SlideShare a Scribd company logo
1 of 23
II. Modulation & Coding
© Tallal Elshabrawy
Design Goals of Communication Systems
1. Maximize transmission bit rate
2. Minimize bit error probability
3. Minimize required transmission power
4. Minimize required system bandwidth
5. Minimize system complexity, computational load & system
cost
6. Maximize system utilization
2
© Tallal Elshabrawy
Some Tradeoffs in M-PSK Modulaion
1 Trades off BER and Energy per Bit
2 Trades off BER and Normalized Rate in b/s/Hz
3 Trades off Normalized Rate in b/s/Hz and Energy per Bit
3
0 2 4 6 8 10 12 14 16 18
10
-4
10
-3
10
-2
10
-1
10
0
Eb
/N0
P
b
BPSK,QPSK
8 PSK
16 PSK
1
2
3
m=4
m=3
m=1, 2
© Tallal Elshabrawy
Shannon-Hartley Capacity Theorem
C: System Capacity (bits/s)
W: Bandwidth of Communication (Hz)
S: Signal Power (Watt)
N: Noise Power (Watt)
4
2
S
C W log 1
N
 
  
 
 
System Capacity for communication over of an
AWGN Channel is given by:
© Tallal Elshabrawy
Shannon-Hartley Capacity Theorem
5
-10 0 10 20 30 40 50
1/8
1/4
1
2
4
8
16
SNR
Normalized
Channel
Capacity
C/W
(b/s/Hz)
Practical
Systems
Unattainable
Region
© Tallal Elshabrawy
Shannon Capacity in terms of Eb/N0
Consider transmission of a symbol over an AWGN channel
6
C  W log2
1
ES
RS
N0
W






