MAT225 TEST4A Name:
Show all work algebraically if possible.
RVM (Question 1) Application of Euler’s Identity  
 
(1) Find all three roots:​ x3
+ 8 = 0  
 
Applying De Moivre's Theorem. 
Represent a complex number ​z​ as a vector on the Complex Plane 
 
If  
z = rcis( ) (cos(θ) sin(θ)) cos(θ) isin(θ)θ = r + i = r + r  
Then 
cis(nθ)zn
= rn
nd z cis( )a n
1
= √
n
r n
θ+2πk
 
n, )εZ, n , 0⋁ ( k ≥ 2 ≤ k < n  
 
   
TEST4A page: 1
MAT225 TEST4A Name:
Show all work algebraically if possible.
 
   
TEST4A page: 2
MAT225 TEST4A Name:
Show all work algebraically if possible.
 
(1) Double Integrals 
 
dxdy∫
1
0
∫
2
1
2
y
e−x2
 
 
(1a) Describe the region R over which we are integrating. 
(1b) Rewrite the given integral such that the area element A ydx.d = d   
(1b) Evaluate the new integral over said region R. 
 
 
   
TEST4A page: 3
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 4
MAT225 TEST4A Name:
Show all work algebraically if possible.
(2) Double Integrals 
 
dydx∫
3
0
∫
√9−x2
0
x  
 
(2a) Describe the region R over which we are integrating. 
(2b) Rewrite the given integral such that the area element A drdθ.d = r  
(2b) Evaluate the new integral over said region R. 
 
   
TEST4A page: 5
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 6
MAT225 TEST4A Name:
Show all work algebraically if possible.
(3) Double Integrals 
 
dAS = ∫ ∫√1 x y+ f 2 + f 2  
 
(3) Find the surface area of​ in the first octant.6z = 1 − x2
− y2
 
(3a) Write the integral such that the area element A ydx.d = d  
(3b) Rewrite this integral such that the area element A drdθ.d = r  
(3c) Evaluate the new integral to find S. 
   
TEST4A page: 7
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 8
MAT225 TEST4A Name:
Show all work algebraically if possible.
(4) Triple Integrals 
 
Find the volume of the solid bounded by​ and​6z = 1 − x2
− y2
.z = 0  
 
   
TEST4A page: 9
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 10
MAT225 TEST4A Name:
Show all work algebraically if possible.
(5) Line Integrals 
 
Find the work done by the force field ​F​(x,y) = <x,2y> done on a particle 
moving along the path C: x = t, y = from the point (0,0) to the point (2,8).t3
  
 
F​ = <M,N> 
<M,N><dx,dy> =drW = ∫
C
F = ∫
C
dx dy∫
C
M + N  
 
(5a) Parametrize the path C in terms of a single parameter t. 
(5b) Write the Line Integral for Work in terms of t. 
(5c) Evaluate your integral from t = 0 to t = 2. 
   
TEST4A page: 11
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 12
MAT225 TEST4A Name:
Show all work algebraically if possible.
(6) Fundamental Theorem of Line Integrals 
 
​F​ = <M,N> = <2xy, x2
+ y2
>  
 
(6a) Show that ​F​ is a Conservative Vector Field. 
(6b) Find the Potential Function f(x,y) for the Vector Field ​F​. 
(6c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C:dx dy∫
C
M + N  
x2
25 +
y2
16 = 1  
 
 
TEST4A page: 13
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 14
MAT225 TEST4A Name:
Show all work algebraically if possible.
(7) Green’s Theorem for Work in the Plane 
 
(x, ) < , =< ,F y = M N > y2
x2
>  
C: CCW once about and yy = x2
= x  
 
(7a) Parametrize the path C​1​: ​ ​along the curve from (0,0) to (1,1) in terms of t.y = x2
 
(7b) Use this parametrization to find the work done: 
 
<M,N><dx,dy> =W = ∫
C1
dx dy∫
C1
M + N  
 
    
TEST4A page: 15
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 16
MAT225 TEST4A Name:
Show all work algebraically if possible.
(7) Green’s Theorem for Work in the Plane 
 
