SlideShare a Scribd company logo
1 of 52
Download to read offline
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (08)
The Discrete Fourier Transform
Assist. Prof. Amr E. Mohamed
Introduction
 The discrete-time Fourier transform (DTFT) provided the frequency-
domain (ω) representation for absolutely summable sequences.
 The z-transform provided a generalized frequency-domain (z)
representation for arbitrary sequences.
 These transforms have two features in common.
 First, the transforms are defined for infinite-length sequences.
 Second, and the most important, they are functions of continuous variables
(ω or z).
 In other words, the discrete-time Fourier transform and the z-transform
are not numerically computable transforms.
 The Discrete Fourier Transform (DFT) avoids the two problems
mentioned and is a numerically computable transform that is suitable
for computer implementation.
2
Representation of Periodic
Sequences --- DFS
3
Periodic Sequences
 Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental
period of the sequence).
 Notation: a sequence with period N is satisfying the condition
 where r is any integer.
4
   ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx
x(n) x(n)
)(~)(~ rNnxnx 
Periodic Sequences
 From Fourier analysis we know that the periodic functions can be synthesized
as a linear combination of complex exponentials whose frequencies are
multiples (or harmonics) of the fundamental frequency (which in our case is
2π/N).
 The discrete version of the Fourier Series can be written as
 where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series
coefficients.
 Note That, for integer values of m, we have
(it is called Twiddle Factor)
5
 

k
kn
N
k
N
kn
j
k
kn
N
j
k WkX
N
ekX
N
eXnx )(
~1
)(
~1
)(~ 2
2


nmNk
N
N
nmNk
j
N
kn
j
kn
N WeeW )(
)(
22





Periodic Sequences
 As a result, the summation in the Discrete Fourier Series (DFS) should
contain only N terms:
 The Harmonics are
6





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
knNj
k ene )/2(
)( 
 ,2,1,0 k
Inverse DFS
 The DFS coefficients are given by
 Proof
7







1
0
1
0
2
)(~)(~)(
~ N
k
kn
N
N
k
N
kn
j
WnxenxkX

DFSInverse
)(
~
)()(
~
)(~
1
)(
~
)(~
)(
~1
)(~
1
0
1
0
2
1
0
1
0
)(
21
0
2
1
0
21
0
21
0
2
kXkpPXenx
e
N
PXenx
eePX
N
enx
N
P
N
k
N
kn
j
N
P
N
k
N
nkP
jN
k
N
kn
j
N
k
N
kn
jN
P
N
Pn
jN
k
N
kn
j
















 
 























Synthesis and Analysis (DFS-Pairs)
8
Notation
)/2( Nj
N eW 

Synthesis





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
Analysis
)(
~
)(~ kXnx  DFS
Both have
Period N




1
0
)(~)(
~ N
k
kn
NWnxKX
Example
9
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
10
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
11
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
DFS vs. FT
12
)(~ nx
0 N nN
0 n
)(nx





0
)()(
n
njj
enxeX





1
0
)(
N
n
nj
enx





1
0
)/2(
)(~)(
~ N
n
knNj
enxkX
Nk
j
eXkX
/2
)()(
~



Example
13
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Example
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
14
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
Example
15
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

16


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
17
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
18
Relation To The DTFT
Discrete Fourier Transform(DFT)
19
Recall of DTFT
 DTFT is not suitable for DSP applications because
 In DSP, we are able to compute the spectrum only at specific discrete values of ω
 Any signal in any DSP application can be measured only in a finite number of points.
 A finite signal measures at N-points:
 Where y(n) are the measurements taken at N-points
20









Nn
Nnny
n
nx
,0
)1(0),(
00
)(
Computation of DFT
 Recall of DTFT
 The DFT can be computed by:
 Truncate the summation so that it ranges over finite limits x[n] is a finite-length
sequence.
 Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.
 For an N-point sequence, only N values of frequency samples of X(ejw) at N
distinct frequency points, are sufficient to determine x[n]
and X(ejw) uniquely.
 So, by sampling the spectrum X(ω) in frequency domain
21
DFTenxX
N
X
N
n
N
kn
j





1
0
2
)(k)(
2
),X(kk)(



10,  Nkk
Computation of DFT
 The inverse DFT is given by:
 Proof
22
IDFTekX
N
x
N
k
N
kn
j
 


1
0
2
)(
1
n)(


 
 




























1
0
1
0
1
0
)(
2
1
0
21
0
2
)()()(n)(
1
)(n)(
)(
1
n)(
N
m
N
m
N
n
N
nmk
j
N
k
N
kn
jN
m
N
mk
j
nxnmmxx
e
N
mxx
eemx
N
x



The DFT Pair
23
N
j
N
N
k
kn
N
N
k
N
kn
j
N
n
kn
N
N
n
N
kn
j
eWwhere
NnWkX
N
x
ekX
N
xSynthesis
NkWnxX
enxXAnalysis