S 
ES
TS
 ES
RS
N  N0
W
ES
RS
 mEb
RS
 Eb
C

C
W
 log2
1
Eb
N0
C
W






© Tallal Elshabrawy
Shannon Limit
7
C
W
 log2
1
Eb
N0
C
W






x
Eb
N0
 log2
1  x
 
1 
Eb
N0
1
x
log2
1  x
 
1 
Eb
N0
log2
1  x
 
1
x
x  0  
1
x
1 x e
  
Eb
N0

1
loge
 0.693  1.6dB

x 
Eb
N0
C
W






Let
© Tallal Elshabrawy
Shannon Limit
-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1/4
1/2
1
2
4
8
16
1/8
1/16
Eb
/N0
Mormalized
Channel
Capacity
b/s/Hz
Shannon Limit=-1.6 dB
© Tallal Elshabrawy
Shannon Limit
No matter how much/how smart you decrease the
rate by using channel coding, it is impossible to
achieve communications with very low bit error
rate if Eb/N0 falls below -1.6 dB
© Tallal Elshabrawy
-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1/16
1/8
1/4
1/2
1
2
4
8
16
Shannon Limit
Shannon Limit=-1.6 dB
BPSK
Uncoded
Pb = 10-5
QPSK
Uncoded
Pb = 10-5
8 PSK
Uncoded
Pb=10-5
16 PSK
Uncoded
Pb=10-5
Room for improvement by channel coding
Normalized
Channel
Capacity
b/s/Hz
Eb/N0
© Tallal Elshabrawy
1/3 Repetition Code BPSK
Is this really purely a gain?
No! We have lost one third of the information transmitted rate
11
0 1 2 3 4 5 6 7 8 9 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
Eb
/N0
P
b
BPSK Uncoded
BPSK 1/3Repetition Code
Coding Gain= 3.2 dB
© Tallal Elshabrawy
0 1 2 3 4 5 6 7 8 9 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
Eb
/N0
P
b
BPSK Uncoded
8 PSK 1/3 Repitition Code
1/3 Repetition Code 8 PSK
12
Coding Gain= -0.5 dB
When we don’t sacrifice information rate 1/3 repetition codes did not help
us
© Tallal Elshabrawy
 The waveform generator converts binary data to voltage levels (1 V., -1 V.)
 The channel has an effect of altering the voltage that was transmitted
 Waveform detection performs a HARD DECISION by mapping received
voltage back to binary values based on decision zones
Channel
e
r
v
Channel
Encoder
Waveform
Generator
Waveform
Detection
Channel
Decoder
Channel
v r
x y
v = [v1 v2 … vi … vn]
e = [e1 e2 … ei … en]
r = [r1 r2 … ri … rn]
x = [x1 x2 … xi … xn]
y = [y1 y2 … yi … yn]
0 T
0 T
+1 V.
-1 V.
vi
vi=1
vi=0
xi
0
yi>0
yi<0
ri=1
ri=0
ri
+
zi ]-∞, ∞[
yi
Hard Decision Decoding
© Tallal Elshabrawy
 The waveform generator converts binary data to voltage levels (1 V., -1 V.)
 The channel has an effect of altering the voltage that was transmitted
 The input to the channel decoder is a vector of voltages rather than a vector
of binary values
Channel
e
r
v
Channel
Encoder
Waveform
Generator
Channel
Decoder
Channel
v r
x
v = [v1 v2 … vi … vn]
e = [e1 e2 … ei … en]
r = [r1 r2 … ri … rn]
x = [x1 x2 … xi … xn]
0 T
0 T
+1 V.
-1 V.
vi
vi=1
vi=0
xi
+
zi ]-∞, ∞[
ri
Soft Decision Decoding
© Tallal Elshabrawy
Hard Decision
- Each received bit is detected individually
- If the voltage is greater than 0 detected bit is 1
- If the voltage is smaller than 0 detected bit is 0
- Detection information of neighbor bits within the same codeword is
lost
Channel
e
r
v
Channel
Encoder
Waveform
Generator
Waveform
Detection
Channel
Decoder
Channel
0 0 0
r
y
v = [v1 v2 … vi … vn]
e = [e1 e2 … ei … en]
r = [r1 r2 … ri … rn]
x = [x1 x2 … xi … xn]
y = [y1 y2 … yi … yn]
0 -1 -1 -1 0.1 -0.9 0.1 1 0 1 1
Hard Decision: Example 1/3 Repetition Code BPSK
© Tallal Elshabrawy
Soft Decision
- If the accumulated voltage within the codeword is greater than 0
detected bit is 1
- If the accumulated voltage within the codeword is smaller than 0
detected bit is 0
- Information of neighbor bits within the same codeword contributes to
the channel decoding process
Channel
e
r
v
Channel
Encoder
Waveform
Generator
Channel
Decoder
Channel
0 0 0
r
v = [v1 v2 … vi … vn]
e = [e1 e2 … ei … en]
r = [r1 r2 … ri … rn]
x = [x1 x2 … xi … xn]
y = [y1 y2 … yi … yn]
0 -1 -1 -1 0.1 -0.9 0.1 0
Accumulated Voltage =
0.1-0.9+0.1=-0.7<0
Soft Decision: Example 1/3 Repetition Code BPSK
© Tallal Elshabrawy
1/3 Repetition Code BPSK Soft Decision
{ }
1
,
0
b ∈
Channel Coding
(1/3 Repetition Code)
 
c 000,111

Waveform
Representation
 
b b b b b b
s E , E , E , E , E , E
   
   
   
Channel
]
n
,
n
,
n
[
=
n 3
2
1
Soft Decision
Decoding
r
*
b
Uncoded
0
b
0
b
Code
.
p
Re
3
/
1
0
b
N
E
=
N
3
E
3
=
N
E
Important Note
© Tallal Elshabrawy
BER Performance Soft Decision 1/3 Repetition Code BPSK
Select b*=0 if
Note that r0 r1 and r2 are independent and identically distributed. In other words
Therefore
Similarly
   
f R b 0 f R b 1
  
 
   
 
0 1 2 0 1 2
f r r r b 0 f r r r b 1
  
 
 
