SlideShare a Scribd company logo
1 of 84
โ€œCholesterolโ€ the most feared among Lipids, speaks:
โ€œ Consumed through the diet and produced in the body,
participate in innumerable cellular functions.
Implicated in several Health complications,
And blamed I am, for no fault of Mine.โ€
Cholesterol
Synthesis,Transport and
Excretion
Objectives:
๏‚ง Cholesterol: Basic Structure, Functions
๏‚ง Details of Biosynthesis of Cholesterol
๏‚ง Regulation of the Cholesterol Synthesis
๏‚ง Absorption of Cholesterol, Transport
๏‚ง Excretion of Cholesterol
๏‚ง Bile Acids and Bile Salts
๏‚ง Cholesterol is an Alicyclic Compound, widely
distributed in Free and Esterified forms.
๏‚ง Member of sterol derivative.
๏‚ง Solid Alcohol of high molecular weight.
๏‚ง Molecular formula C27H45OH.
Introduction
History
๏‚ง Isolated from Gall stones in 1784.
๏‚ง Thirteen Nobel prizes has ben awarded to the scientists who
devoted most of their career in important discovery related to
Cholesterol.
Structure
Includes:
๏‚ง Perhydrocyclopentano Phenanthrene Nucleus with four
fused rings.
Perhydrocyclo
pentanophenanthrene(STERANE) skeleton
Cholesterol
๏‚ง A single Hydroxyl group a C-3.
๏‚ง An Unsaturated center between C5-C6 atoms.
๏‚ง An Eight membered branched Hydrocarbon chain attached
to the D-ring at position 17.
๏‚ง Methyl Group (Designated C-19) attached at position 10 and
another methyl group (Designated C-18) at position 13.
๏‚ง Actual concentration of Cholesterol in Plasma of healthy
people 150-200 mg/dl
๏ƒ˜ This value is almost Twice the Normal Concentration of
Blood Glucose.
๏ƒผ This accounts for high solubility of Cholesterol in blood
which is due to Plasma Lipoproteins (LDL and VLDL) that
have the ability to bind and thereby solubilize large
amounts of Cholesterol.
๏‚ง 30% of Total Plasma Cholesterol โ€“Free
70% - Cholesterol Esters ; where some long chain fatty
acid Linoleic Acid attached by an Ester Bond to
Hydroxyl (-OH group) on C3 of the A-Ring.
Cholesterol synthesis
โ€ข Synthesized in all tissues.
โ€ข Major sites for synthesis- liver, adrenal cortex, testes,
ovaries and intestine.
โ€ข All carbon atoms are derived from acetyl CoA.
โ€ข Enzymes involved in biosynthesis are partly located in ER
and partly in cytoplasm.
๏‚ง All of the carbon atoms of cholesterol are derived from
acetate.
Cholesterol Biosynthesis
๏‚ง Observation of their pattern of incorporation into cholesterol
led Konrad Bloch to propose that acetate was first converted to
isoprene units, C5 units that have the carbon skeleton of
isoprene.
๏ถ Isoprene units are condensed to form a linear
precursor to cholesterol, and then cyclized.
๏‚ง Outline of Major Stages of Cholesterol Biosynthesis was :
Acetate Isoprenoid Intermediate Squalene
Cholesterol Cyclization
Product
Mevalonate is a Key Intermediate in
Cholesterol Biosynthesis
๏‚ง Cholesterol Biosynthesis begins with
condensation of two molecules of Acetyl
CoA
Catalysed by Thiolase
๏‚ง Next Step requires enzyme HMG CoA Synthase
Catalyses the condensation of a Third Acetyl CoA to
yield HMG CoA.
Synthesis of HMG CoA
๏‚ง HMG CoA Synthase is
present in both cytosol and
mitochondria of liver.
๏‚ง Mitochondrial-
ketogenesis
๏‚ง Cytosolic โ€“ cholesterol
synthesis
๏‚ง HMG CoA then reduced to Mevalonate by HMG CoA
reductase.
๏‚ง Activity of this Reductase Control of Rate of
Cholesterol synthesis.
๏‚ง HMG-CoA An important Intermediate for the
biosynthesis of both Cholesterol and
Ketone Bodies.
๏‚ง Biosynthesis of Cholesterol catalyzed by enzymes in
the Cytosol and
Endoplasmic reticulum.
๏‚ง Synthesis of Ketone Bodies Restricted to Mitochondrial
Matrix.
The Rate of Mevalonate Synthesis determines
the rate of cholesterol Biosynthesis
๏‚ง Primary regulation of Cholesterol Biosynthesis centred on the
HMG-CoA Reductase Reaction.
๏‚ง HMG-CoA Found in ER
๏ƒ˜ 887 AA in a single Polypeptide chain.
๏ƒ˜ Structure of the enzyme deduced by
Michael Brown and Joseph Goldstein.
๏ƒ˜ Has Two Domains.
๏ƒ˜ Amino Terminal Domain Mol Wt. 35,000
Seven Hydrophobic
Segments
Thought to cross the
membrane.
๏ƒผ Senses signals that lead to its degradation when cholesterol
levels are high.
๏ƒ˜ Carboxyl-Terminal Domain Mol Wt. 62,000
Contains the Catalytic site of
the Enzyme.
Thought to protrude into the
Cytosol.
HMG CoA Reductase Regulation
โ€ข Sterol-dependent regulation of gene expression
โ€ข Sterol-accelarated enzyme degradation
โ€ข Sterol-independent
phosphorylation/dephosphorylation
โ€ข Hormonal regulation
๏‚ง Rate of Synthesis of Reductase mRNA is controlled by the
Sterol Regulatory Element Binding Protein (SREBP).
SREBP( Transcription Factor) binds to the short DNA
Sequence Sterol Regulatory Element(SRE) on the 5โ€™ side
of the Reductase gene When Cholesterol levels
are low.
Sterol Dependent Regulation of Gene
Expression
๏‚ง In its Inactive state, the SREBP resides in the
Endoplasmic Reticulum membrane, where it is
associated with SREBP Cleavage Activating Protein
(SCAP) An Integral Membrane Protein
๏‚ง When Cholesterol levels Fall SCAP escorts SREBP in
small membrane vesicles
to Golgi Complex.
Where it is released from the membrane by two
specific Proteolytic Cleavages.
๏‚ง First Cleavage frees a fragment of SREBP from SCAP.
๏‚ง The Second Cleavage releases the Regulatory Domain from
the membrane.
Released Protein migrates to the Nucleus and binds the SRE of
the HMG- CoA Reductase Gene as well as other genes in the
Cholesterol Biosynthetic Pathway to enhance Transcription.
From Stryer 7th Edition
๏ถ High Levels of Cholesterol:
Proteolytic Release of SREBP BLOCKED
๏ƒ˜ SREBP in the Nucleus is Rapidly degraded.
These two events halt the transcription of genes
of the cholesterol biosynthetic pathways.
๏‚ง When Cholesterol concentration is Low
SCAP binds to Vesicular Proteins that facilitate the
transport of SCAP-SREBP to the golgi apparatus as
already described.
๏‚ง When Cholesterol is Present SCAP binds Cholesterol
Structural Change in
SCAP
It binds to another ER Protein called Insig.
๏‚ง Insig: Anchor that retains SCAP and thus SREBP in the ER in
the presence of Cholseterol.
๏‚ง Interactions between SCAP and Insig can also be forged when
Insig binds 25, hydroxycholesterol Metabolite of
Cholesterol.
๏‚ง Thus, two distinct Steroid Protein Interactions serve to prevent
the inappropriate amount of SCAP-SREBP to the Golgi
Complex.
From Stryer 7th Edition
Sterol-dependent regulation
Cholesterol High
โ€ข SCAP binds to insigs
(ER membrane proteins)
โ€ข SCAP-SREBP is
retained in the ER
โ€ข Downregulation of
cholesterol synthesis
Cholesterol Low
โ€ข SCAP escorts SREBP to
Golgi bodies
โ€ข Two proteases cleave
SREBP to a soluble
fragment that enters the
nucleus and binds SRE
โ€ข HMG CoA gene
transcription is activated
Sterol Accelerated Regulation
๏‚ง The enzyme is bipartite: its cytoplasmic domain carries out
catalysis and its membrane domain senses signals that lead to
its degradation.
๏‚ง The membrane domain may undergo structural changes in
response to increasing concentrations of sterols such as
lanosterol and 25-hydroxycholesterol.
๏‚ง Under these conditions, the reductase appears to bind to a
subset of Insigs that are also associated with the ubiquitinating
enzymes.
๏‚ง The reductase is polyubiquitinated
Subsequently extracted from the membrane in a process
that requires Gerenylgeraniol.
The extracted reductase is then degraded by the proteasome.
From Stryer 7th Edition
Enzyme phosphorylation and
dephosphorylation
๏‚ง AMP- activated protein kinase
(AMPK) for phosphorylation
switches off the enzyme.
๏‚ง Phosphoprotein phosphatase for
dephosphorylation.
๏‚ง Phosphorylated form of enzyme is
inactive.
๏‚ง Dephosphorylated form โ€“ active
๏‚ง Thus, Cholesterol Synthesis
ceases when ATP level is low.
Hormonal Regulation
โ€ข Insulin and thyroxine favor upregulation of enzyme
expression
โ€ข Glucagon and cortisol have opposite effect
From Harperโ€™s 28th Edition
๏‚ง The statin drugs are structural analogs of
HMG CoA, and are (or are metabolized to)
reversible, competitive inhibitors of HMG
CoA reductase.
๏‚ง Used to decrease
Plasma Cholesterol
Levels.
Inhibition by drugs
๏‚ง First stage in this sequence of this reactions :
๏ƒ˜ Synthesis of the Five-Carbon Isoprenoid Intermediates
Isopentenyl Pyrophosphate and Dimethylallyl Pyrophosphate.
๏ƒ˜ Requires ATP.
It takes Six Mevalonates and Ten Steps to make
Lanosterol, the First Tetracyclic Intermediate
1. The CoA group of HMG-CoA is reduced to an alcohol in
an NADPH-dependent reduction catalyzed by
HMG- CoA reductase, yielding Mevalonate.
2. New OH group is phosphorylated by mevalonate-5
phosphotransferase.
3. The phosphate group is converted to a pyrophosphate
by phosphomevalonate kinase.
4. The molecule is decarboxylated and the resulting alcohol
dehydrated by pyrophosphomevalonate decarboxylase.
The formation of isopentenyl pyrophosphate
involves four reactions:
Squalene (C30) is synthesized from six molecules
of isopentenyl pyrophosphate (C5)
๏‚ง Squalene is synthesized from isopentenyl pyrophosphate by the
reaction sequence.
C5 C10 C15 C30
๏‚ง This stage in the synthesis of cholesterol starts with the
isomerization of isopentenyl pyrophosphate to dimethylallyl
pyrophosphate.
๏‚ง Isopentenyl pyrophosphate and dimethylallyl pyrophosphate
undergo a Head- to-Tail condensation, in which one
pyrophosphate group is displaced and a 10-carbon chain,
Geranyl pyrophosphate, is formed.
๏‚ง Geranyl pyrophosphate undergoes another Head-to-tail
condensation with isopentenyl pyrophosphate, yielding the
15-carbon intermediate Farnesyl pyrophosphate.
๏‚ง Finally, two molecules of farnesyl pyrophosphate join head to
head, with the elimination of both pyrophosphate groups, to
form squalene.
From MN Chatterjee
Textbook of
Biochemistry 8th edition
๏‚ง Geraniol, a component of rose oil, has the aroma of geraniums.
๏‚ง Farnesol is an aromatic compound found in the flowers of the
Farnese acacia tree.
๏‚ง Squalene , first isolated from the liver of sharks
(genus Squalus), has 30 carbons, 24 in the main
chain and 6 in the form of methyl group branches.
๏‚ง The formation of lanosterol from squalene takes place in two
steps:
๏ƒ˜ Squalene-2,3-epoxide is formed first catalysed by the
enzyme squalene mono-oxygenase; requires NADPH and
molecular O2.
๏ƒ˜ In the next step, an enzyme cyclase brings about the
cyclisation of squalene to form lanosterol.
Cyclisation of squalene to form lanosterol
From Lanosterol to Cholesterol Takes Another
Twenty Steps
๏‚ง Approximately, Twenty Enzymatic Steps, Starting with
Lanosterol.
๏‚ง Comprise a series of Double Bond Reductions and
Demethylations.
๏‚ง Final Reaction : Reduction of the โˆ†7 double bond in 7-
dehydrocholesterol.
๏ถ Alternative Pathway from Lanosterol to Cholesterol: Involves
Three Demethylations to give Zymosterol and then
Isomerization of โˆ†8 double bond to the โˆ†5 to produce
Desmosterol.
๏‚ง Enzymes Involved in the Transformation of Lanosterol to
Cholesterol are all located in the Endoplasmic reticulum.
