
  
 u 



v   B d
   y
x


  

 y
   
   u

v 
 y x 
 

90









2
1
3 
N(x,y)
N(x,y)
N(x,y)
N(x,y)
N(x,y)
N(x,y)
N(x,y)

N(x,y)
N(x,y)
0
N3(x,y)
0
N2(x,y)
0
N1(x,y)
3
b3


c1
c 

1 0 c
b1 0
2A
x
3 3 
y
 1 1 2 2
x y x
b2 0 b3 0
0 c 0
b1 c2 b2 c3
y
y
2
y
1
y
x
0
x
0
x
B 0
91
Element stresses (constant inside eachelement)
  DB d
Inside each element, all components ofstrain are constant: hence
the name Constant StrainTriangle
92
IMPORTANT NOTE:
1.Thedisplacement field is continuous across elementboundaries
2.Thestrains and stresses are NOT continuous acrosselement
boundaries
Element stiffnessmatrix
e
V
k  B DB dV
T
e
V
T
dVBT
DBAt
k  B DB t=thickness of theelement
A=surfacearea of the element
SinceBisconstant
t
93
A
S
e
b f
ST
S
T
f
V
T
dS
f   e
N X dV   N T
Element nodal loadvector
94
Element nodal load vector due to bodyforces
 e
Ae
V
T T
b
f  N X dV  t N X dA













  


 e
e
e
A
A
A
b
N X dA
t
N X dA
t
N X dA
t

f

 f 
 f 
 f
f

tAe
N3 Xb

tAe
N2 Xb dA

tAe
N3 X a dA

dA

2 a
1 b
1 a
b3 y

 fb3x

b2 y
b2x 
 fb1y 
b1x
 
x
y
fb3x
fb3y
fb1y
fb1x
fb2x
fb2y
2
3
1
(x,y)
95
Xb
Xa
EXAMPLE:
If Xa=1andXb=0
 
96
 
  
















  

 









 0 
 3 
   3 
  0 
 0 
3
0
0
3
2
1
 tA
tA
tA
N dA
t
N dA
0
t
N dA 
t
t
t

 
N X dA 
 
N X dA 
 

t
N X dA
t
N X dA
t
N X dA
t
 f  
 f 
f  
e
e
e
e
e
e
e
e
A
A
A
 A
N3 X b dA
A
3 a
A
2 b
A
2 a
A
1 b
A
1 a


fb3 y

b3x

 fb2y 
 b2x   e
 fb1x 
 fb1y 
b
Element nodal load vector due totraction
e
ST
S
T
S
dS
f   N T
EXAMPLE:
y
fS3x
fS3y
fS1y
fS1x
2
x
3
1 
97
e
l
S
S
T dS
f  t
13 along13
NT
Element nodal load vector due totraction
EXAMPLE:
y
fS3x
2
3
S
T S dS
f  tl23 along 23
NT
e
fS3y
fS2x
fS2y
(2,0)
(2,2)
1
(0,0)
 
0
x

1
S
T
 t 21  t
 1
23
2 x l
fS  t N (1)dy
e 2 along 23
fS  0
2 y
fS  t
3x
fS  0
3 y
 2
Similarly, compute
1
98
2
99
Recommendations for use ofCST
1.Use in areas where strain gradients aresmall
2.Use in mesh transition areas(fine mesh to coarse mesh)
3.Avoid CSTin critical areas of structures (e.g.,stress
concentrations, edges of holes,corners)
4.In general CST
sare not recommended for general analysis
purposes as a very large number of these elements are required
for reasonableaccuracy.
Example
x
y
El1
El2
1
2
3
4
300psi
1000lb
3in
100
2in
Thickness(t) =0.5in
E=30×106 psi
=0.25
(a) Compute the unknown nodaldisplacements.
(b) Compute the stressesin the twoelements.
Realizethat this is a plane stressproblem and therefore we need to use
E
101
7
2
0 10 psi
1.2


0
0   0.8




0



1 
1 
 0 3.2 0.8 0 
1 3.2 
0 0
D  
1 2
Step 1:Node-element connectivitychart
ELEMENT Node 1 Node 2 Node 3 Area
(sqin)
1 1 2 4 3
2 3 4 2 3
Node x y
1 3 0
2 3 2
3 0 2
4 0 0
Nodalcoordinates
Step 2:Compute strain-displacement matrices for theelements
 1 1 2 2 3 3
3
2
1
b 
b c b c
c
c 
b2 0 b3 0
0 c 0
b1 0
2A
B
1 0 c
R
ecall
b1 y2  y3 b2  y3  y1 b3  y1  y2
c1  x3  x2 c2  x1  x3 c3  x2  x1
with
ForElement#1:
1(1)
2(2)
4(3)
(local numbers within brackets)
y1  0; y2  2; y3  0
x1  3; x2  3; x3  0
Hence
b3  2
c3  0
b2  0
c2  3
b1 2
c1  3
3
0 
 2 0 0 0 2 0 
3 0 3 0 
2 3 0 0 2
6
B(1)

10
Therefore
ForElement#2:

2



3
0
2 0 0 0 2 0
3 0 3 0
2 3 0 0
6
B(2)

1 0
102
Step 3:Compute element stiffnessmatrices

0 

0 

0.3 






0.2
0.2 0.5333
1.2 0.2
0 0 0.3
107
1.2 0.2
0.5333
0.9833 0.5 0.45

 1.4 0.3
0.45


k(1)
AtB(1)T
DB(1)
(3)(0.5)B(1)T
DB(1)
u1
103
u2 u4
0.2 

v4
v2
v1

0 

0 

0.3 






0.2
0.2 0.5333
1.2 0.2
0 0 0.3
107
1.2 0.2
0.5333
0.9833 0.5 0.45

 1.4 0.3
0.45


k(2)
AtB(2)T
DB(2)
(3)(0.5)B(2)T
DB(2)
u3
104
u4 u2
0.2 

v2
v4
v3
105
Step 4:Assemblethe global stiffness matrix correspondingto the nonzerodegrees of
freedom
Notice that
u3  v3  u4  v4  v1  0
Hencewe need to calculate only asmall (3x3) stiffnessmatrix
K
1
0.983  0.45 0.2 u
 0.45 0.983 0  107 1
u
2
 0.2
u
0
u2
1.4
v2
v2
Step 5:Compute consistent nodalloads

f  f 2x 
 
 
 f   f 
2 y  2 y
   0 
 f1x   0 
f2 y  1000  fS
2 y
Theconsistent nodal load due to traction on the edge3-2
N dx
3
3
3
S2 y
 
 9
 0
 x2

3
 50  2   50 
2
  225 lb
 (300)(0.5)
N (300)tdx
f 
 150
x
dx
3


x0 3
x0 32
x0 3 32
3 2
N
106

x
3
2 32
Hence
f2 y  1000 fS
2 y
 1225 lb
Step 6:Solve the system equations to obtain the unknownnodal loads
K d  f
107







0
0
 0.2
0    
0.983
 2  
107
 0.45 u2  
 0.45 0.2u1 
0.983
0 1.4v  1225
Solveto get



 

  
v 
u 
4
 2
2
1

 0.9084104
in
u  0.106910 in
 0.2337 104
in 
108
0.9084104
0 0
0.1069104
 
0.2337104
0
1 1 2 2 4 v4
v u v u
u
d(1)T
 
  76.1 
Calculate
 114.1 
 (1)
 1391.1 psi
Step 7:Compute the stresses in theelements
In Element#1
 (1)
 DB(1)
d(1)
With
109
3
0.9084104

3
 0 0 0 0 0.1069104
2 v2
u v u4 v4 u
d(2)T
 
Calculate
 114.1 
 (2)
  28.52  psi
In Element#2
 (2)
DB(2)
d(2)
With
363.35
Notice that the stressesare constant ineach element
110
UNIT - 4
Heat transfer analysis
ThermalConvection
Newton’s Lawof Cooling
q  h(Ts T)
h: convective heat transfer coefficient (W m2
Co
)
111
112
Thermal Conduction in1-D
Boundary conditions:
Dirichlet BC:
Natural BC:
Mixed BC:
Weak Formulation of 1-D HeatConduction
(SteadyState Analysis)
• GoverningEquationof 1-D Heat Conduction -----

d (x)A(x)
dT(x)   AQ(x)  0
dx  dx 
 
0<x<L
• WeightedIntegral Formulation -----
• WeakFormfrom Integration-by-Parts -----
0
L
dx
 d  dT(x)  
  AQ(x)dx
 
 
0  w(x) 
dx (x)A(x)
L
dw  dT  
113

L
dT 
   0
0  
0   dx  A
dx   wAQdx  w A
dx 
Formulation for 1-D LinearElement
Let T(x)  T11(x)T22(x)
f2
1
x1
2
x2
x
T1 T2
f1
2 1
1 2
l l
x  x
,
x  x
 ( x)  ( x) 
x2
x1
1T1
2T2
2
2
1
1
x
x
, f (x)  A
T
f (x)  A
T
114
Formulation for 1-D LinearElement
Letw(x)= i (x), i =1, 2
2 x2
i j
j i i 2 2 i 1 1
j1
x2 
 d d 
  ( x )f 
dx   AQdx (x ) f
 dx dx 
 
x 
 1  1
0  T  A
 
x
2
Qi i (x2 ) f2 i (x1) f1
 KijTj
j1
 



   
 11
1
1
K22 T2
K12
K12 T1 
K
 2  Q2
 f   
f Q
1
115
1
2
x2 x2
i j
ij i i 1
x1 x2
x
dT dT
dx dx
 d d 
where K  A dx, Q   AQdx, f  A , f  A
 dx dx 
 
 
x
Element Equations of 1-D LinearElement
 




 
 1
1
1 T2 
1 1T1 
L 1
 2  Q2
Q
 f   
f A
 
i i 1
dT dT
dx xx1 xx2
where Q   AQ dx, f  A , f2   A
dx
x2

x1
f2
1
x1
2
x2
T1
x
T2
116
f1
1-D Heat Conduction -Example
t1 t2 t3
0
T 200o
C T 50o
C
x
1 2 3
Acomposite wall consists of three materials, asshown in the figure below.
Theinside wall temperature is 200oCand the outside air temperature is50oC
with aconvection coefficient of h =10 W(m2.K). Find the temperature along
the composite wall.
1  70W m  K , 2  40W m  K , 3  20W m  K 
t1  2cm, t2  2.5cm, t3  4cm
117
Thermal Conduction andConvection-
Fin
Objective: to enhanceheattransfer
dx
t
x
w
loss
Q 
2h(T T)dx  w  2h(T T)dx t

2h(T T)w  t
Ac dx Ac
Governing equation for 1-D heat transfer in thin fin
c c
d  A
dT   A Q 0
dx  dx 
 
c
118
 c
d  A
dT   Ph T  T  A Q  0
dx  dx 
 
P  2w  t
where
Fin- WeakFormulation
(SteadyStateAnalysis)
• GoverningEquationof 1-D Heat Conduction -----


d (x)A(x)
dT(x)   PhT T  AQ 0
dx  dx 
 
0<x<L
• WeightedIntegral Formulation -----
• WeakFormfrom Integration-by-Parts -----
0
L
dx
 d  dT(x)  
  Ph(T T)  AQ(x)dx
 
 
0  w(x) 
dx (x)A(x)
dx
119
dx dx

L
dw  dT   
L
dT 
0  A  wPh(T T
 )  wAQ dx  w A
   

   0
0  

Formulation for 1-D LinearElement
Letw(x)= i (x), i =1, 2
2
dx dx
d d
j1

x2
 
iAQ  PhTdx
A i j
 Ph dx 
i j 

 x 
 1  1
i (x2 ) f2 i (x1) f1
0  T 
j 
x2


x
2
i (x1) f1
Qi i (x2 ) f2
 KijTj
j1
 



 