2
i b
2
r E
2σ
i 2
1
f r b 0 e
2πσ


 
 
 
2
i b
2
3 r E
2
2σ
i 2
i 0
1
f r b 0 e
2πσ



 
   
 

 
 
2
i b
2
3 r E
2
2σ
i 2
i 0
1
f r b 1 e
2πσ



 
   
 

© Tallal Elshabrawy
Select b*=0 if
( ) ( )
1
=
b
R
f
>
0
=
b
R
f
   
2 2
i b i b
2 2
3 3
r E r E
2 2
2σ 2σ
2 2
i 0 i 0
1 1
e e
2πσ 2πσ
 
 
 
   

   
   
 
   
2 2
2 2
i b i b
2 2
i 0 i 0
r + E r E
2σ 2σ
 

  
 
   
2 2
2 2
i b i b
i 0 i 0
r + E r E
 
   
 
   
2 2
i b i b
2 2
r E r E
2 2
2σ 2σ
i 0 i 0
ln e ln e
 
 
 
   
   

   
   
   
 
2
i
i 0
r 0



BER Performance Soft Decision 1/3 Repetition Code BPSK
© Tallal Elshabrawy
where
BER Performance Soft Decision 1/3 Repetition Code BPSK
2
i
i 0
Pr error b = 0 =Pr r > 0 b = 0

 
   
 
 

 
2
b i
i 0
Pr error b = 0 =Pr E n 0

 
    
 
 
 

b
Pr error b = 0 =Pr n 3 E
 
  
   
2
i
i 0
n n

 
n is Gaussian distributed with mean 0 and variance 3N0/2
b
0
3 E
Pr error b = 0 = Q
3N / 2
 
   
   
 
b
0
3E
1
Pr error b 0 erfc
2 N
 
 
   
   
 
2
i b
i 0
Pr error b = 0 =Pr n 3 E

 
  
 
 
 

© Tallal Elshabrawy
Hard Vs Soft Decision: 1/3 Repetition Code BPSK
0 1 2 3 4 5 6 7 8 9 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Eb
/N0
P
b
BPSK Uncoded
BPSK 1/3 Repitition Code Hard Decision
BPSK 1/3 Repetition Code Soft Decision
Coding Gain= 4.7 dB
© Tallal Elshabrawy
1/3 Repetition Code 8 PSK Hard Decision
22
0 1 2 3 4 5 6 7 8 9 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Eb
/N0
P
b
BPSK Uncoded
8PSK 1/3 Repetition Code Hard Decision
8PSK 1/3 Repetition Code Soft Decision
Coding Gain= 1.5 dB
© Tallal Elshabrawy
-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1/16
1/8
1/4
1/2
1
2
4
8
16
Shannon Limit and BER Performance
23
Shannon Limit=-1.6 dB
BPSK Uncoded
Pb = 10-5
QPSK Uncoded
Pb = 10-5
8 PSK Uncoded
Pb=10-5
16 PSK Uncoded
Pb=10-5
BPSK 1/3 Rep. Code
Hard Decision
Pb = 10-5
BPSK 1/3 Rep. Code
Sodt Decision
Pb = 10-5
Normalized
Channel
Capacity
b/s/Hz
Eb/N0
1/3
8PSK 1/3 Rep. Code
Hard Decision
Pb = 10-5
8PSK 1/3 Rep.
Code Soft Decision
Pb = 10-5

More Related Content

Similar to 158.ppt

2 _CRT Display Design_A_
2   _CRT Display Design_A_2   _CRT Display Design_A_
2 _CRT Display Design_A_
James Webb
 
ADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.pptADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.ppt
BEVARAVASUDEVAAP1813
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
aicdesign
 
Computer network (1)
Computer network (1)Computer network (1)
Computer network (1)
NYversity
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
aicdesign
 
Lesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsxLesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsx
Bkannan2
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
aicdesign
 

Similar to 158.ppt (20)

AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
Ad7716
Ad7716Ad7716
Ad7716
 