Cholesterol Absorption
๏‚ง Cholesterol enters the Intestinal Lumen from Three Sources
I. Diet
II. Bile
III. Intestine
๏‚ง Almost all Cholesterol is present in Unesterified (Free Form)
๏‚ง For absorption Cholesterol must be solubilized.
Solubilised by the formation of
Micelles
Then, absorbed by an Active process involving
the Enterocyte protein NPC1L1
Drug Target for Cholesterol absorption
inhibitor EZETIMIBE
๏‚ง Absorption of Cholesterol and other sterols (Plant Sterols) is
limited by the presence of ABCG5/G8 transporter on
Enterocytes.
Pumps Excess Sterols back into the Lumen
for Excretion.
๏‚ง Most Cholesterol absorption occurs from the Jejunum to the
terminal Ileum of the small intestine.
Cholesterol Esterification
๏ถ Why??
๏‚ง Enhance the Lipid carrying capacity of the lipoprotein
in the plasma.
๏‚ง Prevents Intracelleular toxicity of Free Cholesterol.
๏ถ How??
๏‚ง By Enzymes Lecithin Cholesterol Acyl Transferase(LCAT) in
Plasma
๏‚ง ACAT ( Acylcholesterol Acyltransferase) within the Cell.
Cholesterol Esters
โ€ข Acyl-CoA:cholesterol acyl
transferase (ACAT) is an ER
membrane protein
โ€ข ACAT transfers fatty acid of CoA to
C3 hydroxyl group of cholesterol
โ€ข Excess cholesterol is stored as
cholesterol esters in cytosolic
lipid droplets.
Fig. 8
Many Other Factors Influence the Cholesterol
Balance in tissues
Cell cholesterol increase is due to
๏‚ง Uptake of cholesterol-containing lipoproteins by receptors,
eg, the LDL receptor or the scavenger receptor.
๏‚ง Uptake of free cholesterol from cholesterol-rich lipoproteins
to the cell membrane.
๏‚ง Cholesterol synthesis, and
๏‚ง Hydrolysis of cholesteryl esters by the enzyme cholesteryl
ester hydrolase.
Decrease is due to
๏‚ง Efflux of cholesterol from the membrane to HDL via the
ATP-binding cassette transporters A1 (ABCA1) and G1
(ABCG1), or SR-B1 class B scavenger receptor B1 ;
๏‚ง Esterification of cholesterol by ACAT (acyl-
CoA:cholesterol acyltransferase); and
๏‚ง
๏‚ง Utilization of cholesterol for synthesis of other steroids,
such as hormones, or bile acids in the liver.
Transport of Cholesterol
๏‚ง After Absorption Cholesterol together with Triglycerides,
Phospholipids,and a number of
specific Apoproteins is assembled into
a large Lipoprotein called
CHYLOMICRON.
๏‚ง One Apoprotein Component (Apo B-48) Vital for the
formation and Secretion of Chylomicrons.
๏‚ง Patients with the deficiency of this apoprotein leads to a
condition called as Chylomicron Retention Disorder
Characterised by Excess lipid in Enterocytes and Fat
Malabsorption.
๏‚ง The liver is a major site of cholesterol synthesis.
๏‚ง Cholesterol and Triacylglycerols in excess of the liver's own
needs are exported into the blood in the form of very low
density lipoproteins.
๏‚ง Triacylglycerols in very low density lipoproteins are hydrolyzed
by lipases on capillary surfaces.
๏‚ง The resulting remnants, which are rich in cholesteryl esters, are
called intermediate -density lipoproteins.
๏‚ง Half of them are taken up by the liver for processing, and half
are converted into low-density lipoprotein by the removal of
more triacylglycerol.
๏‚ง Low-density lipoprotein is the major carrier of cholesterol in
blood
๏‚ง The shell also contains a single copy of apo B-100 which
๏‚ง Is recognized by target cells.
๏‚ง They solubilize hydrophobic lipids
๏‚ง The role of LDL is to transport cholesterol to peripheral
tissues and regulate de novo cholesterol synthesis at these
sites.
๏‚ง The process of LDL uptake is Receptor-mediated
endocytosis.
Low-Density Lipoproteins Plays a Central
Role in Cholesterol Metabolism
๏‚ง It contains a core of some 1500 cholesterol molecules
esterified to fatty acids most commonly linoleate.
๏‚ง A shell of phospholipids and unesterified cholesterol
molecules surrounds this highly hydrophobic core.
๏‚ง Apo B-100 on the surface of an LDL
particle binds to a specific receptor
protein on the plasma membrane of
nonhepatic cells.
๏‚ง The receptors for LDL are localized
in specialized regions called coated
pits contain a specialized
protein called Clathrin.
๏‚ง The receptor- LDL complex is
internalized by Endocytosis; that is,
the plasma membrane in the vicinity
of the complex invaginates and then
fuses to form an Endocytic vesicle.
Receptor-mediated endocytosis
๏‚ง These vesicles, containing LDL, subsequently fuse with
Lysosomes, acidic vesicles that carry a wide array of degradative
enzymes.
๏‚ง The protein component of LDL is hydrolyzed to free amino acids.
๏‚ง The cholesteryl esters in LDL are hydrolyzed by a Lysosomal acid
Lipase.
๏‚ง The LDL receptor itself usually returns unharmed to the plasma
membrane.
๏‚ง The round-trip time for a receptor is about 10 minutes; in its lifetime
of about a day, it may bring many LDL particles into the cell.
๏‚ง The released unesterified cholesterol can then be used for
membrane biosynthesis.
๏‚ง Alternatively, it can be reesterified for storage inside the cell.
๏‚ง In fact, free cholesterol activates acyl CoA:cholesterol
acyltransferase (ACAT), the enzyme catalyzing this reaction.
๏‚ง Reesterified cholesterol contains mainly oleate and
palmitoleate,, in contrast with the cholesterol esters in LDL,
which are rich in linoleate, a polyunsaturated fatty acid.
๏‚ง It is imperative that the cholesterol be reesterified.
๏‚ง High concentrations of unesterified cholesterol disrupt the
integrity of cell membranes.
๏‚ง The amino acid sequence of the human LDL receptor
reveals the mosaic structure of this 115-kd protein,839
Amino acids which is composed of five different types of
domains.
๏‚ง The amino-terminal region of the mature receptor is the site
of LDL binding.
๏‚ง Michael S. Brown and Joseph L. Goldstein were awarded the
1985 Nobel Prize for Physiology and Medicine for their
identification of the Low Density Lipoprotein (LDL)
Receptor[5] and its relation to Choletserol metabolism
and Familial Hypercholesterolemia.
The LDL Receptor Is a Transmembrane Protein
Having Five Different
Functional Regions
๏‚ง It consists of a cysteine-rich sequence of about 40 residues that is
repeated, with some variation, seven times.
๏‚ง A cluster of negatively charged side chains in this LDL-binding
domain interacts with a positively charged site on an apo B-100
molecule on the surface of an LDL particle.
๏‚ง The third domain, which is very rich in
serine and threonine residues,
contains O-linked sugars.
๏‚ง These oligosaccharides may function as struts to keep the
receptor extended from the membrane so that the LDL-
binding domain is accessible to LDL.
๏‚ง The fourth type of domain consists of 22 hydrophobic
residues that span the plasma membrane.
๏‚ง The fifth domain consists of 50 residues and emerges on the
cytoplasmic side of the membrane, where it controls the
interaction of the receptor with coated pits and participates in
endocytosis.
๏‚ง In addition to the highly specific and regulated receptor-
mediated pathway for LDL uptake, macrophages possess
high levels of scavenger receptor activity known as
scavenger receptor class A (SR-A).
๏‚ง Of particular concern is the oxidation of the excess blood
LDL to form oxidized LDL in which the lipid components or
apo B have been oxidized.
๏‚ง The scavenger receptor is not down-regulated in response
to increased intracellular cholesterol.
Uptake of chemically modified LDL by
macrophage scavenger receptors
โ€ข The oxLDL when taken up macrophages become engorged to
form foam cells.
โ€ข These foam cells become trapped in the walls of the blood
vessels and contribute to the formation of atherosclerotic
plaques that cause arterial narrowing and lead to heart
attacks.
Excretion of cholesterol
๏‚ง By conversion into bile acids and bile salts- excreted in the
feces.
๏‚ง By secretion of cholesterol in bile- transported to intestine
for elimination.
๏‚ง In the intestine cholesterol is converted by bacteria into
coprostanol and cholestanol before excretion.
Bile Salts
โ€ข Bile acids & salts are effective detergents.
โ€ข Synthesized in the liver.
โ€ข Stored & concentrated in the gallbladder.
โ€ข Discharged into gut and aides in absorption of intraluminal
lipids, cholesterol, & fat soluble vitamins.
โ€ข Bile acid refers to the protonated form while bile salts refers to
the ionized form
โ€“ The pH of the intestine is 7 and the pKa of bile salts is 6,
which means that 50% are protonated.
Synthesis of Bile Salts
โ€ข Rate-limiting step performed by the 7ฮฑ-hydroxylase and is
regulated by bile salt concentration
โ€ข End product: Cholic acid & Chenocholic acid
Fig. 9 Fig. 10
๏‚ง The primary bile acids enter the bile as glycine or taurine
conjugates.
๏‚ง Conjugation takes place in peroxisomes.
๏‚ง In humans, the ratio of the glycine to the taurine conjugates
is normally 3:1.
๏‚ง In the alkaline bile, the bile acids and their conjugates are
assumed to be in a salt formโ€”hence the termโ€œbile salts.โ€
๏‚ง A portion of the primary bile acids in the intestine is
subjected to further changes by the activity of the intestinal
bacteria.
โ€ข Products of fat digestion, including cholesterol absorbed
in the first 100 cm of small intestine, the primary and
secondary bile acids are absorbed almost exclusively in the
ileum, and 98โ€“99% is returned to the liver via the portal
circulation.
โ€ข However, lithocholic acid, because of its insolubility, is not
reabsorbed to any significant extent.
โ€ข Only a small fraction of the bile salts escapes absorption and
is therefore eliminated in the feces.
Most Bile Acids Return to the Liver
in the Enterohepatic Circulation
Fate of Bile Salts
Fig. 12
๏‚ง The activity of the enzyme is feedback-regulated via the nuclear
bile acid-binding receptor Farnesoid X receptor (FXR).
๏‚ง When the size of the bile acid pool in the enterohepatic circulation
increases, FXR is activated and transcription of the cholesterol 7-
hydroxylase gene is suppressed.
๏‚ง Chenodeoxycholic acid is particularly important .
๏‚ง Also enhanced by cholesterol of endogenous and dietary origin
and regulated by insulin, glucagon, glucocorticoids, and thyroid
hormone.
Bile Acid Synthesis Is Regulated at the 7-ฮฑ
Hydroxylase Step
โ€ข The movement of cholesterol from the liver
into the bile must be accompanied by the
simultaneous secretion of phospholipid and
bile salts.
โ€ข If this dual process is disrupted and more
cholesterol enters the bile than can be
solubilized by the bile salts and lecithin
present, the cholesterol may precipitate in
the gallbladder, initiating the occurrence of
cholesterol gallstone diseaseโ€”cholelithiasis
Bile salt deficiency: Cholelithiasis
References:
๏‚ง Lehningerโ€™s Principles of Biochemistry- 5th Edition
๏‚ง Biochemistry 7th Edition : Jeremy M berg,John L. Tymoczko,
Lubert Stryer
๏‚ง Harperโ€™s Illustrated Biochemistry- 28th Edition
๏‚ง Lippincottโ€™s Illustrated Reviews Biochemistry: Fifth Edition
๏‚ง Teitz Textbook of Clinical Chemistry and Molecular Diagnostics-
Fifth Edition
Thank You