 
 11
1
1
K22 T2
K12
K12 T1 
K
 2  Q2
 f  
f Q
1 1
1 2
x2
ij i i
i j
dx dx
dx dx
d d
A i 
xx1 xx2
x2
 
where K   Ph dx, Q   AQ  PhT dx,
j 
x  
f   A
dT
, f  A
dT
 
x
120
Element Equations of 1-D LinearElement
1 1
f Q  1
    1 T1 

A  1

Phl 2
 f          
 2  Q2  1  6 1
 L 1 2T2 
f2
1
x=0
2
x=L
T1
x
T2
f1
x2
121
dT dT
xx1 xx2
f1   A
dx
, f2   A
dx
where Qi  i AQ  PhT dx,
x1
122
Time-Dependent Problems
123
Time-DependentProblems
In general,
Keyquestion: How to choose approximatefunctions?
Two approaches:
ux,t
ux,t u jj x,t
ux,t u j tj x
Model Problem I– Transient Heat Conduction
Weakform:
 
t x

x

c
u

 a
u   f x,t
1 1
1
a )Q2w(x2 )





x2

 wf dx Q w(x
u
t
 cw
w u
x x
0  
x
2
124
1
x2
x1
dx


Q  a
du
dx


Q  a
du  ;
let:
)
1 1 2 2
1
a 




x2

 wf dx Q w(x ) Q w(x
u
t
 cw
w u
x x
0  
x
Transient HeatConduction
n
ux,t u j tj x
j1
and w i x
KuMu 
F

x2
x1
ij
x x
K  a i j
dx
 
Mij
x2
 cijdx
x1
x2
Fi  i fdx  Qi
x1
ODE!
125
TimeApproximation – First OrderODE
dt
126
0  t  T 0
a
du
 bu  f t u0u
Forward difference approximation - explicit
Backward difference approximation - implicit
k k k
a
k1
u  u
 t
f bu 
k k k
k1
u  u 
t
f bu 
a bt
StabilityRequirment
max
127
2
1 2
cri
t  t 
K M uQ
where
Note: Onemust usethe samediscretization for solving
the eigenvalueproblem.
Transient Heat Conduction -Example
0
128
u

2
u
 0  x 1
t
u
1,t 0
t x2
u0,t 0
ux,01.0
t  0
Transient Heat Conduction -Example
129
Transient Heat Conduction -Example
130
Transient Heat Conduction -Example
131
Transient Heat Conduction -Example
132
Transient Heat Conduction -Example
133
134
UNIT– 5
DynamicAnalysis
Axi-symmetricAnalysis
Cylindrical coordinates:
x  rcos; y  r sin; z  z
r, , z
• quantities depend on rand zonly
• 3-D problem 2-D problem
135
Axi-symmetricAnalysis
136
Axi-symmetric Analysis – Single-VariableProblem
00
22
11 


 
 z
u(r, z)   a u  f (r, z)  0
z

r
u(r, z)  
 a

1   ra
r r

Weakform:
e
wqn ds
e


  
 z

z



 r
u 
wa
 r

wa u  a wu  wf (r,z)rdrdz
0  00
22
11
where nz
137
z
r
u(r, z)
u(r, z)
nr  a22
qn  a11
FiniteElement Model – Single-VariableProblem
u  u jj
j
Ritzmethod:
e
n
e e
K u  f Qe
 ij j i i
j1
where j (r, z) j (x, y)
w i
Weakform
22
138
e
j j

a
i i
K e
  a  a 

rdrdz
00 i j 
r r z z
  
ij   11
where
i i
e
f e
  frdrdz

i i n
e
Qe
  q ds

Single-Variable Problem – HeatTransfer
Weakform
Heat Transfer:

1  rk
T(r, z)  
 k
T(r, z)   f (r, z)  0
 
z  z
r r  r
   
e


0 
wk
T  
wk
T   wf (r, z) rdrdz
   
 
 r  r  z  z 
wqn ds
e
nz
139
T(r, z) T(r, z)
qn  k nr  k
r z
where
3-Node Axi-symmetricElement
T (r, z)  T11 T22 T33
1
2
3

140

1 2 3
e
1 r z
2A
r2z3  r3z2
 
 
  z  z
 
 
r r
 3 2 
  3 1 1 3
2 3 1
e
1 r z
2A
r z  r z
 
 z 
   z
 
 
r  r
 1 3 
  1 2 2 1
3 1 2
e
1 r z
2A
r z  r z
 
 
  z z
 
 
r r
 2 1 
4-Node Axi-symmetricElement
T (r, z)  T11 T22  T33  T44
1 2
3
4
a
b


r
141
z
2
3
a b
  1
 1
   
 1

1     
 a  b  a  b 
 
 
  1
 
4  a  b
 
Single-Variable Problem –Example
Step1: Discretization
Step2: Element equation
e
142
j
i
ij 

 
K e
  i
j 
rdrdz
r r z z 
  

i i
e
f e
  frdrdz
 i i n
e
Qe
  q ds

Reviewof CSTElement
• Constant Strain Triangle (CST)- easiest and simplest
finite element
– Displacement field in terms ofgeneralized coordinates
– Resulting strain field is
– Strains do not vary within the element. Hence, the name
constant strain triangle(CST)
• Other elements are not solucky.
• Canalso be called linear triangle becausedisplacement field is
linear in xand y - sidesremainstraight.
143
Constant Strain Triangle
• Thestrain field from the shapefunctions lookslike:
– Where, xi and yi are nodal coordinates (i=1, 2,3)
– xij =xi - xj and yij=yi - yj
– 2Ais twice the area of the triangle, 2A=x21y31-x31y21
• Node numbering is arbitrary except that the sequence123
must go clockwise around the element if Ais tobe positive.
144
145
Constant Strain Triangle
• Stiffness matrix for element k =BTEBtA
• TheCSTgivesgood results in regions of theFE
model where there is little straingradient
– Otherwise it does notwork well.
Linear Strain Triangle
• Changesthe shape functions and results in
quadratic displacement distributions and
linear strain distributions within theelement.
146
Linear Strain Triangle
• Will this element work better for the problem?
147
ExampleProblem
• Consider the problem we were lookingat:
5in.
1in.
0.1in.
I  0.113
/12  0.008333 in4
 
M  c

1 0.5
I 0.008333
 60 ksi
E
 
  0.00207
2
 
ML

25
2EI 2  29000  0.008333
 0.0517in.
148
1k
1k
Bilinear Quadratic
• TheQ4element is aquadrilateral element
that hasfour nodes. In terms ofgeneralized
coordinates, its displacement field is:
149
Bilinear Quadratic
• Shapefunctions and strain-displacement
matrix
150
ExampleProblem
• Consider the problem we were lookingat:
5in.
1in.
0.1in.
E
151
I 0.008333
 0.0345in.
3EI 3290000.008333
0.2125

 60ksi
10.5
I  0.1 13
/ 12 0.008333in4
 
PL3
 
 0.00207
 
M  c

0.1k
0.1k
Quadratic Quadrilateral Element
• The8 noded quadratic quadrilateral element
usesquadratic functions for thedisplacements
152
Quadratic Quadrilateral Element
• Shapefunction examples:
• Strain distribution within theelement
153
154
Quadratic Quadrilateral Element
• Should we try to use this element to solve our
problem?
• Or try fixing the Q4element for our purposes.
– Hmm…toughchoice.
155
Isoparametric Elements and Solution
• Biggestbreakthrough in the implementation of the
finite element method is the development of an
isoparametric element with capabilities to model
structure (problem) geometries of any shapeandsize.
• Thewhole idea works onmapping.
– Theelement in the real structure is mapped to an
‘imaginary’ element in an ideal coordinatesystem
– Thesolution to the stress analysis problem is easyand
known for the ‘imaginary’element
– Thesesolutions are mapped back to the element inthe
real structure.
– All the loads and boundary conditions are also mapped
from the real to the ‘imaginary’ element in this approach
Isoparametric Element
3
1
(x1,y1)
2
(x2,y2)
(x3,y3)
4
(x4,y4)
X,u
Y
,v


2
(1,-1)
1
(-1,-1)
4
(-1, 1)
3 (1, 1)
156
Isoparametric element
Y
1 2 3 4
0 0 0 N1
X N
0
  

• The mappingfunctions areq
x1u
 ite simple:
4

 x 
2
x3 
N N N 0 0 0 0  x 
N2 N3 N4 y1 
y2

 
1
4
N  1 (1)(1)
2
4
N 
1
(1 )(1)
3
4
N  1 (1 )(1 )
4
4
N 
1
(1)(1 )
y3 

y4


Basically, thex and y coordinatesof any point in the
elementare interpolations of the nodal (corner)
coordinates.
Fromthe Q4 element,thebilinear shape functions
are borrowed to be used as the interpolation
functions. They readily satisfy the boundaryvalues
too. 157
Isoparametric element
v
1 2 3 4
0 0 0 N1
u N
0
    

• Nodal shape functions for d
u
i1s
placements
4

u 
2
u3
N N N 0 0 0 0 u 
N2 N3 N4 v1 
v2

 
v3
v4


1
4
N  1 (1)(1)
2
4
N 
1
(1 )(1)
3
4
N  1 (1 )(1 )
4
4
N 
1
(1)(1 ) 158
• Thedisplacement strain relationships:
x

u

u

 
u


X  X  X
y

v

v

 
v


Y  Y  Y
x


 
 
 xy 
y

u
X
v
Y

Y X
   





 u





v 
Y Y

   0



0


0
 


 
X X
0

   
Y Y X X 



 u 
  v 
 
 u 
 
 
 

 
 v 

But,it is too difficult to obtain
 and

X X 159
Isoparametric Element
 X  Y 
u
u





  
X Y u 
X Y u 


X 
  Y 
  
It is easier to obtain
X
and
Y
 
X Y
 
J  X Y Jacobian
 
 
defines coordinate transformation
Hencewe will do itanother way
u

u

X

u

Y
 X  Y 
u

u

X

u

Y
X
 
Ni
X
  i
Y N

 

i
Yi
X N
 
i X i
 
Y N
 
i Yi
 
X
 
u
 
Y 
u 
 
1 
u
   J  
 
u


169
161
GaussQuadrature
• Themapping approach requires usto be able to
evaluate the integrations within the domain (-1…1)of
the functionsshown.
• Integration canbe done analytically by usingclosed-
form formulas from atable ofintegrals (Nah..)
– Or numerical integration can be performed
• Gaussquadrature is the more common form of
numerical integration - better suited for numerical
analysis and finite elementmethod.
• Itevaluated the integral of afunction asasum of a
becomes
n
I  Wii
i1
finite numb1er of terms
I   d
1
GaussQuadrature
• Wi is the ‘weight’ and i is the value of f(=i)
162
Numerical Integration
Calculate:
b
I   f xdx
a
• Newton – Cotesintegration
• Trapezoidalrule – 1storderNewton-Cotesintegration
• Trapezoidalrule – multipleapplication
1
b a
f (x)  f (x)  f (a) 
f (b)  f (a)
(x a)
2
f (a)  f (b)
b b
I   f (x)dx   f1(x)dx  (b  a)
a a
b
163
xn1
xn x1 x2 xn
a x0 x0 x1
I   f (x)dx   fn (x)dx   f (x)dx   f (x)dx    f
(x)dx





2 
n1
i1
i
f (x )  f (b)
f (a)  2
h 
I 
Numerical Integration
Calculate:
b
I   f xdx
a
• Newton – Cotesintegration
• Simpson1/3 rule – 2ndorderNewton-Cotesintegration
2
2
0 1
1
0 2
0 1
2 f (x )
(x2  x0 )(x2  x1)
(x  x0 )(x  x1)
f (x )  f (x )
(x0  x1)(x0  x2 ) (x  x )(x  x )
(x  x1)(x  x2 ) (x  x )(x  x )
f (x)  f (x) 
b b
a a
6
f (x )  4 f (x )  f (x )
I   f (x)dx   f2 (x)dx  (x2  x0 ) 0 1 2
164
Numerical Integration
Calculate:
b
I   f xdx
2

