SlideShare a Scribd company logo
1 of 4
Download to read offline
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. V (Feb. 2014), PP 90-93
www.iosrjournals.org
www.iosrjournals.org 90 | Page
Formation of Glycerol as Byproduct and its Application During
Biodiesel Production From Pongamia Pinnata
Bibhuti B. Samantaray1
,Rajnikant Choudhary1
,Amit Kumar1
,Wasim Akhtar1
,
Manish Kumar1
, Susil K. Garanaik1
1
(Department of Mechanical Engineering, The Techno School, BPUT, Bhubaneswar-19)
Abstract: Pongamia Pinnata is the scientific name of Karanja. It is a medium sized tree that is plentily found
alloverOdisha. There are a lot of research is going on regarding production of Biodiesel from Karanja oil but
the main objective of the paper is the production and implementation of Glycerol from Karanja oil. Alcohol
glycerol, a clear, colorless, viscous, sweet-tasting liquid belonging to the family of organic compounds;
molecular formula HOCH
2
CHOHCH
2
OH. In this experiment we have produced Biodiesel as well as Glycerol
as a byproduct but we have focused mainly on the formation of the Glycerol and its application. So in a different
view point,if the production of value added glycerol can be increased within the same cost of biodiesel
production, overall cost of biodiesel can be reduced to an optimum level. The effective utilization of crude
glycerol will contribute to the viability of biodiesel. In this experiment, we have taken non edible Karanja oil for
preparation of Glycerol by transesterification of crude oil with methanol in presence of NaOH/KOH as catalyst
and yielded of approximately 11% (w/w) glycerol.
Keywords: Biodiesel,Catalyst, Glycerol,Pongamia Pinnata,Transesterification
I. Introduction
A lot of researches are going on, on the production of alternative fuel from renewable sources of
energy, they got success also in preparing biodiesel as alternative fuel from renewable resources like vegetable
oil and some non-edible oil from plants such as Jatropha, Karanja, Neem, Mahua, Simarouba etc. Earlier, more
emphasis was given on the production of biodiesel not on its by-product like glycerol.But at present time,
production of biodiesel has been industrialized and that also resulted large scale of by-product formation like
Glycerol. So emphasis should be given on proper utilization of by-product from value added application and
profitable biodiesel production. InIndia the emphasis is on the non-edible oilplants like Jatropha, Karanja,
Neem, Mahua, Simarouba etc for the production of biodiesel as well as glycerol as major by-product.
In India the Karanja tree is found all-over the country, especially in eastern India and Western Ghats
[1]. The botanical name of Karanja is Pongamia glabra of Leguminaceae family. Karanja oil has been reported
to contain furan flavones, furanoflavonols, chromenoflavones, flavones and furanodiketones which make the oil
non-edible and hence further encourages its application for biodiesel production and Glycerol as Byproduct
[2].Glycerol or glycerine is a simple polyol (sugar alcohol) compound. It is widely used in pharmaceutical
formulations because it is colourless, odourless, viscous liquid [3]. It is soluble in water and hygroscopic in
nature because of its three hydroxyl groups. Crude glycerol is the principal by-product of biodiesel production,
which is about 11% w/w of Karanja oil.Glycerol is sweet-tasting and of low toxicity. The rate of Biodiesel
production around the world is slower than excepted and the main reason is its relatively high production cost.
Utilization of the glycerol co-product is one of the promising options for lowering the production cost. In other
words, every gallon of biodiesel produced generates approximately 1.05 pounds of glycerol.Fangxia Yang et al.
[4] has done a review regarding Crude Glycerol production as a by-product during Biodiesel Production. In this
Paper we have focused mainly on the production of the Glycerol and its application. Since purified glycerol is a
high-value and commercial chemical with thousands of uses, the crude glycerol presents great opportunities for
new applications. For that reason, more attention is being paid to the utilization of crude glycerol from biodiesel
production in order to defray the production cost of biodiesel and to promote biodiesel industrialization on a
large scale. SimilarlyXiaohu Fan and Rachel Burton [5] have done a review regarding the production of
Biodiesel and Glycerol. In their study they have focused on the production of Biodiesel from the Jatropha tree.
3 CH2-O-COOH + 3CH3OH -----> 3CH2OH + 3CH3-O-COOR
(TRIGLYCERIDES) (METHNOL) (GLYCEROL) (ESTER)
Zaki Y. Zakariaet al. [6] has studied catalytic conversion of glycerol to olefins. In that study it has mentioned
the proper utilization of Glycerol in different forms. B.L.A Prabhavathi Devi et al. [7] has found in their
experiment SO3H-carbon catalyst from glycerol for the production of biodiesel
Formation of Glycerol as Byproduct and its Application During Biodiesel Production From
www.iosrjournals.org 91 | Page
II. Experimental Setup And Procedure
2.1 Experimental setup: A schematic of the experimental set-up used for the production of Glycerol is shown
in Fig.1. The Experimental setup consistsa heating device, astirrer,a motor, a thermo meter, beaker, separating
funnel, washing unit, diffuser unit and chemical unit. A metal frame is being used for holding up the motor and
separating funnel at the same time. The crude Karanja oil iskept in the beaker and being heated by the heater
with a controlled environment. A stirring rod is dipped into the solution ofKaranja oil and the other chemical
mixture like MeoH and KoH. The equipment like Beaker, Stirring rod, Separating Funnel, Conical Flask are
made up of high resistance Glass Material. The stirrer is rotated by an electric motor of variable RPM ranging
from 200 rpm to 600 rpm. A temperature measuring device i.e. thermometer is dipped in the solution for
continuous temperature measurement. The beaker is covered with a glass cover to prevent reactant loss as
alcohol being volatile vaporized during the reaction so it is necessary to prevent it from vaporizing. Separatoris
used to separate the glycerol from biodiesel after transesterification process.
Figure.1. Schematic of the experimental setup
2.2 Experimental procedure:Initially 300ml of Karanja oil was taken in the beaker and heated at 700
c for the
removal of moisture. The oil was then allowed to cool down .The transterification process was carried out in a
basic medium to achieve it. KOHis being used as catalysthere .The required amount of catalyst; 10gmKOH
was weighed and dissolved completely in 60 ml of methanol by using stirrer provided in the potassium
methoxide. The alkali methoxide solution was added into the oil for vigorous mixing by means of a
