SlideShare a Scribd company logo
1 of 32
 

Polynomial Function
     A polynomial of degree n is a function of 
the form
 
          f(x) = anxn + an  1xn  1 + … + a2x2 + a1x + a0
 
     where each coefficient ak is a real 
number, an ≠ 0, and n is a non-negative 
integer. The leading coefficient is an and 
the degree is n.
 
 
•     Below are the graphs of some degree 3 and 
degree 4 polynomials. Notice that both are 
smooth (like a parabola), but have more 
curves. We shall examine how many curves a 
polynomial can have a little later on.
•  
•
•
•
•
•
•
•

 
Example 1:
 
     What are the degree and leading coefficients 
of the following polynomials?
 
(i) 10x3 + 4x2 + 3x + 1     and     (ii) 2x4 + 3x + 5
 
• Solution:
•  
•      For (i), we see that the degree is 3 and the 
leading coefficient is 10. For (ii), we see that 
the degree is 4 and the leading coefficient is 2.
•      At this point, it is useful to introduce two 
more concepts about functions that will help 
us to describe their graphs better.
•
•
•
•
•
•
•
•
•
•

 
Increasing and Decreasing Functions
     Suppose that f(x) is a function defined over an interval I on the 
number line. If x1 and x2 are in I, then we say that
 
          f(x) increases on I if, whenever x1 < x2, f(x1) < f(x2)
 
     and
 
          f(x) decreases on I if, whenever x1 < x2, f(x1) > f(x2)
 
•
•
•
•

 
Example 2:
 
     Use the graph of f(x) = 12x  x3 (shown 
below) to identify the intervals where f(x) is 
increasing and decreasing.
 
Solution:
 
     From the graph, we see that f(x) is 
increasing on the interval (-2, 2) and 
decreasing on the intervals (-∞, -2)  (2, ∞).
•  
•
•
•
•
•

•
•

•
•
•
•
•

   Let us take a closer look at the graph above. The places where the graph 
changed from increasing to decreasing and from decreasing to increasing are of 
particular importance in calculus. We shall call those pointsturning points, since 
the graph changes direction. In calculus, one can show that a polynomial of 
degree n has at most n  1 turning points.
 
     While we are considering graphs of polynomials, it is worth mentioning some 
additional concepts. In particular, notice that there were two types of turning 
points. One that appeared at “the top of the hill” and the other which appeared at 
“the bottom of the valley”. More formally, we call those points a local maximum 
and a local minimum of the graph.
 
     We may also be interested in determining the largest or smallest value of the 
function overall. We call those points the absolute maximum and absolute 
minimum, respectively.
 
     To recap, we have the following:
 
•
•
•
•
•
•
•
•
•

Absolute and Local Extrema
     Suppose c is in the domain of f(x). Then
 
     (i)    f(c) is an absolute (global) maximum if f(c) ≥ f(x) for all x in 
the domain of f(x)
     (ii)   f(c) is an absolute (global) minimum if f(c) ≤ f(x) for all x in 
the domain of f(x)
     (iii)  f(c) is a local (relative) maximum if f(c) ≥ f(x) when x is near c
     (iv)  f(c) is a local (relative) minimum if f(c) ≤ f(x) when x is near c
 
     Note: By “near c”, we mean that there is an open interval in the 
domain of f(x) containingc, where f(c) satisfies the stated inequality.
•
•
•

•
•

Example 3:
 
     Below is the graph of f(x) on the interval [-3, 
4]. Use the graph to identify the points where f(x) 
has a local maximum and local minimum. Also 
identify the absolute maximum and absolute 
minimum of f(x) on the interval.
 
 
 
Solution:
 
     We observe that there is a local maximum at 
the point (1, 37) (with a value of 37). There are 
two local minimums, occurring at (-2, -152) and 
(3, -27) (with values -152 and -27, respectively). 
On the interval [-3, 4], the maximum value is 64 
(and occurs at (4, 64)) and the minimum value is 
-152 (and occurs at (-2, -152)).
•  
•
•
•
•
•
•
•
•

•
•
•
•

 Finally, we turn our attention to graphing polynomials. If we have a 
polynomial in factored form, we can make a rough sketch of the graph by 
considering the following three steps.
 