(x, ) < , =< ,F y = M N > y2
x2
>  
C: CCW once about and yy = x2
= x  
 
(7c) Parametrize the path C​2​: ​ ​along the curve from (1,1) to (0,0) in terms of t.y = x  
(7d) Use this parametrization to find the work done: 
 
<M,N><dx,dy> =W = ∫
C2
dx dy∫
C2
M + N  
 
 
   
TEST4A page: 17
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 18
MAT225 TEST4A Name:
Show all work algebraically if possible.
(7) Green’s Theorem for Work in the Plane 
 
(x, ) < , =< ,F y = M N > y2
x2
>  
C: CCW once about and yy = x2
= x  
 
(7e) Verify Green’s Theorem for Work in the Plane. 
   
TEST4A page: 19
MAT225 TEST4A Name:
Show all work algebraically if possible.
   
TEST4A page: 20
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Surface Integrals 
 
Given the density function ρ  
 
(x, , ) yρ y z = x − 2 + z  
 
find the mass of the planar region S 
 
, 0 , 0z = 4 − x ≤ x ≤ 4 ≤ y ≤ 3  
 
(8a) State the surface area element such that dA = dydx.S dAd = √1 x y+ f 2 + f 2  
(8b) Evaluate the surface integral 
 
(x, , )dSS = ∫ ∫
R
ρ y z  
 
   
TEST4A page: 21
MAT225 TEST4A Name:
Show all work algebraically if possible.
 
   
TEST4A page: 22
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold! 
 
Power Functions: 
x nxd
dx
n
= n−1
 
 
Trig Functions: 
sin(x) os(x)d
dx = c cos(x) in(x)d
dx = − s  
tan(x) (x)d
dx = sec2
cot(x) (x)d
dx = − csc2
 
sec(x) ec(x) tan(x)d
dx = s csc(x) sc(x) cot(x)d
dx = − c  
 
Transcendental Functions: 
ed
dx
x
= ex
a n(a) ad
dx
x
= l x
 
ln(x)d
dx = x
1
log (x)d
dx a = 1
ln(a) x
1
 
 
Inverse Trig Functions: 
sin (x)d
dx
−1
= 1
√1−x2
cos (x)d
dx
−1
= −1
√1−x2
 
tan (x)d
dx
−1
= 1
1+x2 cot (x)d
dx
−1
= −1
1+x2  
 
Product Rule: 
f(x) g(x) (x) g (x) (x) f (x)d
dx = f ′ + g ′  
 
Quotient Rule: 
d
dx
f(x)
g(x) = g (x)2
g(x) f (x) − f(x) g (x)′ ′
 
 
Chain Rule: 
f(g(x)) (g(x)) g (x)d
dx = f′ ′  
 
Difference Quotient: 
f’(x) =​ lim
h→0
h
f(x+h) − f(x)
   
TEST4A page: 23
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Anti-Derivatives You Should Know Cold! 
 
Power Functions: 
dx x∫xn
= n n−1
 
 
Trig Functions: 
os(x)dx in(x)∫c = s + C in(x)dx os(x)∫s = − c + C  
ec (x)dx an(x)∫s 2
= t + C sc (x)dx ot(x)∫c 2
= − c + C  
ec(x)tan(x)dx ec(x)∫s = s + C sc(x)cos(x)dx sc(x)∫c = − c + C  
 
 
Transcendental Functions: 
dx e∫ex
= x
+ C dx∫ax
= ax
ln(a)
+ C  
dx n(x)∫ x
1
= l + C dx log (x)∫ 1
ln(a) x
1
= a + C  
 
Inverse Trig Functions: 
dx sin (x)∫ 1
√1−x2
= −1
+ C dx cos(x)∫ −1
√1−x2
= + C  
dx tan (x)∫ 1
1+x2 = −1
+ C dx cot (x)∫ −1
1+x2 = −1
+ C  
 
Integration By Parts (Product Rule): 
dv uv du∫u = −∫v + C  
 
Integration By Partial Fractions Example (Quotient Rule): 
∫ dx
x(x+1) = ∫ x
Adx
+∫ x+1
Bdx
TEST4A page: 24