mechanical transesterification vessel. The required temperature of 65-700
C was maintained throughout the
reaction time of 1.5 hours by means of thermostat arrangement. The cloudy looking free fatty acids, called
glycerine, will sink to the bottom and the methyl ester- a translucent liquid, will remain on top. When the
separation appears, we should stop mixing and allows the mixture to settle down overnight.The product was
put in the separating funnel and the two phases due to different density is separated in separated vessels. The
upper layer consist of biodiesel, alcohol, and some soaps (formed due to side reaction saponification-FFA gets
converted to soaps) and lower layer consists of crude glycerol with some impurities and excess alcohol.
Purification of upper layer can be done by heating the solutionup to 70o
c and by bubble washing. It is
necessaryto purify the lower layer glycerol mixture up to desired level but alcohol can be removed by heating
the solution up to 70o
c. The resultant crude glycerol is not highly purified but can be used for several value
added application. A Schematic of the whole process is shown below in Fig.2.
Formation of Glycerol as Byproduct and its Application During Biodiesel Production From
www.iosrjournals.org 92 | Page
Figure 2. The DetailedBiodiesel and Glycerol Production Process.
III. Result And Application
We found that FFA content of Karanja oil is responsible for glycerol formation. Transestification
process can beapplied for the production of glycerol. We have obtained a maximum yield of around 11% (w/w)
Glycerol & around 88% Biodiesel from the raw Karanja oil by transestification. The effective use of crude
glycerol will contribute to the viability of biodiesel. It is too costly to refine the crude glycerol to a high purity
so many researches and studies have conducted for innovative utilization of crude glycerol. Glycerol formed
plays a role in determining the cost of the biodiesel as well as production process if formed on large scale. It
helps in profitable biodiesel production. Also glycerol has a number of value added applications. Some of the
most important are listed:-
 Crude glycerol (without any purification) could be used as a green solvent for organic reactions.
 Crude glycerol could be used as a fuel for generating electricity from microbial fuel cells [8].
 Co-hydrothermal pyrolysis and co-liquefaction of manure with crude glycerol could improve the
production yield of bio-oil. However, for the co-liquefaction, too much addition of crude glycerol affected
the carbon content and heat value of the bio-oil [8,9].
 In food and beverages, glycerol serves as a solvent, and sweetener, and may help preserve foods.
 It is also used as filler in commercially prepared low-fat foods (e.g., cookies), and as a thickening agent in
liqueurs.
 Glycerol and water are used to preserve certain types of leaves.[9]
 Glycerol is used in medical and pharmaceutical and personal care preparations, mainly It is found in
allergen immunotherapies, cough syrups, elixirs and expectorants, toothpaste, mouthwashes, skin care
products, shaving cream, hair care products, soaps and water-based personal lubricants.
 In solid dosage forms like tablets, glycerol is used as a tablet holding agent.
 Glycerol can be used as a laxative when introduced into the rectum in suppository or small-volume (2–10
ml) (enema) form; it irritates the anal mucosa and induces a hyperosmotic effect.[10]
 Taken orally (often mixed with fruit juice to reduce its sweet taste), glycerol can cause a rapid, temporary
decrease in the internal pressure of the eye. This can be useful for the initial emergency treatment of
severely elevated eye pressure. [11].
 Glycerol is used as a skin moisturizer in soaps and lotions and a softening agent in candy and baked goods
[12].
 Glycerol is a good source of carbon and energy for growth of several microorganisms.
IV. Conclusion
The study has enabled us to confirm that Karanja oil can be used as a raw material to obtain Glycerol
as major by-product during biodiesel production from Karanja oil. Biodiesel can be used as fuel in diesel engine.
The engine performance with biodiesel is similar to that of diesel, while emission are less in case of biodiesel.
Also glycerol availability has increased tremendously as it arises as by-product of the biodieselprocess. Besides
using glycerol as a chemical in creams and other small-scale applications,glycerol may be used as starting
material for large-scale biotechnological processes. In this experiment the maximum percentage of biodiesel
Formation of Glycerol as Byproduct and its Application During Biodiesel Production From
www.iosrjournals.org 93 | Page
production is around 11 % which shows a good agreement with the previous studies. Though the process of
Glycerol production is costly still it lends required support towards the overall cost of the Biodiesel production.
References
[1] Y.C.Sharma and B. Singh, Development of Biodiesel from Karanja, a tree found in rural India, Fuel 87, (2008) 1740-1742
[2] V.RManilla,M.V. Mallikarjun, G.L.Narayana Rao, Preparation of Biodiesel from Karanja Oil, IJEE, 1, 2011, 94-100
[3] NPachauri and B He, Value Added Utilisation of Crude Glycerol from Biodiesel Production, ASABE, Paper number:-066223
[4] F Yang, M A. Hanna and RSen, Value-Added Uses For Crude-Glycerol-A By-product Of Biodiesel Production, Biotechnology for
Biofuel, 2012, 5:13
[5] X Fan and R Burton, Recent Development of Biodiesel Feedstockand the application of Glycerol: A Review, The open fuel &
Energy Science Journal, 1200912, 100-109
[6] Z Y. Zakaria, N A S Amin and J Linnekoski, A perspective on catalytic conversion of glycerol to olefins, Biomass and Bioenergy
55, 2013, 370-385.
[7] B.L.A. Prabhavathi Devi, T V K Reddy, K V Lakshmi and R.B.N. Prasad, A green recyclable SO3H-carbon catalyst derived from
glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step,Bioresource Technology
153, 2014, 370-373
[8] Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N: Treatment of biodiesel production wastes with simultaneous electricity generation
using a single-chamber microbial fuel cell. BioresourTechnol102, 2011, 411-415
[9] Xiu S, Shahbazi A, Shirley V, Mims MR, Wallace CW: Effectiveness and mechanisms of crude glycerol on the biofuel production
from swine manure through hydrothermal pyrolysis. J Anal Appl Pyrolysis 87, 2010, 194-198.
[10] "Glycerin Enema" (http://www.drugs.com/cdi/glycerin-enema.html). Drugs.com. Retrieved 2012-11-17.
[11] "Glycerin (Oral Route)" (http://www.mayoclinic.com/health/drug-information/DR601713). Mayo Foundation for MedicalEducation
and Research. Retrieved 2012-11-17.
[12] "Glycerin in Bath Salts – Health Benefits for the Skin" (http://homemadebathsaltsrecipes.blogspot.com/2012/03/glycerinin-bath-
salts-health-benefits.html). Homemade Bath Salts Recipes. Retrieved 22 February 2013.