More Related Content

What's hot

What's hot (20)

Cholesterol metabolism
Cholesterol metabolismCholesterol metabolism
Cholesterol metabolism
ย 
CHOLESTEROL METABOLISM muhammad mustansar FJMC LAHORE
CHOLESTEROL METABOLISM muhammad mustansar FJMC LAHORECHOLESTEROL METABOLISM muhammad mustansar FJMC LAHORE
CHOLESTEROL METABOLISM muhammad mustansar FJMC LAHORE
ย 
Triglyceride metabolism
Triglyceride metabolismTriglyceride metabolism
Triglyceride metabolism
ย 
Metabolism of cholesterol
Metabolism of cholesterolMetabolism of cholesterol
Metabolism of cholesterol
ย 
Cholesterol synthesis, transport and excretion ppt 1
Cholesterol synthesis, transport and excretion ppt 1Cholesterol synthesis, transport and excretion ppt 1
Cholesterol synthesis, transport and excretion ppt 1
ย 
Cholesterol synthesis steps and regulation
Cholesterol synthesis   steps and regulationCholesterol synthesis   steps and regulation
Cholesterol synthesis steps and regulation
ย 
Cholesterol metabolism
Cholesterol metabolismCholesterol metabolism
Cholesterol metabolism
ย 
Biosynthesis and degradation of porphyrin and heme
Biosynthesis and degradation of porphyrin and hemeBiosynthesis and degradation of porphyrin and heme
Biosynthesis and degradation of porphyrin and heme
ย 
Biosynthesis of cholesterol
Biosynthesis of cholesterolBiosynthesis of cholesterol
Biosynthesis of cholesterol
ย 
Pyrimidine metabolism
Pyrimidine metabolismPyrimidine metabolism
Pyrimidine metabolism
ย 
Beta oxidation of fatty acids
Beta oxidation of fatty acids Beta oxidation of fatty acids
Beta oxidation of fatty acids
ย 
LIPID CHEMISTRY
LIPID CHEMISTRYLIPID CHEMISTRY
LIPID CHEMISTRY
ย 
PHENYLALANINE METABOLISM
PHENYLALANINE METABOLISMPHENYLALANINE METABOLISM
PHENYLALANINE METABOLISM
ย 
Biosynthesis of fatty acid
Biosynthesis of fatty acidBiosynthesis of fatty acid
Biosynthesis of fatty acid
ย 
Beta-oxidation of fatty acids
Beta-oxidation of fatty acidsBeta-oxidation of fatty acids
Beta-oxidation of fatty acids
ย 
TRYPTOPHAN METABOLISM
TRYPTOPHAN METABOLISMTRYPTOPHAN METABOLISM
TRYPTOPHAN METABOLISM
ย 
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
ย 
BIOSYNTHESIS OF CHOLESTEROL
BIOSYNTHESIS OF CHOLESTEROLBIOSYNTHESIS OF CHOLESTEROL
BIOSYNTHESIS OF CHOLESTEROL
ย 
Lipoprotein Metabolism.pptx
Lipoprotein Metabolism.pptxLipoprotein Metabolism.pptx
Lipoprotein Metabolism.pptx
ย 
Lipoprotein metabolism, Shariq
Lipoprotein metabolism, ShariqLipoprotein metabolism, Shariq
Lipoprotein metabolism, Shariq
ย 

Similar to Cholesterol synthesis,transport and excretion

Lec11 lipid met
Lec11 lipid metLec11 lipid met
Lec11 lipid met
dream10f
ย 
Cholesterol metabolism
Cholesterol metabolismCholesterol metabolism
Cholesterol metabolism
Elamathi Ela
ย 
LIPID METABOLISM-CHOLESTROL METABOLISM.pdf
LIPID METABOLISM-CHOLESTROL METABOLISM.pdfLIPID METABOLISM-CHOLESTROL METABOLISM.pdf
LIPID METABOLISM-CHOLESTROL METABOLISM.pdf
TatendaMageja
ย 

Similar to Cholesterol synthesis,transport and excretion (20)

Cholesterol Biosynthesis and catabolism for MBBS, Lab. MEd. BDS.pptx
Cholesterol Biosynthesis  and catabolism for MBBS, Lab. MEd. BDS.pptxCholesterol Biosynthesis  and catabolism for MBBS, Lab. MEd. BDS.pptx
Cholesterol Biosynthesis and catabolism for MBBS, Lab. MEd. BDS.pptx
ย 
Cholesterol regulation and lipoproteis
Cholesterol regulation and lipoproteisCholesterol regulation and lipoproteis
Cholesterol regulation and lipoproteis
ย 
Lec11 lipid met
Lec11 lipid metLec11 lipid met
Lec11 lipid met
ย 
Cholesterolsynthesis stepsandregulation-17-18
Cholesterolsynthesis stepsandregulation-17-18Cholesterolsynthesis stepsandregulation-17-18
Cholesterolsynthesis stepsandregulation-17-18
ย 
Cholesterol biosynthesis
Cholesterol biosynthesisCholesterol biosynthesis
Cholesterol biosynthesis
ย 
Cholesterol Absorption, synthesis, Metabolism & Fate
Cholesterol Absorption, synthesis, Metabolism & FateCholesterol Absorption, synthesis, Metabolism & Fate
Cholesterol Absorption, synthesis, Metabolism & Fate
ย 
CHOLESTROL.pptx
CHOLESTROL.pptxCHOLESTROL.pptx
CHOLESTROL.pptx
ย 
Cholesterol biosynthesis
Cholesterol biosynthesisCholesterol biosynthesis
Cholesterol biosynthesis
ย 
Cholesterol Biosyn 2- best.ppt
Cholesterol Biosyn 2- best.pptCholesterol Biosyn 2- best.ppt
Cholesterol Biosyn 2- best.ppt
ย 
cholesterol biosynthesis.
cholesterol biosynthesis.cholesterol biosynthesis.
cholesterol biosynthesis.
ย 
Biochem pt2
Biochem pt2Biochem pt2
Biochem pt2
ย 
Cholesterol metabolism
Cholesterol metabolismCholesterol metabolism
Cholesterol metabolism
ย 
Synthesis of Cholesterol
Synthesis of CholesterolSynthesis of Cholesterol
Synthesis of Cholesterol
ย 
Cholesterol metabolism
Cholesterol metabolismCholesterol metabolism
Cholesterol metabolism
ย 
LIPID METABOLISM-CHOLESTROL METABOLISM.pdf
LIPID METABOLISM-CHOLESTROL METABOLISM.pdfLIPID METABOLISM-CHOLESTROL METABOLISM.pdf
LIPID METABOLISM-CHOLESTROL METABOLISM.pdf
ย 
Cholestrol synthesis,transport and excretion
Cholestrol synthesis,transport and excretionCholestrol synthesis,transport and excretion
Cholestrol synthesis,transport and excretion
ย 
Cholesterol Biosynthesis
Cholesterol BiosynthesisCholesterol Biosynthesis
Cholesterol Biosynthesis
ย 
Lipid breakdown
Lipid breakdownLipid breakdown
Lipid breakdown
ย 
Lipid biosynthesis
Lipid biosynthesisLipid biosynthesis
Lipid biosynthesis
ย 
Lipid breakdown and biosynthesis
Lipid breakdown and biosynthesisLipid breakdown and biosynthesis
Lipid breakdown and biosynthesis
ย 

More from apeksha40

More from apeksha40 (18)

