SlideShare a Scribd company logo
The Fiber Integral of Differential Forms
Heinrich Hartmann
April 17, 2010
1 Statements
Proposition 1.1. Let f : M → B be an oriented submersion with boundary of
relative dimension d. There is a unique morphism of CN modules
f
: f!Ωd
M/B −→ CN
satisfying
f
α (x) =
f−1(x)
α
for all relative differential forms with proper support α ∈ f!Ωd
M/B.
Moreover there is a natural morphism of CM modules
Φ : Ωk+d
M −→ Ωd
M/N ⊗ f∗
Ωk
N
satisfying
Φ(α ∧ β) → ¯α ⊗ β (1)
for all α ∈ Ωd
M , β ∈ f∗
Ωk
B where ¯α is the image of α in Ωd
M/N . This morphism
induces the a fiber integral
f
: f!Ωk+d
M → Ωk
N .
Definition 1.2. In the situation of the proposition we call f∗ := f
the push
forward or fiber integral of differential forms.
Theorem 1.3. Let f : (M, ∂M) → B be an oriented submersion with boundary
of relative dimension d. The fiber integral has the following properties
1. (Normalisation) If f : M → {pt} then
f∗α =
M
α
1
2. (Fubini-Theorem/Naturality) If g : B → B is another submersion, then
g∗ ◦ f∗ = (f ◦ g)∗
3. (Base Change Formular) If there is a cartesian diagram
M
g
−−−−→ M


f

f
B
g
−−−−→ B.
(2)
where f (and hence f ) is a submersion and g is any differentiable map.
Then
g∗
f∗(α) = f∗g ∗
(α)
for all α ∈ f!(Ωk+d
M ).
4. (Projection Formular) For α ∈ f!(Ωd
M ) and β ∈ Ωk
M )
f∗(α ∧ f∗
β) = (f∗α) ∧ β
5. (Stokes Theorem) Recall that we deonte by ∂f the restriction of f to the
boundray ∂M. For α ∈ f!(Ωk+d
M ) it is
f∗(dα) = (−1)d
d(f∗α) + (f|∂M )∗(α|∂M )
if we use the graded commutator this reads.
[f∗, d] = ∂f
6. If M is a closed manifold and f proper, then f induces a morphism of
cohomology groups
f∗ : Hk
DR(M) → Hk−d
DR (B).
If M and B are compact this map gets identified with the Poincare dual
of the homology pushforward
f∗ : Hm−k(M) → Hm−k(N).
2 Concepts
2.1 Orientation
Definition 2.1. An subersion with boundary f : (M, ∂M) → B is a differen-
tiable map from a manifold with boundary (M, ∂M) to a (ordenary) manifold
B, with such that the restrictions
fo
: Mo
:= M ∂M −→ B, and ∂f : ∂M −→ B
of f to the (ordenary) manifolds Mo
and ∂M are submersions in the usual sense.
2
Proposition 2.2 (Existence of fiber space coordinates). Let f : (M, ∂M) → B
be a submersion with boundary of relative dimension d. Then there are open
coverings {Ui}i∈I of M and {Vi}i∈I of B, and open embedings zi : Ui → Rm
+ :=
Rm−1
× R≥0 and yi : Vi → Rb
such that f(Ui) ⊂ Vi and the following diagram
is commutative
Ui
zi
−−−−→ Rm
+

f

p
Vi
bi
−−−−→ Rb
.
(3)
where p is the projectionon the first b coordinates.
Theorem 2.3 (Ehresmann [2] [1]). Let f : (M, ∂M) → B be a proper subersion
with boundary. Then for all b ∈ B there is an open neighbourhood U ⊂ B and
a diffeomorphism
Φ : (M, ∂M)|U −→ (Mb, ∂Mb) × U
with f = Φ ◦ pr2
Definition 2.4. Let ξ : E → M be a vector bundle of rank n. The frame
bundle of E is the principal GLn-bundle
F(ξ) :=
x∈M
Isom(Rn
, Ex)
The orienation bundle Or(E) of E is the fiber bundle associated to F induced
by the GLn-action
GLn −→ Z×
, A → det(A)/| det(A)|
An orientation of E is a global section of Or(E).
Definition 2.5. Let f : M → B be a submersion of relative dimension d. An
orientation of f (or M over B) is an orientation of the relative tangent bundle
TM/B. An orientation of a submersion with boundary f : (M, ∂M) → B is an
orienation of fo
: Mo
→ B.
Remark 2.6. If f : (M, ∂M) → N is an oriented submersion with boundary, then
the fiber f−1
(x) over x ∈ N has a natural structure of an oriented manifold with
boundary.
Recall that an orientation on a manifold with boundary (M, ∂M) is defined
to be an orienation of the interior Mo
and induces a natural orientation of ∂M
(defined using outwards pointing vectorfilds), in the same way an orientation of
f induces an orientation of ∂f.
3 Proofs
Prop. 1.1. The first condition clearly defines f
α as a function on N. It has
just to be checked that this function is smooth. This is a local statement in
3
N. Since moreover supp(α) is proper over M we can assume there is a finite
cover of supp(α) admitting fiber space coordinates and a partition of unity
with compact supports on each open subset. The smoothness now follows form
standard results of Analysis in Rn
.
To proof the existence of the morphism Φ we consider the insertion map
ins : Λd
TM/B ⊗ Ωk+d
M −→ Ωk
M .
In the exact sequence (see the appendix)
0 → f∗
Ωk
B → Ωk
M
ϕ
→ f∗
Ω1
B ⊗ Ωk−1
M → Sym2
(f∗
Ω1
B) ⊗ Ωk−2
M → . . .
the arrow ϕ is adjoint to the insertion map f∗
TB ⊗Ωk
M → Ωk−1
M . Hence compo-
sition β ◦ins is adjoint to the insertion d+1 vertical vectorfiedls in a k +d form
and therefore zero. Thus ins factorizes over f∗
Ωk
B. And we get the required
morphism Φ by adjunction.
Note that Φ satisfies the formular 1, since ∧ is itself adjoint to insertion.
The definition of f
is now easy. Application of proper pushforward yields
a map
f!Ωk
M → f!(Ωd
M/B ⊗ f∗
Ωk
B) ∼= f!(Ωd
M/B) ⊗ Ωk
B
which we compose with the above constructed integral. (One needs a proj.
formular for f! ... Reference?/Proof?)
Remark 3.1. In the situation above the morphism Φ can be described very
concretely in coordinates. Let x1
, . . . , xd
, y1
, . . . , yb
be fiber space coordinates
for f : M → B. On the canonical basis Φ takes the values
Φ : dxI
∧ dyJ
→
dxI
⊗ dyJ
if I = [d] := {1, . . . , d}
0 else
It is not hard to check, that this assignment is compatiple with coordinate trans-
formations - and hence can be used as definition. Indeed let ˜x1
, . . . , ˜xd
, ˜y1
, . . . , ˜yb
be another set of fiber space coordinates. We have
dxI
∧ dyJ
=
˜I ˜J
D(˜I, ˜J)d˜x
˜I
∧ d˜y
˜J
where the coefficient D(˜I, ˜J) is the determinant of the matrix
∂xI
/∂˜x
˜I
0
∂xI
/∂˜y
˜J
∂yJ
/∂˜y
˜J
:=













∂xi1
. . . ∂xik
∂yj1
. . . ∂yjl
∂˜xa1
... ∂xip
∂˜xaq 0
∂˜xar
∂˜yb1
... ∂xip
∂˜ybq
∂yjp
∂˜y
˜jq
∂˜ybk













