SlideShare a Scribd company logo
1 of 2
Download to read offline
Ma 416: Complex Variables
                Solutions to Homework Assignment 5
                                   Prof. Wickerhauser
                         Due Thursday, October 6th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 8A–8H.

1. Classify the following singularities as removable, poles, or essential. If the singularity
   is a pole, state its order.
            2
   (a) 1/(ez − 1) at z = 0          (b) e1/z at z = 0       (c) z/ sin z at z = 0
                                                    2
   Solution:       (a) Pole of order 2, since ez − 1 = z 2 + O(z 4 ) as z → 0.
   (b) Essential singularity, since e1/zn = 1 for zn = 1/2nπi → 0 but e1/zn = −1 for
   zn = 1/(2n + 1)πi → 0 as n → ∞. Hence the function can have no limit as z → 0.
   (c) Removable singularity, since limz→0 [z/ sin z] = 1/ limz→0 [(sin z)/z] = 1.            2
2. Find the residues of the following functions at the indicated points.
   (a) 1/(ez − 1) at z = 0         (b) z 4 /(z − 1 z 3 − sin z) at z = 0
                                                 6
   (c) (z 2 + 1)/z 4 − 1) at z = 1 and z = i.

   Solution:       (a) Since this is a simple pole, find the residue as follows:
                              (z − 0)           z                 1
                        lim     z −1
                                      = lim             = lim          = 1.
                        z→0    e        z→0 z + O(z 2 )   z→0 1 + O(z)


   (b) Note that z − 1 z 3 − sin z = − 120 z 5 + O(z 7 ) at z = 0. Hence z 4 /(z − 1 z 3 − sin z)
                      6
                                        1
                                                                                   6
   has a simple pole at z = 0. Find the residue as follows:
                    (z − 0)z 4               z5               −120
             lim      1 3      = lim    1 5           = lim             = −120.
             z→0 z − z − sin z   z→0 −     z + O(z 7)   z→0 1 + O(z 2 )
                      6                120


   (c) Factor the numerator and denominator polynomials into
                                 (z − i)(z + i)                1
                                                       =                .
                          (z − i)(z + i)(z − 1)(z + 1)   (z − 1)(z + 1)
   Hence z = i (also z = −i) is a removable singularity, so the residue there is 0. However,
                                                (z−1)
   z = 1 is a simple pole with residue limz→1 (z−1)(z+1) = 1 .
                                                            2
                                                                                         2

                                                1
3. Find the residue of the function f (z) = 1/ sinh2 z at z = 0.

   Solution: Since sinh z = O(z) as z → 0, we see that z = 0 is a pole of order 2 for
   1/ sinh2 z. Find the residue as follows, setting n = 2 in the formula on page 73 of our
   text:
                                 (n−1)
                   1        d                                    d     z2
          lim                            [f (z)(z − z0 )n ] = lim
         z→z0   (n − 1)!    dz                             z→0 dz sinh2 z

                                                                2z sinh z − 2z 2 cosh z
                                                         = lim
                                                           z→0          sinh3 z
                                                                     z      sinh z − z cosh z
                                                         = 2 lim
                                                             z→0 sinh z           sinh2 z

   L’Hˆpital’s rule allows us to evaluate the factor limits:
      o
                                               z           1
                                     lim           = lim        = 1,
                                    z→0     sinh z   z→0 cosh z

   and
                                 sinh z − z cosh z           z sinh z
                           lim            2        = lim                 = 0.
                           z→0        sinh z         z→0 2 sinh z cosh z

   Hence the residue is 0.                                                                      2




                                                    2

More Related Content

What's hot

What's hot (20)

Ch16 11
Ch16 11Ch16 11
Ch16 11
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Aula3
Aula3Aula3
Aula3
 
Lec5 MECH ENG STRucture
Lec5   MECH ENG  STRuctureLec5   MECH ENG  STRucture
Lec5 MECH ENG STRucture
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Lista de integrais Calculo IV
Lista de integrais Calculo IVLista de integrais Calculo IV
Lista de integrais Calculo IV
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
Lista de integrais2
Lista de integrais2Lista de integrais2
Lista de integrais2
 
0007
00070007
0007
 
Presentation5 1
Presentation5 1Presentation5 1
Presentation5 1
 
Lista de derivadas e integrais
Lista de derivadas e integraisLista de derivadas e integrais
Lista de derivadas e integrais
 
Tabela cal1
Tabela cal1Tabela cal1
Tabela cal1
 
Limites trigonometricos1
Limites trigonometricos1Limites trigonometricos1
Limites trigonometricos1
 