(b  a)
f (a) 
(b  a)
f(b)
2 2
165
I  (b  a)
f (a)  f (b)
I  c0 f (x0 )  c1 f (x1)
a
• GaussianQuadrature
Trapezoidal Rule: GaussianQuadrature:
Choose according to certaincriteria
c0,c1,x0 , x1
Numerical Integration
Calculate:
b
I   f xdx
a
• GaussianQuadrature
   

3
 1 
 1
1
1
I   f xdx  f 
3
  f 
1
• 3pt GaussianQuadrature
I   f xdx 0.55 f 0.77 0.89  f 0 0.55 f0.77
1
1
1
• 2pt GaussianQuadrature
I   f xdx  c0 f x0  c1 f x1  cn1 f xn1
b  a
~
x 1
2(x  a)
Let:
b 1

1
a
166
~ ~
1 1 1
 f (x)dx 
2
(b  a) f 2
(a  b) 
2
(b  a)xdx

More Related Content

Similar to FEMSlide 1.pdf

Ch 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsCh 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsAmandaPerin1
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Geoffrey Négiar
 
CE 595 Section 4.ppt
CE 595 Section 4.pptCE 595 Section 4.ppt
CE 595 Section 4.pptSimon806484
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetAjEcuacion
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetHimadriBiswas10
 
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Avichai Cohen
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdfYesuf3
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEMmezkurra
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxSahilDhanvijay2
 

Similar to FEMSlide 1.pdf (20)

Ch 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsCh 3 math_of_thermodynamics
Ch 3 math_of_thermodynamics
 
Formula m2
Formula m2Formula m2
Formula m2
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
 
UNIT I_2.pdf
UNIT I_2.pdfUNIT I_2.pdf
UNIT I_2.pdf
 
CE 595 Section 4.ppt
CE 595 Section 4.pptCE 595 Section 4.ppt
CE 595 Section 4.ppt
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
 
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdf
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEM
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
4017
40174017
4017
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
計算材料学
計算材料学計算材料学
計算材料学
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
 

More from Praveen Kumar

UNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptUNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptPraveen Kumar
 
UNIT3-Special casting processcasting.ppt
UNIT3-Special casting processcasting.pptUNIT3-Special casting processcasting.ppt
UNIT3-Special casting processcasting.pptPraveen Kumar
 
Unit-II Basic Mechanical Engineering.pptx
Unit-II Basic Mechanical Engineering.pptxUnit-II Basic Mechanical Engineering.pptx
Unit-II Basic Mechanical Engineering.pptxPraveen Kumar
 
UNIT3-Special casting processmechanica.ppt
UNIT3-Special casting processmechanica.pptUNIT3-Special casting processmechanica.ppt
UNIT3-Special casting processmechanica.pptPraveen Kumar
 
UNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptUNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptPraveen Kumar
 
Unit-I Basic Mechanical Engineering.pptx
Unit-I Basic Mechanical Engineering.pptxUnit-I Basic Mechanical Engineering.pptx
Unit-I Basic Mechanical Engineering.pptxPraveen Kumar
 
UNIT3-Special casting process mechanical.ppt
UNIT3-Special casting process mechanical.pptUNIT3-Special casting process mechanical.ppt
UNIT3-Special casting process mechanical.pptPraveen Kumar
 
UNIT1-CastingprocessPROCESSINTRODUCTION.ppt
UNIT1-CastingprocessPROCESSINTRODUCTION.pptUNIT1-CastingprocessPROCESSINTRODUCTION.ppt
UNIT1-CastingprocessPROCESSINTRODUCTION.pptPraveen Kumar
 
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...Praveen Kumar
 
UNIT1-Castingprocessriserdesign design gating elemnts.ppt
UNIT1-Castingprocessriserdesign design gating elemnts.pptUNIT1-Castingprocessriserdesign design gating elemnts.ppt
UNIT1-Castingprocessriserdesign design gating elemnts.pptPraveen Kumar
 
UNIT2-Solidificationcasting processsand.ppt
UNIT2-Solidificationcasting processsand.pptUNIT2-Solidificationcasting processsand.ppt
UNIT2-Solidificationcasting processsand.pptPraveen Kumar
 
Basic Mechanical Engineering-MID-I - Copy.pptx
Basic Mechanical Engineering-MID-I - Copy.pptxBasic Mechanical Engineering-MID-I - Copy.pptx
Basic Mechanical Engineering-MID-I - Copy.pptxPraveen Kumar
 
UNIT2-Solidificationcastingprocessmetal.ppt
UNIT2-Solidificationcastingprocessmetal.pptUNIT2-Solidificationcastingprocessmetal.ppt
UNIT2-Solidificationcastingprocessmetal.pptPraveen Kumar
 
UNIT2-RisersDESIGNCONSIDERATIONCASTING.ppt
UNIT2-RisersDESIGNCONSIDERATIONCASTING.pptUNIT2-RisersDESIGNCONSIDERATIONCASTING.ppt
UNIT2-RisersDESIGNCONSIDERATIONCASTING.pptPraveen Kumar
 
UNIT2-Risers casting desing considerations.ppt
UNIT2-Risers casting desing considerations.pptUNIT2-Risers casting desing considerations.ppt
UNIT2-Risers casting desing considerations.pptPraveen Kumar
 
UNIT2-Risers.castingdesignconsiderationppt
UNIT2-Risers.castingdesignconsiderationpptUNIT2-Risers.castingdesignconsiderationppt
UNIT2-Risers.castingdesignconsiderationpptPraveen Kumar
 
UNIT2-Risersdesignconsiderationscasting.ppt
UNIT2-Risersdesignconsiderationscasting.pptUNIT2-Risersdesignconsiderationscasting.ppt
UNIT2-Risersdesignconsiderationscasting.pptPraveen Kumar
 
UNIT2-Risersdesigncalculationcasting.ppt
UNIT2-Risersdesigncalculationcasting.pptUNIT2-Risersdesigncalculationcasting.ppt
UNIT2-Risersdesigncalculationcasting.pptPraveen Kumar
 
UNIT2-Risersdesign casting processriser.ppt
UNIT2-Risersdesign casting processriser.pptUNIT2-Risersdesign casting processriser.ppt
UNIT2-Risersdesign casting processriser.pptPraveen Kumar
 
UNIT2-Risers.casting process riser desingppt
UNIT2-Risers.casting process riser desingpptUNIT2-Risers.casting process riser desingppt
UNIT2-Risers.casting process riser desingpptPraveen Kumar
 

More from Praveen Kumar (20)

UNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptUNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.ppt
 
UNIT3-Special casting processcasting.ppt
UNIT3-Special casting processcasting.pptUNIT3-Special casting processcasting.ppt
UNIT3-Special casting processcasting.ppt
 
Unit-II Basic Mechanical Engineering.pptx
Unit-II Basic Mechanical Engineering.pptxUnit-II Basic Mechanical Engineering.pptx
Unit-II Basic Mechanical Engineering.pptx
 
UNIT3-Special casting processmechanica.ppt
UNIT3-Special casting processmechanica.pptUNIT3-Special casting processmechanica.ppt
UNIT3-Special casting processmechanica.ppt
 
UNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.pptUNIT3-Special casting processmechanical.ppt
UNIT3-Special casting processmechanical.ppt
 
Unit-I Basic Mechanical Engineering.pptx
Unit-I Basic Mechanical Engineering.pptxUnit-I Basic Mechanical Engineering.pptx
Unit-I Basic Mechanical Engineering.pptx
 
UNIT3-Special casting process mechanical.ppt
UNIT3-Special casting process mechanical.pptUNIT3-Special casting process mechanical.ppt
UNIT3-Special casting process mechanical.ppt
 
UNIT1-CastingprocessPROCESSINTRODUCTION.ppt
UNIT1-CastingprocessPROCESSINTRODUCTION.pptUNIT1-CastingprocessPROCESSINTRODUCTION.ppt
UNIT1-CastingprocessPROCESSINTRODUCTION.ppt
 
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...
Basic Mechanical Engineeringrole of mechanical engineering society-MID-I - Co...
 
UNIT1-Castingprocessriserdesign design gating elemnts.ppt
UNIT1-Castingprocessriserdesign design gating elemnts.pptUNIT1-Castingprocessriserdesign design gating elemnts.ppt
UNIT1-Castingprocessriserdesign design gating elemnts.ppt
 
UNIT2-Solidificationcasting processsand.ppt
UNIT2-Solidificationcasting processsand.pptUNIT2-Solidificationcasting processsand.ppt
UNIT2-Solidificationcasting processsand.ppt
 
Basic Mechanical Engineering-MID-I - Copy.pptx
Basic Mechanical Engineering-MID-I - Copy.pptxBasic Mechanical Engineering-MID-I - Copy.pptx
Basic Mechanical Engineering-MID-I - Copy.pptx
 
UNIT2-Solidificationcastingprocessmetal.ppt
UNIT2-Solidificationcastingprocessmetal.pptUNIT2-Solidificationcastingprocessmetal.ppt
UNIT2-Solidificationcastingprocessmetal.ppt
 
UNIT2-RisersDESIGNCONSIDERATIONCASTING.ppt
UNIT2-RisersDESIGNCONSIDERATIONCASTING.pptUNIT2-RisersDESIGNCONSIDERATIONCASTING.ppt
UNIT2-RisersDESIGNCONSIDERATIONCASTING.ppt
 
UNIT2-Risers casting desing considerations.ppt
UNIT2-Risers casting desing considerations.pptUNIT2-Risers casting desing considerations.ppt
UNIT2-Risers casting desing considerations.ppt
 
UNIT2-Risers.castingdesignconsiderationppt
UNIT2-Risers.castingdesignconsiderationpptUNIT2-Risers.castingdesignconsiderationppt
UNIT2-Risers.castingdesignconsiderationppt
 
UNIT2-Risersdesignconsiderationscasting.ppt
UNIT2-Risersdesignconsiderationscasting.pptUNIT2-Risersdesignconsiderationscasting.ppt
UNIT2-Risersdesignconsiderationscasting.ppt
 
UNIT2-Risersdesigncalculationcasting.ppt
UNIT2-Risersdesigncalculationcasting.pptUNIT2-Risersdesigncalculationcasting.ppt
UNIT2-Risersdesigncalculationcasting.ppt
 
UNIT2-Risersdesign casting processriser.ppt
UNIT2-Risersdesign casting processriser.pptUNIT2-Risersdesign casting processriser.ppt
UNIT2-Risersdesign casting processriser.ppt
 
UNIT2-Risers.casting process riser desingppt
UNIT2-Risers.casting process riser desingpptUNIT2-Risers.casting process riser desingppt
UNIT2-Risers.casting process riser desingppt
 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 