4
where of course I = {i1 < · · · < ik}, etc. Note that in general this determinant
is not so easy to compute since the building blocks are not neccessarily diagonal
matrices. However in our case the situation is more fortunate. By definition Φ
takes all forms d˜x
˜I
∧ d˜y
˜J
to zero if not ˜I = [d], but then the first d rows are
lineary dependent if not also I = [n]. So Φ takes the transfomed form to
det(∂xI
/∂˜x
˜I
)d˜x
˜I
⊗
˜J
det(∂yJ
/∂˜y
˜J
)d˜y
˜J
which is precisley the transformation of dxI
⊗ dyJ
as claimed.
Remark 3.2. A submersion determnines a principal fiber bundle on M defined
by
F(f) :=
x∈M
{ϕ : Rd+b ∼=
→ TxM | ϕ(Rd
× {0}n
) ⊂ Txf = ker dfx}
=
x∈M
Isom(Rd
⊂ Rd+b
, Txf ⊂ TxM)
with structure group
GL(d, b) := {invertible block- (d + b) × (d + b) -matrices
A 0
B C
}
= Aut(Rd
⊂ Rd+b
)
All vector bundles occured so far are associated to this principal fiber bundle.
So we could have formulated everything in terms of representation theory for
GL(d, b).
Theorem 1.3. . The Normalisation is obvious form the definition of f∗.
Let us first make the statement of the base change formular precise: Recall
the situation we put ourselfs into:
M
g
−−−−→ M


f

f
B
g
−−−−→ B.
(4)
The fiber integral for f is a morphism of sheaves on B:
f∗ : f!Ωk+d
M −→ Ωk
B.
We can pull back this morphism to B using g and compose with the differential
dg of g, (this is usually deoted by g∗
)
g∗
f!Ωk+d
M
g∗
(f∗)
−→ g∗
Ωk
B
dg
−→ Ωk
B .
5
On the other hand g∗
f!Ωk+d
M is canonically isomorphic to f! g ∗
Ωk+d
M . The dif-
ferential dg induces a map
f! g ∗
Ωk+d
M
f!(dg )
−→ f! Ωk+d
M
which we can compose with the fiber integral f∗. The Base Change formular
claims now, that this two morphisms concide, i.e. the following diagram of
sheaves on B commutes:
f! g∗Ωk+d
M
g∗
(f∗)
−−−−→ g∗
Ωk
B
f! dg

