Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

11.the univalence of some integral operators

255 views

Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

11.the univalence of some integral operators

  1. 1. Mathematical Theory and Modeling www.iiste.orgISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)Vol.2, No.4, 2012 The Univalence of Some Integral Operators Deborah O. Makinde Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria E-mail : domakinde.comp@gmail.com; domakinde@oauife.edu.ngAbstractIn this paper, we obtain the conditions for univalence of the integral operators ofthe form:And 1/   g (s)  z k F ( z )    t   i  1/𝜆  1 ds𝐻(𝑧) = {𝜆 𝑡 (  ) 𝜆−1 𝑑𝑠} 0 ∏ 𝑘 i 1 𝑔 𝑖 (𝑠) s 𝑧 𝜆−1 ∫0 𝑖=1 𝑠AMS Mathematics Subject Classification: 30C45.Key Words: Integral operator, Univalent. 1. IntroductionLet 𝐴 be the class of the functions in the unit disk 𝑈 = {𝑍 ∈ 𝐶: |𝑧| < 1 such that 𝑓(0) = 𝑓 ′ (0) − 1 = 0.Let 𝑆 be the class of functions 𝑓 ∈ 𝐴 which are univalent in 𝑈. Ozaki and Nunokawa [2] showed thecondition for the univalence of the function 𝑓 ∈ 𝐴 as given in the lemma below.Lemma 1 [3]: Let 𝑓 ∈ 𝐴 satisfy the condition 𝑧 2 𝑓 ′ (𝑧) | − 1| ≤ 1 (1) 𝑓 2(𝑧)For all 𝑧 ∈ 𝑈, then 𝑓 is univalent in 𝑈Lemma 2 [2]: Let 𝛼 be a complex number, 𝛼 > 0 , and 𝑓 ∈ 𝐴. If 1 − |𝑧|2𝑅𝑒𝛼 𝑧𝑓 ′′ (𝑧) | ′ |≤1 𝑅𝑒𝛼 𝑓 (𝑧) 𝑧 1⁄ 𝛼For all 𝑧 ∈ 𝑈, then the function 𝐹 𝛼 (𝑧) = [𝛼 ∫ 𝑈 𝛼−1 𝑓 ′ (𝑢)𝑑𝑢] 0Is in the class 𝑆.The Schwartz lemma [1] : Let the analytic function 𝑓 be regular in the unit disk and let 𝑓(0) = 0. If|𝑓(𝑧)| ≤ 1, then |𝑓(𝑧)| ≤ |𝑧|For all 𝑧 ∈ 𝑈, where equality can hold only if |𝑓(𝑧)| ≡ 𝐾𝑧 and 𝑘 = 1Lemma 3 [4]: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝑎 + 𝑏 𝑖 a complex number, 𝑎, 𝑏 satisfies the conditions 3 3 1𝑎 ∈ [ , ] ; 𝑏 ∈ [0, ] (2) 4 2 2√28𝑎2 + 𝑎9 𝑏 2 − 18𝑎 + 9 ≤ 0 (3) 1 𝑧 𝑔(𝑢) 𝑎+𝑏 𝑖 −1 𝑎+𝑏 𝑖If |𝑔(𝑧) ≤ 1| for all 𝑧 ∈ 𝑈 then the function 𝐺(𝑧) = {𝑎 + 𝑏 𝑖 ∫ ( 0 ) 𝑑𝑢} 𝑢 91
  2. 2. Mathematical Theory and Modeling www.iiste.orgISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)Vol.2, No.4, 2012Is univalent in 𝑈 1. MAIN RESULTSTheorem 1: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝜆 is a complex number, 𝜆 satisfies the conditions 𝑅𝑒𝜆 ∈ (0, √𝑘 + 2], 𝑘 ≥ 1 (4)(𝑅𝑒𝜆)4 (𝑅𝑒𝜆)2 (𝐼𝑚𝜆)2 − (𝑘 + 2) ≥ 0 2 (5)If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function 1/   g (s)  z k  is   1 F ( z)    t ds Is univalent in 𝑈 0 i 1  Proof: Let z k 1/  g ( s)  ( is )  1 F ( z)    t ds 0 i 1 𝑘 𝑧 𝑔 𝑖 (𝑠) 1/𝜆And let 𝑓(𝑧) = ∫ ∏ 𝑖=1 ( 0 ) 𝑑𝑠 (6) 𝑠 𝑘 𝑔 𝑖 (𝑧) 1/𝜆Then 𝑓 ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑧 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 1/𝜆 𝑔 𝑘 (𝑠) 1/𝜆 =( ) ( ) …( ) 𝑠 𝑠 𝑠 1 1 ′ 1 1 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 𝜆 𝑔 𝑘 (𝑠) 𝜆 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 𝜆 𝑔 (𝑠) 𝜆 𝑓 ′′ (𝑧) = ( ) [( ) …( ) ] + [( ) ] ′ [( ) …( 𝑘 ) ] 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑧𝑓 ′′ (𝑧) 1 𝑧𝑔′ 1 (𝑧) 1 𝑧𝑔′ 2 (𝑧) 1 𝑧𝑔′ 𝑘 (𝑧) = ( − 1) + ( − 1) … ( − 