2020 preTEST4A

  • 1.
    MAT225 TEST4A Name: Showall work algebraically if possible. RVM (Question 1) Application of Euler’s Identity     (1) Find all three roots:​ x3 + 8 = 0     Applying De Moivre's Theorem.  Represent a complex number ​z​ as a vector on the Complex Plane    If   z = rcis( ) (cos(θ) sin(θ)) cos(θ) isin(θ)θ = r + i = r + r   Then  cis(nθ)zn = rn nd z cis( )a n 1 = √ n r n θ+2πk   n, )εZ, n , 0⋁ ( k ≥ 2 ≤ k < n         TEST4A page: 1
  • 2.
    MAT225 TEST4A Name: Showall work algebraically if possible.       TEST4A page: 2
  • 3.
    MAT225 TEST4A Name: Showall work algebraically if possible.   (1) Double Integrals    dxdy∫ 1 0 ∫ 2 1 2 y e−x2     (1a) Describe the region R over which we are integrating.  (1b) Rewrite the given integral such that the area element A ydx.d = d    (1b) Evaluate the new integral over said region R.          TEST4A page: 3
  • 4.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 4
  • 5.
    MAT225 TEST4A Name: Showall work algebraically if possible. (2) Double Integrals    dydx∫ 3 0 ∫ √9−x2 0 x     (2a) Describe the region R over which we are integrating.  (2b) Rewrite the given integral such that the area element A drdθ.d = r   (2b) Evaluate the new integral over said region R.        TEST4A page: 5
  • 6.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 6
  • 7.
    MAT225 TEST4A Name: Showall work algebraically if possible. (3) Double Integrals    dAS = ∫ ∫√1 x y+ f 2 + f 2     (3) Find the surface area of​ in the first octant.6z = 1 − x2 − y2   (3a) Write the integral such that the area element A ydx.d = d   (3b) Rewrite this integral such that the area element A drdθ.d = r   (3c) Evaluate the new integral to find S.      TEST4A page: 7
  • 8.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 8
  • 9.
    MAT225 TEST4A Name: Showall work algebraically if possible. (4) Triple Integrals    Find the volume of the solid bounded by​ and​6z = 1 − x2 − y2 .z = 0         TEST4A page: 9
  • 10.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 10
  • 11.
    MAT225 TEST4A Name: Showall work algebraically if possible. (5) Line Integrals    Find the work done by the force field ​F​(x,y) = <x,2y> done on a particle  moving along the path C: x = t, y = from the point (0,0) to the point (2,8).t3      F​ = <M,N>  <M,N><dx,dy> =drW = ∫ C F = ∫ C dx dy∫ C M + N     (5a) Parametrize the path C in terms of a single parameter t.  (5b) Write the Line Integral for Work in terms of t.  (5c) Evaluate your integral from t = 0 to t = 2.      TEST4A page: 11
  • 12.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 12
  • 13.
    MAT225 TEST4A Name: Showall work algebraically if possible. (6) Fundamental Theorem of Line Integrals    ​F​ = <M,N> = <2xy, x2 + y2 >     (6a) Show that ​F​ is a Conservative Vector Field.  (6b) Find the Potential Function f(x,y) for the Vector Field ​F​.  (6c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C:dx dy∫ C M + N   x2 25 + y2 16 = 1       TEST4A page: 13
  • 14.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 14
  • 15.
