SlideShare a Scribd company logo
1 of 32
Download to read offline
Solving Large-Scale Low-Rank Zero-Sum Security Games
of Incomplete Information
Anmol Monga
New York University
am6704@nyu.edu
December 2, 2016
Anmol Monga (UCLA) Short title December 2, 2016 1 / 32
Table of content
1 Introduction
Robust Linear Programming
Game Theory
2 Problem Formulation
Zero-Sum Game
Uncertainty in game matrix
Non-robust method
Robust Method
3 Application
4 Conclusion
Anmol Monga (UCLA) Short title December 2, 2016 2 / 32
Introduction
What is uncertainty?
incomplete information
Information is effected by noise
Past methods:
John C Harsanyi introduced a novel method to solve games with
incomplete information ”Games with incomplete information played
by bayesian players” .
Bayesian games is the standard method to solve games with
incomplete information.
Require past statistics to model the uncertainty.
Anmol Monga (UCLA) Short title December 2, 2016 3 / 32
Introduction
We propose:
We define a low ranked constraint and polyhedral constraint over the
incomplete matrix.
We solve for the worst case strategy in the game under the
constraints.
It makes game strategy robust to uncertainty.
Anmol Monga (UCLA) Short title December 2, 2016 4 / 32
Robust Linear Programming
Linear programming problem:
min
x∈RN
cT
x , s.t. aT
i x ≤ bi , i = 1,··· ,N. (1)
c ∈ RN,ai ∈ RN and bi ∈ R are external data and are prone to
uncertainty.
Anmol Monga (UCLA) Short title December 2, 2016 5 / 32
Robust Linear Programming
Figure: Uncertain polyhedral constraint
Robust counterpart:
min
x∈RN
cT
x , s.t. aT
i x ≤ bi , ai ∈ Ui , i = 1,··· ,N
min
x∈RN
cT
x , s.t. max
ai ∈Ui
aT
i x ≤ bi , i = 1,··· ,N
Ui determines the set over which the uncertainty of ai exist.
Anmol Monga (UCLA) Short title December 2, 2016 6 / 32
Game Theory
What?
Mathematics of human interaction.
Model cooperation and conflict between rational and irrational
individual.
Anmol Monga (UCLA) Short title December 2, 2016 7 / 32
Key Elements of a Game
Players : Who is interacting?
Strategies: What are their options?
Payoffs : What are their incentives?
Information : What do they know?
Anmol Monga (UCLA) Short title December 2, 2016 8 / 32
Anmol Monga (UCLA) Short title December 2, 2016 9 / 32
Zero-Sum Game
What?
Two person non-cooperative zero sum finite game is a confrontational
game.
Player P1 minimises his payoff and player P2 maximises his payoffs.
In zero sum game there is always a winner and a looser.
Anmol Monga (UCLA) Short title December 2, 2016 10 / 32
A =





















P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm
b1 5 4 3 2 1 ··· ···
b2 3 1 2 4 1
b3 0 2 1 0 1
b4 5 1 2 1 1
...
...
...
...
...
...
...
...
bn





















Anmol Monga (UCLA) Short title December 2, 2016 11 / 32
Pure-Strategy
The upper value is the minimum of the maximum value of the rows
and the corresponding row index is the strategy of P1.
upper value = max
j∈{1,···,m}
Ai∗j ≤ max
j∈{1,···,m}
Aij , ∀i ∈ {1,··· ,n}
The lower value is the maximum of the minimum value of the
columns and the corresponding column index is the strategy of P2.
lower value = min
i∈{1,···,n}
Aij∗ ≥ min
i∈{1,···,n}
Aij , ∀j ∈ {1,··· ,m}
i and j represents the row and column index in the game matrix A. i∗
and j∗ are the pure strategy equilibrium.
Anmol Monga (UCLA) Short title December 2, 2016 12 / 32
Mixed Strategy Equilibrium
The pure strategy may not have saddle point equilibrium.
We can repeat the game over and over again and calculate the
probability with which a strategy can be played. This is called mixed
strategy equilibrium.
mixed strategy equilibrium :
min
y∈Y
max
z∈Z
y Az (2)
where,
Y = {y ∈ Rn
: y ≥ 0 and
n
∑
i=1
yi = 1}
Z = {z ∈ Rm
: z ≥ 0 and
m
∑
i=1
zi = 1}.
(3)
Anmol Monga (UCLA) Short title December 2, 2016 13 / 32
Mixed Strategy Equilibrium
The mixed strategy equilibrium of player 1 and player 2 can be
solved using two linear programming problems.
V = max
˜y∈Rn
1T
n ˜y s.t. A ˜y ≤ 1m , ˜y ≥ 0.
V = min
˜z∈Rm
1T
m ˜z s.t. A˜z ≥ 1n , ˜z ≥ 0.
1m = [1,··· ,1]T
1×m , 1n = [1,··· ,1]T
1×n
The strategies of player P1 and player P2 are y = ˜y
V and z = ˜z
V
respectively.
Anmol Monga (UCLA) Short title December 2, 2016 14 / 32
Uncertainty in game matrix
A =




