1) 𝑓 ′ (𝑧) 𝜆 𝑔1 (𝑧) 𝜆 𝑔1 (𝑧) 𝜆 𝑔1 (𝑧) 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) = ∑ 𝑖=1 ( − 1) 𝜆 𝑔1 (𝑧)This implies that1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) | |= |∑ 𝑖=1 − 1| 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑔1 (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) ≤ (|∑ 𝑖=1 | + 1) 𝑅𝑒𝜆 |𝜆| 𝑔1 (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧) 𝑔 (𝑧) ≤ (|∑ 𝑖=1 || 𝑖 | + 1) (7) 𝑅𝑒𝜆 |𝜆| 𝑔2 1 (𝑧) 𝑧Using Schwartz-lemma in (7), we have 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧) | |≤ (|∑ 𝑖=1 − 1| + 2) 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑔2 1 (𝑧)But 𝑔 satisfies (1), thus 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧)|∑ 𝑖=1 − 1| ≤ 𝑘 𝑔2 1 (𝑧) 92
  3. 3. Mathematical Theory and Modeling www.iiste.orgISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)Vol.2, No.4, 2012This implies that 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘+2 | |≤ (𝑘 + 2) ≤ (8) 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑅𝑒𝜆|𝜆|From (4) and (5), we have 𝑘+2 ≤1 (9) 𝑅𝑒𝜆|𝜆| 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧)Using (9) in (8), we obtain | |≤1 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑘 𝑔 𝑘 (𝑠) 1/𝜆And from (6) 𝑓 ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑠And by lemma 2 𝐹(𝑧) is univalent ∎Theorem 2 Let 𝑔 ∈ 𝐴 satisfies (1) and let 𝜆 be a complex number with 𝑅𝑒𝜆, 𝐼𝑚𝜆 satisfying (2)and (3). If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function 𝑘 1/𝜆 𝑧 𝜆−1 𝑔 𝑖 (𝑠) 𝜆−1 𝐻(𝑧) = {𝜆 ∫ 𝑡 ∏( ) } 0 𝑠 𝑖=1Is univalent in 𝑈.Proof: Let 𝑧 𝑔 𝑖 (𝑠) 𝜆−1 1/𝜆 𝑘 𝐻(𝑧) = {𝜆 ∫ 𝑡 𝜆−1 ∏ 𝑖=1 ( 0 ) } (10) 𝑠Following the procedure of the proof of theorem 1, we obtain 𝑘 1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) 1 − |𝑧|2𝑅𝑒𝜆 𝑧 2 𝑔′ (𝑧) | ′ |≤ |𝜆 − 1| (|∑ 2 𝑖 − 1| + 2) 𝑅𝑒𝜆 ℎ (𝑧) 𝑅𝑒𝜆 𝑔 1 (𝑧) 𝑖=1But 𝑔 satisfies (1), thus 1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) 1 − |𝑧|2𝑅𝑒𝜆 |𝜆 − 1|(𝑘 + 2) | ′ |≤ |𝜆 − 1|(𝑘 + 2) ≤ 𝑅𝑒𝜆 ℎ (𝑧) 𝑅𝑒𝜆 𝑅𝑒𝜆From (2) and (3) we have|𝜆−1|(𝑘+2) ≤1 𝑅𝑒𝜆This implies that1−|𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) | | ≤ 1 for all 𝑧 ∈ 𝑈 𝑅𝑒𝜆 ℎ′ (𝑧) 𝑔(𝑧) 𝜆−1 𝑘From (10), ℎ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑧And by lemma 2, 𝐻(𝑧) is univalent in 𝑈 ∎Remark: Theorem 1and theorem 2 gives a generalization of theorem 1[4] and lemma 3 respectively,. 93
  4. 4. Mathematical Theory and Modeling www.iiste.orgISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)Vol.2, No.4, 2012ReferencesMayer O, (1981). The function theory of one complex variable BucurestiOaaki, S., & Nunokawa, M. (1972). The Schwarzian derivative and univalent function.Proc. Amer. Math. Soc. 33(2), 392-394Pescar, V., (2006). Univalence of certain integral operators. . Acta Universitatis Apulensis, 12, 43-48Pescar, V., & Breaz, D. (2008). Some integral and their univalence. Acta Universitatis Apulensis, 15, 147-152 94