    MAT225 TEST4A Name: Showall work algebraically if possible. (7) Green’s Theorem for Work in the Plane    (x, ) < , =< ,F y = M N > y2 x2 >   C: CCW once about and yy = x2 = x     (7a) Parametrize the path C​1​: ​ ​along the curve from (0,0) to (1,1) in terms of t.y = x2   (7b) Use this parametrization to find the work done:    <M,N><dx,dy> =W = ∫ C1 dx dy∫ C1 M + N          TEST4A page: 15
  • 16.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 16
  • 17.
    MAT225 TEST4A Name: Showall work algebraically if possible. (7) Green’s Theorem for Work in the Plane    (x, ) < , =< ,F y = M N > y2 x2 >   C: CCW once about and yy = x2 = x     (7c) Parametrize the path C​2​: ​ ​along the curve from (1,1) to (0,0) in terms of t.y = x   (7d) Use this parametrization to find the work done:    <M,N><dx,dy> =W = ∫ C2 dx dy∫ C2 M + N           TEST4A page: 17
  • 18.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 18
  • 19.
    MAT225 TEST4A Name: Showall work algebraically if possible. (7) Green’s Theorem for Work in the Plane    (x, ) < , =< ,F y = M N > y2 x2 >   C: CCW once about and yy = x2 = x     (7e) Verify Green’s Theorem for Work in the Plane.      TEST4A page: 19
  • 20.
    MAT225 TEST4A Name: Showall work algebraically if possible.     TEST4A page: 20
  • 21.
    MAT225 TEST4A Name: Showall work algebraically if possible. (8) Surface Integrals    Given the density function ρ     (x, , ) yρ y z = x − 2 + z     find the mass of the planar region S    , 0 , 0z = 4 − x ≤ x ≤ 4 ≤ y ≤ 3     (8a) State the surface area element such that dA = dydx.S dAd = √1 x y+ f 2 + f 2   (8b) Evaluate the surface integral    (x, , )dSS = ∫ ∫ R ρ y z         TEST4A page: 21
  • 22.
    MAT225 TEST4A Name: Showall work algebraically if possible.       TEST4A page: 22
  • 23.
    MAT225 TEST4A Name: Showall work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold!    Power Functions:  x nxd dx n = n−1     Trig Functions:  sin(x) os(x)d dx = c cos(x) in(x)d dx = − s   tan(x) (x)d dx = sec2 cot(x) (x)d dx = − csc2   sec(x) ec(x) tan(x)d dx = s csc(x) sc(x) cot(x)d dx = − c     Transcendental Functions:  ed dx x = ex a n(a) ad dx x = l x   ln(x)d dx = x 1 log (x)d dx a = 1 ln(a) x 1     Inverse Trig Functions:  sin (x)d dx −1 = 1 √1−x2 cos (x)d dx −1 = −1 √1−x2   tan (x)d dx −1 = 1 1+x2 cot (x)d dx −1 = −1 1+x2     Product Rule:  f(x) g(x) (x) g (x) (x) f (x)d dx = f ′ + g ′     Quotient Rule:  d dx f(x) g(x) = g (x)2 g(x) f (x) − f(x) g (x)′ ′     Chain Rule:  f(g(x)) (g(x)) g (x)d dx = f′ ′     Difference Quotient:  f’(x) =​ lim h→0 h f(x+h) − f(x)     TEST4A page: 23
  • 24.
    MAT225 TEST4A Name: Showall work algebraically if possible. Reference Sheet: Anti-Derivatives You Should Know Cold!    Power Functions:  dx x∫xn = n n−1     Trig Functions:  os(x)dx in(x)∫c = s + C in(x)dx os(x)∫s = − c + C   ec (x)dx an(x)∫s 2 = t + C sc (x)dx ot(x)∫c 2 = − c + C   ec(x)tan(x)dx ec(x)∫s = s + C sc(x)cos(x)dx sc(x)∫c = − c + C       Transcendental Functions:  dx e∫ex = x + C dx∫ax = ax ln(a) + C   dx n(x)∫ x 1 = l + C dx log (x)∫ 1 ln(a) x 1 = a + C     Inverse Trig Functions:  dx sin (x)∫ 1 √1−x2 = −1 + C dx cos(x)∫ −1 √1−x2 = + C   dx tan (x)∫ 1 1+x2 = −1 + C dx cot (x)∫ −1 1+x2 = −1 + C     Integration By Parts (Product Rule):  dv uv du∫u = −∫v + C     Integration By Partial Fractions Example (Quotient Rule):  ∫ dx x(x+1) = ∫ x Adx +∫ x+1 Bdx TEST4A page: 24