More Related Content

What's hot

Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...IJMER
 
Recycling of waste cooking oil
Recycling of waste cooking oilRecycling of waste cooking oil
Recycling of waste cooking oilAbdullah Al Masud
 
Biodiesel and Vegetable oils
Biodiesel and Vegetable oilsBiodiesel and Vegetable oils
Biodiesel and Vegetable oilsLizbeth Patatuchi
 
Biodiesel lecture notes
Biodiesel lecture notesBiodiesel lecture notes
Biodiesel lecture notesRavi Teja
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Characterization of biodiesel produced by meth butanolysis of castor oil
Characterization of biodiesel produced by meth butanolysis of castor oilCharacterization of biodiesel produced by meth butanolysis of castor oil
Characterization of biodiesel produced by meth butanolysis of castor oileSAT Journals
 
IRJET- Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...
IRJET-  	  Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...IRJET-  	  Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...
IRJET- Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...IRJET Journal
 
Biodiesel thesis
Biodiesel thesisBiodiesel thesis
Biodiesel thesis741111
 

What's hot (19)

Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
 
Recycling of waste cooking oil
Recycling of waste cooking oilRecycling of waste cooking oil
Recycling of waste cooking oil
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Biodiesel and Vegetable oils
Biodiesel and Vegetable oilsBiodiesel and Vegetable oils
Biodiesel and Vegetable oils
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Sub1533
Sub1533Sub1533
Sub1533
 
Castor biodiesel
Castor biodieselCastor biodiesel
Castor biodiesel
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Bio Diesel
Bio DieselBio Diesel
Bio Diesel
 
Biodiesel lecture notes
Biodiesel lecture notesBiodiesel lecture notes
Biodiesel lecture notes
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Bio diesel.
Bio diesel.Bio diesel.
Bio diesel.
 