P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm
b1 5±0.2 4 × 2 1 ··· ···
b2 3±0.2 1 2 4 1±0.2
b3 0 × 1±0.2 0 1 ×
b4 5 1 2 1 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. ×
.
.
.
bn ×




























A few coefficients in the game matrix A are unknown.
The coefficients in the game matrix are prone to error.
Anmol Monga (UCLA) Short title December 2, 2016 15 / 32
Modelling Uncertainty of Game Matrix
Uncertainty can be modelled using bounded, closed and convex sets.
The low rank constraint on the game matrix:
Ub ∈ {A ∈ Rn×m
: rank(A) ≤ r}. (4)
A set comprising of all the noisy game matrix:
Uc = {A ∈ Rn×m
:| Aij − ¯Aij |≤ Mij where, (i,j) ∈ Ω}. (5)
Ω refers to a set of known coefficients in the game matrix A. ¯A is
error free game matrix.
Solve the zero-sum game over all game matrix in set Uc ∩Ub
Anmol Monga (UCLA) Short title December 2, 2016 16 / 32
Modelling Uncertainty in Game matrix
Relax low rank set Ub
Ub ∈ {A ∈ Rn×m
: A ∗ ≤ σ}. (6)
Relax the polyhedral set Uc
Uc = {A ∈ Rn×m
:| P( ¯Aij )−P(Aij ) |≤ P(Mij )}. (7)
where,
P(A) =
Aij s.t. (i,j) ∈ Ω
0 otherwise
. (8)
Anmol Monga (UCLA) Short title December 2, 2016 17 / 32
Why?
The columns and rows of game matrix are correlated.
A: rectangular matrix.
A =




























P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm
b1 5±0.2 4 × 2 1 ··· ···
b2 3±0.2 1 2 4 1±0.2
b3 0 × 1±0.2 0 1 ×
b4 5 1 2 1 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. ×
.
.
.
bn ×




























Anmol Monga (UCLA) Short title December 2, 2016 18 / 32
Modelling Uncertainty in Game Matrix
There are two ways to solve the action strategy of game matrix A defined
in the set Uc ∩Ub
Non-robust method: Randomly choosing a matrix A in set Uc ∩Ub
and then calculating the strategy for the game
Robust method: Calculating a strategy which is feasible for all the
matrices in set Uc ∩Ub
Anmol Monga (UCLA) Short title December 2, 2016 19 / 32
Non-robust method
Choose the lowest rank matrix in set Uc ∩Ub.
Asol = argmin
A∈Uc ,A≥0
A ∗. (9)
Vnr =max
˜y∈Rn
1T
n ˜y s.t. Asol ˜y ≤ 1m , ˜y ≥ 0
Vnr = min
˜z∈Rm
1T
m ˜z s.t. Asol ˜z ≥ 1n , ˜z ≥ 0.
(10)
The strategies of player P1 and P2 are y = ˜y
Vnr
and z = ˜z
Vnr
respectively.
Anmol Monga (UCLA) Short title December 2, 2016 20 / 32
Robust Method
We can calculate the robust strategy for player P1 and player P2 which is
feasible over all matrices in Uc ∩Ub by :
¯V =max
˜y∈Rn
1T
n ˜y
s.t.A ˜y ≤ 1m , ˜y ≥ 0, A ∈ Uc ∩Ub , A ≥ 0.
(11)
V = min
˜z∈Rm
1T
m ˜z
s.t.A˜z ≥ 1n , ˜z ≥ 0, A ∈ Uc ∩Ub , A ≥ 0.
(12)
The strategies of player P1 and P2 are y = ˜y
¯V
and z = ˜z
V respectively.
Anmol Monga (UCLA) Short title December 2, 2016 21 / 32
Robust Method
¯V =max
˜y∈Rn
1T
n ˜y
s.t. max
A∈Ub∩Uc ,A≥0
aj ˜y ≤ 1m ∀j, ˜y ≥ 0
(13)
Where ,aj is the jth column of matrix A.
V = min
˜z∈Rm
1T
m ˜z
s.t. min
A∈Ub∩Uc ,A≥0
bi ˜z ≥ 1n ∀i, ˜z ≥ 0.
(14)
Where, bi is the ith row of matrix A.
Anmol Monga (UCLA) Short title December 2, 2016 22 / 32
Robust Method
The optimisation problem to obtain a robust strategy for player P1 and
player P2 are
¯V = min
˜y∈Rn,Yl ∈Rn×m,Kl ∈Rn×m
+
−1T
n ˜y
s.t.σ ˜yeT
l +P(Yl )+Kl 2 + P(M),| P(Yl ) | − P( ¯A),P(Yl ) ≤ 1,
˜y ≥ 0, l = 1,....,m.
(15)
V = min
˜z∈Rm,Gl ∈Rn×m,Fl ∈Rn×m
+
1T
m ˜z
s.t.1+σ el ˜zT
−P(Gl )−Fl 2 + P(M),|P(Gl )| − P(Gl ),P( ¯A) ≤ 0,
˜z ≥ 0, l = 1,......,n.
(16)
The strategies of player P1 and P2 are y = ˜y
¯V
and z = ˜z
V respectively.
Anmol Monga (UCLA) Short title December 2, 2016 23 / 32
Example
A centralized sensor network comprising of 4 sensors T,P,H, W and a
server S:
Figure: Sensor Network
Anmol Monga (UCLA) Short title December 2, 2016 24 / 32
Example
(a) (b) (c)
Figure: Attack-defence configuration
Anmol Monga (UCLA) Short title December 2, 2016 25 / 32
Example
Complete Game Matrix:
A/D 0001 0010 0100 1000 0011 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111
0001 | 75 55 55 55 65 65 55 62 65 55 62 55 62 55 60
0010 | 55 75 55 55 65 55 65 62 55 65 62 55 55 62 60
0100 | 55 55 75 55 55 65 65 62 55 55 55 65 62 62 60
1000 | 55 55 55 75 55 55 55 55 65 65 62 65 62 62 60
0011 | 65 65 55 55 65 60 60 62 60 60 62 55 58 58 60
0101 | 65 55 65 55 60 65 60 62 60 55 58 60 62 58 60
0110 | 55 65 65 55 60 60 65 62 55 60 58 60 58 62 60
0111 | 62 62 62 55 62 62 62 62 58 58 59 58 59 59 60
1001 | 65 55 55 65 60 60 55 58 65 60 62 60 62 58 60
1010 | 55 65 55 65 60 55 60 58 60 65 62 60 58 62 60
1011 | 62 62 55 62 62 58 58 59 62 62 62 58 59 59 60
1100 | 55 55 65 65 55 61 60 58 60 60 58 65 62 62 60
1101 | 62 55 62 62 58 62 58 59 62 58 59 62 62 59 60
1110 | 55 62 62 62 58 58 62 59 58 62 59 62 59 62 60
1111 | 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
Anmol Monga (UCLA) Short title December 2, 2016 26 / 32
Example
Correlated Strategies:
Its very likely that two random strategies involves attacking the same
sensor.
Hence, the attack strategies are correlated.
Similarly, the defence strategies are correlated.
Enables modelling incomplete information as low rank constraint.
Anmol Monga (UCLA) Short title December 2, 2016 27 / 32
Example
In the experiment we calculate the robust attacker and defender
strategy for matrix A such that A ∈ Uc ∩Ub.
A =
























∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 55 ∗ 55 ∗ 55 ∗
55 ∗ 55 ∗ 65 ∗ 65 ∗ 55 ∗ 62 ∗ 55 ∗ 60
∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 55 ∗ 65 ∗ 62 ∗
55 ∗ 55 ∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 62 ∗ 60
∗ 65 ∗ 55 ∗ 60 ∗ 62 ∗ 60 ∗ 55 ∗ 58 ∗
65 ∗ 65 ∗ 60 ∗ 60 ∗ 60 ∗ 58 ∗ 62 ∗ 60
∗ 65 ∗ 55 ∗ 60 ∗ 62 ∗ 60 ∗ 60 ∗ 62 ∗
62 ∗ 62 ∗ 62 ∗ 62 ∗ 58 ∗ 59 ∗ 59 ∗ 60
∗ 55 ∗ 65 ∗ 60 ∗ 58 ∗ 60 ∗ 60 ∗ 58 ∗
55 ∗ 55 ∗ 60 ∗ 60 ∗ 60 ∗ 62 ∗ 58 ∗ 60
∗ 62 ∗ 62 ∗ 65 ∗ 59 ∗ 62 ∗ 58 ∗ 59 ∗
55 ∗ 65 ∗ 55 ∗ 60 ∗ 60 ∗ 58 ∗ 62 ∗ 60
∗ 55 ∗ 62 ∗ 62 ∗ 59 ∗ 58 ∗ 62 ∗ 59 ∗
55 ∗ 62 ∗ 58 ∗ 62 ∗ 58 ∗ 59 ∗ 59 ∗ 60
∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗
























±
























∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5
∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗
