 g∗


f! Ωk+d
M
(f∗)
−−−−→ Ωk
B .
By definition of the fiber integral the rows are the proper direct image f! of
morphism on M which we can further decompose... use adjunction properties
of f!
, f∗, f∗
in the category of ringed spaces...
We can also prove this directly in coordinates: Let b ∈ B set b := g(b )0.
take α ∈ (g∗
f!Ωk+d
M )b, that is a form defined on an open subset f−1
(U) ⊂ M
where U is an arbitary small neighbourhood of b in B, which has proper support
over B.
By Ehresmanns theorem can assume there is a fiber preserving diffeomor-
phism
MU
Ψ
−→ Mb × U
and coodrdinates yj
: U → R. We now choose a cover of Mb admitting co-
ordinates xi
on each patch V ⊂ Mb and a partition of unity with compact
supports.
By definition of fiber square M is canonically isomorphic to B ×g M, hence
f−1
(g−1
(U)) is canonically isomorphic to g−1
(U)×Mb. After making U smaller,
we can again assume there are coordinates y j
on g−1
(U).
So we have reduced the statement to the affine situation1
. Let
α =
I,J
αIJ (x, y)dxI
∧ dyJ
be a k + d-form on Rd
+ × Rb
proper over Rb
.
g : Rb
→ Rb
be a differentiable map. Then
|J|=k
( α[d]J (x, y)dx1
∧ · · · ∧ dxd
) ∧ dyJ
...
1A little attention has to be paid to the orientation. Either we assume that the chart
transions of Mb are orientation preserving, or we multiply by dxI by Or(∂/∂x1, . . . , ∂/∂xd)
before going to the affine case.
6
4 Appendix
4.1 Exterior and Symmetric Algebras
We recall some baisc facts about exterior algebras.
Let V be a finite dimensional vector space over a field K. Set
T(V ) =
k≥0
V ⊗k
be the Tensor algebra over V . As T is functorial in V we get a canonical action
GL(V ) on T(V ) by Algebra Homomorphisms. The action of the subgroup
K×
⊂ GL(V ) induces a N0-grading on T(V ) which coincedes with the grading
we used in the definition (by k ≥ 0).
The exterior and symmetric algebras can be constructed out of T(V ) in two
ways:
4.1.1 Construction as a quotient
Let I be the two sided ideal of T(V ) generated by the elements
{x ⊗ y + y ⊗ x | x, y ∈ V }
Then Λ(V ) := T(V )/I is the exterior algebra. As I is a graded ideal the grading
of T(V ) induces a natural grading on Λ∗
(V ). It is I moreover invariant for the
action of GL(V ), so Λ(V ) carries a natural GL(V ) action, too.
We denote the image of x1 ⊗ . . . ⊗ xk in Λ(V ) by x1 ∧ · · · ∧ xk.
For the symmetric algebra Symk
(V ) we exchange x⊗y+y⊗x with x⊗y−y⊗x
above. The same statements hold mutatis mutandis in this case.
We denote the image of x1 ⊗ . . . ⊗ xk in Sym(V ) by x1 · · · xk.
We now turn to the second description
4.1.2 Construction as a subspace
There is a natural Sk = AutSET({1, . . . , k}) left action on Tk
(V ) given by
τ : x1 ⊗ . . . ⊗ xk → xτ1 ⊗ . . . ⊗ xτk
for τ ∈ Sk.
Note that if we embed Sk × Sl into Sk+l by letting Sk act on {1, . . . , k} and
Sl on {k + 1, . . . , l} in the obvious way, then the product
Tk
(V ) ⊗ Tl
(V ) → Tk+l
(V )
is Sk × Sl-equivariant.
For a character χ : Sk → Z×
define an operator Pχ : T(V ) → T(V ) by
x1 ⊗ . . . ⊗ xk →
1
k!
τ∈Sk
χ(τ) τ · (x1 ⊗ . . . ⊗ xk).
7
One checks easily that Pχ is a projection operator i.e. P2
χ = Pχ. Hence we have
a canonical decomposition:
Tk
(V ) = Image(Pχ) ⊕ Kernel(Pχ)
which is invariant for the Sk-action as well as for the GL(V ) action on Tk
(V )!
We say S = P1 is the symmetrisation operator and A = Psign is the anti-
symmetrisation operator. In degree k ≥ 2 we have S ◦ A = A ◦ S = 0. We
denote the image of A and S by Ak
(V ) resp. Sk
(V ).
Proposition 4.1. The compositions
A(V ) → T(V ) → Λ(V )
and
S(V ) → T(V ) → Sym(V )
are natural isomorphisms of vectorspaces, GL(V )-representations and induce
isomorphisms of Sk-representations in the k-th graded component.
These isomorphisms can be made explicit as follows: Take x1 ∧ · · · ∧ xk ∈
Λ(V ) represent it by some (non-anti-symmetric) tensor x1 ⊗ . . . ⊗ xk. Then the
anti-symmetrisation A(x1 ⊗ . . . ⊗ xk) lies in A(V ) and is an inverse image for
x1 ∧ · · · ∧ xk.
4.1.3 An exact sequence
Let
0 −→ S −→ V −→ Q −→ 0 (5)
be an exact sequence of finite dimensional k-vector spaces. The induced seqences
0 −→ Symk
(S) −→ Symk
(V ) −→ Symk
(Q) −→ 0
and
0 −→ Λk
(S) −→ Λk
(V ) −→ Λk
(Q) −→ 0
are exact at the right and left, but not in the middle. Instead we have natural
(longer) exact sequences
0 → Symk
(S) → Symk
(V ) → Symk−1
(V ) ⊗ Q → . . . (6)
. . . → Sym2
(V ) ⊗ Λk−2
(Q) → V ⊗ Λk−1
(Q) → Λk
(Q) → 0
0 → Λk
(S) → Λk
(V ) → Λk−1
(V ) ⊗ Q → . . . (7)
. . . → Λ2
(V ) ⊗ Symk−2
(Q) → V ⊗ Symk−1
(Q) → Symk
(Q) → 0
and the dual versions
0 → Symk
(S) → V ⊗ Symk−1
(S) → Λ2
(V ) ⊗ Symk−2
(S) → . . .
. . . → Λk−1
(V ) ⊗ S → Λk
(V ) → Λk
(Q) → 0
8
0 → Λk
(S) → V ⊗ Λk−1
(S) → Sym2
(V ) ⊗ Λk−2
(S) → . . .
. . . → Symk−1
(V ) ⊗ S → Symk
(V ) → Symk
(Q) → 0.
First of all we have to construct natural morphisms
Symk
(V ) ⊗ Λl
(Q) → Symk−1
(V ) ⊗ Λl+1
(Q)
Λk
(V ) ⊗ Syml
(Q) → Λk−1
(V ) ⊗ Syml+1
(Q)
and
Symk
(S) ⊗ Λl
(V ) → Symk−1
(S) ⊗ Λl+1
(V )
Λk
(S) ⊗ Syml
(V ) → Λk−1
(S) ⊗ Syml+1
(V )
To cunstruct the first morphism we compose the tensored product of the natural
embedings
Symk
(V ) → Tk
(V ), Λl
(Q) → Tk
(Q)
with the canonical map
Tk
(V ) ⊗ Tl
(Q) → Tk−1
(V ) ⊗ Tl+1
(Q)
mapping the last V variable to its image in Q. Now we use the quotient desc-
tription of Λ and Sym to end up with the required morphism. The remaining
morphism are defined similary.
The vanishing of the composition
Symk+1
(V ) ⊗ Λl−1
(Q) → Symk
(V ) ⊗ Λl
(Q) → Symk−1
(V ) ⊗ Λl+1
(Q)
and the exactnes can be checked in coordinates - it holds true basically because
S ◦ A = A ◦ S = 0 and the ideals are generated in degree 2.
4.2 Multiplication Formular
Let f : M → N be a differentiable map of smooth manifolds with local
coordinates xi
, i = 1 . . . m and yi
, i = 1, . . . , n respectively. For two Index
sets I ⊂ [m] := {1, . . . , m}, J ⊂ [n] of cardinality k. we define the matrix
∂yJ
∂xI := (∂yj
◦f
∂xi )j∈J,i∈I where we order the indices in ascending order.
Lemma 4.2. With this notation we have:
dyJ
= dyj1
∧ · · · ∧ dyjk
=
I⊂[m],|I|=k
det(
∂yJ
∂xI
)dxI
where of course j1 < · · · < jk.
Proof. We have
dyJ
=
i1=1..k
· · ·
ik=1..k
∂yj1
∂xi1
dxi1
∧ · · · ∧
∂yjk
∂xik
dxik
9
if in this sum ir = is for some r = s then the corresponding summand is zero.
Hence the set {i1, . . . , ik} ⊂ [m] can be assumed to have cardinality k. There is
now an unique permutation π ∈ Sk such that iπ1 < · · · < iπk. We further note
that
dxi1
∧ · · · ∧ dxik
= sign(π)dxiπ1
∧ · · · ∧ dxiπk
.
Combining this with the previews formular yields:
dyJ
=
I⊂[m],|I|=k π∈Sk
sign(π)
∂yj1
∂xiπ1
. . .
∂yjk
∂xiπk
dxI
=
I⊂[m],|I|=k
det(
∂yJ
∂xI
)dxI
where now i = {i1, . . . , ik} with i1 < · · · < ik.
4.3 Localised Manifolds (obsolete)
Definition 4.3. A localised manifold M = (CM , AM ) is a manifold CM together
with a subset AM ⊂ CM . We call CM the craig and AM the core of M.
A morphism of localised manifolds f : (CM , AM ) → (CN , AN ) is an equica-
lence class of diffeneriable mappings
Cf : D(Cf ) → N with f(AM ) ⊂ AN
where D(Cf ) is an open neighbourhood of AM in CM . Two maps Cf and Cg are
equivalent iff there is an open neighbourhood V of A contained in D(Cf )∩D(Cg)
and
f|V = g|V .
If f : M → M and g : M → M are morphisms of localised manifolds, we
define the composition by composing representatives 2
. So we get a category of
localised Manifolds which we will denote by LDIFF.
The dimension M is the dimension of CM , which is preserved under isomor-
phisms.
Question: Is the functor LDIFF → LkRSp which maps (M, A) to i−1
(CM )
where i : M → A fully faithful?
What about HomLDIFF(Rn
, 0) → (Rn
, 0))? It works?!
If not, is it the restriction to mfds. with boundary f.f. ?
Yes, then we can skip all this, and define mf. with boundary as lk-ringed
spaces.
Remark 4.4. If AM ⊂ CM is open, then (CM , AM ) ∼= (AM , AM ) as localised
manifolds.
Definition 4.5. Let M = (CM , AM ) be a localised manifold, an open sub-
manifold of M is the localised manifold (U, AM ∩ U) given by an open subset
2The set of definition D(Cf ) can be made smaller to ensure the latter morphism is defined
on the image
10
U ⊂ CM of the craig. We have an obvious morphism of localised manifolds
(U, AM ∩ U) → M.
An open cover of M is a collection {Ui}i∈I of open submanifolds such that
AUi
cover AM .
Remark 4.6. We have a localisation functor
L : DIFF → LDIFF, M → (M, M), f → f
which is full and faithful. And a restriction functor
A : LDIFF → TOP, (CM , AM ) → AM , f → Af = f|AM
: AM → AN .
which is neither faithful nor full.
Definition 4.7. A morphism f : M → N of localied manifolds is called submer-
sion/immersion if there exists an representative Cf which has the correspondig
property.
f is called injective/surjective/proper/open/closed, if Af : AM → AN has
the correspondig property.
We call f an open embeding, if f is open and induces an isomorphism of
localised manifolds M → (N, Image(Af )).
Definition 4.8. A manifold with bounday is a localised manifold M locally
isomorphic to Rn
+ := (Rn
, Rn−1
× R≥0), i.e. there is an open cover {Ui}i∈I of
M and open embedings ϕi : Ui → Rn
+ of localised manifolds.
Let (CM , AM ) be a manifold with boundary. We denote the topological
boundary of AM ⊂ CM by ∂M. As AM is closed in CM we have ∂M ⊂ AM
and ∂M is hence preserved under isomorphisms of localised manifolds. The
boundary ∂M carries a natural structure of an (ordenary) submanifold of CM .
Moreover Mo
:= AM  ∂M is a (orendenary) manifold, too.
We also use the notation (M, ∂M) for a manifold with boundary, which
means M = (CM , AM ) is a manifold with boundary and ∂M ⊂ AM its bound-
ary.
Definition 4.9. A submersion of manifolds with boundary is a submersion of
a localised manifolds f : M → B, where B = (B, B) is an (ordenary) manifold
and M = (CM , AM ) a manifold with bounday, such that ∂f, the restriction of
f to ∂M, is still submersive.
The condition that ∂f is submersive is not automatic. Let for example be
D ⊂ R2
be the closed disc, then
pr1 : (R2
, D) → (R, R)
is clearly a submersion of localised manifolds but not submersive on ∂D.
Remark 4.10. In the situation of the definition, let U ⊂ M be an open subset.
Then the restriction of π to U, M ∩ U is again a submersion with boundary.
11
Proposition 4.11. Let M → B be a submersion of manifolds with boundary,
dim(M) = m, dim(B) = b. Then locally on M there are fiber space coordinates.
This means there are covers {Ui}i∈I of M and {Vi}i∈I of B, and open embedings
zi : Ui → Rm
+ and bi : Vi → Rb
such that f(Ui) ⊂ Vi and the following diagram
is commutative
Ui
zi
−−−−→ Rm
+

f

p
Vi
bi
−−−−→ Rb
.
(8)
Here p is the projection to the first b corrdinates.
Definition 4.12. A sheaf on a localised manifold M is a sheaf on AM . (Is this
equivalent to sheafs on the Site of open covers?)
The structure sheaf of M is i−1
(CCM
)
The tangent sheaf of M is i−1
(TCM
) where i : AM → CM is the inclusion
and TCM
the Tangent sheaf of CM .
The relative tangent sheaf of a morphism f : M → N of localised manifolds
is...
References
[1] C. Ehresmann. Sur les espaces fibres differentiables. CR Acad. Sci. Paris,
224:1611–1612, 1947.
[2] J.A. Wolf. Differentiable fibre spaces and mappings compatible with Rie-
mannian metrics. Michigan Math. J, 11(1):65–70, 1964.
12