Aa33146149
Aa33146149Aa33146149
Aa33146149
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Characterization of biodiesel produced by meth butanolysis of castor oil
Characterization of biodiesel produced by meth butanolysis of castor oilCharacterization of biodiesel produced by meth butanolysis of castor oil
Characterization of biodiesel produced by meth butanolysis of castor oil
 
biodiesel
 biodiesel  biodiesel
biodiesel
 
IRJET- Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...
IRJET-  	  Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...IRJET-  	  Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...
IRJET- Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) ...
 
Biodiesel thesis
Biodiesel thesisBiodiesel thesis
Biodiesel thesis
 

Viewers also liked

glycerine
glycerine glycerine
glycerine k-tau
 
GLYCEROL RECOVERY SYSTEM Final Presentation
GLYCEROL RECOVERY SYSTEM Final PresentationGLYCEROL RECOVERY SYSTEM Final Presentation
GLYCEROL RECOVERY SYSTEM Final PresentationKamal Hakim Zainal Alam
 
Glycerin purification and applications
Glycerin purification and applicationsGlycerin purification and applications
Glycerin purification and applicationsHashim Badat
 
Glycerol: biotech productions
Glycerol: biotech productionsGlycerol: biotech productions
Glycerol: biotech productionsGreta SuperTramp
 
Protein Purification
Protein PurificationProtein Purification
Protein Purificationangelsalaman
 
Separation techniques
Separation techniquesSeparation techniques
Separation techniquestdresch
 
Glycerine distillation plant By Muhammad Fahad Ansari 12IEEM14
Glycerine distillation plant By Muhammad Fahad Ansari  12IEEM14Glycerine distillation plant By Muhammad Fahad Ansari  12IEEM14
Glycerine distillation plant By Muhammad Fahad Ansari 12IEEM14fahadansari131
 
Seperation and purification techniques
Seperation and purification techniquesSeperation and purification techniques
Seperation and purification techniquesSuresh Selvaraj
 

Viewers also liked (8)

glycerine
glycerine glycerine
glycerine
 
GLYCEROL RECOVERY SYSTEM Final Presentation
GLYCEROL RECOVERY SYSTEM Final PresentationGLYCEROL RECOVERY SYSTEM Final Presentation
GLYCEROL RECOVERY SYSTEM Final Presentation
 
Glycerin purification and applications
Glycerin purification and applicationsGlycerin purification and applications
Glycerin purification and applications
 
Glycerol: biotech productions
Glycerol: biotech productionsGlycerol: biotech productions
Glycerol: biotech productions
 
Protein Purification
Protein PurificationProtein Purification
Protein Purification
 
Separation techniques
Separation techniquesSeparation techniques
Separation techniques
 
Glycerine distillation plant By Muhammad Fahad Ansari 12IEEM14
Glycerine distillation plant By Muhammad Fahad Ansari  12IEEM14Glycerine distillation plant By Muhammad Fahad Ansari  12IEEM14
Glycerine distillation plant By Muhammad Fahad Ansari 12IEEM14
 
Seperation and purification techniques
Seperation and purification techniquesSeperation and purification techniques
Seperation and purification techniques
 

Similar to Formation of Glycerol from Biodiesel

Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...BIBHUTI BHUSAN SAMANTARAY
 
Paper1. CSSB Article
Paper1. CSSB ArticlePaper1. CSSB Article
Paper1. CSSB ArticleZeban Shah
 
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...IRJET Journal
 
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate  Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate ZY8
 
Bio-Fuels Biodiesel And Ethanol Product
Bio-Fuels Biodiesel And Ethanol ProductBio-Fuels Biodiesel And Ethanol Product
Bio-Fuels Biodiesel And Ethanol ProductRavi Adhikari
 
Bio diesel production
Bio diesel productionBio diesel production
Bio diesel productionSai Nadh Dora
 
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...IRJET Journal
 
IRJET- Analysis of Biodiesel Blend at Baramati
IRJET- Analysis of Biodiesel Blend at BaramatiIRJET- Analysis of Biodiesel Blend at Baramati
IRJET- Analysis of Biodiesel Blend at BaramatiIRJET Journal
 
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...IRJET Journal
 
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...IRJET Journal
 
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINE
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINEEXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINE
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINEIRJET Journal
 
Use of Jatropha Biodiesel in C.I. Engines- A review
Use of Jatropha Biodiesel in C.I. Engines- A reviewUse of Jatropha Biodiesel in C.I. Engines- A review
Use of Jatropha Biodiesel in C.I. Engines- A reviewIJERA Editor
 