.
σ ∈ R is arbitrarily fixed. In this experiment σ is equal to twice the
nuclear norm of complete matrix.
Anmol Monga (UCLA) Short title December 2, 2016 28 / 32
Result
index
0 5 10 15
probabilty
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
probability distribution of attacker strategy
nonrobust attacker strategy
orignal attacker strategy
robust attacker strategy
index
0 5 10 15
probabilty
0
0.1
0.2
0.3
0.4
0.5
0.6
probability distribution of defender strategy
nonrobust defender strategy
orignal defender strategy
robust defender strategy
Figure: We compare the action strategy of game matrix A obtained using robust
method, non-robust method and the complete matrix.
Anmol Monga (UCLA) Short title December 2, 2016 29 / 32
Result
percentage of unknowns
0 5 10 15 20 25 30 35 40 45
deviationfromorignalstrategy
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
The change in defender strategy due to change in no. of unknowns
deviation in defender strategy
variance in defender strategy
percentage of unknowns
0 5 10 15 20 25 30 35 40 45
deviationfromorignalstrategy
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
The change in attacker strategy due to change in no. of unknowns
deviation in defender strategy
variance in attacker strategy
Figure: Effectiveness of the robust method in approximating the original complete
game as we increase the number of unknowns in the game matrix .
Anmol Monga (UCLA) Short title December 2, 2016 30 / 32
Result
From the result shown in the previous two slides, we can draw the
conclusion that for a game with incomplete information:
1 The robust method does a better job at predicting the action
strategy of the corresponding complete game matrix when compared
to non-robust method.
2 As we increase the number of unknowns, robust method is less able
to approximate the strategy of complete game from an incomplete
game matrix.
Anmol Monga (UCLA) Short title December 2, 2016 31 / 32
Conclusion
In this paper we have provided two methods to solve a zero-sum
game with incomplete information: Robust method and Non-robust
method.
We have shown that the robust method approximates the player
strategy much better than the non-robust method.
We have also defined a deterministic model for the uncertainty in the
game matrix.
In future work we plan to use the ADMM algorithm to run the robust
method for a very large zero-sum game with incomplete information .
We can extend the robust method to non-cooperative non-zero sum
game.
Anmol Monga (UCLA) Short title December 2, 2016 32 / 32

More Related Content

Viewers also liked

A. Loston_Writing Samples-Placements
A. Loston_Writing Samples-PlacementsA. Loston_Writing Samples-Placements
A. Loston_Writing Samples-Placements
Angela Loston
 
EcoPeace Strategic Plan External PDF
EcoPeace Strategic Plan External PDFEcoPeace Strategic Plan External PDF
EcoPeace Strategic Plan External PDF
Sophia Lloyd-Thomas
 

Viewers also liked (17)

Tamizaje
TamizajeTamizaje
Tamizaje
 
Katharina Heidrich - Sochi project pictures
Katharina Heidrich - Sochi project picturesKatharina Heidrich - Sochi project pictures
Katharina Heidrich - Sochi project pictures
 
Katharina Heidrich - Sochi project pictures
Katharina Heidrich - Sochi project picturesKatharina Heidrich - Sochi project pictures
Katharina Heidrich - Sochi project pictures
 
UX for Disruption
UX for DisruptionUX for Disruption
UX for Disruption
 
Recobble_Chernobyl
Recobble_ChernobylRecobble_Chernobyl
Recobble_Chernobyl
 
A. Loston_Writing Samples-Placements
A. Loston_Writing Samples-PlacementsA. Loston_Writing Samples-Placements
A. Loston_Writing Samples-Placements
 
EcoPeace Strategic Plan External PDF
EcoPeace Strategic Plan External PDFEcoPeace Strategic Plan External PDF
EcoPeace Strategic Plan External PDF
 
Offshoring Litigation Support to the Philippines
Offshoring Litigation Support to the PhilippinesOffshoring Litigation Support to the Philippines
Offshoring Litigation Support to the Philippines
 
Sochi Staircase
Sochi StaircaseSochi Staircase
Sochi Staircase
 
NCC-EXTRA CURRICULARS
NCC-EXTRA CURRICULARSNCC-EXTRA CURRICULARS
NCC-EXTRA CURRICULARS
 
ErasmoCervantes y RaquelSalinas_evidencia_3
ErasmoCervantes y RaquelSalinas_evidencia_3ErasmoCervantes y RaquelSalinas_evidencia_3
ErasmoCervantes y RaquelSalinas_evidencia_3
 
9789740335337
97897403353379789740335337
9789740335337
 
La biblioteca universitaria y las tic’s
La biblioteca universitaria y las tic’sLa biblioteca universitaria y las tic’s
La biblioteca universitaria y las tic’s
 
Articles 101990 archivo
Articles 101990 archivoArticles 101990 archivo
Articles 101990 archivo
 
Effective listening
Effective listeningEffective listening
Effective listening
 
Rising to the Occasion - Dealing With Challenging Trainees
Rising to the Occasion - Dealing With Challenging TraineesRising to the Occasion - Dealing With Challenging Trainees
Rising to the Occasion - Dealing With Challenging Trainees
 
Escritura y expresión oral creativa (Versión CAST/ES)
Escritura y expresión oral creativa (Versión CAST/ES)Escritura y expresión oral creativa (Versión CAST/ES)
Escritura y expresión oral creativa (Versión CAST/ES)
 