List all of the x-intercepts of the graph and (lightly) draw vertical lines at 
those intercepts.
Choose points to the left and to the right of each intercept and determine 
if the function is positive or negative. (Whenever possible, it is preferable 
to choose integers, as the math is usually simpler.) Plot the points on the 
graph. (You may wish to shade the area in between the x-intercepts that 
the chosen point does not pass through. These are known as the excluded
regions.)
Finally, draw a smooth curve between the points you have drawn.
 
 
     This is best illustrated through an example.
•
•
•
•

Example 4:
 
     Sketch a graph of f(x) = (x + 4)(x  1)(x  4).
 
• Solution:
•  
•      We begin by plotting the x-intercepts of the 
graph (which occur at x = -4, 1, and 4) and 
draw in light vertical lines at those points.
•
•     Next, we choose points in between the 
dashed lines. For the sake of simplicity, we 
shall choose x = -5, x = -2, x = 2, and x = 5. 
Notice that f(-5) = -54, f(-2) = 36, f(2) = -12, 
and f(5) = 36. Plotting those points on the 
graph, we have the following.
•  
•
•     We place shaded rectangles to show the 
places where the graph does not pass 
through. Also, at this point, we can remove 
our vertical lines. Doing so, we have the 
following:
•  
•    Finally, we draw a smooth curve that 
connects the points, making sure not to cross 
into any of the shaded regions. Doing this, we 
have:
•  
•   And finally, we remove our shaded regions to 
obtain our final graph.
•   In the example above, the polynomial had no 
repeated factors. That is, none of the factors 
is squared or cubed or so on. But what 
happens if there are repeated factors. Again, 
we shall follow the three steps listed above. 
But there is a fact from calculus that will aid 
us.
•  
•

The Behavior of a Polynomial Function near
an x-intercept
•      Let f(x) be a polynomial and suppose that 
(x  a)n is a factor of f(x). Then, in the immediate 
vicinity of the x-intercept at a, the graph 
of y = f(x) closely resembles that of y = A(x  a)n.
•  
•   Drawn below are the graphs of y = (x + 1)
(x  1)(x  2), y = (x + 1)2(x  1)(x  2), and y = (x + 
1)3(x  1)(x  2).
•  
•    In the first graph, notice that near the xintercept of -1, the function looks like a 
straight line. In the second graph, near the xintercept of -1, the function looks like a 
parabola, and in the third graph, near the xintercept of -1, the function looks like a cubic.
•  

More Related Content

What's hot

On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1Iwan Pranoto
 
4.1 quadratic functions
4.1 quadratic functions4.1 quadratic functions
4.1 quadratic functionsmorrobea
 
matrix algebra
matrix algebramatrix algebra
matrix algebrakganu
 
3. Linear Algebra for Machine Learning: Factorization and Linear Transformations
3. Linear Algebra for Machine Learning: Factorization and Linear Transformations3. Linear Algebra for Machine Learning: Factorization and Linear Transformations
3. Linear Algebra for Machine Learning: Factorization and Linear TransformationsCeni Babaoglu, PhD
 
CPSC 125 Ch 4 Sec 6
CPSC 125 Ch 4 Sec 6CPSC 125 Ch 4 Sec 6
CPSC 125 Ch 4 Sec 6guest862df4e
 
Teaching Graphs of Polynomial Functions
Teaching Graphs of Polynomial FunctionsTeaching Graphs of Polynomial Functions
Teaching Graphs of Polynomial FunctionsFranz Broqueza
 
Presentación grupo 551108 30
Presentación grupo 551108 30Presentación grupo 551108 30
Presentación grupo 551108 30njhernandez19
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .pptSelf-employed
 