Recombinant DNA Technology
Recombinant DNA TechnologyRecombinant DNA Technology
Recombinant DNA Technology
ย 
Renal function test
Renal function testRenal function test
Renal function test
ย 
Journal club multiple myeloma
Journal club multiple myelomaJournal club multiple myeloma
Journal club multiple myeloma
ย 
Liver function test
Liver function testLiver function test
Liver function test
ย 
Tolerance and autoimmunity
Tolerance and autoimmunityTolerance and autoimmunity
Tolerance and autoimmunity
ย 
Proteinuria and paraproteinemias
Proteinuria and paraproteinemiasProteinuria and paraproteinemias
Proteinuria and paraproteinemias
ย 
Potentiometry, voltamemtry and conductometry
Potentiometry, voltamemtry and conductometryPotentiometry, voltamemtry and conductometry
Potentiometry, voltamemtry and conductometry
ย 
Synthesis of pyrimidines and purines
Synthesis of pyrimidines and purinesSynthesis of pyrimidines and purines
Synthesis of pyrimidines and purines
ย 
Prions disease
Prions diseasePrions disease
Prions disease
ย 
Dietary fibres
Dietary fibresDietary fibres
Dietary fibres
ย 
Centrifugation
CentrifugationCentrifugation
Centrifugation
ย 
Catabolism of purine and pyrimidine synthesis
Catabolism of purine and pyrimidine synthesisCatabolism of purine and pyrimidine synthesis
Catabolism of purine and pyrimidine synthesis
ย 
Anti coagulants
Anti coagulantsAnti coagulants
Anti coagulants
ย 
Bile acid synthesis and digestion of lipids
Bile acid synthesis and digestion of lipidsBile acid synthesis and digestion of lipids
Bile acid synthesis and digestion of lipids
ย 
Characterization of nucleic acids and protein by electrophoresis
Characterization of nucleic acids and protein by electrophoresisCharacterization of nucleic acids and protein by electrophoresis
Characterization of nucleic acids and protein by electrophoresis
ย 
Intracellular trafficking and protein sorting
Intracellular trafficking and protein sortingIntracellular trafficking and protein sorting
Intracellular trafficking and protein sorting
ย 
Conversion of amino acids into specialised products
Conversion of amino acids into specialised productsConversion of amino acids into specialised products
Conversion of amino acids into specialised products
ย 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
ย 

Recently uploaded

๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
Sheetaleventcompany
ย 
Electrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdfElectrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdf
MedicoseAcademics
ย 
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
Sheetaleventcompany
ย 
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
Sheetaleventcompany
ย 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
jualobat34
ย 
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
gragneelam30
ย 
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
dishamehta3332
ย 
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service DehradunDehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
Sheetaleventcompany
ย 
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
ย 

Recently uploaded (20)

Call Girls Bangalore - 450+ Call Girl Cash Payment ๐Ÿ’ฏCall Us ๐Ÿ” 6378878445 ๐Ÿ” ๐Ÿ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment ๐Ÿ’ฏCall Us ๐Ÿ” 6378878445 ๐Ÿ” ๐Ÿ’ƒ ...Call Girls Bangalore - 450+ Call Girl Cash Payment ๐Ÿ’ฏCall Us ๐Ÿ” 6378878445 ๐Ÿ” ๐Ÿ’ƒ ...
Call Girls Bangalore - 450+ Call Girl Cash Payment ๐Ÿ’ฏCall Us ๐Ÿ” 6378878445 ๐Ÿ” ๐Ÿ’ƒ ...
ย 
๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
๐Ÿ’šChandigarh Call Girls ๐Ÿ’ฏRiya ๐Ÿ“ฒ๐Ÿ”8868886958๐Ÿ”Call Girls In Chandigarh No๐Ÿ’ฐAdvance...
ย 
Circulatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanismsCirculatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanisms
ย 
Electrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdfElectrocardiogram (ECG) physiological basis .pdf
Electrocardiogram (ECG) physiological basis .pdf
ย 
Bhawanipatna Call Girls ๐Ÿ“ž9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls ๐Ÿ“ž9332606886 Call Girls in Bhawanipatna Escorts servic...Bhawanipatna Call Girls ๐Ÿ“ž9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls ๐Ÿ“ž9332606886 Call Girls in Bhawanipatna Escorts servic...
ย 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
ย 
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
Nagpur Call Girl Service ๐Ÿ“ž9xx000xx09๐Ÿ“žJust Call Divya๐Ÿ“ฒ Call Girl In Nagpur No๐Ÿ’ฐ...
ย 
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} โค๏ธVVIP POOJA Call Girls in Nagpur Maha...
ย 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
ย 
Kolkata Call Girls Shobhabazar ๐Ÿ’ฏCall Us ๐Ÿ” 8005736733 ๐Ÿ” ๐Ÿ’ƒ Top Class Call Gir...
Kolkata Call Girls Shobhabazar  ๐Ÿ’ฏCall Us ๐Ÿ” 8005736733 ๐Ÿ” ๐Ÿ’ƒ  Top Class Call Gir...Kolkata Call Girls Shobhabazar  ๐Ÿ’ฏCall Us ๐Ÿ” 8005736733 ๐Ÿ” ๐Ÿ’ƒ  Top Class Call Gir...
Kolkata Call Girls Shobhabazar ๐Ÿ’ฏCall Us ๐Ÿ” 8005736733 ๐Ÿ” ๐Ÿ’ƒ Top Class Call Gir...
ย 
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
๐Ÿ’ฐCall Girl In Bangaloreโ˜Ž๏ธ63788-78445๐Ÿ’ฐ Call Girl service in Bangaloreโ˜Ž๏ธBangalo...
ย 
Gastric Cancer: ะกlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: ะกlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: ะกlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: ะกlinical Implementation of Artificial Intelligence, Synergeti...
ย 
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ย 
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore โ‚น7.5k Pick Up & Drop With Cash Payment 63...
ย 
VIP Hyderabad Call Girls KPHB 7877925207 โ‚น5000 To 25K With AC Room ๐Ÿ’š๐Ÿ˜‹
VIP Hyderabad Call Girls KPHB 7877925207 โ‚น5000 To 25K With AC Room ๐Ÿ’š๐Ÿ˜‹VIP Hyderabad Call Girls KPHB 7877925207 โ‚น5000 To 25K With AC Room ๐Ÿ’š๐Ÿ˜‹
VIP Hyderabad Call Girls KPHB 7877925207 โ‚น5000 To 25K With AC Room ๐Ÿ’š๐Ÿ˜‹
ย 
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
ย 
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service DehradunDehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
Dehradun Call Girl Service โค๏ธ๐Ÿ‘ 8854095900 ๐Ÿ‘„๐ŸซฆIndependent Escort Service Dehradun
ย 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
ย 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
ย 
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
Call Girl In Indore ๐Ÿ“ž9235973566๐Ÿ“ž Just๐Ÿ“ฒ Call Inaaya Indore Call Girls Service ...
ย 