2 _CRT Display Design_A_
2   _CRT Display Design_A_2   _CRT Display Design_A_
2 _CRT Display Design_A_
 
ADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.pptADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.ppt
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Chap4
Chap4Chap4
Chap4
 
Digital modulation techniques updated
Digital modulation techniques updatedDigital modulation techniques updated
Digital modulation techniques updated
 
Computer network (1)
Computer network (1)Computer network (1)
Computer network (1)
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
 
ADC & DAC
ADC & DAC ADC & DAC
ADC & DAC
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsxLesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsx
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
GNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA OutputGNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA Output
 
SDH and TDM telecom
SDH and TDM telecomSDH and TDM telecom
SDH and TDM telecom
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 
Elegant Solutions
Elegant SolutionsElegant Solutions
Elegant Solutions
 
Baud rate is the number of change in signal
Baud rate is the number of change in signalBaud rate is the number of change in signal
Baud rate is the number of change in signal
 
Baud rate is the number of change in signal
Baud rate is the number of change in signalBaud rate is the number of change in signal
Baud rate is the number of change in signal
 
3 g by pasha
3 g by pasha3 g by pasha
3 g by pasha
 

Recently uploaded

Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
cupulin
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
nhezmainit1
 

Recently uploaded (20)

Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Pharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfPharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdf
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"
 
PSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptxPSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptx
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
PS-Policies-on-Enrolment-Transfer-of-Docs-Checking-of-School-Forms-and-SF10-a...
 