FEMSlide 1.pdf

  • 1. Preparedby Prof. V.V.S.H. Prasad, Madhav, Professor, Dept of Mechanical Engineering Mr . C. Labesh Kumar, Assistant Professor, Dept of Mechanical Engineering Finite Element Methods III B Tech II Semester INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad- 500043 1
  • 2. 2 UNIT- 1 • Introduction to FEM: – Stiffness equations for a axial bar element in local co-ordinates bars using Potential Energyapproach and Virtual energyprinciple – Finite element analysis of uniform, stepped and tapered subjected to mechanical and thermalloads – Assembly of Global stiffness matrix and loadvector – Quadratic shapefunctions – properties of stiffnessmatrix
  • 5. Axially Loaded Bar – GoverningEquations and BoundaryConditions • Differential Equation • BoundaryCondition Types • prescribeddisplacement(essential BC) •prescribedforce/derivative of displacement (natural BC) dx  dx 5 d EA(x) du   f (x) 0 0  x L
  • 6. 6 Axially Loaded Bar –BoundaryConditions • Examples • fixed end • simplesupport • free end
  • 7. Potential Energy - Axially loadedbar - Elasticbody x Stretchedbar • Elastic Potential Energy(PE) - Spring case Unstretched spring PE 0 2 1 2 kx PE  undeformed: deformed: 0 7 PE 0 1 L PE  Adx 2 2 V PE  1 σT εdv
  • 8. Potential Energy • Work Potential(WE) B L  WP   u  fdx  Pu 0 P f f: distributed force over aline P: point force u: displacement A B • T otalPotential Energy L 0 0 1 L   Adx  u  fdx  PuB 2 • Principle of Minimum PotentialEnergy Forconservative systems, of all the kinematically admissible displacementfields, those corresponding to equilibrium extremize the total potential energy. If the extremum condition is aminimum, the equilibrium state isstable. 8
  • 9. Potential Energy +Rayleigh-RitzApproach P f A B Example: Step1: assumeadisplacement field i i  1 to n u  aii x  is shapefunction / basis function n is the order ofapproximation Step2: calculate total potential energy 9
  • 10. Potential Energy +Rayleigh-Ritz Approach f Example: P A B Step3:select ai sothat the total potential energy isminimum 10
  • 11. Galerkin’sMethod P f A Example: EA(x) du  P dx xL d  du dx  EA(x) dx   f (x)  0 ux  0 0 dx w V i  P     d du dx      dx xL  du ~ EA(x) u~x 0 0 f ( x)dV 0  EA(x)  B Seekan approximation u ~so ~ In the Galerkin’s method, the weight function is chosen to be the sameasthe shape function. 11
  • 12. Galerkin’sMethod P f A B Example:    f ( x)dV  0 dx  du ~  EA(x)  dx   d  V wi  0 0  0 L L dx 0 du~L du~dw EA(x) i dx  wi fdx wi EA(x) dx dx 1 2 3 1 2 3 12
  • 13. Finite Element Method –Piecewise Approximation x u x u 13
  • 14. FEM Formulation of AxiallyLoaded Bar – Governing Equations • WeakForm • Differential Equation d  du dx  EA(x) dx   f (x)  0 0  x L • Weighted-Integral Formulation 0     d  du  w EA(x)   f (x)dx  0 dx  dx  L 0 L du     0   du    L dw  0   dx EA(x) dx   wf (x)dx  wEA(x) dx  14
  • 15. Approximation Methods –Finite Element Method Example: Step1: Discretization Step2: Weakform of oneelement P2 P1 x1 x2 1 1  0      x x  x du  2 du    dx EA(x) dx   w(x) f (x)dx  w(x) EA(x) dx  x2 dw      1 1 2 2        P w x P  0 dx EA(x)  w(x) f (x) dx  w x dx x2 dw  du   x1  15
  • 16. Approximation Methods –Finite Element Method Example(cont): Step3: Choosingshape functions - linear shapefunctions u  1u12u2 l x1 x2 x    1 l 2 2 l 1 x  x x  x ;     2 16 2  1 ; 2  1 1  1 1 2 l x   1l  x   2 x  x  1;
  • 17. Approximation Methods –Finite Element Method Example(cont): Step4: Forming element equation weak formbecomes Letw 1 , 1 1 2 1 1 1 1    l 1 u  u  l x2 x x2  x   EA 2 1 dx   f dx   P   P 0 2 1 l EA EA l x x u1  u2  1 f dx  P 1 weak formbecomes Letw  2 , 2 2 2 2 1 1 1    l u  u  l x2 x x2 1 x EA 2 1 dx   f dx   P   P  0 1 l EA l EA x2 x  u1  u2  2 f dx  P2 1 1 1 2 P f P x2        EA  1  1u1    x1    P   f   P 1  u  x2 l 1    2   2   2   2    fdx  x1  1 fdx  E,Aare constant 17
  • 18. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Approach 1: Element1: 0 I I I I I u f P E A lI  f I  PI   1   1     1  1            2   2   2  0  0  0  0 0  0  0   0   0   0       Element2: 1 2 2 f uII f II PII lII  0   0     0  0  E II AII 0 0 uII    II PII     1      1  2         0     0   0   0   Element3: 1 1 III III III III III III III f P 1 u f P  0   0  0   0  E III AIII 0 0   0   0   0                1  0         1 1 0 0 uI  1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0  0 0 0  0 0 l 0 0 1 1 u 0 1    2   2   2  18
  • 19. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Assembled System: 4 4 19 0 0 0 0 I I II II lI l 0 l l l EII AII EII AII EIII AIII EIII AIII lII 0 lIII EIII AIII EIII AIII lIII lIII  E I AI I I  E A  lI      f1  u1   EI AI E I AI  E II AII II II  E A  3      lII lIII              2 1 2 1 2 1 2 1 I I II II III II III f1 P 1 f III PIII     P1  f I  PI  u   f  P  f II   P    2    2    2      u   f  P   f  f P  P 3  3             u     f    P    4  2   2 
  • 20. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Approach 2: Element connectivitytable Element 1 Element 2 Element 3 1 1 2 3 2 2 3 4 global node index (I,J) local node (i,j) ij 20 IJ k e  K
  • 21. Approximation Methods –Finite Element Method Example(cont): Step6: Imposing boundary conditions and forming condensesystem Condensedsystem: 0 lI lII lII lII 0 lIII lIII EIII AIII lIII lIII  E I AI  E II AII II II  E A   u2   f2  0 E II AII  E III AIII  E A         III III u3   f3  0  f  P  u   4       EII AII     E III AIII   4  lII      21
  • 22. Approximation Methods –Finite Element Method Example(cont): Step7: solution Step8: post calculation 2 dx 1 dx d2 dx   du  u d1 u 1 1 2 2 u  u   u  2 1 dx d2 dx   E  Eu d1 Eu 22
  • 23. Summary - Major Steps inFEM • Discretization • Derivation of element equation •weak form •constructform of approximation solution overone element •derive finite element model • Assembling– putting elements together • Imposingboundary conditions • Solvingequations • Postcomputation 23
  • 25. Linear Formulation for BarElement    2   2   12 22 u2  K K K12 u1  P   f  P1   f1   K11   1 1 x2  x i x2  x ji i ij  dx dx  EA i j dx  K , f  where K  f dx  d d  x=x1 x=x2  2 1  x x=x1 x=x2 u1 u2 P1 P2 f(x) L= x2-x1 u x 25
  • 26. Higher Order Formulation for BarElement u(x) u11(x) u22 (x) u33 (x) 1 3 u1 u3 u x u2 2 u1 u4 u x u2 u3 1 2 3 4 u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x ) u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )  unn ( x ) n u1 un u x u2 u3 u4 26 … … … … … 1 2 3 4 … … … … …
  • 27. Natural Coordinates and InterpolationFunctions   1 2 , 2    1 2 1   Natural (or Normal)Coordinate: x=x1 x=x2 =-1 =1 x  x  0 x  l l /2 x  x  x1 x  x1  x2   2 1 3 2  1 =-1 2 =1  =-1 =1 1 4 2  =-1 =1 3 2 2 3 2 1  1     1  1,    1   , 2 1  3   3 16  3  16     1 ,   27  1 1 1     9   1   1     27       3  3 16   3 16 4 3    27  1 1  1,   9  1 1   1
  • 28. Quadratic Formulation for BarElement     i i i l 2  f and f   f dx   1 1 1 x2 x 1  d d   d d  2  dx dx  1  d d l d, i, j  1, 2, 3 where Kij   EA i  dx   EA i  d  K j j ji     2  33  3  13 23 23  22 12 3  3   2   2  u  u  K K13 u1  K11 K12 P   f  P    f   K K K K K P1   f1  =-1 =0 =1  x2  x1   28
  • 29. Quadratic Formulation for BarElement u1 u3 u2 f(x) P3 P1 P2 x1 =-1 x2 =0 x3 =1 2 2 3 2 1 3 3 2 2 1 1  1  u  1 1u  1 )  u  (  ) u ( ) u  ( u( )  u  2 2 3 2 1  1 ,     1  1,     1   l l dx l d dx l d l dx l d d1  2 d1  2 1 , d2  2 d2   4, d3  2 d3  2 1 l /2 x  x1  x2   2 l d  dx 2 d 2  dx l 29
  • 30. Exercises – Quadratic Element 30 Example2: E=100 GPa,A1=1 cm2;A1=2cm2
  • 31. Some Issues Non-constant crosssection: Interior loadpoint: Mixed boundary condition: k 31
  • 32. 32 UNIT – 2 Finite Element Analysis of Trusses
  • 33. Plane TrussProblems 33 Example1: Find forces inside each member.All members have the samelength. F
  • 34. Arbitrarily Oriented 1-D Bar Element on 2-DPlane Q2, v2 P1,u1  P2 ,u2 P2, u2 34 Q1, v1 P1,u1
  • 35. Relationship Between Local Coordinates andGlobal Coordinates                 1  2 1 0 0 0 0 v  u1  v2 0 u u1 cosv2   sin u2   v  0 sin sin 0 cos 0 0 cos 0 sin  cos 35
  • 36. Relationship Between Local Coordinates andGlobal Coordinates  36         2   1  2  0 0 0 0   0    0 Q   P1  P  P1 cosQ2   sin  P  sin sin 0 cos 0 0 cos 0 sin  cos
  • 37. Stiffness Matrix of 1-D Bar Element on 2-D Plane           1  2   1   0 0 0 0 0 0 0 u2 v  u1  K   Q2     P  Q   P1 ij sin  0 cos 0 sin cosv2   0  sin sin 0 cos 0  cos sin cos  0 cos 0 sin sin sin 0 cos 0 cos     0  0 0 0 0 0  1 0 1 0  L 1 0 1 0 0 0 AE K ij Q2, v2 P1,u1  P2 ,u2 P2, u2 Q1, v1 P1,u1         1  2 2 2 2   1  v2   v  L  AE Q2    P  Q   P1 sin2  sin cos sin cos sin  cos u2  cos  sin cos sin2   cos  sin2  sin cos sin cos sin  sin cosu1   cos2  sin cos cos2  37