More Related Content

What's hot

学振特別研究員になるために~2024年度申請版
 学振特別研究員になるために~2024年度申請版 学振特別研究員になるために~2024年度申請版
学振特別研究員になるために~2024年度申請版
Masahito Ohue
 
雇用・働き方の未来 人とインテリジェント・テクノロジー
雇用・働き方の未来 人とインテリジェント・テクノロジー雇用・働き方の未来 人とインテリジェント・テクノロジー
雇用・働き方の未来 人とインテリジェント・テクノロジー
Accenture Japan
 
AI(人工知能)研究の最前線:社会はどのように変わるだろう?
AI(人工知能)研究の最前線:社会はどのように変わるだろう?AI(人工知能)研究の最前線:社会はどのように変わるだろう?
AI(人工知能)研究の最前線:社会はどのように変わるだろう?
KIT Cognitive Interaction Design
 
研究の呪い
研究の呪い研究の呪い
研究の呪い
Hitoshi Nishikawa
 
学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版
Masahito Ohue
 
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
Hajime Fujita
 
オープンサイエンスとオープンデータ
オープンサイエンスとオープンデータオープンサイエンスとオープンデータ
オープンサイエンスとオープンデータ
National Institute of Informatics (NII)
 
静的型付け言語Python
静的型付け言語Python静的型付け言語Python
静的型付け言語Python
kiki utagawa
 
インタラクションのためのコンピュータビジョンのお仕事
インタラクションのためのコンピュータビジョンのお仕事インタラクションのためのコンピュータビジョンのお仕事
インタラクションのためのコンピュータビジョンのお仕事
Yasunori Ozaki
 
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
Sayuri Shimizu
 
みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様
Takeshi Akutsu
 
学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版
Masahito Ohue
 
ChatGPTがもたらす未来予測
ChatGPTがもたらす未来予測ChatGPTがもたらす未来予測
ChatGPTがもたらす未来予測
Koji Fukuoka
 
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
Atsuto ONODA
 
Media Equation: マシンと人との認知的な境界(竹内 勇剛)
Media Equation: マシンと人との認知的な境界(竹内 勇剛)Media Equation: マシンと人との認知的な境界(竹内 勇剛)
Media Equation: マシンと人との認知的な境界(竹内 勇剛)
KIT Cognitive Interaction Design
 
EBPM, “E”から見るか? “PM”から見るか?
EBPM, “E”から見るか? “PM”から見るか?EBPM, “E”から見るか? “PM”から見るか?
EBPM, “E”から見るか? “PM”から見るか?
takehikoihayashi
 
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
DeNA
 
国際標準化におけるAR/MR用語の使われ方
国際標準化におけるAR/MR用語の使われ方国際標準化におけるAR/MR用語の使われ方
国際標準化におけるAR/MR用語の使われ方
Kurata Takeshi
 
バイオインフォマティクスで実験ノートを取ろう
バイオインフォマティクスで実験ノートを取ろうバイオインフォマティクスで実験ノートを取ろう
バイオインフォマティクスで実験ノートを取ろう
Masahiro Kasahara
 
簡単な算数でできる文章校正
簡単な算数でできる文章校正簡単な算数でできる文章校正
簡単な算数でできる文章校正
hirokiky
 

What's hot (20)

学振特別研究員になるために~2024年度申請版
 学振特別研究員になるために~2024年度申請版 学振特別研究員になるために~2024年度申請版
学振特別研究員になるために~2024年度申請版
 
雇用・働き方の未来 人とインテリジェント・テクノロジー
雇用・働き方の未来 人とインテリジェント・テクノロジー雇用・働き方の未来 人とインテリジェント・テクノロジー
雇用・働き方の未来 人とインテリジェント・テクノロジー
 
AI(人工知能)研究の最前線:社会はどのように変わるだろう?
AI(人工知能)研究の最前線:社会はどのように変わるだろう?AI(人工知能)研究の最前線:社会はどのように変わるだろう?
AI(人工知能)研究の最前線:社会はどのように変わるだろう?
 
研究の呪い
研究の呪い研究の呪い
研究の呪い
 
学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版
 
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
トップエンジニアが実践する思考整理法~テクニカルライティングを用いた課題解決の基本
 
オープンサイエンスとオープンデータ
オープンサイエンスとオープンデータオープンサイエンスとオープンデータ
オープンサイエンスとオープンデータ
 
静的型付け言語Python
静的型付け言語Python静的型付け言語Python
静的型付け言語Python
 
インタラクションのためのコンピュータビジョンのお仕事
インタラクションのためのコンピュータビジョンのお仕事インタラクションのためのコンピュータビジョンのお仕事
インタラクションのためのコンピュータビジョンのお仕事
 
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
大規模医療データベースを活用した治療効果研究の計画と報告:DB研究の手続き
 
みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様
 
学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版
 
ChatGPTがもたらす未来予測
ChatGPTがもたらす未来予測ChatGPTがもたらす未来予測
ChatGPTがもたらす未来予測
 
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
 
Media Equation: マシンと人との認知的な境界(竹内 勇剛)
Media Equation: マシンと人との認知的な境界(竹内 勇剛)Media Equation: マシンと人との認知的な境界(竹内 勇剛)
Media Equation: マシンと人との認知的な境界(竹内 勇剛)
 
EBPM, “E”から見るか? “PM”から見るか?
EBPM, “E”から見るか? “PM”から見るか?EBPM, “E”から見るか? “PM”から見るか?
EBPM, “E”から見るか? “PM”から見るか?
 
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
『モビリティ・インテリジェンス』の社会実装 [DeNA TechCon 2019]
 
国際標準化におけるAR/MR用語の使われ方
国際標準化におけるAR/MR用語の使われ方国際標準化におけるAR/MR用語の使われ方
国際標準化におけるAR/MR用語の使われ方
 
バイオインフォマティクスで実験ノートを取ろう
バイオインフォマティクスで実験ノートを取ろうバイオインフォマティクスで実験ノートを取ろう
バイオインフォマティクスで実験ノートを取ろう
 
簡単な算数でできる文章校正
簡単な算数でできる文章校正簡単な算数でできる文章校正
簡単な算数でできる文章校正
 

Similar to Pushforward of Differential Forms

Practical computation of Hecke operators
Practical computation of Hecke operatorsPractical computation of Hecke operators
Practical computation of Hecke operators
Mathieu Dutour Sikiric
 
introtogaugetheory.pdf
introtogaugetheory.pdfintrotogaugetheory.pdf
introtogaugetheory.pdf
asdfasdf214078
 
Cusps of the Kähler moduli space and stability conditions on K3 surfaces
Cusps of the Kähler moduli space and stability conditions on K3 surfacesCusps of the Kähler moduli space and stability conditions on K3 surfaces
Cusps of the Kähler moduli space and stability conditions on K3 surfaces
Heinrich Hartmann
 
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a treedeformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
Bohdan Feshchenko
 
Annals v169-n2-p03
Annals v169-n2-p03Annals v169-n2-p03
Annals v169-n2-p03
Juanjo Nuño
 
Analysis and algebra on differentiable manifolds
Analysis and algebra on differentiable manifoldsAnalysis and algebra on differentiable manifolds
Analysis and algebra on differentiable manifoldsSpringer
 
Maxwell's equations
Maxwell's equationsMaxwell's equations
Maxwell's equations
Mahesh Bhattarai
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment Help
Math Homework Solver
 
13 05-curl-and-divergence
13 05-curl-and-divergence13 05-curl-and-divergence
13 05-curl-and-divergence
Abdelrahman Elshaer
 
Inverses & One-to-One
Inverses & One-to-OneInverses & One-to-One
Inverses & One-to-Oneaabdel96
 
CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_TrainingHannah Butler
 
Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,Tarun Gehlot
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment Help
Maths Assignment Help
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
TabrijiIslam
 