Cholesterol synthesis,transport and excretion

  • 1. โ€œCholesterolโ€ the most feared among Lipids, speaks: โ€œ Consumed through the diet and produced in the body, participate in innumerable cellular functions. Implicated in several Health complications, And blamed I am, for no fault of Mine.โ€
  • 3. Objectives: ๏‚ง Cholesterol: Basic Structure, Functions ๏‚ง Details of Biosynthesis of Cholesterol ๏‚ง Regulation of the Cholesterol Synthesis ๏‚ง Absorption of Cholesterol, Transport ๏‚ง Excretion of Cholesterol ๏‚ง Bile Acids and Bile Salts
  • 4. ๏‚ง Cholesterol is an Alicyclic Compound, widely distributed in Free and Esterified forms. ๏‚ง Member of sterol derivative. ๏‚ง Solid Alcohol of high molecular weight. ๏‚ง Molecular formula C27H45OH. Introduction
  • 5. History ๏‚ง Isolated from Gall stones in 1784. ๏‚ง Thirteen Nobel prizes has ben awarded to the scientists who devoted most of their career in important discovery related to Cholesterol.
  • 6. Structure Includes: ๏‚ง Perhydrocyclopentano Phenanthrene Nucleus with four fused rings. Perhydrocyclo pentanophenanthrene(STERANE) skeleton Cholesterol
  • 7. ๏‚ง A single Hydroxyl group a C-3. ๏‚ง An Unsaturated center between C5-C6 atoms. ๏‚ง An Eight membered branched Hydrocarbon chain attached to the D-ring at position 17. ๏‚ง Methyl Group (Designated C-19) attached at position 10 and another methyl group (Designated C-18) at position 13.
  • 8. ๏‚ง Actual concentration of Cholesterol in Plasma of healthy people 150-200 mg/dl ๏ƒ˜ This value is almost Twice the Normal Concentration of Blood Glucose. ๏ƒผ This accounts for high solubility of Cholesterol in blood which is due to Plasma Lipoproteins (LDL and VLDL) that have the ability to bind and thereby solubilize large amounts of Cholesterol.
  • 9. ๏‚ง 30% of Total Plasma Cholesterol โ€“Free 70% - Cholesterol Esters ; where some long chain fatty acid Linoleic Acid attached by an Ester Bond to Hydroxyl (-OH group) on C3 of the A-Ring.
  • 10. Cholesterol synthesis โ€ข Synthesized in all tissues. โ€ข Major sites for synthesis- liver, adrenal cortex, testes, ovaries and intestine. โ€ข All carbon atoms are derived from acetyl CoA. โ€ข Enzymes involved in biosynthesis are partly located in ER and partly in cytoplasm.
  • 11. ๏‚ง All of the carbon atoms of cholesterol are derived from acetate. Cholesterol Biosynthesis
  • 12. ๏‚ง Observation of their pattern of incorporation into cholesterol led Konrad Bloch to propose that acetate was first converted to isoprene units, C5 units that have the carbon skeleton of isoprene. ๏ถ Isoprene units are condensed to form a linear precursor to cholesterol, and then cyclized.
  • 13. ๏‚ง Outline of Major Stages of Cholesterol Biosynthesis was : Acetate Isoprenoid Intermediate Squalene Cholesterol Cyclization Product
  • 14. Mevalonate is a Key Intermediate in Cholesterol Biosynthesis ๏‚ง Cholesterol Biosynthesis begins with condensation of two molecules of Acetyl CoA Catalysed by Thiolase ๏‚ง Next Step requires enzyme HMG CoA Synthase Catalyses the condensation of a Third Acetyl CoA to yield HMG CoA.
  • 15. Synthesis of HMG CoA ๏‚ง HMG CoA Synthase is present in both cytosol and mitochondria of liver. ๏‚ง Mitochondrial- ketogenesis ๏‚ง Cytosolic โ€“ cholesterol synthesis
  • 16. ๏‚ง HMG CoA then reduced to Mevalonate by HMG CoA reductase. ๏‚ง Activity of this Reductase Control of Rate of Cholesterol synthesis.
  • 17. ๏‚ง HMG-CoA An important Intermediate for the biosynthesis of both Cholesterol and Ketone Bodies. ๏‚ง Biosynthesis of Cholesterol catalyzed by enzymes in the Cytosol and Endoplasmic reticulum. ๏‚ง Synthesis of Ketone Bodies Restricted to Mitochondrial Matrix.
  • 18. The Rate of Mevalonate Synthesis determines the rate of cholesterol Biosynthesis ๏‚ง Primary regulation of Cholesterol Biosynthesis centred on the HMG-CoA Reductase Reaction. ๏‚ง HMG-CoA Found in ER ๏ƒ˜ 887 AA in a single Polypeptide chain. ๏ƒ˜ Structure of the enzyme deduced by Michael Brown and Joseph Goldstein. ๏ƒ˜ Has Two Domains.
  • 19. ๏ƒ˜ Amino Terminal Domain Mol Wt. 35,000 Seven Hydrophobic Segments Thought to cross the membrane. ๏ƒผ Senses signals that lead to its degradation when cholesterol levels are high. ๏ƒ˜ Carboxyl-Terminal Domain Mol Wt. 62,000 Contains the Catalytic site of the Enzyme. Thought to protrude into the Cytosol.
  • 20. HMG CoA Reductase Regulation โ€ข Sterol-dependent regulation of gene expression โ€ข Sterol-accelarated enzyme degradation โ€ข Sterol-independent phosphorylation/dephosphorylation โ€ข Hormonal regulation
  • 21. ๏‚ง Rate of Synthesis of Reductase mRNA is controlled by the Sterol Regulatory Element Binding Protein (SREBP). SREBP( Transcription Factor) binds to the short DNA Sequence Sterol Regulatory Element(SRE) on the 5โ€™ side of the Reductase gene When Cholesterol levels are low. Sterol Dependent Regulation of Gene Expression
  • 22. ๏‚ง In its Inactive state, the SREBP resides in the Endoplasmic Reticulum membrane, where it is associated with SREBP Cleavage Activating Protein (SCAP) An Integral Membrane Protein ๏‚ง When Cholesterol levels Fall SCAP escorts SREBP in small membrane vesicles to Golgi Complex. Where it is released from the membrane by two specific Proteolytic Cleavages.
  • 23. ๏‚ง First Cleavage frees a fragment of SREBP from SCAP. ๏‚ง The Second Cleavage releases the Regulatory Domain from the membrane. Released Protein migrates to the Nucleus and binds the SRE of the HMG- CoA Reductase Gene as well as other genes in the Cholesterol Biosynthetic Pathway to enhance Transcription.
  • 24. From Stryer 7th Edition
  • 25. ๏ถ High Levels of Cholesterol: Proteolytic Release of SREBP BLOCKED ๏ƒ˜ SREBP in the Nucleus is Rapidly degraded. These two events halt the transcription of genes of the cholesterol biosynthetic pathways.
  • 26. ๏‚ง When Cholesterol concentration is Low SCAP binds to Vesicular Proteins that facilitate the transport of SCAP-SREBP to the golgi apparatus as already described. ๏‚ง When Cholesterol is Present SCAP binds Cholesterol Structural Change in SCAP It binds to another ER Protein called Insig.
  • 27. ๏‚ง Insig: Anchor that retains SCAP and thus SREBP in the ER in the presence of Cholseterol. ๏‚ง Interactions between SCAP and Insig can also be forged when Insig binds 25, hydroxycholesterol Metabolite of Cholesterol. ๏‚ง Thus, two distinct Steroid Protein Interactions serve to prevent the inappropriate amount of SCAP-SREBP to the Golgi Complex.
  • 28. From Stryer 7th Edition
  • 29. Sterol-dependent regulation Cholesterol High โ€ข SCAP binds to insigs (ER membrane proteins) โ€ข SCAP-SREBP is retained in the ER โ€ข Downregulation of cholesterol synthesis Cholesterol Low โ€ข SCAP escorts SREBP to Golgi bodies โ€ข Two proteases cleave SREBP to a soluble fragment that enters the nucleus and binds SRE โ€ข HMG CoA gene transcription is activated
  • 30. Sterol Accelerated Regulation ๏‚ง The enzyme is bipartite: its cytoplasmic domain carries out catalysis and its membrane domain senses signals that lead to its degradation. ๏‚ง The membrane domain may undergo structural changes in response to increasing concentrations of sterols such as lanosterol and 25-hydroxycholesterol. ๏‚ง Under these conditions, the reductase appears to bind to a subset of Insigs that are also associated with the ubiquitinating enzymes.
  • 31. ๏‚ง The reductase is polyubiquitinated Subsequently extracted from the membrane in a process that requires Gerenylgeraniol. The extracted reductase is then degraded by the proteasome.