Biodiesel: The Future Fuel
Biodiesel: The Future FuelBiodiesel: The Future Fuel
Biodiesel: The Future FuelIRJET Journal
 
IRJET- A Review of the Engine Performance and Emission Analysis using Cot...
IRJET-  	  A Review of the Engine Performance and Emission Analysis using Cot...IRJET-  	  A Review of the Engine Performance and Emission Analysis using Cot...
IRJET- A Review of the Engine Performance and Emission Analysis using Cot...IRJET Journal
 
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...IRJET Journal
 
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...A Comparative Analysis of Compression Ignition Engine Characteristics Using P...
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...Editor IJMTER
 

Similar to Formation of Glycerol from Biodiesel (20)

Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
Production & Evaluation of Biodiesel from Karanja Seeds, A Seed Plentily Avai...
 
Paper1. CSSB Article
Paper1. CSSB ArticlePaper1. CSSB Article
Paper1. CSSB Article
 
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...
IRJET- Production of Biodiesel from used Kitchen Oil using Hydrodynamic Cavit...
 
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate  Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate
Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate
 
Bio-Fuels Biodiesel And Ethanol Product
Bio-Fuels Biodiesel And Ethanol ProductBio-Fuels Biodiesel And Ethanol Product
Bio-Fuels Biodiesel And Ethanol Product
 
Bio diesel production
Bio diesel productionBio diesel production
Bio diesel production
 
Jv3417781781
Jv3417781781Jv3417781781
Jv3417781781
 
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...
Production of Biodiesel from Vernonia Galamensis Oil using Ethanol with Alkal...
 
A0530104
A0530104A0530104
A0530104
 
IRJET- Analysis of Biodiesel Blend at Baramati
IRJET- Analysis of Biodiesel Blend at BaramatiIRJET- Analysis of Biodiesel Blend at Baramati
IRJET- Analysis of Biodiesel Blend at Baramati
 
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...
Analysis of Thermal Efficiency of Bio Ethyl Ester of Karanja, Jatropha and Ku...
 
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...
IRJET- Production of Biodiesel from Cannabis Sativa (Hemp) Seed Oil and its P...
 
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINE
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINEEXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINE
EXPERMENTAL ANALYSIS OF PEANUT OIL AS BIO-DIESEL ON CI ENGINE
 
Use of Jatropha Biodiesel in C.I. Engines- A review
Use of Jatropha Biodiesel in C.I. Engines- A reviewUse of Jatropha Biodiesel in C.I. Engines- A review
Use of Jatropha Biodiesel in C.I. Engines- A review
 
Biodiesel: The Future Fuel
Biodiesel: The Future FuelBiodiesel: The Future Fuel
Biodiesel: The Future Fuel
 
Recycling of agricultural wastes in to bio fuel production: An ecofriendly pr...
Recycling of agricultural wastes in to bio fuel production: An ecofriendly pr...Recycling of agricultural wastes in to bio fuel production: An ecofriendly pr...
Recycling of agricultural wastes in to bio fuel production: An ecofriendly pr...
 
IRJET- A Review of the Engine Performance and Emission Analysis using Cot...
IRJET-  	  A Review of the Engine Performance and Emission Analysis using Cot...IRJET-  	  A Review of the Engine Performance and Emission Analysis using Cot...
IRJET- A Review of the Engine Performance and Emission Analysis using Cot...
 
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...
IRJET- Transesterification of Waste Frying Oil for the Production of Biodiese...
 
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...A Comparative Analysis of Compression Ignition Engine Characteristics Using P...
A Comparative Analysis of Compression Ignition Engine Characteristics Using P...
 
aditya chemistry.pptx
aditya chemistry.pptxaditya chemistry.pptx
aditya chemistry.pptx
 

More from BIBHUTI BHUSAN SAMANTARAY

Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...
Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...
Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...BIBHUTI BHUSAN SAMANTARAY
 
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...BIBHUTI BHUSAN SAMANTARAY
 
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...BIBHUTI BHUSAN SAMANTARAY
 
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...BIBHUTI BHUSAN SAMANTARAY
 
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...BIBHUTI BHUSAN SAMANTARAY
 
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...BIBHUTI BHUSAN SAMANTARAY
 
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...BIBHUTI BHUSAN SAMANTARAY
 
Design and Analysis of SPV-Diesel Hybrid System for Remote Areas
Design and Analysis of SPV-Diesel Hybrid System for Remote AreasDesign and Analysis of SPV-Diesel Hybrid System for Remote Areas
Design and Analysis of SPV-Diesel Hybrid System for Remote AreasBIBHUTI BHUSAN SAMANTARAY
 
Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...BIBHUTI BHUSAN SAMANTARAY
 
Analysis of industrial flame characteristics and constancy study using image ...
Analysis of industrial flame characteristics and constancy study using image ...Analysis of industrial flame characteristics and constancy study using image ...
Analysis of industrial flame characteristics and constancy study using image ...BIBHUTI BHUSAN SAMANTARAY
 

More from BIBHUTI BHUSAN SAMANTARAY (17)

Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...
Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...
Performance and Emission Analysis of a Novel Porous Radiant Burner for Domest...
 