數學測試
數學測試數學測試
數學測試
 
June 2011 1-2
June 2011 1-2June 2011 1-2
June 2011 1-2
 
Spherical Geodesic
Spherical GeodesicSpherical Geodesic
Spherical Geodesic
 
Quantum number
Quantum numberQuantum number
Quantum number
 

Viewers also liked

EQR und DQR für die BePä Netzwerker 25-04-2011
EQR und DQR für die BePä Netzwerker 25-04-2011EQR und DQR für die BePä Netzwerker 25-04-2011
EQR und DQR für die BePä Netzwerker 25-04-2011Wolfgang Gross
 
Resultado 02 02-14
Resultado 02 02-14Resultado 02 02-14
Resultado 02 02-14Evandro Lira
 
Resultado test
Resultado testResultado test
Resultado test88leidy
 
Comentario de video
Comentario de videoComentario de video
Comentario de videoleidy8812
 
Colags- Dimensiones del Ser Humano
Colags- Dimensiones del Ser Humano Colags- Dimensiones del Ser Humano
Colags- Dimensiones del Ser Humano yeinaramos97
 
Calendario de febrero familias
Calendario de  febrero familiasCalendario de  febrero familias
Calendario de febrero familiasCole Navalazarza
 
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHO
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHOAVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHO
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHOSinapsa
 
ημεριδα τησ ελμε σερρων
ημεριδα τησ ελμε σερρωνημεριδα τησ ελμε σερρων
ημεριδα τησ ελμε σερρωνdakekavalas
 
cengiz kılavuz 135061-civil engineering
cengiz kılavuz 135061-civil engineeringcengiz kılavuz 135061-civil engineering
cengiz kılavuz 135061-civil engineeringcengiz klavuz
 
Le site perso d'un tringleur
Le site perso d'un tringleurLe site perso d'un tringleur
Le site perso d'un tringleurickylemon8046
 
Un motivo mas para aprender.
Un motivo mas para aprender. Un motivo mas para aprender.
Un motivo mas para aprender. iriszabaleta
 

Viewers also liked (20)

El video es interesante
El video es interesanteEl video es interesante
El video es interesante
 
EQR und DQR für die BePä Netzwerker 25-04-2011
EQR und DQR für die BePä Netzwerker 25-04-2011EQR und DQR für die BePä Netzwerker 25-04-2011
EQR und DQR für die BePä Netzwerker 25-04-2011
 
Resultado 02 02-14
Resultado 02 02-14Resultado 02 02-14
Resultado 02 02-14
 
Resultado test
Resultado testResultado test
Resultado test
 
Actividad 3
Actividad 3Actividad 3
Actividad 3
 
Should I Have a Living Will?
Should I Have a Living Will?Should I Have a Living Will?
Should I Have a Living Will?
 
Comentario de video
Comentario de videoComentario de video
Comentario de video
 
Colags- Dimensiones del Ser Humano
Colags- Dimensiones del Ser Humano Colags- Dimensiones del Ser Humano
Colags- Dimensiones del Ser Humano
 
Present perfect3 explanation-cb3
Present perfect3 explanation-cb3Present perfect3 explanation-cb3
Present perfect3 explanation-cb3
 
Calendario de febrero familias
Calendario de  febrero familiasCalendario de  febrero familias
Calendario de febrero familias
 
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHO
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHOAVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHO
AVALIAÇÃO DE DESEMPENHO E A EXTINÇÃO DO POSTO DE TRABALHO
 
ημεριδα τησ ελμε σερρων
ημεριδα τησ ελμε σερρωνημεριδα τησ ελμε σερρων
ημεριδα τησ ελμε σερρων
 
Evidencia5
Evidencia5Evidencia5
Evidencia5
 
Cuadro
Cuadro Cuadro
Cuadro
 
Orange
OrangeOrange
Orange
 
cengiz kılavuz 135061-civil engineering
cengiz kılavuz 135061-civil engineeringcengiz kılavuz 135061-civil engineering
cengiz kılavuz 135061-civil engineering
 
Rewardscards
RewardscardsRewardscards
Rewardscards
 
Le site perso d'un tringleur
Le site perso d'un tringleurLe site perso d'un tringleur
Le site perso d'un tringleur
 
Jasmin
JasminJasmin
Jasmin
 
Un motivo mas para aprender.
Un motivo mas para aprender. Un motivo mas para aprender.
Un motivo mas para aprender.
 