  • 32. From Stryer 7th Edition
  • 33. Enzyme phosphorylation and dephosphorylation ๏‚ง AMP- activated protein kinase (AMPK) for phosphorylation switches off the enzyme. ๏‚ง Phosphoprotein phosphatase for dephosphorylation. ๏‚ง Phosphorylated form of enzyme is inactive. ๏‚ง Dephosphorylated form โ€“ active ๏‚ง Thus, Cholesterol Synthesis ceases when ATP level is low.
  • 34. Hormonal Regulation โ€ข Insulin and thyroxine favor upregulation of enzyme expression โ€ข Glucagon and cortisol have opposite effect
  • 36. ๏‚ง The statin drugs are structural analogs of HMG CoA, and are (or are metabolized to) reversible, competitive inhibitors of HMG CoA reductase. ๏‚ง Used to decrease Plasma Cholesterol Levels. Inhibition by drugs
  • 37. ๏‚ง First stage in this sequence of this reactions : ๏ƒ˜ Synthesis of the Five-Carbon Isoprenoid Intermediates Isopentenyl Pyrophosphate and Dimethylallyl Pyrophosphate. ๏ƒ˜ Requires ATP. It takes Six Mevalonates and Ten Steps to make Lanosterol, the First Tetracyclic Intermediate
  • 38. 1. The CoA group of HMG-CoA is reduced to an alcohol in an NADPH-dependent reduction catalyzed by HMG- CoA reductase, yielding Mevalonate. 2. New OH group is phosphorylated by mevalonate-5 phosphotransferase. 3. The phosphate group is converted to a pyrophosphate by phosphomevalonate kinase. 4. The molecule is decarboxylated and the resulting alcohol dehydrated by pyrophosphomevalonate decarboxylase. The formation of isopentenyl pyrophosphate involves four reactions:
  • 39.
  • 40. Squalene (C30) is synthesized from six molecules of isopentenyl pyrophosphate (C5) ๏‚ง Squalene is synthesized from isopentenyl pyrophosphate by the reaction sequence. C5 C10 C15 C30 ๏‚ง This stage in the synthesis of cholesterol starts with the isomerization of isopentenyl pyrophosphate to dimethylallyl pyrophosphate.
  • 41. ๏‚ง Isopentenyl pyrophosphate and dimethylallyl pyrophosphate undergo a Head- to-Tail condensation, in which one pyrophosphate group is displaced and a 10-carbon chain, Geranyl pyrophosphate, is formed. ๏‚ง Geranyl pyrophosphate undergoes another Head-to-tail condensation with isopentenyl pyrophosphate, yielding the 15-carbon intermediate Farnesyl pyrophosphate. ๏‚ง Finally, two molecules of farnesyl pyrophosphate join head to head, with the elimination of both pyrophosphate groups, to form squalene.
  • 42. From MN Chatterjee Textbook of Biochemistry 8th edition
  • 43. ๏‚ง Geraniol, a component of rose oil, has the aroma of geraniums. ๏‚ง Farnesol is an aromatic compound found in the flowers of the Farnese acacia tree. ๏‚ง Squalene , first isolated from the liver of sharks (genus Squalus), has 30 carbons, 24 in the main chain and 6 in the form of methyl group branches.
  • 44.
  • 45. ๏‚ง The formation of lanosterol from squalene takes place in two steps: ๏ƒ˜ Squalene-2,3-epoxide is formed first catalysed by the enzyme squalene mono-oxygenase; requires NADPH and molecular O2. ๏ƒ˜ In the next step, an enzyme cyclase brings about the cyclisation of squalene to form lanosterol. Cyclisation of squalene to form lanosterol
  • 46. From Lanosterol to Cholesterol Takes Another Twenty Steps ๏‚ง Approximately, Twenty Enzymatic Steps, Starting with Lanosterol. ๏‚ง Comprise a series of Double Bond Reductions and Demethylations. ๏‚ง Final Reaction : Reduction of the โˆ†7 double bond in 7- dehydrocholesterol. ๏ถ Alternative Pathway from Lanosterol to Cholesterol: Involves Three Demethylations to give Zymosterol and then Isomerization of โˆ†8 double bond to the โˆ†5 to produce Desmosterol.
  • 47. ๏‚ง Enzymes Involved in the Transformation of Lanosterol to Cholesterol are all located in the Endoplasmic reticulum.
  • 48. Cholesterol Absorption ๏‚ง Cholesterol enters the Intestinal Lumen from Three Sources I. Diet II. Bile III. Intestine ๏‚ง Almost all Cholesterol is present in Unesterified (Free Form) ๏‚ง For absorption Cholesterol must be solubilized. Solubilised by the formation of Micelles Then, absorbed by an Active process involving the Enterocyte protein NPC1L1 Drug Target for Cholesterol absorption inhibitor EZETIMIBE
  • 49. ๏‚ง Absorption of Cholesterol and other sterols (Plant Sterols) is limited by the presence of ABCG5/G8 transporter on Enterocytes. Pumps Excess Sterols back into the Lumen for Excretion. ๏‚ง Most Cholesterol absorption occurs from the Jejunum to the terminal Ileum of the small intestine.
  • 50. Cholesterol Esterification ๏ถ Why?? ๏‚ง Enhance the Lipid carrying capacity of the lipoprotein in the plasma. ๏‚ง Prevents Intracelleular toxicity of Free Cholesterol. ๏ถ How?? ๏‚ง By Enzymes Lecithin Cholesterol Acyl Transferase(LCAT) in Plasma ๏‚ง ACAT ( Acylcholesterol Acyltransferase) within the Cell.
  • 51.
  • 52. Cholesterol Esters โ€ข Acyl-CoA:cholesterol acyl transferase (ACAT) is an ER membrane protein โ€ข ACAT transfers fatty acid of CoA to C3 hydroxyl group of cholesterol โ€ข Excess cholesterol is stored as cholesterol esters in cytosolic lipid droplets. Fig. 8
  • 53. Many Other Factors Influence the Cholesterol Balance in tissues Cell cholesterol increase is due to ๏‚ง Uptake of cholesterol-containing lipoproteins by receptors, eg, the LDL receptor or the scavenger receptor. ๏‚ง Uptake of free cholesterol from cholesterol-rich lipoproteins to the cell membrane. ๏‚ง Cholesterol synthesis, and ๏‚ง Hydrolysis of cholesteryl esters by the enzyme cholesteryl ester hydrolase.
  • 54. Decrease is due to ๏‚ง Efflux of cholesterol from the membrane to HDL via the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), or SR-B1 class B scavenger receptor B1 ; ๏‚ง Esterification of cholesterol by ACAT (acyl- CoA:cholesterol acyltransferase); and ๏‚ง ๏‚ง Utilization of cholesterol for synthesis of other steroids, such as hormones, or bile acids in the liver.
  • 55.
  • 56. Transport of Cholesterol ๏‚ง After Absorption Cholesterol together with Triglycerides, Phospholipids,and a number of specific Apoproteins is assembled into a large Lipoprotein called CHYLOMICRON. ๏‚ง One Apoprotein Component (Apo B-48) Vital for the formation and Secretion of Chylomicrons. ๏‚ง Patients with the deficiency of this apoprotein leads to a condition called as Chylomicron Retention Disorder Characterised by Excess lipid in Enterocytes and Fat Malabsorption.
  • 57. ๏‚ง The liver is a major site of cholesterol synthesis. ๏‚ง Cholesterol and Triacylglycerols in excess of the liver's own needs are exported into the blood in the form of very low density lipoproteins. ๏‚ง Triacylglycerols in very low density lipoproteins are hydrolyzed by lipases on capillary surfaces. ๏‚ง The resulting remnants, which are rich in cholesteryl esters, are called intermediate -density lipoproteins. ๏‚ง Half of them are taken up by the liver for processing, and half are converted into low-density lipoprotein by the removal of more triacylglycerol.
  • 58.
  • 59. ๏‚ง Low-density lipoprotein is the major carrier of cholesterol in blood ๏‚ง The shell also contains a single copy of apo B-100 which ๏‚ง Is recognized by target cells. ๏‚ง They solubilize hydrophobic lipids ๏‚ง The role of LDL is to transport cholesterol to peripheral tissues and regulate de novo cholesterol synthesis at these sites. ๏‚ง The process of LDL uptake is Receptor-mediated endocytosis. Low-Density Lipoproteins Plays a Central Role in Cholesterol Metabolism