Suspension system of an Automobile
Suspension system of an AutomobileSuspension system of an Automobile
Suspension system of an Automobile
 
Tata tigor
Tata tigorTata tigor
Tata tigor
 
Braking system
Braking systemBraking system
Braking system
 
Multi Axle Vehicle
Multi Axle VehicleMulti Axle Vehicle
Multi Axle Vehicle
 
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
 
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
 
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...
EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF POROUS RADIANT BURNER AN...
 
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
 
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
 
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
 
Design and Analysis of SPV-Diesel Hybrid System for Remote Areas
Design and Analysis of SPV-Diesel Hybrid System for Remote AreasDesign and Analysis of SPV-Diesel Hybrid System for Remote Areas
Design and Analysis of SPV-Diesel Hybrid System for Remote Areas
 
Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...
 
Analysis of industrial flame characteristics and constancy study using image ...
Analysis of industrial flame characteristics and constancy study using image ...Analysis of industrial flame characteristics and constancy study using image ...
Analysis of industrial flame characteristics and constancy study using image ...
 
Burner Comparison - Elsevior
Burner Comparison - ElseviorBurner Comparison - Elsevior
Burner Comparison - Elsevior
 
Shaastrarth 2016 proceedings
Shaastrarth 2016 proceedingsShaastrarth 2016 proceedings
Shaastrarth 2016 proceedings
 
industrial engg
industrial enggindustrial engg
industrial engg
 

Recently uploaded

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 

Recently uploaded (20)