Similar to presentation_wifs

Session 03 Probability & sampling Distribution NEW.pptx
Session 03 Probability & sampling Distribution NEW.pptxSession 03 Probability & sampling Distribution NEW.pptx
Session 03 Probability & sampling Distribution NEW.pptx
Muneer Akhter
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
Selvin Hadi
 

Similar to presentation_wifs (20)

2. Random Variables.pdf
2. Random Variables.pdf2. Random Variables.pdf
2. Random Variables.pdf
 
12.pdf
12.pdf12.pdf
12.pdf
 
Linear vs. quadratic classifier power point
Linear vs. quadratic classifier power pointLinear vs. quadratic classifier power point
Linear vs. quadratic classifier power point
 
Session 03 Probability & sampling Distribution NEW.pptx
Session 03 Probability & sampling Distribution NEW.pptxSession 03 Probability & sampling Distribution NEW.pptx
Session 03 Probability & sampling Distribution NEW.pptx
 
Unit2.Lesson1.pptx
Unit2.Lesson1.pptxUnit2.Lesson1.pptx
Unit2.Lesson1.pptx
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain properties
 
Some Unbiased Classes of Estimators of Finite Population Mean
Some Unbiased Classes of Estimators of Finite Population MeanSome Unbiased Classes of Estimators of Finite Population Mean
Some Unbiased Classes of Estimators of Finite Population Mean
 
Interval Type-2 fuzzy decision making
Interval Type-2 fuzzy decision makingInterval Type-2 fuzzy decision making
Interval Type-2 fuzzy decision making
 
04. AJMS_05_18[Research].pdf
04. AJMS_05_18[Research].pdf04. AJMS_05_18[Research].pdf
04. AJMS_05_18[Research].pdf
 
04. AJMS_05_18[Research].pdf
04. AJMS_05_18[Research].pdf04. AJMS_05_18[Research].pdf
04. AJMS_05_18[Research].pdf
 
On Homogeneous Cubic Equation with Four Unknowns
On Homogeneous Cubic Equation with Four UnknownsOn Homogeneous Cubic Equation with Four Unknowns
On Homogeneous Cubic Equation with Four Unknowns
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
Discrete probability distributions
Discrete probability distributionsDiscrete probability distributions
Discrete probability distributions
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
 
Cryptographic Technique Used Lower and Upper Triangular Decomposition Method
Cryptographic Technique Used Lower and Upper Triangular Decomposition MethodCryptographic Technique Used Lower and Upper Triangular Decomposition Method
Cryptographic Technique Used Lower and Upper Triangular Decomposition Method
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 
CENTRAL LIMIT THEOREM- STATISTICS AND PROBABILITY
CENTRAL LIMIT THEOREM- STATISTICS AND PROBABILITYCENTRAL LIMIT THEOREM- STATISTICS AND PROBABILITY
CENTRAL LIMIT THEOREM- STATISTICS AND PROBABILITY
 
Face recognition using LDA
Face recognition using LDAFace recognition using LDA
Face recognition using LDA
 
Stochastic Optimization
Stochastic OptimizationStochastic Optimization
Stochastic Optimization
 
Ullmayer_Rodriguez_Presentation
Ullmayer_Rodriguez_PresentationUllmayer_Rodriguez_Presentation
Ullmayer_Rodriguez_Presentation
 