  • 38. Arbitrarily Oriented 1-D Bar Element in 3-DSpace             2  2  1  y  y y x  x x y y y 2 2 1  0    0 0 w1  0  v  0  u1 w2  0 0  0 v u w1  0  0 v u1  z w2   v    u  0 0   0 0   0 0 z z z z z  x  x 0 0   0 0 0 0  x -x,-x,-xare the Direction Cosinesof the bar in thex- y-zcoordinatesystem P1,u1 2 2 P , u x x y z 2 1 - x - x -   38             2  1   2   1 1  0   0 0 R1 0 Q  0  P1 R2 0 Q2  0 P R 0 Q 0  P 1  x  x x z y y y  z R2   y Q2    P 0 0   0 0 y y 0 0 0 z z  z z    x x x 0 0 0 0 0 0
  • 39. Stiffness Matrix of 1-D Bar Element in 3-D Space                                  2  2 1 2 1 w v  2 u w1  v1  u L AE R2  Q2  P2 R Q1  P1 x  x x x x x x x x x x x x x x x x x x x x x  x x x x x x x x  x xx xxx x x x x  x x  x x x x x x x x x x  x x x x x 2       2       2  2             2             2 2      2         2          2 x x x   2 1 1 P , u 2 2 P , u x x x y z 2 1 - - x -  39                 0  0 0 0 0 0 0 0w  0 0v  0 0 0 0  1 0 0 0 0 0  1 L  1 0 0 1 0 AE  0 R  0 Q  0 0 0 0 0 0 v2  0  0 0 0 0 0 0w2  0 u2 1 1   u1 R2 0  P2  Q2  0 1 1  P1 
  • 40. Matrix Assembly of Multiple Bar Elements       1  2   1   0v2   0 u2   0v  0u1  L 1  AE  0  P  Q   P1 Element I Element II Element III          1 0 1 0 0 0 1  0 0 0   2  3   2  1  3 1 v3   3 u3   3 v  3 u2  4L  1 AE   3 3 3 3 1  3 3  3 3 Q3    P  Q  Q2   P2    40       1  3   1   3 1   3 3 3 3 1 v3   3 u3   3 v  3 1  3u1  4L  1 AE  3 3  3 Q3    P Q   P1
  • 41. Matrix Assembly of Multiple Bar Elements                   1  2 1  4 0 4 0 0 0 0 0 00 00 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u3  v2  u2  v  u1  4L    AE P3  Q2 P Q   P1 Element I                1  2 1  0 0 1  3 1 0  3 3 3 0 1 3 1   0 0 0 0 v3  0 0 0 0  0 0 0 0 0 v3   3 v2  3u3  3 u2  v  u1  4L 0 AE P3  Q2 P Q  Q3   P1           0 0 3 3  3 3          1  2 1  1 3 3 3 0 0 0 0 1  3  3 3 0 0 0 0 0 0 0 0 0 0 0 0   1 3  3 3 0 0 0 0 1 3 3 3 v3  v2  u  3 u2  v  u1  4L      AE Q3  P3  Q2 P Q  Q3   P1 Element II Element III 41
  • 42. Matrix Assembly of Multiple Bar Elements             2  1  2  1  v3  v  u2  v  u1  3   3  3 3u3  3 1 1 3   3 3  3 3 3  1  3 1 3  3 0 4  1 0  3 1 0 0  3 0  3 3  3  3  0  3 0 3  3 1 0 0  4 1 0  3 4 0  4L   S3   R3  S  R2   AE  4 0  S  R1   42                    0 v v ? 5 3 3 3  4 0 0 0   1 3  3  3  4 0 0 0 5  3  3 3  1 3 3  3  1  3  3  3  1 3 3  3 2 0 0 6  ?  4 L   S  S  0  v3 0  u  0 3  2 u2 ? 1 u1  0   S3  ?   R3  ? 2 R2  F   AE  1  R1  ?  Applyknownboundary conditions
  • 43. Solution Procedures                0  ? 3  3  3 0 6   1  3  1 3 2  3 0  3 v ? 0  3 3 5  3 1 0   4 0 3  ?  4 L   S  S  0  v3 0  u  0 3  2 5 3  4 0 1  3u2 0 0  3 3 3  3 v 1 3 u1 0   S3  ?   R3  ? 2  R1  ?   AE 1 R2  F u2=4FL/5AE,v1=0      43                 u  0 5 AE  4FL v  0 6     3  3   1  0 3  4 0  1   0  3 3 3  3 3  32 0 1 3  3 0 5 3 3  5  3  1 0 0  3  3    4 0 3  ?  4 L   S 3 v3  0  v2  0 3 u2  1 u1  0   S3  ?   R3  ?  2  R1  ?   AE   S1  0  R2  F
  • 44. Recovery of AxialForces            0   4   4 5  0 0  1 2  v2  0 5AE   0  0 4FL  F u2  v  0 u1  0  1 0 1 0 0 0 L 1 0 1  0 0 0 Q2    P  Q1   AE 0  P1 Element I Element II Element III     5                      5 3  5  3 1 5 3  3  3 3 3 3  3 3 3  1  3 1 3 1 3 3  2     F   1 v  0 2 u3  0 v  0 5AE  4FL  u2 AE  3 Q3    P   4L  1 Q2  P      44           0  0  0   5         0  3 1   3 3 3 3 3 1  1 1 3   1  v3  0 3 u3 0 3 v  0 3u1 0 4L  1 AE  3 3  3 Q3    P Q   P1
  • 45. Stresses insidemembers Element I Element II Element III 5A 4F   4F P1  5 4F P2  5 5 2 P  1 F 3 Q2  5 F 3 F 5 3 Q  5 45 3 P  1 F
  • 47. BendingBeam Normal strain: Purebending problems: Normal stress: Normal stress with bendingmoment: Moment-curvature relationship: Flexure formula: y Review  x    y Ey  x    M M x x ydA M   EI 1 M I x   My   I  y2 dA 1 d2 y M  EI   EI dx2 47
  • 48. BendingBeam Review Deflection: Signconvention: q(x) x Relationship between shear force, bending moment and transverse load: y dx dV  q dx dM V  q EI dx4 d4 y + - M M M + - V 48 V V
  • 49. Governing Equation and BoundaryCondition • Governing Equation • BoundaryConditions ----- 2    ?,  at x 0 dx d2 v  EI dx d   ?& EI  ?& dv d2 v v  ? & EssentialBCs– if vor Natural BCs–if or isspecdifviedat theboundary. dx { dx dx dv   dx  dx   d  at x  L   ?,  ?& EI v  ? &  ?& EI 2 d2 v  dx2 dx2 d2 v d2 v EI dx2   2 dx EI  dx is d sp ecifi d ed2 v a tthe boundary. 2       q(x)  0, dx2 d2 v(x)  EI dx d2 0<x<L 49
  • 50. Weak Formulation for BeamElement • Governing Equation 2     q(x)  0,  dx2 d2 v(x)  EI dx d2 • Weighted-Integral Formulation for one element          2 x2 dx2 d2 v(x)  EI  q(x)dx dx  d2 0  w(x) x1 • WeakFormfrom Integration-by-Parts ----- (1st time) 2 1 50 2 dx dx dx dx dx   x x d2 v  2 EI  d      x1  x2   EI  wq dx w  dw d  d2 v   0   2 1 x  x  x
  • 51. Weak Formulation • WeakFormfrom Integration-by-Parts ----- (2nd time) 1 1 2 2 2 x x dx dx dx dx dx   x x d2 v  2 dw  d2 v  2 EI   EI    d     x1   wq dx w    x2 d2 w  d2 v  0   dx2 EI V(x2) x=x1 M(x2) q(x) y x x=x2 V(x1) M(x1) L= x2-x1 2 51 x1 dx dw dx EI   x  2    wV  M    x1   wq dx   d 2 v   x2 d2 w  0   dx2
  • 52. Weak Formulation • WeakForm Q4  M x2  Q1 Vx1 , 2 1 1 1 2 3 2 dx dw dw dx Q2  dx Q4 )Q     x1   EI  wq dx  w(x )Q w(x  x2 d2 w  d2 v   dx2 2 x1 dx dw dx   x  2     M   x1   wq dx wV   d2 v    x2 d2 w  0   dx2 EI Q3 Q4  q(x) y(v) x x=x2 Q1 Q2 x=x1 L=x2-x1 Q2  M x1 , Q3  Vx2 , 52
  • 53. Ritz Method forApproximation n j1 Let v(x)  u jj (x) and n  4 4 2 2 1 1 1 2 3 4 Q dx dw dx dw dx2 j dx2 j Q       x1   wq dx  w(x )Q  w(x )Q       x2 d2 w   EIu j1 d2   Letw(x)= i (x), i =1, 2, 3,4 4 2 2 1 4 Q Q u EI i 1 1 i 2 3 i j dx2 i dx2 d d  i  i dx dx (x )Q   (x )Q      x1   q dx     d2      x2  d 2     j j1 Q3 Q4 y(v) x x=x2 Q1 q(x) Q2 x=x1 L= x2-x1 where 3 2 4 53 1 1 2 dx dx xx2 xx1 u  vx ; u  dv ; u  vx ; u  dv ;
  • 54. Ritz Method forApproximation i i q      Q    K u   dx  i  Q   dx  Q  4  j1 4 ij j 2 1  x2  i x2 3  x1  i x1  d     Q  d        x2 x1 i i x2  x1 j ij  dx2 dx2 EI i where K  dx and q  qdx  d 2  d2   Q3 x=x1 y(v) x x=x2 Q1 Q2 L= x2-x1 54 Q4
  • 55. Ritz Method forApproximation                                                                         2 4 4 4 3 3 2 2 2  1  1 2   1   2   1  2  2  1  1 q3 q1  u2  q2 K44 u4  q4   K41 K34 u3  3 K31 K14 u1  K12 K13 K21 K22 K23 K24 K32 K33 K42 K43 K11 Q4    Q Q Q1   dx  dx  dx  dx  dx  dx  dx  dx x x2 x x1 x x2 x x1 x x x  x2   1 x2  x1  1 x1 d d d  3   4  d  3 d  2  x d         d    d   where K  K  ij ji Q3 x=x1 y(v) x x=x2 Q1 Q2 L= x2-x1 55 Q4
  • 56. Selection of ShapeFunction                                                        0  0  1 0 0 0 0 1 0 0 0 1 0 0 0 1 2   1   2   1  2   2  1  1  2    1  4 4 4 3 3 2 2 2  1  1 1 x x2 x x1 x x2 x x1 x x x x x2 x x1  dx  dx  dx  dx  dx  dx  dx  dx d d d  3   4  d d  2  x d d  1  d       3        3  2   2  34  3 33 23 13 24  23 22 12 3   2   q1      u q u  q  K24 K34 K44 u4   q4   K K K K K K K K14 u1  K12 K13 K11  Q4   K14   Q Q  K Q1 Thebestsituation is ----- Interpolation Properties 56
  • 57. v()  u11 u22  u33 u44 Derivation of Shape Functionfor Beam Element– LocalCoordinates Howto select i??? 2 4 2 4 d 1 d d 3 d d dv()  u d1 d  u d3 d  u u and where 1 2 4 dv dv d d u1  v1 u2  u3  v2 u  Let 57 3 2 i i  ai  bi ci  d Find coefficients to satisfy the interpolationproperties.
  • 58. Derivation of Shape Function for BeamElement Howto selecti??? e.g. Let 3 1 2 1 1 1 1   a  b  c   d   2  1  1 4 2 1 Similarly 1 4 1 4 1 4 58 2 2 2 3 2 2 1  1   2  1    1 1   
  • 59. Derivation of Shape Function for BeamElement In the globalcoordinates: 4 59 2 1 1 1 2 dx l dv 2 dx l dv  ( x) 2(x)  v23(x)  v(x)  v  (x)                           2  2 1  2 1  1 1  3  2  2 1 1  3  2 3  2 1    2  2 1  3 1  2  2 1   1 3 1  x  x   1    x  x  x   x x x x x  l  x1   x2  x  x  x1   x2  x  x x2  x1  x x x  x 1     l     x1   x2  x  x  x1   x2  x  x 4       
  • 60. Element Equations of 4th Order 1-DModel u3 x=x1 u4 y(v) x x=x2 u1 q(x) u2 L= x2-x1      2  33 23 13 24  23 22 12 3  3   2   2   34 u3  u  K44 u4   K24 K34 K K K K K K K K14 u1  K12 K13 K11 q1   Q4    q4   K14     Q q Q  q  K Q1     x2 x1 i i x2  x1 ji ij j dx  K  dx2 dx2 EI i where K  and q   qdx  d2  d2   x=x2 x=x1 1 1 1 3 2 4 60
  • 61. Element Equations of 4th Order 1-DModel u3 x=x1 u4 y(v) x x=x2 u1 q(x) u2 L= x2-x1 61 x2 where qi  i qdx x1        4 2  2 3 2 1  2 3  4  4  3 2    2   u  u     3Lu  v  L2 3L  u1  v1   6 3L  6  2L2  3L  6  3L 6 3L L2  3L 2L  L3 2EI 3L  q   q    q q1 Q  Q  Q  Q1