Similar to S05

Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)KINGSHUKMUKHERJEE11
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equationSpringer
 
Hw6sol
Hw6solHw6sol
Hw6soluxxdqq
 
complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDFAlelignAsfaw
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxgajjesatheesh59
 
The Normal Distribution Curve
The Normal Distribution CurveThe Normal Distribution Curve
The Normal Distribution CurvePaul John Argarin
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Determine if the following series or improper integrals are converge.pdf
Determine if the following series or improper integrals are converge.pdfDetermine if the following series or improper integrals are converge.pdf
Determine if the following series or improper integrals are converge.pdffashiondestinationld
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iiimanoj302009
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functionsmath267
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 
Copy of appendices
Copy of appendicesCopy of appendices
Copy of appendicesChethan Nt
 

Similar to S05 (20)

Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equation
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Hw6sol
Hw6solHw6sol
Hw6sol
 
complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDF
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptx
 
The Normal Distribution Curve
The Normal Distribution CurveThe Normal Distribution Curve
The Normal Distribution Curve
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Unit1
Unit1Unit1
Unit1
 
Determine if the following series or improper integrals are converge.pdf
Determine if the following series or improper integrals are converge.pdfDetermine if the following series or improper integrals are converge.pdf
Determine if the following series or improper integrals are converge.pdf
 
Contour
ContourContour
Contour
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functions
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Jejemon
JejemonJejemon
Jejemon
 
Copy of appendices
Copy of appendicesCopy of appendices
Copy of appendices
 
Legendre
LegendreLegendre
Legendre
 

S05

  • 1. Ma 416: Complex Variables Solutions to Homework Assignment 5 Prof. Wickerhauser Due Thursday, October 6th, 2005 Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 8A–8H. 1. Classify the following singularities as removable, poles, or essential. If the singularity is a pole, state its order. 2 (a) 1/(ez − 1) at z = 0 (b) e1/z at z = 0 (c) z/ sin z at z = 0 2 Solution: (a) Pole of order 2, since ez − 1 = z 2 + O(z 4 ) as z → 0. (b) Essential singularity, since e1/zn = 1 for zn = 1/2nπi → 0 but e1/zn = −1 for zn = 1/(2n + 1)πi → 0 as n → ∞. Hence the function can have no limit as z → 0. (c) Removable singularity, since limz→0 [z/ sin z] = 1/ limz→0 [(sin z)/z] = 1. 2 2. Find the residues of the following functions at the indicated points. (a) 1/(ez − 1) at z = 0 (b) z 4 /(z − 1 z 3 − sin z) at z = 0 6 (c) (z 2 + 1)/z 4 − 1) at z = 1 and z = i. Solution: (a) Since this is a simple pole, find the residue as follows: (z − 0) z 1 lim z −1 = lim = lim = 1. z→0 e z→0 z + O(z 2 ) z→0 1 + O(z) (b) Note that z − 1 z 3 − sin z = − 120 z 5 + O(z 7 ) at z = 0. Hence z 4 /(z − 1 z 3 − sin z) 6 1 6 has a simple pole at z = 0. Find the residue as follows: (z − 0)z 4 z5 −120 lim 1 3 = lim 1 5 = lim = −120. z→0 z − z − sin z z→0 − z + O(z 7) z→0 1 + O(z 2 ) 6 120 (c) Factor the numerator and denominator polynomials into (z − i)(z + i) 1 = . (z − i)(z + i)(z − 1)(z + 1) (z − 1)(z + 1) Hence z = i (also z = −i) is a removable singularity, so the residue there is 0. However, (z−1) z = 1 is a simple pole with residue limz→1 (z−1)(z+1) = 1 . 2 2 1
  • 2. 3. Find the residue of the function f (z) = 1/ sinh2 z at z = 0. Solution: Since sinh z = O(z) as z → 0, we see that z = 0 is a pole of order 2 for 1/ sinh2 z. Find the residue as follows, setting n = 2 in the formula on page 73 of our text: (n−1) 1 d d z2 lim [f (z)(z − z0 )n ] = lim z→z0 (n − 1)! dz z→0 dz sinh2 z 2z sinh z − 2z 2 cosh z = lim z→0 sinh3 z z sinh z − z cosh z = 2 lim z→0 sinh z sinh2 z L’Hˆpital’s rule allows us to evaluate the factor limits: o z 1 lim = lim = 1, z→0 sinh z z→0 cosh z and sinh z − z cosh z z sinh z lim 2 = lim = 0. z→0 sinh z z→0 2 sinh z cosh z Hence the residue is 0. 2 2