Hecke Curves and Moduli spcaes of Vector Bundles
Hecke Curves and Moduli spcaes of Vector BundlesHecke Curves and Moduli spcaes of Vector Bundles
Hecke Curves and Moduli spcaes of Vector Bundles
Heinrich Hartmann
 
Complex Analysis And ita real life problems solution
Complex Analysis And ita real life problems solutionComplex Analysis And ita real life problems solution
Complex Analysis And ita real life problems solution
NaeemAhmad289736
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
helalmohammad2
 

Similar to Pushforward of Differential Forms (20)

Practical computation of Hecke operators
Practical computation of Hecke operatorsPractical computation of Hecke operators
Practical computation of Hecke operators
 
introtogaugetheory.pdf
introtogaugetheory.pdfintrotogaugetheory.pdf
introtogaugetheory.pdf
 
Cusps of the Kähler moduli space and stability conditions on K3 surfaces
Cusps of the Kähler moduli space and stability conditions on K3 surfacesCusps of the Kähler moduli space and stability conditions on K3 surfaces
Cusps of the Kähler moduli space and stability conditions on K3 surfaces
 
Computing F-blowups
Computing F-blowupsComputing F-blowups
Computing F-blowups
 
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a treedeformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
 
Annals v169-n2-p03
Annals v169-n2-p03Annals v169-n2-p03
Annals v169-n2-p03
 
Analysis and algebra on differentiable manifolds
Analysis and algebra on differentiable manifoldsAnalysis and algebra on differentiable manifolds
Analysis and algebra on differentiable manifolds
 
Maxwell's equations
Maxwell's equationsMaxwell's equations
Maxwell's equations
 
The integral
The integralThe integral
The integral
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment Help
 
Thesis
ThesisThesis
Thesis
 
13 05-curl-and-divergence
13 05-curl-and-divergence13 05-curl-and-divergence
13 05-curl-and-divergence
 
Inverses & One-to-One
Inverses & One-to-OneInverses & One-to-One
Inverses & One-to-One
 
CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_Training
 
Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment Help
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
 
Hecke Curves and Moduli spcaes of Vector Bundles
Hecke Curves and Moduli spcaes of Vector BundlesHecke Curves and Moduli spcaes of Vector Bundles
Hecke Curves and Moduli spcaes of Vector Bundles
 
Complex Analysis And ita real life problems solution
Complex Analysis And ita real life problems solutionComplex Analysis And ita real life problems solution
Complex Analysis And ita real life problems solution
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
 

More from Heinrich Hartmann

Latency SLOs Done Right @ SREcon EMEA 2019
Latency SLOs Done Right @ SREcon EMEA 2019Latency SLOs Done Right @ SREcon EMEA 2019
Latency SLOs Done Right @ SREcon EMEA 2019
Heinrich Hartmann
 
Circonus: Design failures - A Case Study
Circonus: Design failures - A Case StudyCirconus: Design failures - A Case Study
Circonus: Design failures - A Case Study
Heinrich Hartmann
 
Linux System Monitoring with eBPF
Linux System Monitoring with eBPFLinux System Monitoring with eBPF
Linux System Monitoring with eBPF
Heinrich Hartmann
 
Statistics for Engineers
Statistics for EngineersStatistics for Engineers
Statistics for Engineers
Heinrich Hartmann
 
Scalable Online Analytics for Monitoring
Scalable Online Analytics for MonitoringScalable Online Analytics for Monitoring
Scalable Online Analytics for Monitoring
Heinrich Hartmann
 
Geometric Aspects of LSA
Geometric Aspects of LSAGeometric Aspects of LSA
Geometric Aspects of LSA
Heinrich Hartmann
 
Geometric Aspects of LSA
Geometric Aspects of LSAGeometric Aspects of LSA
Geometric Aspects of LSA
Heinrich Hartmann
 
Seminar on Complex Geometry
Seminar on Complex GeometrySeminar on Complex Geometry
Seminar on Complex Geometry
Heinrich Hartmann
 
Seminar on Motivic Hall Algebras
Seminar on Motivic Hall AlgebrasSeminar on Motivic Hall Algebras
Seminar on Motivic Hall Algebras
Heinrich Hartmann
 
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONS
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONSGROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONS
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONSHeinrich Hartmann
 
Topics in Category Theory
Topics in Category TheoryTopics in Category Theory
Topics in Category Theory
Heinrich Hartmann
 
Related-Work.net at WeST Oberseminar
Related-Work.net at WeST OberseminarRelated-Work.net at WeST Oberseminar
Related-Work.net at WeST Oberseminar
Heinrich Hartmann
 
Komplexe Zahlen
Komplexe ZahlenKomplexe Zahlen
Komplexe Zahlen
Heinrich Hartmann
 
Dimensionstheorie Noetherscher Ringe
Dimensionstheorie Noetherscher RingeDimensionstheorie Noetherscher Ringe
Dimensionstheorie Noetherscher Ringe
Heinrich Hartmann
 
Polynomproblem
PolynomproblemPolynomproblem
Polynomproblem
Heinrich Hartmann
 
Dimension und Multiplizität von D-Moduln
Dimension und Multiplizität von D-ModulnDimension und Multiplizität von D-Moduln
Dimension und Multiplizität von D-Moduln
Heinrich Hartmann
 
Nodale kurven und Hilbertschemata
Nodale kurven und HilbertschemataNodale kurven und Hilbertschemata
Nodale kurven und Hilbertschemata
Heinrich Hartmann
 
Local morphisms are given by composition
Local morphisms are given by compositionLocal morphisms are given by composition
Local morphisms are given by composition
Heinrich Hartmann
 
Notes on Intersection theory
Notes on Intersection theoryNotes on Intersection theory
Notes on Intersection theory
Heinrich Hartmann
 
Log Files
Log FilesLog Files

More from Heinrich Hartmann (20)

Latency SLOs Done Right @ SREcon EMEA 2019
Latency SLOs Done Right @ SREcon EMEA 2019Latency SLOs Done Right @ SREcon EMEA 2019
Latency SLOs Done Right @ SREcon EMEA 2019
 
Circonus: Design failures - A Case Study
Circonus: Design failures - A Case StudyCirconus: Design failures - A Case Study
Circonus: Design failures - A Case Study
 
Linux System Monitoring with eBPF
Linux System Monitoring with eBPFLinux System Monitoring with eBPF
Linux System Monitoring with eBPF
 
Statistics for Engineers
Statistics for EngineersStatistics for Engineers
Statistics for Engineers
 
Scalable Online Analytics for Monitoring
Scalable Online Analytics for MonitoringScalable Online Analytics for Monitoring
Scalable Online Analytics for Monitoring
 
Geometric Aspects of LSA
Geometric Aspects of LSAGeometric Aspects of LSA
Geometric Aspects of LSA
 
Geometric Aspects of LSA
Geometric Aspects of LSAGeometric Aspects of LSA
Geometric Aspects of LSA
 
Seminar on Complex Geometry
Seminar on Complex GeometrySeminar on Complex Geometry
Seminar on Complex Geometry
 
Seminar on Motivic Hall Algebras
Seminar on Motivic Hall AlgebrasSeminar on Motivic Hall Algebras
Seminar on Motivic Hall Algebras
 
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONS
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONSGROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONS
GROUPOIDS, LOCAL SYSTEMS AND DIFFERENTIAL EQUATIONS
 
Topics in Category Theory
Topics in Category TheoryTopics in Category Theory
Topics in Category Theory
 
Related-Work.net at WeST Oberseminar
Related-Work.net at WeST OberseminarRelated-Work.net at WeST Oberseminar
Related-Work.net at WeST Oberseminar
 
Komplexe Zahlen
Komplexe ZahlenKomplexe Zahlen
Komplexe Zahlen
 
Dimensionstheorie Noetherscher Ringe
Dimensionstheorie Noetherscher RingeDimensionstheorie Noetherscher Ringe
Dimensionstheorie Noetherscher Ringe
 