  • 62. FiniteElement Analysis of 1-D Problems- Applications F L L L Example1. Governingequation: dx dx    EI   0  x L  q(x)  0 2 d2 v  2 d2 Weakform for oneelement 1 1 62 1     Q4  0 dx dw Q2  wx2 Q3  dx dw  wx Q   wqdx dx2 dx2 d2 w d2 v EI x2 x1 x2  x  where Q1 V(x1) Q2  M(x1 ) Q3  V(x2 ) Q4  M (x2 )
  • 63. FiniteElement Analysis of 1-DProblems Example1. Approximation function: 3 1 x=x12 x=x2                          2  2 1  2 1  4 1 1  3  2  2 1 1  3  2 3  2 1    2 3 1   2 1  1 2  2 1   1 3 1  x  x   1    x  x  x   x x x x x  l  x1   x2  x  x  x1   x2  x  x x2  x1  x x x  x      l     x1   x2  x  x  x1   x2  x  x 4        4 63 2 2 3 2 1 1 1 2 dx 2 dx l dv l dv  ( x)  (x)  v  (x)  v(x)  v  (x) 
  • 64. FiniteElement Analysis of 1-DProblems Example 1. Finite element model:        2  2 1  2 4 3 2     3Lv  L2   3L v1   6 3L  6  2L2  3L  6  3L 6 3L L2  3L 2L L3 2EI 3L Q  Q  Q  Q1 P1, v1 P2, v2 P3, v3 P4, v4 M1 ,1 M2 ,2 M3 ,3 M4 ,4 I II III 64 Discretization:
  • 65. Matrix Assembly of Multiple Beam Elements Element I Element II 2 2 1 0 QI L2 L3 QI  0v1   1      2      QI   6 3L 6 3L 0 0 0 3L 2L 3L L 0 0 0 6 3L 6 3L 0 0 0 0v2   3      QI   2EI 3L 3L 2L2 0 0 0 0  4   2   0 0v3   0  0   0  0        3   0  0  0v4   0  0  0    1 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II II Q Q L3 QII 0 0 3L L2    0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0   4  0v1   0  0 0   1       QII  3L 0 0 v  2       2EI 0 0     2  0 0 0 6 3L 6  0 3L 2L2 3L L2 0 0 6 3L 6 3L 0  0 v         0   3L 2L2 0      3  0  0   0   0      4  0v4  0    65
  • 66. Matrix Assembly of Multiple Beam Elements Element III 3 2 3 2 0 0 0 0 0 0 III L2 QIII Q   0  0 v1   0  0 0      1    0  0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 v2   0  2EI 0 0    2        III     Q1  QIII     0 3L v       L  0 0 0 0 6 3L 6 3L  v3  0 0 0 0 3L 2L2 3L 0 0 0 6 3L 6 0 0 0 0 3L L2 3L 2L   3    4                          4  3  3  2  1  2 2 2 4 3  3   2   1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   4  0 0 0 0 0 0 0 6  4  6        0 v2  v1  6 3L  3L 6 3Lv4  L2  3L 2L L2 6 3L  6 3L v   3L 6  6  3L  3L  3L 3L 2L2 2L2 3L L2 L2  3L L 2L 2  3L  3L L2 3L 3L 6  6  3L  3L  3L 3L L2 6 3L 3L 2L2  6 3L L3 2EI  M   P4 M   P  M   P2  M   P1 66
  • 67. Solution Procedures                            0  0  0 0 6 0  0   0   0  4  3 3 2 1 2 4 3 3 2 1   ?   ? 0   ?   0 v2  0 0 v1 0 0 0 0 6 0 0 0 3L 0 4L2 3L L2 L2 0 0 3L 12 0  6 3L v  0 0  6 3L 0 4L2 3L L2 L2 0 0 0 0 6 3L 0 0  3L 12 0 L2 3L 2L2 3L  6 3L  6 3L 0 0 L3 2EI 3L   M P4  F  M  P  ?   M  P2 ?   M  ?   P1 ?  Applyknownboundary conditions  67                     0 0 0 0 0 0 0 0 0  6   0  0  0  0  4 3 2 1 2 2 1 4 3 3  ?   ?   0  v  ?  v  0 v1 0 3L 4 ?  6 3L 0 12 0 6 3L  6 3L 3L 2L2  3L L2  6  3L 12 0   0 0  6 3L L2 0 0 0 3L  3L 2L  3Lv2 0 0 L2  3L 6  3Lv4 ?  L2  3L 2L 3L L2 0 4L2  3L L2 0 0 3L L2 0 4L2 3L 0 0 0  6  3L 6 L3 2EI  0   P3 ?    P  ?   M1  ?   P  ?   M P4  F  M  M2  0 
  • 68. Solution Procedures             0 4 3 2 4 3 2 4? ?  ? 3L  v ? L2 4L2 L2 0 0  4L2 3L L2 3L 6   0 L2 3L 2L2 L3 2EI  M4 0  P F  M 0  M 0        4 3  2  2 3 2 1 1  0  4        v 3L 0 0 0 0 0 0 3L 0 0 0 6 3L L  3L L3 2EI  P?   P ? M ? P?   68                     0 0 0  6   0  0  0  0  4 2 3 1 2 2 1 4 3 3  ?   ?   0  v  ?  v  0 v1 0 3L 4 ? 3L 0 0 L2 0 0  6 0 3L 0 12  3L 0 6 L2 0 0 3L 0  3L 2L 3L  6 0 3L 2L2  3L 0  6  3L 12   0 0  6  3Lv2 0 0 L2 4L2 L2 0 L2 4L2 3L 0  3L 6 3L L2 0 3L 0 3L 0 0 0 6 L3 2EI  0   P3 ?    P  ?   M1  ?   P  ?   M P4  F  M  M2  0 
  • 69. Shear Resultant &Bending Moment Diagram 1 FL 7 FL 9 F 2 FL 7 7 3 F 7 P2 F 69
  • 70. PlaneFlame Frame: combination of bar andbeam E,A,I, L Q1, v1 Q3, v2 Q2, 1 P1, u1 Q4, 2 P2, u2   70                                   2 1 1  2 2  2 1   0 0 0 0 0 0 0 0 0 2 1 v u2  v L 4EI  L2  6EI L 2EI L2 L2 6EI 12EI L3 L2 12EI 6EI L3 6EI L 0 0  AE L 0  AE L L2 L L L2 6EI  u  L3 6EI 2EI 12EI L2 4EI L3 6EI 0 0 12EI 6EI L 0   AE L 0  AE Q4 Q3   P  Q  Q1  P 
  • 71.  x FiniteElement Modelof an Arbitrarily Oriented Frame y  x y 71
  • 72. FiniteElement Modelof an Arbitrarily Oriented Frame                          2  1 1  3  2  1   0 2 1 v  u2  v  u  L 4EI  L2 L L2   6EI L 0 0 AE L 0 0 AE L2 0 6EI  L3 0 6EI L2 0 2EI L3 0 12EI L 2EI   L L2 6EI 12EI 6EI L 0 AE L 0 0 AE L2 0  6EI  L3 0 6EI  12EI L2 0 4EI  6EI L3 0  12EI Q4 Q   P  Q2    L2 Q1  P  local 72 global
  • 73. Plane FrameAnalysis -Example RigidJoint HingeJoint BeamII BeamI Beam Bar F F F F 73
  • 74. Plane FrameAnalysis                               2  1 1  3  2  1   0 0   2  1  v   u2 v  u  L 4EI  L2 L L2   6EI L 0 0 AE L 0 AE L2 0 6EI   L3 0 6EI L2 0 2EI L3 0 12EI L 2EI L L2 6EI 12EI 4EI 6EI L 0 AE L 0 0  AE L2 0 L3 0 6EI L2 0 6EI 12EI L3 0  12EI Q4  Q   P  Q2    L2 Q1  6EI  I  P  I P2,u2 Q, 4 2 P1, u1 Q2, 1 Q1, v1 Q3, v2 74
  • 75. Plane FrameAnalysis P1, u2 Q3, v3 Q2, 2 Q4, 3 Q1, v2 P2,u3   75                          3 3  2 2  2  1   0 0 0 0 0 0 0 0 0 4 2 v u  v L 4EI  L2  6EI L 2EI L2 L2 6EI 12EI L3 L2 12EI 6EI L3 6EI L 0 0  AE L 0  AE L L2 L   L2 6EI L2 6EI  u  L3 6EI 2EI   12EI L2 4EI L3 0 0 12EI 6EI L 0   AE L 0  AE Q4 Q3   P  Q2 Q2   P  II   
  • 76. Plane FrameAnalysis                     2  1  3     2  1   0  2     1   v   u2  v  u  AE L 0 L2 0 2EI L 6EI L3 0 6EI L2 12EI 12EI 0  6EI L3 L2 0 AE 0 L  6EI 0 4EI L2 L  12EI 0  6EI L3 L2 0  AE 0 L 6EI 0 2EI L2 L 12EI 0 L3 0 AE L 6EI 0 L2 6EI L2 0 4EI L Q4 Q   P  Q2   Q1  I   P  I   76                      2   2  2   3          1   1  0  0 0 2  v  u3 v  u  L L  L2 4 6EI   3  12EI L3  6EI 4EI AE L 0 AE L 0 0 0 12EI L3 6EI L2 0 6EI  AE L 0 0 0  12EI L3  6EI L2 0 6EI L2 2EI L L2 4EI L  A E L 0 0 0  12EI L3 6EI L2 0  6EI L2 2EI L Q4 Q  P2   Q2 Q2  P  II
  • 78. UNIT- 3 Finite element analysisconstant strain triangle 78
  • 79. Finiteelement formulation for2D: x y S u S T u v x px Step 1:Divide the body into finite elements connected toeach other through special points(“nodes”) py 3 2 1 4 x 2 u1 u2 u3 u4 v4 v3 3 v2 Element‘e’ 4 v1 y 1 v u  79   4  3  2  2  1   u4  v  u3  v  v  v1  u  u  d  
  • 80. N3(x,y)u3 N4(x,y)u4 N3(x,y)v3 N4(x,y)v4 u(x,y) N1(x,y)u1  N2(x,y)u2 v(x,y) N1(x,y)v1  N2(x,y)v2    4   2  1  4  3  3 2 1 4 3 2 1 v  v3    u4  u2  v  u1  N u  N 0 N 0 N 0  0 0   v  0 N 0 N 0 N v (x,y) u (x, y) N u     u  N d 80
  • 81. TASK2:APPROXIMATETHESTRAINand STRESSWITHINEACH ELEMENT 1 81 1 xy 4 3 2 4 3 2 ......  N1(x, y) v  N4 (x,y) v  N3(x, y) v N2 (x, y) v   N4 (x, y) u x  u (x, y)  v (x, y)  N1(x, y) u y x y y y y y y 1 y x x x x 1 x x  v (x, y)  N1(x, y) v    Approximation of the strain in element ‘e’  u (x, y)  N1(x, y) u  N2 (x,y) u  N3(x, y) u
  • 82.         4  4 3  2  1  B  1 v   u  4 v3  u  v  u1  ,y) N (x, y) N4 (x,y)v2  0 u  N (x,y) 0 N3(x,y) N (x,y) 0 N2(x,y) N (x,y) 0 N1(x,y) N (x, y)  N (x, y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x x y x y x y x   y y y y y  1 1 2 2 3 3 4 4 x 0 3 x 0 2 x 0 x 0 y   xy       x   ε  B d 82
  • 83. Strain approximation in terms of strain-displacement matrix Stressapproximation Summary: Foreachelement Displacement approximation in terms ofshape functions Element stiffnessmatrix Element nodal loadvector u  N d   DB d ε  B d e V k  B DB dV T S e b f ST S f V T T N T dS f   e N X dV   83
  • 84. Constant Strain Triangle (CST) :Simplest 2Dfinite element y v v1 u1 3 1 (x,y) 84 v u 1 1 v2 (x ,y) 2 (x ,y ) u2 2 2 x • 3 nodes per element • 2 dofs per node (each node canmove in x- and y-directions) • Hence6 dofs per element 3 (x3,y3) u3
  • 85. u 21  N26 d61       1  1 3  2  2 1 v3  u3  v  u  N v   0 0 u 2  0 N2 0 N3 N 0 N 0 v (x,y) u  u (x, y)  N1 Thedisplacement approximation in terms of shape functionsis 85  3  2 1 N   0 0 N2 0 N3 0  N 0 N 0 N  N1 u (x,y)  N1u1  N2u2 N3u3 v(x,y)  N1v1  N2 v2  N3v3
  • 86. N 2A 3 2 1 1 1 1 N  a2  b2x  c2 y 2A  a3  b3x  c3 y 2A a b x  c y N  2 x3 2 b1  y2 b2  y3 b3  y1  x3 y2  x1 y3  x2 y1 a1  x2 y3 a2  x3 y1 a3  x1 y2 y  2  y3   1  y3 c1  x3  x2  y1 c2  x1  x3  y2 c3  x2  x1 1 x1 y1  A  area of triangle  1 det1 x where x y u3 v3 Formula for the shape functionsare v1 u1 u2 3 1 (x,y) 86 v u 1 1 v2 (x ,y) 2 2 2 (x ,y) 3 3 (x ,y)
  • 87. Properties of the shapefunctions: 1.Theshape functions N1, N2 and N3 are linear functions of xand y x y 2 3 1 1 N1 2 3 1 N2 1 2 3 1 1 N3  at node 'i' 0 at other nodes N  1 i 87
  • 88. 2.At every point in thedomain  y  x 3 i1 3 Ni yi i1 Ni xi i1 3 1 Ni 88