  5. 5. International Journals Call for PaperThe IISTE, a U.S. publisher, is currently hosting the academic journals listed below. The peer review process of the following journalsusually takes LESS THAN 14 business days and IISTE usually publishes a qualified article within 30 days. Authors shouldsend their full paper to the following email address. More information can be found in the IISTE website : www.iiste.orgBusiness, Economics, Finance and Management PAPER SUBMISSION EMAILEuropean Journal of Business and Management EJBM@iiste.orgResearch Journal of Finance and Accounting RJFA@iiste.orgJournal of Economics and Sustainable Development JESD@iiste.orgInformation and Knowledge Management IKM@iiste.orgDeveloping Country Studies DCS@iiste.orgIndustrial Engineering Letters IEL@iiste.orgPhysical Sciences, Mathematics and Chemistry PAPER SUBMISSION EMAILJournal of Natural Sciences Research JNSR@iiste.orgChemistry and Materials Research CMR@iiste.orgMathematical Theory and Modeling MTM@iiste.orgAdvances in Physics Theories and Applications APTA@iiste.orgChemical and Process Engineering Research CPER@iiste.orgEngineering, Technology and Systems PAPER SUBMISSION EMAILComputer Engineering and Intelligent Systems CEIS@iiste.orgInnovative Systems Design and Engineering ISDE@iiste.orgJournal of Energy Technologies and Policy JETP@iiste.orgInformation and Knowledge Management IKM@iiste.orgControl Theory and Informatics CTI@iiste.orgJournal of Information Engineering and Applications JIEA@iiste.orgIndustrial Engineering Letters IEL@iiste.orgNetwork and Complex Systems NCS@iiste.orgEnvironment, Civil, Materials Sciences PAPER SUBMISSION EMAILJournal of Environment and Earth Science JEES@iiste.orgCivil and Environmental Research CER@iiste.orgJournal of Natural Sciences Research JNSR@iiste.orgCivil and Environmental Research CER@iiste.orgLife Science, Food and Medical Sciences PAPER SUBMISSION EMAILJournal of Natural Sciences Research JNSR@iiste.orgJournal of Biology, Agriculture and Healthcare JBAH@iiste.orgFood Science and Quality Management FSQM@iiste.orgChemistry and Materials Research CMR@iiste.orgEducation, and other Social Sciences PAPER SUBMISSION EMAILJournal of Education and Practice JEP@iiste.orgJournal of Law, Policy and Globalization JLPG@iiste.org Global knowledge sharing:New Media and Mass Communication NMMC@iiste.org EBSCO, Index Copernicus, UlrichsJournal of Energy Technologies and Policy JETP@iiste.org Periodicals Directory, JournalTOCS, PKPHistorical Research Letter HRL@iiste.org Open Archives Harvester, Bielefeld Academic Search Engine, ElektronischePublic Policy and Administration Research PPAR@iiste.org Zeitschriftenbibliothek EZB, Open J-Gate,International Affairs and Global Strategy IAGS@iiste.org OCLC WorldCat, Universe Digtial Library ,Research on Humanities and Social Sciences RHSS@iiste.org NewJour, Google Scholar.Developing Country Studies DCS@iiste.org IISTE is member of CrossRef. All journalsArts and Design Studies ADS@iiste.org have high IC Impact Factor Values (ICV).

×