  • 60. ๏‚ง It contains a core of some 1500 cholesterol molecules esterified to fatty acids most commonly linoleate. ๏‚ง A shell of phospholipids and unesterified cholesterol molecules surrounds this highly hydrophobic core.
  • 61. ๏‚ง Apo B-100 on the surface of an LDL particle binds to a specific receptor protein on the plasma membrane of nonhepatic cells. ๏‚ง The receptors for LDL are localized in specialized regions called coated pits contain a specialized protein called Clathrin. ๏‚ง The receptor- LDL complex is internalized by Endocytosis; that is, the plasma membrane in the vicinity of the complex invaginates and then fuses to form an Endocytic vesicle. Receptor-mediated endocytosis
  • 62. ๏‚ง These vesicles, containing LDL, subsequently fuse with Lysosomes, acidic vesicles that carry a wide array of degradative enzymes. ๏‚ง The protein component of LDL is hydrolyzed to free amino acids. ๏‚ง The cholesteryl esters in LDL are hydrolyzed by a Lysosomal acid Lipase. ๏‚ง The LDL receptor itself usually returns unharmed to the plasma membrane.
  • 63.
  • 64. ๏‚ง The round-trip time for a receptor is about 10 minutes; in its lifetime of about a day, it may bring many LDL particles into the cell. ๏‚ง The released unesterified cholesterol can then be used for membrane biosynthesis. ๏‚ง Alternatively, it can be reesterified for storage inside the cell. ๏‚ง In fact, free cholesterol activates acyl CoA:cholesterol acyltransferase (ACAT), the enzyme catalyzing this reaction.
  • 65. ๏‚ง Reesterified cholesterol contains mainly oleate and palmitoleate,, in contrast with the cholesterol esters in LDL, which are rich in linoleate, a polyunsaturated fatty acid. ๏‚ง It is imperative that the cholesterol be reesterified. ๏‚ง High concentrations of unesterified cholesterol disrupt the integrity of cell membranes.
  • 66. ๏‚ง The amino acid sequence of the human LDL receptor reveals the mosaic structure of this 115-kd protein,839 Amino acids which is composed of five different types of domains. ๏‚ง The amino-terminal region of the mature receptor is the site of LDL binding. ๏‚ง Michael S. Brown and Joseph L. Goldstein were awarded the 1985 Nobel Prize for Physiology and Medicine for their identification of the Low Density Lipoprotein (LDL) Receptor[5] and its relation to Choletserol metabolism and Familial Hypercholesterolemia. The LDL Receptor Is a Transmembrane Protein Having Five Different Functional Regions
  • 67. ๏‚ง It consists of a cysteine-rich sequence of about 40 residues that is repeated, with some variation, seven times. ๏‚ง A cluster of negatively charged side chains in this LDL-binding domain interacts with a positively charged site on an apo B-100 molecule on the surface of an LDL particle. ๏‚ง The third domain, which is very rich in serine and threonine residues, contains O-linked sugars.
  • 68. ๏‚ง These oligosaccharides may function as struts to keep the receptor extended from the membrane so that the LDL- binding domain is accessible to LDL. ๏‚ง The fourth type of domain consists of 22 hydrophobic residues that span the plasma membrane. ๏‚ง The fifth domain consists of 50 residues and emerges on the cytoplasmic side of the membrane, where it controls the interaction of the receptor with coated pits and participates in endocytosis.
  • 69. ๏‚ง In addition to the highly specific and regulated receptor- mediated pathway for LDL uptake, macrophages possess high levels of scavenger receptor activity known as scavenger receptor class A (SR-A). ๏‚ง Of particular concern is the oxidation of the excess blood LDL to form oxidized LDL in which the lipid components or apo B have been oxidized. ๏‚ง The scavenger receptor is not down-regulated in response to increased intracellular cholesterol. Uptake of chemically modified LDL by macrophage scavenger receptors
  • 70. โ€ข The oxLDL when taken up macrophages become engorged to form foam cells. โ€ข These foam cells become trapped in the walls of the blood vessels and contribute to the formation of atherosclerotic plaques that cause arterial narrowing and lead to heart attacks.
  • 71.
  • 72. Excretion of cholesterol ๏‚ง By conversion into bile acids and bile salts- excreted in the feces. ๏‚ง By secretion of cholesterol in bile- transported to intestine for elimination. ๏‚ง In the intestine cholesterol is converted by bacteria into coprostanol and cholestanol before excretion.
  • 73. Bile Salts โ€ข Bile acids & salts are effective detergents. โ€ข Synthesized in the liver. โ€ข Stored & concentrated in the gallbladder. โ€ข Discharged into gut and aides in absorption of intraluminal lipids, cholesterol, & fat soluble vitamins. โ€ข Bile acid refers to the protonated form while bile salts refers to the ionized form โ€“ The pH of the intestine is 7 and the pKa of bile salts is 6, which means that 50% are protonated.
  • 74. Synthesis of Bile Salts โ€ข Rate-limiting step performed by the 7ฮฑ-hydroxylase and is regulated by bile salt concentration โ€ข End product: Cholic acid & Chenocholic acid Fig. 9 Fig. 10
  • 75.
  • 76. ๏‚ง The primary bile acids enter the bile as glycine or taurine conjugates. ๏‚ง Conjugation takes place in peroxisomes. ๏‚ง In humans, the ratio of the glycine to the taurine conjugates is normally 3:1. ๏‚ง In the alkaline bile, the bile acids and their conjugates are assumed to be in a salt formโ€”hence the termโ€œbile salts.โ€ ๏‚ง A portion of the primary bile acids in the intestine is subjected to further changes by the activity of the intestinal bacteria.
  • 77.
  • 78. โ€ข Products of fat digestion, including cholesterol absorbed in the first 100 cm of small intestine, the primary and secondary bile acids are absorbed almost exclusively in the ileum, and 98โ€“99% is returned to the liver via the portal circulation. โ€ข However, lithocholic acid, because of its insolubility, is not reabsorbed to any significant extent. โ€ข Only a small fraction of the bile salts escapes absorption and is therefore eliminated in the feces. Most Bile Acids Return to the Liver in the Enterohepatic Circulation
  • 79.
  • 80. Fate of Bile Salts Fig. 12
  • 81. ๏‚ง The activity of the enzyme is feedback-regulated via the nuclear bile acid-binding receptor Farnesoid X receptor (FXR). ๏‚ง When the size of the bile acid pool in the enterohepatic circulation increases, FXR is activated and transcription of the cholesterol 7- hydroxylase gene is suppressed. ๏‚ง Chenodeoxycholic acid is particularly important . ๏‚ง Also enhanced by cholesterol of endogenous and dietary origin and regulated by insulin, glucagon, glucocorticoids, and thyroid hormone. Bile Acid Synthesis Is Regulated at the 7-ฮฑ Hydroxylase Step
  • 82. โ€ข The movement of cholesterol from the liver into the bile must be accompanied by the simultaneous secretion of phospholipid and bile salts. โ€ข If this dual process is disrupted and more cholesterol enters the bile than can be solubilized by the bile salts and lecithin present, the cholesterol may precipitate in the gallbladder, initiating the occurrence of cholesterol gallstone diseaseโ€”cholelithiasis Bile salt deficiency: Cholelithiasis
  • 83. References: ๏‚ง Lehningerโ€™s Principles of Biochemistry- 5th Edition ๏‚ง Biochemistry 7th Edition : Jeremy M berg,John L. Tymoczko, Lubert Stryer ๏‚ง Harperโ€™s Illustrated Biochemistry- 28th Edition ๏‚ง Lippincottโ€™s Illustrated Reviews Biochemistry: Fifth Edition ๏‚ง Teitz Textbook of Clinical Chemistry and Molecular Diagnostics- Fifth Edition