  • 89. 3.Geometric interpretation of the shapefunctions At any point P(x,y) that theshape functions are evaluated, y 2 x 3 1 P (x,y) A3 A2 A1 3 2 1 N N N  A1 A  A2 A  A3 A 89
  • 90. Approximation of thestrains xy   x     u     v   B d    y x        y        u  v   y x     90          2 1 3  N(x,y) N(x,y) N(x,y) N(x,y) N(x,y) N(x,y) N(x,y)  N(x,y) N(x,y) 0 N3(x,y) 0 N2(x,y) 0 N1(x,y) 3 b3   c1 c   1 0 c b1 0 2A x 3 3  y  1 1 2 2 x y x b2 0 b3 0 0 c 0 b1 c2 b2 c3 y y 2 y 1 y x 0 x 0 x B 0
  • 91. 91 Element stresses (constant inside eachelement)   DB d Inside each element, all components ofstrain are constant: hence the name Constant StrainTriangle
  • 92. 92 IMPORTANT NOTE: 1.Thedisplacement field is continuous across elementboundaries 2.Thestrains and stresses are NOT continuous acrosselement boundaries
  • 93. Element stiffnessmatrix e V k  B DB dV T e V T dVBT DBAt k  B DB t=thickness of theelement A=surfacearea of the element SinceBisconstant t 93 A
  • 94. S e b f ST S T f V T dS f   e N X dV   N T Element nodal loadvector 94
  • 95. Element nodal load vector due to bodyforces  e Ae V T T b f  N X dV  t N X dA                    e e e A A A b N X dA t N X dA t N X dA t  f   f   f   f f  tAe N3 Xb  tAe N2 Xb dA  tAe N3 X a dA  dA  2 a 1 b 1 a b3 y   fb3x  b2 y b2x   fb1y  b1x   x y fb3x fb3y fb1y fb1x fb2x fb2y 2 3 1 (x,y) 95 Xb Xa
  • 96. EXAMPLE: If Xa=1andXb=0   96                                      0   3     3    0   0  3 0 0 3 2 1  tA tA tA N dA t N dA 0 t N dA  t t t    N X dA    N X dA     t N X dA t N X dA t N X dA t  f    f  f   e e e e e e e e A A A  A N3 X b dA A 3 a A 2 b A 2 a A 1 b A 1 a   fb3 y  b3x   fb2y   b2x   e  fb1x   fb1y  b
  • 97. Element nodal load vector due totraction e ST S T S dS f   N T EXAMPLE: y fS3x fS3y fS1y fS1x 2 x 3 1  97 e l S S T dS f  t 13 along13 NT
  • 98. Element nodal load vector due totraction EXAMPLE: y fS3x 2 3 S T S dS f  tl23 along 23 NT e fS3y fS2x fS2y (2,0) (2,2) 1 (0,0)   0 x  1 S T  t 21  t  1 23 2 x l fS  t N (1)dy e 2 along 23 fS  0 2 y fS  t 3x fS  0 3 y  2 Similarly, compute 1 98 2
  • 99. 99 Recommendations for use ofCST 1.Use in areas where strain gradients aresmall 2.Use in mesh transition areas(fine mesh to coarse mesh) 3.Avoid CSTin critical areas of structures (e.g.,stress concentrations, edges of holes,corners) 4.In general CST sare not recommended for general analysis purposes as a very large number of these elements are required for reasonableaccuracy.
  • 100. Example x y El1 El2 1 2 3 4 300psi 1000lb 3in 100 2in Thickness(t) =0.5in E=30×106 psi =0.25 (a) Compute the unknown nodaldisplacements. (b) Compute the stressesin the twoelements.
  • 101. Realizethat this is a plane stressproblem and therefore we need to use E 101 7 2 0 10 psi 1.2   0 0   0.8     0    1  1   0 3.2 0.8 0  1 3.2  0 0 D   1 2 Step 1:Node-element connectivitychart ELEMENT Node 1 Node 2 Node 3 Area (sqin) 1 1 2 4 3 2 3 4 2 3 Node x y 1 3 0 2 3 2 3 0 2 4 0 0 Nodalcoordinates
  • 102. Step 2:Compute strain-displacement matrices for theelements  1 1 2 2 3 3 3 2 1 b  b c b c c c  b2 0 b3 0 0 c 0 b1 0 2A B 1 0 c R ecall b1 y2  y3 b2  y3  y1 b3  y1  y2 c1  x3  x2 c2  x1  x3 c3  x2  x1 with ForElement#1: 1(1) 2(2) 4(3) (local numbers within brackets) y1  0; y2  2; y3  0 x1  3; x2  3; x3  0 Hence b3  2 c3  0 b2  0 c2  3 b1 2 c1  3 3 0   2 0 0 0 2 0  3 0 3 0  2 3 0 0 2 6 B(1)  10 Therefore ForElement#2:  2    3 0 2 0 0 0 2 0 3 0 3 0 2 3 0 0 6 B(2)  1 0 102
  • 103. Step 3:Compute element stiffnessmatrices  0   0   0.3        0.2 0.2 0.5333 1.2 0.2 0 0 0.3 107 1.2 0.2 0.5333 0.9833 0.5 0.45   1.4 0.3 0.45   k(1) AtB(1)T DB(1) (3)(0.5)B(1)T DB(1) u1 103 u2 u4 0.2   v4 v2 v1
  • 104.  0   0   0.3        0.2 0.2 0.5333 1.2 0.2 0 0 0.3 107 1.2 0.2 0.5333 0.9833 0.5 0.45   1.4 0.3 0.45   k(2) AtB(2)T DB(2) (3)(0.5)B(2)T DB(2) u3 104 u4 u2 0.2   v2 v4 v3
  • 105. 105 Step 4:Assemblethe global stiffness matrix correspondingto the nonzerodegrees of freedom Notice that u3  v3  u4  v4  v1  0 Hencewe need to calculate only asmall (3x3) stiffnessmatrix K 1 0.983  0.45 0.2 u  0.45 0.983 0  107 1 u 2  0.2 u 0 u2 1.4 v2 v2
  • 106. Step 5:Compute consistent nodalloads  f  f 2x       f   f  2 y  2 y    0   f1x   0  f2 y  1000  fS 2 y Theconsistent nodal load due to traction on the edge3-2 N dx 3 3 3 S2 y    9  0  x2  3  50  2   50  2   225 lb  (300)(0.5) N (300)tdx f   150 x dx 3   x0 3 x0 32 x0 3 32 3 2 N 106  x 3 2 32
  • 107. Hence f2 y  1000 fS 2 y  1225 lb Step 6:Solve the system equations to obtain the unknownnodal loads K d  f 107        0 0  0.2 0     0.983  2   107  0.45 u2    0.45 0.2u1  0.983 0 1.4v  1225 Solveto get          v  u  4  2 2 1   0.9084104 in u  0.106910 in  0.2337 104 in 
  • 108. 108 0.9084104 0 0 0.1069104   0.2337104 0 1 1 2 2 4 v4 v u v u u d(1)T     76.1  Calculate  114.1   (1)  1391.1 psi Step 7:Compute the stresses in theelements In Element#1  (1)  DB(1) d(1) With
  • 109. 109 3 0.9084104  3  0 0 0 0 0.1069104 2 v2 u v u4 v4 u d(2)T   Calculate  114.1   (2)   28.52  psi In Element#2  (2) DB(2) d(2) With 363.35 Notice that the stressesare constant ineach element
  • 110. 110 UNIT - 4 Heat transfer analysis
  • 111. ThermalConvection Newton’s Lawof Cooling q  h(Ts T) h: convective heat transfer coefficient (W m2 Co ) 111
  • 112. 112 Thermal Conduction in1-D Boundary conditions: Dirichlet BC: Natural BC: Mixed BC:
  • 113. Weak Formulation of 1-D HeatConduction (SteadyState Analysis) • GoverningEquationof 1-D Heat Conduction -----  d (x)A(x) dT(x)   AQ(x)  0 dx  dx    0<x<L • WeightedIntegral Formulation ----- • WeakFormfrom Integration-by-Parts ----- 0 L dx  d  dT(x)     AQ(x)dx     0  w(x)  dx (x)A(x) L dw  dT   113  L dT     0 0   0   dx  A dx   wAQdx  w A dx 
  • 114. Formulation for 1-D LinearElement Let T(x)  T11(x)T22(x) f2 1 x1 2 x2 x T1 T2 f1 2 1 1 2 l l x  x , x  x  ( x)  ( x)  x2 x1 1T1 2T2 2 2 1 1 x x , f (x)  A T f (x)  A T 114
  • 115. Formulation for 1-D LinearElement Letw(x)= i (x), i =1, 2 2 x2 i j j i i 2 2 i 1 1 j1 x2   d d    ( x )f  dx   AQdx (x ) f  dx dx    x   1  1 0  T  A   x 2 Qi i (x2 ) f2 i (x1) f1  KijTj j1           11 1 1 K22 T2 K12 K12 T1  K  2  Q2  f    f Q 1 115 1 2 x2 x2 i j ij i i 1 x1 x2 x dT dT dx dx  d d  where K  A dx, Q   AQdx, f  A , f  A  dx dx      x
  • 116. Element Equations of 1-D LinearElement          1 1 1 T2  1 1T1  L 1  2  Q2 Q  f    f A   i i 1 dT dT dx xx1 xx2 where Q   AQ dx, f  A , f2   A dx x2  x1 f2 1 x1 2 x2 T1 x T2 116 f1
  • 117. 1-D Heat Conduction -Example t1 t2 t3 0 T 200o C T 50o C x 1 2 3 Acomposite wall consists of three materials, asshown in the figure below. Theinside wall temperature is 200oCand the outside air temperature is50oC with aconvection coefficient of h =10 W(m2.K). Find the temperature along the composite wall. 1  70W m  K , 2  40W m  K , 3  20W m  K  t1  2cm, t2  2.5cm, t3  4cm 117
  • 118. Thermal Conduction andConvection- Fin Objective: to enhanceheattransfer dx t x w loss Q  2h(T T)dx  w  2h(T T)dx t  2h(T T)w  t Ac dx Ac Governing equation for 1-D heat transfer in thin fin c c d  A dT   A Q 0 dx  dx    c 118  c d  A dT   Ph T  T  A Q  0 dx  dx    P  2w  t where
  • 119. Fin- WeakFormulation (SteadyStateAnalysis) • GoverningEquationof 1-D Heat Conduction -----   d (x)A(x) dT(x)   PhT T  AQ 0 dx  dx    0<x<L • WeightedIntegral Formulation ----- • WeakFormfrom Integration-by-Parts ----- 0 L dx  d  dT(x)     Ph(T T)  AQ(x)dx     0  w(x)  dx (x)A(x) dx 119 dx dx  L dw  dT    L dT  0  A  wPh(T T  )  wAQ dx  w A         0 0   
  • 120. Formulation for 1-D LinearElement Letw(x)= i (x), i =1, 2 2 dx dx d d j1  x2   iAQ  PhTdx A i j  Ph dx  i j    x   1  1 i (x2 ) f2 i (x1) f1 0  T  j  x2   x 2 i (x1) f1 Qi i (x2 ) f2  KijTj j1            11 1 1 K22 T2 K12 K12 T1  K  2  Q2  f   f Q 1 1 1 2 x2 ij i i i j dx dx dx dx d d A i  xx1 xx2 x2   where K   Ph dx, Q   AQ  PhT dx, j  x   f   A dT , f  A dT   x 120
  • 121. Element Equations of 1-D LinearElement 1 1 f Q  1     1 T1   A  1  Phl 2  f            2  Q2  1  6 1  L 1 2T2  f2 1 x=0 2 x=L T1 x T2 f1 x2 121 dT dT xx1 xx2 f1   A dx , f2   A dx where Qi  i AQ  PhT dx, x1
  • 123. 123 Time-DependentProblems In general, Keyquestion: How to choose approximatefunctions? Two approaches: ux,t ux,t u jj x,t ux,t u j tj x
  • 124. Model Problem I– Transient Heat Conduction Weakform:   t x  x  c u   a u   f x,t 1 1 1 a )Q2w(x2 )      x2   wf dx Q w(x u t  cw w u x x 0   x 2 124 1 x2 x1 dx   Q  a du dx   Q  a du  ;
  • 125. let: ) 1 1 2 2 1 a      x2   wf dx Q w(x ) Q w(x u t  cw w u x x 0   x Transient HeatConduction n ux,t u j tj x j1 and w i x KuMu  F  x2 x1 ij x x K  a i j dx   Mij x2  cijdx x1 x2 Fi  i fdx  Qi x1 ODE! 125
