SlideShare a Scribd company logo
1 of 1
Download to read offline
Solution
Week 89 (5/24/04)
Rope between inclines
Let the total mass of the rope be m, and let a fraction f of it hang in the air.
Consider the right half of this section. Its weight, (f/2)mg, must be balanced by
the vertical component, T sin θ, of the tension at the point where it joins the part
of the rope touching the right platform. The tension at this point therefore equals
T = (f/2)mg/ sin θ.
Now consider the part of the rope touching the right platform. This part has
mass (1 − f)m/2. The normal force from the platform is N = (1 − f)(mg/2) cos θ,
so the maximal friction force equals (1 − f)(mg/2) cos θ, because µ = 1. This
fiction force must balance the sum of the gravitational force component along the
plane, which is (1 − f)(mg/2) sin θ, plus the tension at the lower end, which is the
(f/2)mg/ sin θ we found above. Therefore,
1
2
(1 − f)mg cos θ =
1
2
(1 − f)mg sin θ +
fmg
2 sin θ
, (1)
which gives
f =
F(θ)
1 + F(θ)
, where F(θ) ≡ cos θ sin θ − sin2
θ. (2)
This expression for f is a monotonically increasing function of F(θ), as you can
check. The maximal f is therefore obtained when F(θ) is as large as possible.
Using the double-angle formulas, we can rewrite F(θ) as
F(θ) =
1
2
(sin 2θ + cos 2θ − 1). (3)
The derivative of this is cos 2θ−sin 2θ, which equals zero when tan 2θ = 1. Therefore,
θmax = 22.5◦
. (4)
Eq. (3) then yields F(θmax) = (
√
2 − 1)/2, and so eq. (2) gives
fmax =
√
2 − 1
√
2 + 1
= (
√
2 − 1)2
= 3 − 2
√
2 ≈ 0.172. (5)
1

More Related Content

What's hot (10)

Question 1 Solutions
Question 1 SolutionsQuestion 1 Solutions
Question 1 Solutions
 
Gradient Descent
Gradient DescentGradient Descent
Gradient Descent
 
MTH101 - Calculus and Analytical Geometry- Lecture 37
MTH101 - Calculus and Analytical Geometry- Lecture 37MTH101 - Calculus and Analytical Geometry- Lecture 37
MTH101 - Calculus and Analytical Geometry- Lecture 37
 
Sampling and filtering
Sampling and filteringSampling and filtering
Sampling and filtering
 
1508 calculus-fundamental theorem
1508 calculus-fundamental theorem1508 calculus-fundamental theorem
1508 calculus-fundamental theorem
 
Sol87
Sol87Sol87
Sol87
 
Sol43
Sol43Sol43
Sol43
 
MMPS_Project_1 final
MMPS_Project_1 finalMMPS_Project_1 final
MMPS_Project_1 final
 
Simpson's rule of integration
Simpson's rule of integrationSimpson's rule of integration
Simpson's rule of integration
 
gadget_meeting
gadget_meetinggadget_meeting
gadget_meeting
 

Similar to Sol89

Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
Vin Voro
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tue
Vin Voro
 
Linear integral equations
Linear integral equationsLinear integral equations
Linear integral equations
Springer
 

Similar to Sol89 (19)

Sol49
Sol49Sol49
Sol49
 
Sol3
Sol3Sol3
Sol3
 
Sol3
Sol3Sol3
Sol3
 
Lecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdfLecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdf
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
 
Gold1
Gold1Gold1
Gold1
 
Gold1
Gold1Gold1
Gold1
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
 
Solution i ph o 26
Solution i ph o 26Solution i ph o 26
Solution i ph o 26
 
Solution baupc 2003
Solution baupc 2003Solution baupc 2003
Solution baupc 2003
 
Problem baupc 2003
Problem baupc 2003Problem baupc 2003
Problem baupc 2003
 
Sol35
Sol35Sol35
Sol35
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tue
 
Frequency Response of an Amplifier
Frequency Response of an AmplifierFrequency Response of an Amplifier
Frequency Response of an Amplifier
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitation
 
Pushforward of Differential Forms
Pushforward of Differential FormsPushforward of Differential Forms
Pushforward of Differential Forms
 
Linear integral equations
Linear integral equationsLinear integral equations
Linear integral equations
 
Problem 6.64 sace trig t onta Foe-tT is exerted on the object. At t .pdf
Problem 6.64 sace trig t onta Foe-tT is exerted on the object. At t .pdfProblem 6.64 sace trig t onta Foe-tT is exerted on the object. At t .pdf
Problem 6.64 sace trig t onta Foe-tT is exerted on the object. At t .pdf
 

More from eli priyatna laidan

More from eli priyatna laidan (20)

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2
 
Soal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.netSoal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.net
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1
 
Soal up akmal
Soal up akmalSoal up akmal
Soal up akmal
 
Soal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannyaSoal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannya
 
Soal tes wawasan kebangsaan
Soal tes wawasan kebangsaanSoal tes wawasan kebangsaan
Soal tes wawasan kebangsaan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didik
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017
 
Rekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogiRekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogi
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2
 
Bank soal ppg
Bank soal ppgBank soal ppg
Bank soal ppg
 
Soal cpns-paket-17
Soal cpns-paket-17Soal cpns-paket-17
Soal cpns-paket-17
 
Soal cpns-paket-14
Soal cpns-paket-14Soal cpns-paket-14
Soal cpns-paket-14
 
Soal cpns-paket-13
Soal cpns-paket-13Soal cpns-paket-13
Soal cpns-paket-13
 
Soal cpns-paket-12
Soal cpns-paket-12Soal cpns-paket-12
Soal cpns-paket-12
 

Sol89

  • 1. Solution Week 89 (5/24/04) Rope between inclines Let the total mass of the rope be m, and let a fraction f of it hang in the air. Consider the right half of this section. Its weight, (f/2)mg, must be balanced by the vertical component, T sin θ, of the tension at the point where it joins the part of the rope touching the right platform. The tension at this point therefore equals T = (f/2)mg/ sin θ. Now consider the part of the rope touching the right platform. This part has mass (1 − f)m/2. The normal force from the platform is N = (1 − f)(mg/2) cos θ, so the maximal friction force equals (1 − f)(mg/2) cos θ, because µ = 1. This fiction force must balance the sum of the gravitational force component along the plane, which is (1 − f)(mg/2) sin θ, plus the tension at the lower end, which is the (f/2)mg/ sin θ we found above. Therefore, 1 2 (1 − f)mg cos θ = 1 2 (1 − f)mg sin θ + fmg 2 sin θ , (1) which gives f = F(θ) 1 + F(θ) , where F(θ) ≡ cos θ sin θ − sin2 θ. (2) This expression for f is a monotonically increasing function of F(θ), as you can check. The maximal f is therefore obtained when F(θ) is as large as possible. Using the double-angle formulas, we can rewrite F(θ) as F(θ) = 1 2 (sin 2θ + cos 2θ − 1). (3) The derivative of this is cos 2θ−sin 2θ, which equals zero when tan 2θ = 1. Therefore, θmax = 22.5◦ . (4) Eq. (3) then yields F(θmax) = ( √ 2 − 1)/2, and so eq. (2) gives fmax = √ 2 − 1 √ 2 + 1 = ( √ 2 − 1)2 = 3 − 2 √ 2 ≈ 0.172. (5) 1