158.ppt

  • 2. © Tallal Elshabrawy Design Goals of Communication Systems 1. Maximize transmission bit rate 2. Minimize bit error probability 3. Minimize required transmission power 4. Minimize required system bandwidth 5. Minimize system complexity, computational load & system cost 6. Maximize system utilization 2
  • 3. © Tallal Elshabrawy Some Tradeoffs in M-PSK Modulaion 1 Trades off BER and Energy per Bit 2 Trades off BER and Normalized Rate in b/s/Hz 3 Trades off Normalized Rate in b/s/Hz and Energy per Bit 3 0 2 4 6 8 10 12 14 16 18 10 -4 10 -3 10 -2 10 -1 10 0 Eb /N0 P b BPSK,QPSK 8 PSK 16 PSK 1 2 3 m=4 m=3 m=1, 2
  • 4. © Tallal Elshabrawy Shannon-Hartley Capacity Theorem C: System Capacity (bits/s) W: Bandwidth of Communication (Hz) S: Signal Power (Watt) N: Noise Power (Watt) 4 2 S C W log 1 N          System Capacity for communication over of an AWGN Channel is given by:
  • 5. © Tallal Elshabrawy Shannon-Hartley Capacity Theorem 5 -10 0 10 20 30 40 50 1/8 1/4 1 2 4 8 16 SNR Normalized Channel Capacity C/W (b/s/Hz) Practical Systems Unattainable Region
  • 6. © Tallal Elshabrawy Shannon Capacity in terms of Eb/N0 Consider transmission of a symbol over an AWGN channel 6 C  W log2 1 ES RS N0 W       S  ES TS  ES RS N  N0 W ES RS  mEb RS  Eb C  C W  log2 1 Eb N0 C W      
  • 7. © Tallal Elshabrawy Shannon Limit 7 C W  log2 1 Eb N0 C W       x Eb N0  log2 1  x   1  Eb N0 1 x log2 1  x   1  Eb N0 log2 1  x   1 x x  0   1 x 1 x e    Eb N0  1 loge  0.693  1.6dB  x  Eb N0 C W       Let
  • 8. © Tallal Elshabrawy Shannon Limit -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 1/4 1/2 1 2 4 8 16 1/8 1/16 Eb /N0 Mormalized Channel Capacity b/s/Hz Shannon Limit=-1.6 dB
  • 9. © Tallal Elshabrawy Shannon Limit No matter how much/how smart you decrease the rate by using channel coding, it is impossible to achieve communications with very low bit error rate if Eb/N0 falls below -1.6 dB
  • 10. © Tallal Elshabrawy -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 1/16 1/8 1/4 1/2 1 2 4 8 16 Shannon Limit Shannon Limit=-1.6 dB BPSK Uncoded Pb = 10-5 QPSK Uncoded Pb = 10-5 8 PSK Uncoded Pb=10-5 16 PSK Uncoded Pb=10-5 Room for improvement by channel coding Normalized Channel Capacity b/s/Hz Eb/N0
  • 11. © Tallal Elshabrawy 1/3 Repetition Code BPSK Is this really purely a gain? No! We have lost one third of the information transmitted rate 11 0 1 2 3 4 5 6 7 8 9 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 Eb /N0 P b BPSK Uncoded BPSK 1/3Repetition Code Coding Gain= 3.2 dB
  • 12. © Tallal Elshabrawy 0 1 2 3 4 5 6 7 8 9 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 Eb /N0 P b BPSK Uncoded 8 PSK 1/3 Repitition Code 1/3 Repetition Code 8 PSK 12 Coding Gain= -0.5 dB When we don’t sacrifice information rate 1/3 repetition codes did not help us
  • 13. © Tallal Elshabrawy  The waveform generator converts binary data to voltage levels (1 V., -1 V.)  The channel has an effect of altering the voltage that was transmitted  Waveform detection performs a HARD DECISION by mapping received voltage back to binary values based on decision zones Channel e r v Channel Encoder Waveform Generator Waveform Detection Channel Decoder Channel v r x y v = [v1 v2 … vi … vn] e = [e1 e2 … ei … en] r = [r1 r2 … ri … rn] x = [x1 x2 … xi … xn] y = [y1 y2 … yi … yn] 0 T 0 T +1 V. -1 V. vi vi=1 vi=0 xi 0 yi>0 yi<0 ri=1 ri=0 ri + zi ]-∞, ∞[ yi Hard Decision Decoding
  • 14. © Tallal Elshabrawy  The waveform generator converts binary data to voltage levels (1 V., -1 V.)  The channel has an effect of altering the voltage that was transmitted  The input to the channel decoder is a vector of voltages rather than a vector of binary values Channel e r v Channel Encoder Waveform Generator Channel Decoder Channel v r x v = [v1 v2 … vi … vn] e = [e1 e2 … ei … en] r = [r1 r2 … ri … rn] x = [x1 x2 … xi … xn] 0 T 0 T +1 V. -1 V. vi vi=1 vi=0 xi + zi ]-∞, ∞[ ri Soft Decision Decoding