presentation_wifs

  • 1. Solving Large-Scale Low-Rank Zero-Sum Security Games of Incomplete Information Anmol Monga New York University am6704@nyu.edu December 2, 2016 Anmol Monga (UCLA) Short title December 2, 2016 1 / 32
  • 2. Table of content 1 Introduction Robust Linear Programming Game Theory 2 Problem Formulation Zero-Sum Game Uncertainty in game matrix Non-robust method Robust Method 3 Application 4 Conclusion Anmol Monga (UCLA) Short title December 2, 2016 2 / 32
  • 3. Introduction What is uncertainty? incomplete information Information is effected by noise Past methods: John C Harsanyi introduced a novel method to solve games with incomplete information ”Games with incomplete information played by bayesian players” . Bayesian games is the standard method to solve games with incomplete information. Require past statistics to model the uncertainty. Anmol Monga (UCLA) Short title December 2, 2016 3 / 32
  • 4. Introduction We propose: We define a low ranked constraint and polyhedral constraint over the incomplete matrix. We solve for the worst case strategy in the game under the constraints. It makes game strategy robust to uncertainty. Anmol Monga (UCLA) Short title December 2, 2016 4 / 32
  • 5. Robust Linear Programming Linear programming problem: min x∈RN cT x , s.t. aT i x ≤ bi , i = 1,··· ,N. (1) c ∈ RN,ai ∈ RN and bi ∈ R are external data and are prone to uncertainty. Anmol Monga (UCLA) Short title December 2, 2016 5 / 32
  • 6. Robust Linear Programming Figure: Uncertain polyhedral constraint Robust counterpart: min x∈RN cT x , s.t. aT i x ≤ bi , ai ∈ Ui , i = 1,··· ,N min x∈RN cT x , s.t. max ai ∈Ui aT i x ≤ bi , i = 1,··· ,N Ui determines the set over which the uncertainty of ai exist. Anmol Monga (UCLA) Short title December 2, 2016 6 / 32
  • 7. Game Theory What? Mathematics of human interaction. Model cooperation and conflict between rational and irrational individual. Anmol Monga (UCLA) Short title December 2, 2016 7 / 32
  • 8. Key Elements of a Game Players : Who is interacting? Strategies: What are their options? Payoffs : What are their incentives? Information : What do they know? Anmol Monga (UCLA) Short title December 2, 2016 8 / 32
  • 9. Anmol Monga (UCLA) Short title December 2, 2016 9 / 32
  • 10. Zero-Sum Game What? Two person non-cooperative zero sum finite game is a confrontational game. Player P1 minimises his payoff and player P2 maximises his payoffs. In zero sum game there is always a winner and a looser. Anmol Monga (UCLA) Short title December 2, 2016 10 / 32
  • 11. A =                      P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm b1 5 4 3 2 1 ··· ··· b2 3 1 2 4 1 b3 0 2 1 0 1 b4 5 1 2 1 1 ... ... ... ... ... ... ... ... bn                      Anmol Monga (UCLA) Short title December 2, 2016 11 / 32
  • 12. Pure-Strategy The upper value is the minimum of the maximum value of the rows and the corresponding row index is the strategy of P1. upper value = max j∈{1,···,m} Ai∗j ≤ max j∈{1,···,m} Aij , ∀i ∈ {1,··· ,n} The lower value is the maximum of the minimum value of the columns and the corresponding column index is the strategy of P2. lower value = min i∈{1,···,n} Aij∗ ≥ min i∈{1,···,n} Aij , ∀j ∈ {1,··· ,m} i and j represents the row and column index in the game matrix A. i∗ and j∗ are the pure strategy equilibrium. Anmol Monga (UCLA) Short title December 2, 2016 12 / 32
  • 13. Mixed Strategy Equilibrium The pure strategy may not have saddle point equilibrium. We can repeat the game over and over again and calculate the probability with which a strategy can be played. This is called mixed strategy equilibrium. mixed strategy equilibrium : min y∈Y max z∈Z y Az (2) where, Y = {y ∈ Rn : y ≥ 0 and n ∑ i=1 yi = 1} Z = {z ∈ Rm : z ≥ 0 and m ∑ i=1 zi = 1}. (3) Anmol Monga (UCLA) Short title December 2, 2016 13 / 32
  • 14. Mixed Strategy Equilibrium The mixed strategy equilibrium of player 1 and player 2 can be solved using two linear programming problems. V = max ˜y∈Rn 1T n ˜y s.t. A ˜y ≤ 1m , ˜y ≥ 0. V = min ˜z∈Rm 1T m ˜z s.t. A˜z ≥ 1n , ˜z ≥ 0. 1m = [1,··· ,1]T 1×m , 1n = [1,··· ,1]T 1×n The strategies of player P1 and player P2 are y = ˜y V and z = ˜z V respectively. Anmol Monga (UCLA) Short title December 2, 2016 14 / 32