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 

Formation of Glycerol from Biodiesel

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. V (Feb. 2014), PP 90-93 www.iosrjournals.org www.iosrjournals.org 90 | Page Formation of Glycerol as Byproduct and its Application During Biodiesel Production From Pongamia Pinnata Bibhuti B. Samantaray1 ,Rajnikant Choudhary1 ,Amit Kumar1 ,Wasim Akhtar1 , Manish Kumar1 , Susil K. Garanaik1 1 (Department of Mechanical Engineering, The Techno School, BPUT, Bhubaneswar-19) Abstract: Pongamia Pinnata is the scientific name of Karanja. It is a medium sized tree that is plentily found alloverOdisha. There are a lot of research is going on regarding production of Biodiesel from Karanja oil but the main objective of the paper is the production and implementation of Glycerol from Karanja oil. Alcohol glycerol, a clear, colorless, viscous, sweet-tasting liquid belonging to the family of organic compounds; molecular formula HOCH 2 CHOHCH 2 OH. In this experiment we have produced Biodiesel as well as Glycerol as a byproduct but we have focused mainly on the formation of the Glycerol and its application. So in a different view point,if the production of value added glycerol can be increased within the same cost of biodiesel production, overall cost of biodiesel can be reduced to an optimum level. The effective utilization of crude glycerol will contribute to the viability of biodiesel. In this experiment, we have taken non edible Karanja oil for preparation of Glycerol by transesterification of crude oil with methanol in presence of NaOH/KOH as catalyst and yielded of approximately 11% (w/w) glycerol. Keywords: Biodiesel,Catalyst, Glycerol,Pongamia Pinnata,Transesterification I. Introduction A lot of researches are going on, on the production of alternative fuel from renewable sources of energy, they got success also in preparing biodiesel as alternative fuel from renewable resources like vegetable oil and some non-edible oil from plants such as Jatropha, Karanja, Neem, Mahua, Simarouba etc. Earlier, more emphasis was given on the production of biodiesel not on its by-product like glycerol.But at present time, production of biodiesel has been industrialized and that also resulted large scale of by-product formation like Glycerol. So emphasis should be given on proper utilization of by-product from value added application and profitable biodiesel production. InIndia the emphasis is on the non-edible oilplants like Jatropha, Karanja, Neem, Mahua, Simarouba etc for the production of biodiesel as well as glycerol as major by-product. In India the Karanja tree is found all-over the country, especially in eastern India and Western Ghats [1]. The botanical name of Karanja is Pongamia glabra of Leguminaceae family. Karanja oil has been reported to contain furan flavones, furanoflavonols, chromenoflavones, flavones and furanodiketones which make the oil non-edible and hence further encourages its application for biodiesel production and Glycerol as Byproduct [2].Glycerol or glycerine is a simple polyol (sugar alcohol) compound. It is widely used in pharmaceutical formulations because it is colourless, odourless, viscous liquid [3]. It is soluble in water and hygroscopic in nature because of its three hydroxyl groups. Crude glycerol is the principal by-product of biodiesel production, which is about 11% w/w of Karanja oil.Glycerol is sweet-tasting and of low toxicity. The rate of Biodiesel production around the world is slower than excepted and the main reason is its relatively high production cost. Utilization of the glycerol co-product is one of the promising options for lowering the production cost. In other words, every gallon of biodiesel produced generates approximately 1.05 pounds of glycerol.Fangxia Yang et al. [4] has done a review regarding Crude Glycerol production as a by-product during Biodiesel Production. In this Paper we have focused mainly on the production of the Glycerol and its application. Since purified glycerol is a high-value and commercial chemical with thousands of uses, the crude glycerol presents great opportunities for new applications. For that reason, more attention is being paid to the utilization of crude glycerol from biodiesel production in order to defray the production cost of biodiesel and to promote biodiesel industrialization on a large scale. SimilarlyXiaohu Fan and Rachel Burton [5] have done a review regarding the production of Biodiesel and Glycerol. In their study they have focused on the production of Biodiesel from the Jatropha tree. 3 CH2-O-COOH + 3CH3OH -----> 3CH2OH + 3CH3-O-COOR (TRIGLYCERIDES) (METHNOL) (GLYCEROL) (ESTER) Zaki Y. Zakariaet al. [6] has studied catalytic conversion of glycerol to olefins. In that study it has mentioned the proper utilization of Glycerol in different forms. B.L.A Prabhavathi Devi et al. [7] has found in their experiment SO3H-carbon catalyst from glycerol for the production of biodiesel
  • 2. Formation of Glycerol as Byproduct and its Application During Biodiesel Production From www.iosrjournals.org 91 | Page II. Experimental Setup And Procedure 2.1 Experimental setup: A schematic of the experimental set-up used for the production of Glycerol is shown in Fig.1. The Experimental setup consistsa heating device, astirrer,a motor, a thermo meter, beaker, separating funnel, washing unit, diffuser unit and chemical unit. A metal frame is being used for holding up the motor and separating funnel at the same time. The crude Karanja oil iskept in the beaker and being heated by the heater with a controlled environment. A stirring rod is dipped into the solution ofKaranja oil and the other chemical mixture like MeoH and KoH. The equipment like Beaker, Stirring rod, Separating Funnel, Conical Flask are made up of high resistance Glass Material. The stirrer is rotated by an electric motor of variable RPM ranging from 200 rpm to 600 rpm. A temperature measuring device i.e. thermometer is dipped in the solution for continuous temperature measurement. The beaker is covered with a glass cover to prevent reactant loss as alcohol being volatile vaporized during the reaction so it is necessary to prevent it from vaporizing. Separatoris used to separate the glycerol from biodiesel after transesterification process. Figure.1. Schematic of the experimental setup 2.2 Experimental procedure:Initially 300ml of Karanja oil was taken in the beaker and heated at 700 c for the removal of moisture. The oil was then allowed to cool down .The transterification process was carried out in a basic medium to achieve it. KOHis being used as catalysthere .The required amount of catalyst; 10gmKOH was weighed and dissolved completely in 60 ml of methanol by using stirrer provided in the potassium methoxide. The alkali methoxide solution was added into the oil