Polynomproblem
PolynomproblemPolynomproblem
Polynomproblem
 
Dimension und Multiplizität von D-Moduln
Dimension und Multiplizität von D-ModulnDimension und Multiplizität von D-Moduln
Dimension und Multiplizität von D-Moduln
 
Nodale kurven und Hilbertschemata
Nodale kurven und HilbertschemataNodale kurven und Hilbertschemata
Nodale kurven und Hilbertschemata
 
Local morphisms are given by composition
Local morphisms are given by compositionLocal morphisms are given by composition
Local morphisms are given by composition
 
Notes on Intersection theory
Notes on Intersection theoryNotes on Intersection theory
Notes on Intersection theory
 
Log Files
Log FilesLog Files
Log Files
 

Recently uploaded

plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
yusufzako14
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
binhminhvu04
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
anitaento25
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
azzyixes
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptx
Cherry
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 

Recently uploaded (20)

plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 

Pushforward of Differential Forms

  • 1. The Fiber Integral of Differential Forms Heinrich Hartmann April 17, 2010 1 Statements Proposition 1.1. Let f : M → B be an oriented submersion with boundary of relative dimension d. There is a unique morphism of CN modules f : f!Ωd M/B −→ CN satisfying f α (x) = f−1(x) α for all relative differential forms with proper support α ∈ f!Ωd M/B. Moreover there is a natural morphism of CM modules Φ : Ωk+d M −→ Ωd M/N ⊗ f∗ Ωk N satisfying Φ(α ∧ β) → ¯α ⊗ β (1) for all α ∈ Ωd M , β ∈ f∗ Ωk B where ¯α is the image of α in Ωd M/N . This morphism induces the a fiber integral f : f!Ωk+d M → Ωk N . Definition 1.2. In the situation of the proposition we call f∗ := f the push forward or fiber integral of differential forms. Theorem 1.3. Let f : (M, ∂M) → B be an oriented submersion with boundary of relative dimension d. The fiber integral has the following properties 1. (Normalisation) If f : M → {pt} then f∗α = M α 1
  • 2. 2. (Fubini-Theorem/Naturality) If g : B → B is another submersion, then g∗ ◦ f∗ = (f ◦ g)∗ 3. (Base Change Formular) If there is a cartesian diagram M g −−−−→ M   f  f B g −−−−→ B. (2) where f (and hence f ) is a submersion and g is any differentiable map. Then g∗ f∗(α) = f∗g ∗ (α) for all α ∈ f!(Ωk+d M ). 4. (Projection Formular) For α ∈ f!(Ωd M ) and β ∈ Ωk M ) f∗(α ∧ f∗ β) = (f∗α) ∧ β 5. (Stokes Theorem) Recall that we deonte by ∂f the restriction of f to the boundray ∂M. For α ∈ f!(Ωk+d M ) it is f∗(dα) = (−1)d d(f∗α) + (f|∂M )∗(α|∂M ) if we use the graded commutator this reads. [f∗, d] = ∂f 6. If M is a closed manifold and f proper, then f induces a morphism of cohomology groups f∗ : Hk DR(M) → Hk−d DR (B). If M and B are compact this map gets identified with the Poincare dual of the homology pushforward f∗ : Hm−k(M) → Hm−k(N). 2 Concepts 2.1 Orientation Definition 2.1. An subersion with boundary f : (M, ∂M) → B is a differen- tiable map from a manifold with boundary (M, ∂M) to a (ordenary) manifold B, with such that the restrictions fo : Mo := M ∂M −→ B, and ∂f : ∂M −→ B of f to the (ordenary) manifolds Mo and ∂M are submersions in the usual sense. 2
  • 3. Proposition 2.2 (Existence of fiber space coordinates). Let f : (M, ∂M) → B be a submersion with boundary of relative dimension d. Then there are open coverings {Ui}i∈I of M and {Vi}i∈I of B, and open embedings zi : Ui → Rm + := Rm−1 × R≥0 and yi : Vi → Rb such that f(Ui) ⊂ Vi and the following diagram is commutative Ui zi −−−−→ Rm +  f  p Vi bi −−−−→ Rb . (3) where p is the projectionon the first b coordinates. Theorem 2.3 (Ehresmann [2] [1]). Let f : (M, ∂M) → B be a proper subersion with boundary. Then for all b ∈ B there is an open neighbourhood U ⊂ B and a diffeomorphism Φ : (M, ∂M)|U −→ (Mb, ∂Mb) × U with f = Φ ◦ pr2 Definition 2.4. Let ξ : E → M be a vector bundle of rank n. The frame bundle of E is the principal GLn-bundle F(ξ) := x∈M Isom(Rn , Ex) The orienation bundle Or(E) of E is the fiber bundle associated to F induced by the GLn-action GLn −→ Z× , A → det(A)/| det(A)| An orientation of E is a global section of Or(E). Definition 2.5. Let f : M → B be a submersion of relative dimension d. An orientation of f (or M over B) is an orientation of the relative tangent bundle TM/B. An orientation of a submersion with boundary f : (M, ∂M) → B is an orienation of fo : Mo → B. Remark 2.6. If f : (M, ∂M) → N is an oriented submersion with boundary, then the fiber f−1 (x) over x ∈ N has a natural structure of an oriented manifold with boundary. Recall that an orientation on a manifold with boundary (M, ∂M) is defined to be an orienation of the interior Mo and induces a natural orientation of ∂M (defined using outwards pointing vectorfilds), in the same way an orientation of f induces an orientation of ∂f. 3 Proofs Prop. 1.1. The first condition clearly defines f α as a function on N. It has just to be checked that this function is smooth. This is a local statement in 3
  • 4. N. Since moreover supp(α) is proper over M we can assume there is a finite cover of supp(α) admitting fiber space coordinates and a partition of unity with compact supports on each open subset. The smoothness now follows form standard results of Analysis in Rn . To proof the existence of the morphism Φ we consider the insertion map ins : Λd TM/B ⊗ Ωk+d M −→ Ωk M . In the exact sequence (see the appendix) 0 → f∗ Ωk B → Ωk M ϕ → f∗ Ω1 B ⊗ Ωk−1 M → Sym2 (f∗ Ω1 B) ⊗ Ωk−2 M → . . . the arrow ϕ is adjoint to the insertion map f∗ TB ⊗Ωk M → Ωk−1 M . Hence compo- sition β ◦ins is adjoint to the insertion d+1 vertical vectorfiedls in a k +d form and therefore zero. Thus ins factorizes over f∗ Ωk B. And we get the required morphism Φ by adjunction. Note that Φ satisfies the formular 1, since ∧ is itself adjoint to insertion. The definition of f is now easy. Application of proper pushforward yields a map f!Ωk M → f!(Ωd M/B ⊗ f∗ Ωk B) ∼= f!(Ωd M/B) ⊗ Ωk B which we compose with the above constructed integral. (One needs a proj. formular for f! ... Reference?/Proof?) Remark 3.1. In the situation above the morphism Φ can be described very concretely in coordinates. Let x1 , . . . , xd , y1 , . . . , yb be fiber space coordinates for f : M → B. On the canonical basis Φ takes the values Φ : dxI ∧ dyJ → dxI ⊗ dyJ if I = [d] := {1, . . . , d} 0 else It is not hard to check, that this assignment is compatiple with coordinate trans- formations - and hence can be used as definition. Indeed let ˜x1 , . . . , ˜xd , ˜y1 , . . . , ˜yb be another set of fiber space coordinates. We have dxI ∧ dyJ = ˜I ˜J D(˜I, ˜J)d˜x ˜I ∧ d˜y ˜J where the coefficient D(˜I, ˜J) is the determinant of the matrix ∂xI /∂˜x ˜I 0 ∂xI /∂˜y ˜J ∂yJ /∂˜y ˜J :=              ∂xi1 . . . ∂xik ∂yj1 . . . ∂yjl ∂˜xa1 ... ∂xip ∂˜xaq 0 ∂˜xar ∂˜yb1 ... ∂xip ∂˜ybq ∂yjp ∂˜y ˜jq ∂˜ybk              4