  • 15. Uncertainty in game matrix A =                             P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm b1 5±0.2 4 × 2 1 ··· ··· b2 3±0.2 1 2 4 1±0.2 b3 0 × 1±0.2 0 1 × b4 5 1 2 1 1 . . . . . . . . . . . . . . . . . . . . . × . . . bn ×                             A few coefficients in the game matrix A are unknown. The coefficients in the game matrix are prone to error. Anmol Monga (UCLA) Short title December 2, 2016 15 / 32
  • 16. Modelling Uncertainty of Game Matrix Uncertainty can be modelled using bounded, closed and convex sets. The low rank constraint on the game matrix: Ub ∈ {A ∈ Rn×m : rank(A) ≤ r}. (4) A set comprising of all the noisy game matrix: Uc = {A ∈ Rn×m :| Aij − ¯Aij |≤ Mij where, (i,j) ∈ Ω}. (5) Ω refers to a set of known coefficients in the game matrix A. ¯A is error free game matrix. Solve the zero-sum game over all game matrix in set Uc ∩Ub Anmol Monga (UCLA) Short title December 2, 2016 16 / 32
  • 17. Modelling Uncertainty in Game matrix Relax low rank set Ub Ub ∈ {A ∈ Rn×m : A ∗ ≤ σ}. (6) Relax the polyhedral set Uc Uc = {A ∈ Rn×m :| P( ¯Aij )−P(Aij ) |≤ P(Mij )}. (7) where, P(A) = Aij s.t. (i,j) ∈ Ω 0 otherwise . (8) Anmol Monga (UCLA) Short title December 2, 2016 17 / 32
  • 18. Why? The columns and rows of game matrix are correlated. A: rectangular matrix. A =                             P1/P2 d1 d2 d3 d4 d5 ··· ··· ··· dm b1 5±0.2 4 × 2 1 ··· ··· b2 3±0.2 1 2 4 1±0.2 b3 0 × 1±0.2 0 1 × b4 5 1 2 1 1 . . . . . . . . . . . . . . . . . . . . . × . . . bn ×                             Anmol Monga (UCLA) Short title December 2, 2016 18 / 32
  • 19. Modelling Uncertainty in Game Matrix There are two ways to solve the action strategy of game matrix A defined in the set Uc ∩Ub Non-robust method: Randomly choosing a matrix A in set Uc ∩Ub and then calculating the strategy for the game Robust method: Calculating a strategy which is feasible for all the matrices in set Uc ∩Ub Anmol Monga (UCLA) Short title December 2, 2016 19 / 32
  • 20. Non-robust method Choose the lowest rank matrix in set Uc ∩Ub. Asol = argmin A∈Uc ,A≥0 A ∗. (9) Vnr =max ˜y∈Rn 1T n ˜y s.t. Asol ˜y ≤ 1m , ˜y ≥ 0 Vnr = min ˜z∈Rm 1T m ˜z s.t. Asol ˜z ≥ 1n , ˜z ≥ 0. (10) The strategies of player P1 and P2 are y = ˜y Vnr and z = ˜z Vnr respectively. Anmol Monga (UCLA) Short title December 2, 2016 20 / 32
  • 21. Robust Method We can calculate the robust strategy for player P1 and player P2 which is feasible over all matrices in Uc ∩Ub by : ¯V =max ˜y∈Rn 1T n ˜y s.t.A ˜y ≤ 1m , ˜y ≥ 0, A ∈ Uc ∩Ub , A ≥ 0. (11) V = min ˜z∈Rm 1T m ˜z s.t.A˜z ≥ 1n , ˜z ≥ 0, A ∈ Uc ∩Ub , A ≥ 0. (12) The strategies of player P1 and P2 are y = ˜y ¯V and z = ˜z V respectively. Anmol Monga (UCLA) Short title December 2, 2016 21 / 32
  • 22. Robust Method ¯V =max ˜y∈Rn 1T n ˜y s.t. max A∈Ub∩Uc ,A≥0 aj ˜y ≤ 1m ∀j, ˜y ≥ 0 (13) Where ,aj is the jth column of matrix A. V = min ˜z∈Rm 1T m ˜z s.t. min A∈Ub∩Uc ,A≥0 bi ˜z ≥ 1n ∀i, ˜z ≥ 0. (14) Where, bi is the ith row of matrix A. Anmol Monga (UCLA) Short title December 2, 2016 22 / 32
  • 23. Robust Method The optimisation problem to obtain a robust strategy for player P1 and player P2 are ¯V = min ˜y∈Rn,Yl ∈Rn×m,Kl ∈Rn×m + −1T n ˜y s.t.σ ˜yeT l +P(Yl )+Kl 2 + P(M),| P(Yl ) | − P( ¯A),P(Yl ) ≤ 1, ˜y ≥ 0, l = 1,....,m. (15) V = min ˜z∈Rm,Gl ∈Rn×m,Fl ∈Rn×m + 1T m ˜z s.t.1+σ el ˜zT −P(Gl )−Fl 2 + P(M),|P(Gl )| − P(Gl ),P( ¯A) ≤ 0, ˜z ≥ 0, l = 1,......,n. (16) The strategies of player P1 and P2 are y = ˜y ¯V and z = ˜z V respectively. Anmol Monga (UCLA) Short title December 2, 2016 23 / 32
  • 24. Example A centralized sensor network comprising of 4 sensors T,P,H, W and a server S: Figure: Sensor Network Anmol Monga (UCLA) Short title December 2, 2016 24 / 32
  • 25. Example (a) (b) (c) Figure: Attack-defence configuration Anmol Monga (UCLA) Short title December 2, 2016 25 / 32
  • 26. Example Complete Game Matrix: A/D 0001 0010 0100 1000 0011 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111 0001 | 75 55 55 55 65 65 55 62 65 55 62 55 62 55 60 0010 | 55 75 55 55 65 55 65 62 55 65 62 55 55 62 60 0100 | 55 55 75 55 55 65 65 62 55 55 55 65 62 62 60 1000 | 55 55 55 75 55 55 55 55 65 65 62 65 62 62 60 0011 | 65 65 55 55 65 60 60 62 60 60 62 55 58 58 60 0101 | 65 55 65 55 60 65 60 62 60 55 58 60 62 58 60 0110 | 55 65 65 55 60 60 65 62 55 60 58 60 58 62 60 0111 | 62 62 62 55 62 62 62 62 58 58 59 58 59 59 60 1001 | 65 55 55 65 60 60 55 58 65 60 62 60 62 58 60 1010 | 55 65 55 65 60 55 60 58 60 65 62 60 58 62 60 1011 | 62 62 55 62 62 58 58 59 62 62 62 58 59 59 60 1100 | 55 55 65 65 55 61 60 58 60 60 58 65 62 62 60 1101 | 62 55 62 62 58 62 58 59 62 58 59 62 62 59 60 1110 | 55 62 62 62 58 58 62 59 58 62 59 62 59 62 60 1111 | 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 Anmol Monga (UCLA) Short title December 2, 2016 26 / 32