Editor's Notes

  1. Alicyclic- having both alipathic (chain) and cyclic ring structure. molecular weight: 386.65ย g/mol
  2. knowledge of the sterane skeleton structure and numbering system in important no only to the clinical labaratorians but also to the practicing clinicians because cholesterol is the starting point in many different metabolic pathways---- vitamin D synthesis, Steroid Hormone synthesis, Bile Acid metabolism Because the enzymes modifying the sterane cholesterol ring or its derivatives are known by their site and type of reaction (21 alpha hydroxylase)----Cortisol synthesis.---- The diagnosis of many disease states consequently depends on isolating the site of enzyme dysfunctions (E.G 21 alpha hydroxylase deficiency in Adrenogenital Syndrome).
  3. The โ€œheadโ€ is the end to which pyrophosphate is joined.
  4. Geranyl Transferase ---- Cytosolic Enzyme Squalene Synthase ---- Microsomal Enzyme, requires NADPH, Magnesium Cofactor.
  5. Diet- Animal Products, Egg yolk, sea food, etc. Bile Micelle Formation, Amphipathic can be easily transported.
  6. Once, secreted by enterocytes, chylomicrons enter the lymphatics, which eventually empty into the thoracic duct and enter the systemic venous circulation at the junction of the left subclavian vein and the left internal jugular vein.
  7. Oleate, Palmitoleate ---- which are monounsaturated fatty acids