  • 15. © Tallal Elshabrawy Hard Decision - Each received bit is detected individually - If the voltage is greater than 0 detected bit is 1 - If the voltage is smaller than 0 detected bit is 0 - Detection information of neighbor bits within the same codeword is lost Channel e r v Channel Encoder Waveform Generator Waveform Detection Channel Decoder Channel 0 0 0 r y v = [v1 v2 … vi … vn] e = [e1 e2 … ei … en] r = [r1 r2 … ri … rn] x = [x1 x2 … xi … xn] y = [y1 y2 … yi … yn] 0 -1 -1 -1 0.1 -0.9 0.1 1 0 1 1 Hard Decision: Example 1/3 Repetition Code BPSK
  • 16. © Tallal Elshabrawy Soft Decision - If the accumulated voltage within the codeword is greater than 0 detected bit is 1 - If the accumulated voltage within the codeword is smaller than 0 detected bit is 0 - Information of neighbor bits within the same codeword contributes to the channel decoding process Channel e r v Channel Encoder Waveform Generator Channel Decoder Channel 0 0 0 r v = [v1 v2 … vi … vn] e = [e1 e2 … ei … en] r = [r1 r2 … ri … rn] x = [x1 x2 … xi … xn] y = [y1 y2 … yi … yn] 0 -1 -1 -1 0.1 -0.9 0.1 0 Accumulated Voltage = 0.1-0.9+0.1=-0.7<0 Soft Decision: Example 1/3 Repetition Code BPSK
  • 17. © Tallal Elshabrawy 1/3 Repetition Code BPSK Soft Decision { } 1 , 0 b ∈ Channel Coding (1/3 Repetition Code)   c 000,111  Waveform Representation   b b b b b b s E , E , E , E , E , E             Channel ] n , n , n [ = n 3 2 1 Soft Decision Decoding r * b Uncoded 0 b 0 b Code . p Re 3 / 1 0 b N E = N 3 E 3 = N E Important Note
  • 18. © Tallal Elshabrawy BER Performance Soft Decision 1/3 Repetition Code BPSK Select b*=0 if Note that r0 r1 and r2 are independent and identically distributed. In other words Therefore Similarly     f R b 0 f R b 1            0 1 2 0 1 2 f r r r b 0 f r r r b 1        2 i b 2 r E 2σ i 2 1 f r b 0 e 2πσ         2 i b 2 3 r E 2 2σ i 2 i 0 1 f r b 0 e 2πσ                 2 i b 2 3 r E 2 2σ i 2 i 0 1 f r b 1 e 2πσ            
  • 19. © Tallal Elshabrawy Select b*=0 if ( ) ( ) 1 = b R f > 0 = b R f     2 2 i b i b 2 2 3 3 r E r E 2 2 2σ 2σ 2 2 i 0 i 0 1 1 e e 2πσ 2πσ                          2 2 2 2 i b i b 2 2 i 0 i 0 r + E r E 2σ 2σ             2 2 2 2 i b i b i 0 i 0 r + E r E             2 2 i b i b 2 2 r E r E 2 2 2σ 2σ i 0 i 0 ln e ln e                              2 i i 0 r 0    BER Performance Soft Decision 1/3 Repetition Code BPSK
  • 20. © Tallal Elshabrawy where BER Performance Soft Decision 1/3 Repetition Code BPSK 2 i i 0 Pr error b = 0 =Pr r > 0 b = 0               2 b i i 0 Pr error b = 0 =Pr E n 0                b Pr error b = 0 =Pr n 3 E          2 i i 0 n n    n is Gaussian distributed with mean 0 and variance 3N0/2 b 0 3 E Pr error b = 0 = Q 3N / 2             b 0 3E 1 Pr error b 0 erfc 2 N               2 i b i 0 Pr error b = 0 =Pr n 3 E             
  • 21. © Tallal Elshabrawy Hard Vs Soft Decision: 1/3 Repetition Code BPSK 0 1 2 3 4 5 6 7 8 9 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Eb /N0 P b BPSK Uncoded BPSK 1/3 Repitition Code Hard Decision BPSK 1/3 Repetition Code Soft Decision Coding Gain= 4.7 dB
  • 22. © Tallal Elshabrawy 1/3 Repetition Code 8 PSK Hard Decision 22 0 1 2 3 4 5 6 7 8 9 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Eb /N0 P b BPSK Uncoded 8PSK 1/3 Repetition Code Hard Decision 8PSK 1/3 Repetition Code Soft Decision Coding Gain= 1.5 dB
  • 23. © Tallal Elshabrawy -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 1/16 1/8 1/4 1/2 1 2 4 8 16 Shannon Limit and BER Performance 23 Shannon Limit=-1.6 dB BPSK Uncoded Pb = 10-5 QPSK Uncoded Pb = 10-5 8 PSK Uncoded Pb=10-5 16 PSK Uncoded Pb=10-5 BPSK 1/3 Rep. Code Hard Decision Pb = 10-5 BPSK 1/3 Rep. Code Sodt Decision Pb = 10-5 Normalized Channel Capacity b/s/Hz Eb/N0 1/3 8PSK 1/3 Rep. Code Hard Decision Pb = 10-5 8PSK 1/3 Rep. Code Soft Decision Pb = 10-5