for vigorous mixing by means of a mechanical transesterification vessel. The required temperature of 65-700 C was maintained throughout the reaction time of 1.5 hours by means of thermostat arrangement. The cloudy looking free fatty acids, called glycerine, will sink to the bottom and the methyl ester- a translucent liquid, will remain on top. When the separation appears, we should stop mixing and allows the mixture to settle down overnight.The product was put in the separating funnel and the two phases due to different density is separated in separated vessels. The upper layer consist of biodiesel, alcohol, and some soaps (formed due to side reaction saponification-FFA gets converted to soaps) and lower layer consists of crude glycerol with some impurities and excess alcohol. Purification of upper layer can be done by heating the solutionup to 70o c and by bubble washing. It is necessaryto purify the lower layer glycerol mixture up to desired level but alcohol can be removed by heating the solution up to 70o c. The resultant crude glycerol is not highly purified but can be used for several value added application. A Schematic of the whole process is shown below in Fig.2.
  • 3. Formation of Glycerol as Byproduct and its Application During Biodiesel Production From www.iosrjournals.org 92 | Page Figure 2. The DetailedBiodiesel and Glycerol Production Process. III. Result And Application We found that FFA content of Karanja oil is responsible for glycerol formation. Transestification process can beapplied for the production of glycerol. We have obtained a maximum yield of around 11% (w/w) Glycerol & around 88% Biodiesel from the raw Karanja oil by transestification. The effective use of crude glycerol will contribute to the viability of biodiesel. It is too costly to refine the crude glycerol to a high purity so many researches and studies have conducted for innovative utilization of crude glycerol. Glycerol formed plays a role in determining the cost of the biodiesel as well as production process if formed on large scale. It helps in profitable biodiesel production. Also glycerol has a number of value added applications. Some of the most important are listed:-  Crude glycerol (without any purification) could be used as a green solvent for organic reactions.  Crude glycerol could be used as a fuel for generating electricity from microbial fuel cells [8].  Co-hydrothermal pyrolysis and co-liquefaction of manure with crude glycerol could improve the production yield of bio-oil. However, for the co-liquefaction, too much addition of crude glycerol affected the carbon content and heat value of the bio-oil [8,9].  In food and beverages, glycerol serves as a solvent, and sweetener, and may help preserve foods.  It is also used as filler in commercially prepared low-fat foods (e.g., cookies), and as a thickening agent in liqueurs.  Glycerol and water are used to preserve certain types of leaves.[9]  Glycerol is used in medical and pharmaceutical and personal care preparations, mainly It is found in allergen immunotherapies, cough syrups, elixirs and expectorants, toothpaste, mouthwashes, skin care products, shaving cream, hair care products, soaps and water-based personal lubricants.  In solid dosage forms like tablets, glycerol is used as a tablet holding agent.  Glycerol can be used as a laxative when introduced into the rectum in suppository or small-volume (2–10 ml) (enema) form; it irritates the anal mucosa and induces a hyperosmotic effect.[10]  Taken orally (often mixed with fruit juice to reduce its sweet taste), glycerol can cause a rapid, temporary decrease in the internal pressure of the eye. This can be useful for the initial emergency treatment of severely elevated eye pressure. [11].  Glycerol is used as a skin moisturizer in soaps and lotions and a softening agent in candy and baked goods [12].  Glycerol is a good source of carbon and energy for growth of several microorganisms. IV. Conclusion The study has enabled us to confirm that Karanja oil can be used as a raw material to obtain Glycerol as major by-product during biodiesel production from Karanja oil. Biodiesel can be used as fuel in diesel engine. The engine performance with biodiesel is similar to that of diesel, while emission are less in case of biodiesel. Also glycerol availability has increased tremendously as it arises as by-product of the biodieselprocess. Besides using glycerol as a chemical in creams and other small-scale applications,glycerol may be used as starting material for large-scale biotechnological processes. In this experiment the maximum percentage of biodiesel
  • 4. Formation of Glycerol as Byproduct and its Application During Biodiesel Production From www.iosrjournals.org 93 | Page production is around 11 % which shows a good agreement with the previous studies. Though the process of Glycerol production is costly still it lends required support towards the overall cost of the Biodiesel production. References [1] Y.C.Sharma and B. Singh, Development of Biodiesel from Karanja, a tree found in rural India, Fuel 87, (2008) 1740-1742 [2] V.RManilla,M.V. Mallikarjun, G.L.Narayana Rao, Preparation of Biodiesel from Karanja Oil, IJEE, 1, 2011, 94-100 [3] NPachauri and B He, Value Added Utilisation of Crude Glycerol from Biodiesel Production, ASABE, Paper number:-066223 [4] F Yang, M A. Hanna and RSen, Value-Added Uses For Crude-Glycerol-A By-product Of Biodiesel Production, Biotechnology for Biofuel, 2012, 5:13 [5] X Fan and R Burton, Recent Development of Biodiesel Feedstockand the application of Glycerol: A Review, The open fuel & Energy Science Journal, 1200912, 100-109 [6] Z Y. Zakaria, N A S Amin and J Linnekoski, A perspective on catalytic conversion of glycerol to olefins, Biomass and Bioenergy 55, 2013, 370-385. [7] B.L.A. Prabhavathi Devi, T V K Reddy, K V Lakshmi and R.B.N. Prasad, A green recyclable SO3H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step,Bioresource Technology 153, 2014, 370-373 [8] Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N: Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. BioresourTechnol102, 2011, 411-415 [9] Xiu S, Shahbazi A, Shirley V, Mims MR, Wallace CW: Effectiveness and mechanisms of crude glycerol on the biofuel production from swine manure through hydrothermal pyrolysis. J Anal Appl Pyrolysis 87, 2010, 194-198. [10] "Glycerin Enema" (http://www.drugs.com/cdi/glycerin-enema.html). Drugs.com. Retrieved 2012-11-17. [11] "Glycerin (Oral Route)" (http://www.mayoclinic.com/health/drug-information/DR601713). Mayo Foundation for MedicalEducation and Research. Retrieved 2012-11-17. [12] "Glycerin in Bath Salts – Health Benefits for the Skin" (http://homemadebathsaltsrecipes.blogspot.com/2012/03/glycerinin-bath- salts-health-benefits.html). Homemade Bath Salts Recipes. Retrieved 22 February 2013.