  • 5. where of course I = {i1 < · · · < ik}, etc. Note that in general this determinant is not so easy to compute since the building blocks are not neccessarily diagonal matrices. However in our case the situation is more fortunate. By definition Φ takes all forms d˜x ˜I ∧ d˜y ˜J to zero if not ˜I = [d], but then the first d rows are lineary dependent if not also I = [n]. So Φ takes the transfomed form to det(∂xI /∂˜x ˜I )d˜x ˜I ⊗ ˜J det(∂yJ /∂˜y ˜J )d˜y ˜J which is precisley the transformation of dxI ⊗ dyJ as claimed. Remark 3.2. A submersion determnines a principal fiber bundle on M defined by F(f) := x∈M {ϕ : Rd+b ∼= → TxM | ϕ(Rd × {0}n ) ⊂ Txf = ker dfx} = x∈M Isom(Rd ⊂ Rd+b , Txf ⊂ TxM) with structure group GL(d, b) := {invertible block- (d + b) × (d + b) -matrices A 0 B C } = Aut(Rd ⊂ Rd+b ) All vector bundles occured so far are associated to this principal fiber bundle. So we could have formulated everything in terms of representation theory for GL(d, b). Theorem 1.3. . The Normalisation is obvious form the definition of f∗. Let us first make the statement of the base change formular precise: Recall the situation we put ourselfs into: M g −−−−→ M   f  f B g −−−−→ B. (4) The fiber integral for f is a morphism of sheaves on B: f∗ : f!Ωk+d M −→ Ωk B. We can pull back this morphism to B using g and compose with the differential dg of g, (this is usually deoted by g∗ ) g∗ f!Ωk+d M g∗ (f∗) −→ g∗ Ωk B dg −→ Ωk B . 5
  • 6. On the other hand g∗ f!Ωk+d M is canonically isomorphic to f! g ∗ Ωk+d M . The dif- ferential dg induces a map f! g ∗ Ωk+d M f!(dg ) −→ f! Ωk+d M which we can compose with the fiber integral f∗. The Base Change formular claims now, that this two morphisms concide, i.e. the following diagram of sheaves on B commutes: f! g∗Ωk+d M g∗ (f∗) −−−−→ g∗ Ωk B f! dg   g∗   f! Ωk+d M (f∗) −−−−→ Ωk B . By definition of the fiber integral the rows are the proper direct image f! of morphism on M which we can further decompose... use adjunction properties of f! , f∗, f∗ in the category of ringed spaces... We can also prove this directly in coordinates: Let b ∈ B set b := g(b )0. take α ∈ (g∗ f!Ωk+d M )b, that is a form defined on an open subset f−1 (U) ⊂ M where U is an arbitary small neighbourhood of b in B, which has proper support over B. By Ehresmanns theorem can assume there is a fiber preserving diffeomor- phism MU Ψ −→ Mb × U and coodrdinates yj : U → R. We now choose a cover of Mb admitting co- ordinates xi on each patch V ⊂ Mb and a partition of unity with compact supports. By definition of fiber square M is canonically isomorphic to B ×g M, hence f−1 (g−1 (U)) is canonically isomorphic to g−1 (U)×Mb. After making U smaller, we can again assume there are coordinates y j on g−1 (U). So we have reduced the statement to the affine situation1 . Let α = I,J αIJ (x, y)dxI ∧ dyJ be a k + d-form on Rd + × Rb proper over Rb . g : Rb → Rb be a differentiable map. Then |J|=k ( α[d]J (x, y)dx1 ∧ · · · ∧ dxd ) ∧ dyJ ... 1A little attention has to be paid to the orientation. Either we assume that the chart transions of Mb are orientation preserving, or we multiply by dxI by Or(∂/∂x1, . . . , ∂/∂xd) before going to the affine case. 6
  • 7. 4 Appendix 4.1 Exterior and Symmetric Algebras We recall some baisc facts about exterior algebras. Let V be a finite dimensional vector space over a field K. Set T(V ) = k≥0 V ⊗k be the Tensor algebra over V . As T is functorial in V we get a canonical action GL(V ) on T(V ) by Algebra Homomorphisms. The action of the subgroup K× ⊂ GL(V ) induces a N0-grading on T(V ) which coincedes with the grading we used in the definition (by k ≥ 0). The exterior and symmetric algebras can be constructed out of T(V ) in two ways: 4.1.1 Construction as a quotient Let I be the two sided ideal of T(V ) generated by the elements {x ⊗ y + y ⊗ x | x, y ∈ V } Then Λ(V ) := T(V )/I is the exterior algebra. As I is a graded ideal the grading of T(V ) induces a natural grading on Λ∗ (V ). It is I moreover invariant for the action of GL(V ), so Λ(V ) carries a natural GL(V ) action, too. We denote the image of x1 ⊗ . . . ⊗ xk in Λ(V ) by x1 ∧ · · · ∧ xk. For the symmetric algebra Symk (V ) we exchange x⊗y+y⊗x with x⊗y−y⊗x above. The same statements hold mutatis mutandis in this case. We denote the image of x1 ⊗ . . . ⊗ xk in Sym(V ) by x1 · · · xk. We now turn to the second description 4.1.2 Construction as a subspace There is a natural Sk = AutSET({1, . . . , k}) left action on Tk (V ) given by τ : x1 ⊗ . . . ⊗ xk → xτ1 ⊗ . . . ⊗ xτk for τ ∈ Sk. Note that if we embed Sk × Sl into Sk+l by letting Sk act on {1, . . . , k} and Sl on {k + 1, . . . , l} in the obvious way, then the product Tk (V ) ⊗ Tl (V ) → Tk+l (V ) is Sk × Sl-equivariant. For a character χ : Sk → Z× define an operator Pχ : T(V ) → T(V ) by x1 ⊗ . . . ⊗ xk → 1 k! τ∈Sk χ(τ) τ · (x1 ⊗ . . . ⊗ xk). 7
  • 8. One checks easily that Pχ is a projection operator i.e. P2 χ = Pχ. Hence we have a canonical decomposition: Tk (V ) = Image(Pχ) ⊕ Kernel(Pχ) which is invariant for the Sk-action as well as for the GL(V ) action on Tk (V )! We say S = P1 is the symmetrisation operator and A = Psign is the anti- symmetrisation operator. In degree k ≥ 2 we have S ◦ A = A ◦ S = 0. We denote the image of A and S by Ak (V ) resp. Sk (V ). Proposition 4.1. The compositions A(V ) → T(V ) → Λ(V ) and S(V ) → T(V ) → Sym(V ) are natural isomorphisms of vectorspaces, GL(V )-representations and induce isomorphisms of Sk-representations in the k-th graded component. These isomorphisms can be made explicit as follows: Take x1 ∧ · · · ∧ xk ∈ Λ(V ) represent it by some (non-anti-symmetric) tensor x1 ⊗ . . . ⊗ xk. Then the anti-symmetrisation A(x1 ⊗ . . . ⊗ xk) lies in A(V ) and is an inverse image for x1 ∧ · · · ∧ xk. 4.1.3 An exact sequence Let 0 −→ S −→ V −→ Q −→ 0 (5) be an exact sequence of finite dimensional k-vector spaces. The induced seqences 0 −→ Symk (S) −→ Symk (V ) −→ Symk (Q) −→ 0 and 0 −→ Λk (S) −→ Λk (V ) −→ Λk (Q) −→ 0 are exact at the right and left, but not in the middle. Instead we have natural (longer) exact sequences 0 → Symk (S) → Symk (V ) → Symk−1 (V ) ⊗ Q → . . . (6) . . . → Sym2 (V ) ⊗ Λk−2 (Q) → V ⊗ Λk−1 (Q) → Λk (Q) → 0 0 → Λk (S) → Λk (V ) → Λk−1 (V ) ⊗ Q → . . . (7) . . . → Λ2 (V ) ⊗ Symk−2 (Q) → V ⊗ Symk−1 (Q) → Symk (Q) → 0 and the dual versions 0 → Symk (S) → V ⊗ Symk−1 (S) → Λ2 (V ) ⊗ Symk−2 (S) → . . . . . . → Λk−1 (V ) ⊗ S → Λk (V ) → Λk (Q) → 0 8