  • 126. TimeApproximation – First OrderODE dt 126 0  t  T 0 a du  bu  f t u0u Forward difference approximation - explicit Backward difference approximation - implicit k k k a k1 u  u  t f bu  k k k k1 u  u  t f bu  a bt
  • 127. StabilityRequirment max 127 2 1 2 cri t  t  K M uQ where Note: Onemust usethe samediscretization for solving the eigenvalueproblem.
  • 128. Transient Heat Conduction -Example 0 128 u  2 u  0  x 1 t u 1,t 0 t x2 u0,t 0 ux,01.0 t  0
  • 129. Transient Heat Conduction -Example 129
  • 130. Transient Heat Conduction -Example 130
  • 131. Transient Heat Conduction -Example 131
  • 132. Transient Heat Conduction -Example 132
  • 133. Transient Heat Conduction -Example 133
  • 135. Axi-symmetricAnalysis Cylindrical coordinates: x  rcos; y  r sin; z  z r, , z • quantities depend on rand zonly • 3-D problem 2-D problem 135
  • 137. Axi-symmetric Analysis – Single-VariableProblem 00 22 11       z u(r, z)   a u  f (r, z)  0 z  r u(r, z)    a  1   ra r r  Weakform: e wqn ds e       z  z     r u  wa  r  wa u  a wu  wf (r,z)rdrdz 0  00 22 11 where nz 137 z r u(r, z) u(r, z) nr  a22 qn  a11
  • 138. FiniteElement Model – Single-VariableProblem u  u jj j Ritzmethod: e n e e K u  f Qe  ij j i i j1 where j (r, z) j (x, y) w i Weakform 22 138 e j j  a i i K e   a  a   rdrdz 00 i j  r r z z    ij   11 where i i e f e   frdrdz  i i n e Qe   q ds 
  • 139. Single-Variable Problem – HeatTransfer Weakform Heat Transfer:  1  rk T(r, z)    k T(r, z)   f (r, z)  0   z  z r r  r     e   0  wk T   wk T   wf (r, z) rdrdz        r  r  z  z  wqn ds e nz 139 T(r, z) T(r, z) qn  k nr  k r z where
  • 140. 3-Node Axi-symmetricElement T (r, z)  T11 T22 T33 1 2 3  140  1 2 3 e 1 r z 2A r2z3  r3z2       z  z     r r  3 2    3 1 1 3 2 3 1 e 1 r z 2A r z  r z    z     z     r  r  1 3    1 2 2 1 3 1 2 e 1 r z 2A r z  r z       z z     r r  2 1 
  • 141. 4-Node Axi-symmetricElement T (r, z)  T11 T22  T33  T44 1 2 3 4 a b   r 141 z 2 3 a b   1  1      1  1       a  b  a  b        1   4  a  b  
  • 142. Single-Variable Problem –Example Step1: Discretization Step2: Element equation e 142 j i ij     K e   i j  rdrdz r r z z      i i e f e   frdrdz  i i n e Qe   q ds 
  • 143. Reviewof CSTElement • Constant Strain Triangle (CST)- easiest and simplest finite element – Displacement field in terms ofgeneralized coordinates – Resulting strain field is – Strains do not vary within the element. Hence, the name constant strain triangle(CST) • Other elements are not solucky. • Canalso be called linear triangle becausedisplacement field is linear in xand y - sidesremainstraight. 143
  • 144. Constant Strain Triangle • Thestrain field from the shapefunctions lookslike: – Where, xi and yi are nodal coordinates (i=1, 2,3) – xij =xi - xj and yij=yi - yj – 2Ais twice the area of the triangle, 2A=x21y31-x31y21 • Node numbering is arbitrary except that the sequence123 must go clockwise around the element if Ais tobe positive. 144
  • 145. 145 Constant Strain Triangle • Stiffness matrix for element k =BTEBtA • TheCSTgivesgood results in regions of theFE model where there is little straingradient – Otherwise it does notwork well.
  • 146. Linear Strain Triangle • Changesthe shape functions and results in quadratic displacement distributions and linear strain distributions within theelement. 146
  • 147. Linear Strain Triangle • Will this element work better for the problem? 147
  • 148. ExampleProblem • Consider the problem we were lookingat: 5in. 1in. 0.1in. I  0.113 /12  0.008333 in4   M  c  1 0.5 I 0.008333  60 ksi E     0.00207 2   ML  25 2EI 2  29000  0.008333  0.0517in. 148 1k 1k
  • 149. Bilinear Quadratic • TheQ4element is aquadrilateral element that hasfour nodes. In terms ofgeneralized coordinates, its displacement field is: 149
  • 150. Bilinear Quadratic • Shapefunctions and strain-displacement matrix 150
  • 151. ExampleProblem • Consider the problem we were lookingat: 5in. 1in. 0.1in. E 151 I 0.008333  0.0345in. 3EI 3290000.008333 0.2125   60ksi 10.5 I  0.1 13 / 12 0.008333in4   PL3    0.00207   M  c  0.1k 0.1k
  • 152. Quadratic Quadrilateral Element • The8 noded quadratic quadrilateral element usesquadratic functions for thedisplacements 152
  • 153. Quadratic Quadrilateral Element • Shapefunction examples: • Strain distribution within theelement 153
  • 154. 154 Quadratic Quadrilateral Element • Should we try to use this element to solve our problem? • Or try fixing the Q4element for our purposes. – Hmm…toughchoice.
  • 155. 155 Isoparametric Elements and Solution • Biggestbreakthrough in the implementation of the finite element method is the development of an isoparametric element with capabilities to model structure (problem) geometries of any shapeandsize. • Thewhole idea works onmapping. – Theelement in the real structure is mapped to an ‘imaginary’ element in an ideal coordinatesystem – Thesolution to the stress analysis problem is easyand known for the ‘imaginary’element – Thesesolutions are mapped back to the element inthe real structure. – All the loads and boundary conditions are also mapped from the real to the ‘imaginary’ element in this approach
  • 157. Isoparametric element Y 1 2 3 4 0 0 0 N1 X N 0     • The mappingfunctions areq x1u  ite simple: 4   x  2 x3  N N N 0 0 0 0  x  N2 N3 N4 y1  y2    1 4 N  1 (1)(1) 2 4 N  1 (1 )(1) 3 4 N  1 (1 )(1 ) 4 4 N  1 (1)(1 ) y3   y4   Basically, thex and y coordinatesof any point in the elementare interpolations of the nodal (corner) coordinates. Fromthe Q4 element,thebilinear shape functions are borrowed to be used as the interpolation functions. They readily satisfy the boundaryvalues too. 157
  • 158. Isoparametric element v 1 2 3 4 0 0 0 N1 u N 0       • Nodal shape functions for d u i1s placements 4  u  2 u3 N N N 0 0 0 0 u  N2 N3 N4 v1  v2    v3 v4   1 4 N  1 (1)(1) 2 4 N  1 (1 )(1) 3 4 N  1 (1 )(1 ) 4 4 N  1 (1)(1 ) 158
  • 159. • Thedisplacement strain relationships: x  u  u    u   X  X  X y  v  v    v   Y  Y  Y x        xy  y  u X v Y  Y X           u      v  Y Y     0    0   0       X X 0      Y Y X X      u    v     u            v   But,it is too difficult to obtain  and  X X 159
  • 160. Isoparametric Element  X  Y  u u         X Y u  X Y u    X    Y     It is easier to obtain X and Y   X Y   J  X Y Jacobian     defines coordinate transformation Hencewe will do itanother way u  u  X  u  Y  X  Y  u  u  X  u  Y X   Ni X   i Y N     i Yi X N   i X i   Y N   i Yi   X   u   Y  u    1  u    J     u   169
  • 161. 161 GaussQuadrature • Themapping approach requires usto be able to evaluate the integrations within the domain (-1…1)of the functionsshown. • Integration canbe done analytically by usingclosed- form formulas from atable ofintegrals (Nah..) – Or numerical integration can be performed • Gaussquadrature is the more common form of numerical integration - better suited for numerical analysis and finite elementmethod. • Itevaluated the integral of afunction asasum of a becomes n I  Wii i1 finite numb1er of terms I   d 1
  • 162. GaussQuadrature • Wi is the ‘weight’ and i is the value of f(=i) 162
  • 163. Numerical Integration Calculate: b I   f xdx a • Newton – Cotesintegration • Trapezoidalrule – 1storderNewton-Cotesintegration • Trapezoidalrule – multipleapplication 1 b a f (x)  f (x)  f (a)  f (b)  f (a) (x a) 2 f (a)  f (b) b b I   f (x)dx   f1(x)dx  (b  a) a a b 163 xn1 xn x1 x2 xn a x0 x0 x1 I   f (x)dx   fn (x)dx   f (x)dx   f (x)dx    f (x)dx      2  n1 i1 i f (x )  f (b) f (a)  2 h  I 
  • 164. Numerical Integration Calculate: b I   f xdx a • Newton – Cotesintegration • Simpson1/3 rule – 2ndorderNewton-Cotesintegration 2 2 0 1 1 0 2 0 1 2 f (x ) (x2  x0 )(x2  x1) (x  x0 )(x  x1) f (x )  f (x ) (x0  x1)(x0  x2 ) (x  x )(x  x ) (x  x1)(x  x2 ) (x  x )(x  x ) f (x)  f (x)  b b a a 6 f (x )  4 f (x )  f (x ) I   f (x)dx   f2 (x)dx  (x2  x0 ) 0 1 2 164
  • 165. Numerical Integration Calculate: b I   f xdx 2  (b  a) f (a)  (b  a) f(b) 2 2 165 I  (b  a) f (a)  f (b) I  c0 f (x0 )  c1 f (x1) a • GaussianQuadrature Trapezoidal Rule: GaussianQuadrature: Choose according to certaincriteria c0,c1,x0 , x1
  • 166. Numerical Integration Calculate: b I   f xdx a • GaussianQuadrature      3  1   1 1 1 I   f xdx  f  3   f  1 • 3pt GaussianQuadrature I   f xdx 0.55 f 0.77 0.89  f 0 0.55 f0.77 1 1 1 • 2pt GaussianQuadrature I   f xdx  c0 f x0  c1 f x1  cn1 f xn1 b  a ~ x 1 2(x  a) Let: b 1  1 a 166 ~ ~ 1 1 1  f (x)dx  2 (b  a) f 2 (a  b)  2 (b  a)xdx