  • 27. Example Correlated Strategies: Its very likely that two random strategies involves attacking the same sensor. Hence, the attack strategies are correlated. Similarly, the defence strategies are correlated. Enables modelling incomplete information as low rank constraint. Anmol Monga (UCLA) Short title December 2, 2016 27 / 32
  • 28. Example In the experiment we calculate the robust attacker and defender strategy for matrix A such that A ∈ Uc ∩Ub. A =                         ∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 55 ∗ 55 ∗ 55 ∗ 55 ∗ 55 ∗ 65 ∗ 65 ∗ 55 ∗ 62 ∗ 55 ∗ 60 ∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 55 ∗ 65 ∗ 62 ∗ 55 ∗ 55 ∗ 55 ∗ 55 ∗ 65 ∗ 62 ∗ 62 ∗ 60 ∗ 65 ∗ 55 ∗ 60 ∗ 62 ∗ 60 ∗ 55 ∗ 58 ∗ 65 ∗ 65 ∗ 60 ∗ 60 ∗ 60 ∗ 58 ∗ 62 ∗ 60 ∗ 65 ∗ 55 ∗ 60 ∗ 62 ∗ 60 ∗ 60 ∗ 62 ∗ 62 ∗ 62 ∗ 62 ∗ 62 ∗ 58 ∗ 59 ∗ 59 ∗ 60 ∗ 55 ∗ 65 ∗ 60 ∗ 58 ∗ 60 ∗ 60 ∗ 58 ∗ 55 ∗ 55 ∗ 60 ∗ 60 ∗ 60 ∗ 62 ∗ 58 ∗ 60 ∗ 62 ∗ 62 ∗ 65 ∗ 59 ∗ 62 ∗ 58 ∗ 59 ∗ 55 ∗ 65 ∗ 55 ∗ 60 ∗ 60 ∗ 58 ∗ 62 ∗ 60 ∗ 55 ∗ 62 ∗ 62 ∗ 59 ∗ 58 ∗ 62 ∗ 59 ∗ 55 ∗ 62 ∗ 58 ∗ 62 ∗ 58 ∗ 59 ∗ 59 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗ 60 ∗                         ±                         ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗                         . σ ∈ R is arbitrarily fixed. In this experiment σ is equal to twice the nuclear norm of complete matrix. Anmol Monga (UCLA) Short title December 2, 2016 28 / 32
  • 29. Result index 0 5 10 15 probabilty 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 probability distribution of attacker strategy nonrobust attacker strategy orignal attacker strategy robust attacker strategy index 0 5 10 15 probabilty 0 0.1 0.2 0.3 0.4 0.5 0.6 probability distribution of defender strategy nonrobust defender strategy orignal defender strategy robust defender strategy Figure: We compare the action strategy of game matrix A obtained using robust method, non-robust method and the complete matrix. Anmol Monga (UCLA) Short title December 2, 2016 29 / 32
  • 30. Result percentage of unknowns 0 5 10 15 20 25 30 35 40 45 deviationfromorignalstrategy 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 The change in defender strategy due to change in no. of unknowns deviation in defender strategy variance in defender strategy percentage of unknowns 0 5 10 15 20 25 30 35 40 45 deviationfromorignalstrategy 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 The change in attacker strategy due to change in no. of unknowns deviation in defender strategy variance in attacker strategy Figure: Effectiveness of the robust method in approximating the original complete game as we increase the number of unknowns in the game matrix . Anmol Monga (UCLA) Short title December 2, 2016 30 / 32
  • 31. Result From the result shown in the previous two slides, we can draw the conclusion that for a game with incomplete information: 1 The robust method does a better job at predicting the action strategy of the corresponding complete game matrix when compared to non-robust method. 2 As we increase the number of unknowns, robust method is less able to approximate the strategy of complete game from an incomplete game matrix. Anmol Monga (UCLA) Short title December 2, 2016 31 / 32
  • 32. Conclusion In this paper we have provided two methods to solve a zero-sum game with incomplete information: Robust method and Non-robust method. We have shown that the robust method approximates the player strategy much better than the non-robust method. We have also defined a deterministic model for the uncertainty in the game matrix. In future work we plan to use the ADMM algorithm to run the robust method for a very large zero-sum game with incomplete information . We can extend the robust method to non-cooperative non-zero sum game. Anmol Monga (UCLA) Short title December 2, 2016 32 / 32