  • 9. 0 → Λk (S) → V ⊗ Λk−1 (S) → Sym2 (V ) ⊗ Λk−2 (S) → . . . . . . → Symk−1 (V ) ⊗ S → Symk (V ) → Symk (Q) → 0. First of all we have to construct natural morphisms Symk (V ) ⊗ Λl (Q) → Symk−1 (V ) ⊗ Λl+1 (Q) Λk (V ) ⊗ Syml (Q) → Λk−1 (V ) ⊗ Syml+1 (Q) and Symk (S) ⊗ Λl (V ) → Symk−1 (S) ⊗ Λl+1 (V ) Λk (S) ⊗ Syml (V ) → Λk−1 (S) ⊗ Syml+1 (V ) To cunstruct the first morphism we compose the tensored product of the natural embedings Symk (V ) → Tk (V ), Λl (Q) → Tk (Q) with the canonical map Tk (V ) ⊗ Tl (Q) → Tk−1 (V ) ⊗ Tl+1 (Q) mapping the last V variable to its image in Q. Now we use the quotient desc- tription of Λ and Sym to end up with the required morphism. The remaining morphism are defined similary. The vanishing of the composition Symk+1 (V ) ⊗ Λl−1 (Q) → Symk (V ) ⊗ Λl (Q) → Symk−1 (V ) ⊗ Λl+1 (Q) and the exactnes can be checked in coordinates - it holds true basically because S ◦ A = A ◦ S = 0 and the ideals are generated in degree 2. 4.2 Multiplication Formular Let f : M → N be a differentiable map of smooth manifolds with local coordinates xi , i = 1 . . . m and yi , i = 1, . . . , n respectively. For two Index sets I ⊂ [m] := {1, . . . , m}, J ⊂ [n] of cardinality k. we define the matrix ∂yJ ∂xI := (∂yj ◦f ∂xi )j∈J,i∈I where we order the indices in ascending order. Lemma 4.2. With this notation we have: dyJ = dyj1 ∧ · · · ∧ dyjk = I⊂[m],|I|=k det( ∂yJ ∂xI )dxI where of course j1 < · · · < jk. Proof. We have dyJ = i1=1..k · · · ik=1..k ∂yj1 ∂xi1 dxi1 ∧ · · · ∧ ∂yjk ∂xik dxik 9
  • 10. if in this sum ir = is for some r = s then the corresponding summand is zero. Hence the set {i1, . . . , ik} ⊂ [m] can be assumed to have cardinality k. There is now an unique permutation π ∈ Sk such that iπ1 < · · · < iπk. We further note that dxi1 ∧ · · · ∧ dxik = sign(π)dxiπ1 ∧ · · · ∧ dxiπk . Combining this with the previews formular yields: dyJ = I⊂[m],|I|=k π∈Sk sign(π) ∂yj1 ∂xiπ1 . . . ∂yjk ∂xiπk dxI = I⊂[m],|I|=k det( ∂yJ ∂xI )dxI where now i = {i1, . . . , ik} with i1 < · · · < ik. 4.3 Localised Manifolds (obsolete) Definition 4.3. A localised manifold M = (CM , AM ) is a manifold CM together with a subset AM ⊂ CM . We call CM the craig and AM the core of M. A morphism of localised manifolds f : (CM , AM ) → (CN , AN ) is an equica- lence class of diffeneriable mappings Cf : D(Cf ) → N with f(AM ) ⊂ AN where D(Cf ) is an open neighbourhood of AM in CM . Two maps Cf and Cg are equivalent iff there is an open neighbourhood V of A contained in D(Cf )∩D(Cg) and f|V = g|V . If f : M → M and g : M → M are morphisms of localised manifolds, we define the composition by composing representatives 2 . So we get a category of localised Manifolds which we will denote by LDIFF. The dimension M is the dimension of CM , which is preserved under isomor- phisms. Question: Is the functor LDIFF → LkRSp which maps (M, A) to i−1 (CM ) where i : M → A fully faithful? What about HomLDIFF(Rn , 0) → (Rn , 0))? It works?! If not, is it the restriction to mfds. with boundary f.f. ? Yes, then we can skip all this, and define mf. with boundary as lk-ringed spaces. Remark 4.4. If AM ⊂ CM is open, then (CM , AM ) ∼= (AM , AM ) as localised manifolds. Definition 4.5. Let M = (CM , AM ) be a localised manifold, an open sub- manifold of M is the localised manifold (U, AM ∩ U) given by an open subset 2The set of definition D(Cf ) can be made smaller to ensure the latter morphism is defined on the image 10
  • 11. U ⊂ CM of the craig. We have an obvious morphism of localised manifolds (U, AM ∩ U) → M. An open cover of M is a collection {Ui}i∈I of open submanifolds such that AUi cover AM . Remark 4.6. We have a localisation functor L : DIFF → LDIFF, M → (M, M), f → f which is full and faithful. And a restriction functor A : LDIFF → TOP, (CM , AM ) → AM , f → Af = f|AM : AM → AN . which is neither faithful nor full. Definition 4.7. A morphism f : M → N of localied manifolds is called submer- sion/immersion if there exists an representative Cf which has the correspondig property. f is called injective/surjective/proper/open/closed, if Af : AM → AN has the correspondig property. We call f an open embeding, if f is open and induces an isomorphism of localised manifolds M → (N, Image(Af )). Definition 4.8. A manifold with bounday is a localised manifold M locally isomorphic to Rn + := (Rn , Rn−1 × R≥0), i.e. there is an open cover {Ui}i∈I of M and open embedings ϕi : Ui → Rn + of localised manifolds. Let (CM , AM ) be a manifold with boundary. We denote the topological boundary of AM ⊂ CM by ∂M. As AM is closed in CM we have ∂M ⊂ AM and ∂M is hence preserved under isomorphisms of localised manifolds. The boundary ∂M carries a natural structure of an (ordenary) submanifold of CM . Moreover Mo := AM ∂M is a (orendenary) manifold, too. We also use the notation (M, ∂M) for a manifold with boundary, which means M = (CM , AM ) is a manifold with boundary and ∂M ⊂ AM its bound- ary. Definition 4.9. A submersion of manifolds with boundary is a submersion of a localised manifolds f : M → B, where B = (B, B) is an (ordenary) manifold and M = (CM , AM ) a manifold with bounday, such that ∂f, the restriction of f to ∂M, is still submersive. The condition that ∂f is submersive is not automatic. Let for example be D ⊂ R2 be the closed disc, then pr1 : (R2 , D) → (R, R) is clearly a submersion of localised manifolds but not submersive on ∂D. Remark 4.10. In the situation of the definition, let U ⊂ M be an open subset. Then the restriction of π to U, M ∩ U is again a submersion with boundary. 11
  • 12. Proposition 4.11. Let M → B be a submersion of manifolds with boundary, dim(M) = m, dim(B) = b. Then locally on M there are fiber space coordinates. This means there are covers {Ui}i∈I of M and {Vi}i∈I of B, and open embedings zi : Ui → Rm + and bi : Vi → Rb such that f(Ui) ⊂ Vi and the following diagram is commutative Ui zi −−−−→ Rm +  f  p Vi bi −−−−→ Rb . (8) Here p is the projection to the first b corrdinates. Definition 4.12. A sheaf on a localised manifold M is a sheaf on AM . (Is this equivalent to sheafs on the Site of open covers?) The structure sheaf of M is i−1 (CCM ) The tangent sheaf of M is i−1 (TCM ) where i : AM → CM is the inclusion and TCM the Tangent sheaf of CM . The relative tangent sheaf of a morphism f : M → N of localised manifolds is... References [1] C. Ehresmann. Sur les espaces fibres differentiables. CR Acad. Sci. Paris, 224:1611–1612, 1947. [2] J.A. Wolf. Differentiable fibre spaces and mappings compatible with Rie- mannian metrics. Michigan Math. J, 11(1):65–70, 1964. 12