An Algorithm to Find the Visible Region of a Polygon
An Algorithm to Find the Visible Region of a PolygonAn Algorithm to Find the Visible Region of a Polygon
An Algorithm to Find the Visible Region of a PolygonKasun Ranga Wijeweera
 
Math 4 6
Math 4 6Math 4 6
Math 4 6dears11
 
7th PreAlg - Lesson 41--Dec16
7th PreAlg - Lesson 41--Dec167th PreAlg - Lesson 41--Dec16
7th PreAlg - Lesson 41--Dec16jdurst65
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vectorRutvij Patel
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 

What's hot (18)

On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1
 
4.1 quadratic functions
4.1 quadratic functions4.1 quadratic functions
4.1 quadratic functions
 
matrix algebra
matrix algebramatrix algebra
matrix algebra
 
3. Linear Algebra for Machine Learning: Factorization and Linear Transformations
3. Linear Algebra for Machine Learning: Factorization and Linear Transformations3. Linear Algebra for Machine Learning: Factorization and Linear Transformations
3. Linear Algebra for Machine Learning: Factorization and Linear Transformations
 
CPSC 125 Ch 4 Sec 6
CPSC 125 Ch 4 Sec 6CPSC 125 Ch 4 Sec 6
CPSC 125 Ch 4 Sec 6
 
Teaching Graphs of Polynomial Functions
Teaching Graphs of Polynomial FunctionsTeaching Graphs of Polynomial Functions
Teaching Graphs of Polynomial Functions
 
Presentación grupo 551108 30
Presentación grupo 551108 30Presentación grupo 551108 30
Presentación grupo 551108 30
 
Exercise1 java
Exercise1 javaExercise1 java
Exercise1 java
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
 
An Algorithm to Find the Visible Region of a Polygon
An Algorithm to Find the Visible Region of a PolygonAn Algorithm to Find the Visible Region of a Polygon
An Algorithm to Find the Visible Region of a Polygon
 
Math 4 6
Math 4 6Math 4 6
Math 4 6
 
Aieee mathematics- 2010
Aieee mathematics- 2010Aieee mathematics- 2010
Aieee mathematics- 2010
 
7th PreAlg - Lesson 41--Dec16
7th PreAlg - Lesson 41--Dec167th PreAlg - Lesson 41--Dec16
7th PreAlg - Lesson 41--Dec16
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
1514 concept of a limit
1514 concept of a limit1514 concept of a limit
1514 concept of a limit
 
Mtc ssample05
Mtc ssample05Mtc ssample05
Mtc ssample05
 

Similar to Presentation1

Similar to Presentation1 (20)

Insider mathematical
Insider   mathematicalInsider   mathematical
Insider mathematical
 
Yocco41
Yocco41Yocco41
Yocco41
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
G10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docxG10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docx
 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
DEV
DEVDEV
DEV
 
Chap7 2 Ecc Intro
Chap7 2 Ecc IntroChap7 2 Ecc Intro
Chap7 2 Ecc Intro
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Integration ftw cyrus
Integration ftw cyrusIntegration ftw cyrus
Integration ftw cyrus
 
chapter1.pdf ......................................
chapter1.pdf ......................................chapter1.pdf ......................................
chapter1.pdf ......................................
 
Grafica funciones cuadráticas
Grafica funciones cuadráticasGrafica funciones cuadráticas
Grafica funciones cuadráticas
 
Math analysis
Math analysisMath analysis
Math analysis
 
Algorithms DM
Algorithms DMAlgorithms DM
Algorithms DM
 
College Algebra 3.2
College Algebra 3.2College Algebra 3.2
College Algebra 3.2
 
Math 116 pres. 1
Math 116 pres. 1Math 116 pres. 1
Math 116 pres. 1
 
Unit vi
Unit viUnit vi
Unit vi
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
Cochino’s math
Cochino’s mathCochino’s math
Cochino’s math
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
 

Presentation1