2
1
0
1
0
2
1
0
1
0
2
1,...,1,0)(
1
n)(
)(
1
n)(
1,...,1,0)(k)(
)(k)(




















Example
 Find the discrete Fourier Transform of the following N-points discrete
time signal
 Solution:
 On the board
24
   )1(,...),1(),0()(  Nxxxnx
Nth Root of Unity
252
1
2
1
10)
19)
2
1
2
1
8)
7)
2
1
2
1
6)
15)
2
1
2
1
4)
3)
2
1
2
1
2)
11)
9
8
2
9
8
8
8
2
8
8
7
8
2
7
8
6
8
2
6
8
5
8
2
5
8
4
8
2
4
8
3
8
2
3
8
2
8
2
2
8
1
8
2
1
8
0
8
2
0
8
jeW
eW
jeW
jeW
jeW
eW
jeW
jeW
jeW
eW
j
j
j
j
j
j
j
j
j
j






























1*
2/
2
)2/(







NN
k
N
k
N
k
N
Nk
N
k
N
Nk
N
WW
WW
WW
WW
N
j
N eW
2


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

26


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
27
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
28
Relation To The DTFT
DFT - Matrix Formulation
xWX
Nx
x
x
x
WWW
WWW
WWW
NX
X
X
X
NN
N
N
N
N
N
N
NNN
N
NNN


















































 


]1[
]2[
]1[
]0[
1
1
1
1111
)1(
)2(
)1(
)0(
)1)(1()1(21
)1(242
121







29
Computation Complexity
 To calculate the DFT of N-Points discrete time signal, we need:
 (N-1)2 Complex Multiplications
 N(N-1) Complex Additions.
30
IDFT - Matrix Formulation
XW
N
x
XWx
NX
X
X
X
WWW
WWW
WWW
N
Nx
x
x
x
NN
N
N
N
N
N
N
NNN
N
NNN
*
1
)1)(1()1(2)1(
)1(242
)1(21
1
]1[
]2[
]1[
]0[
1
1
1
1111
1
)1(
)2(
)1(
)0(































































31
Matrix Formulation
 Result: Inverse DFT is given by
 which follows easily by checking WHW = WWH = NI, where I denotes the
identity matrix. Hermitian transpose:
 Also, “*” denotes complex conjugation.
32
DFT Interpretation
 DFT sample X(k) specifies the magnitude and phase angle of the kth spectral
component of x[n].
 The amount of power that x[n] contains at a normalized frequency, fk, can be
determined from the power density spectrum defined as
33
)(spectrumPhase
|)(|spectrumMagnitude
kX
kX


10,
|)(|
)(
2
 Nk
N
kX
kSN
Periodicity of DFT Spectrum
 The DFT spectrum is periodic with period N (which is expected, since the DTFT
spectrum is periodic as well, but with period 2π).
34
)()(N)k(
)(N)k(
)(N)k(
2
2
1
0
2
1
0
)(
2
kXekXX
eenxX
enxX
nj
nj
N
n
N
nk
j
N
n
N
nNk
j






















Example
 Example: DFT of a rectangular pulse:
 the rectangular pulse is “interpreted” by the DFT as a spectral line at
frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5)
35
Zero Padding
 What happens with the DFT of this rectangular pulse if we increase N by
zero padding:
 where x(0) = · · · = x(M − 1) = 1. Hence, DFT is
36
   0,...,0,0,0),1(,...),1(),0()(  Mxxxnx
(N-M) Positions
Zero Padding
 DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5)
37
Zero Padding
 Zero padding of analyzed sequence results in “approximating” its DTFT
better,
 Zero padding cannot improve the resolution of spectral components,
because the resolution is “proportional” to 1/M rather than 1/N,
 Zero padding is very important for fast DFT implementation (FFT).
38
Frequency Interval/Resolution
 Frequency Interval/Resolution: DFT’s frequency resolution
 and covered frequency interval
 Frequency resolution is determined only by the length of the observation
interval, whereas the frequency interval is determined by the length of
sampling interval. Thus
 Increase sampling rate =) expand frequency interval,
 Increase observation time =) improve frequency resolution.
 Question: Does zero padding alter the frequency resolution?
 Answer: No, because resolution is determined by the length of observation
interval, and zero padding does not increase this length.
39
Example (DFT Resolution)
 Example (DFT Resolution): Two complex exponentials with two close frequencies
F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds.
Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.
 DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz.
40
Example (DFT Resolution)
 DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz.
41
Example (DFT Resolution)
 DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz.
42
DSF VS DFT
 DFS and DFT pairs are identical, except that
 DFT is applied to finite sequence x(n),
 DFS is applied to periodic sequence .
 Conventional (continuous-time) FS vs. DFS
 CFS represents a continuous periodic signal using an infinite number of
complex exponentials, whereas
 DFS represents a discrete periodic signal using a finite number of complex
exponentials.
43
)(~ nx
Linear & Circular Convolution
44
Linear Convolution
 By Discrete Time Fourier Transform (DTFT)
45









-k
-k
x(k)k)-h(ny(n)
k)-x(nh(k)y(n)
x(n)*h(n)y(n)
)()()(  jjj
eXeHeY 
 )()( j
eYIDTFTny 
Circular Convolution
 Circular convolution of length N is
 By DFT
46
     
     
     








1
0k
C
1
0k
C
NC
kxk-nhny
k-nxkhny
nxnhny
N
N
N
N
)()()( kXkHkY 
 )()( kYIDFTnyC 
Convolution of two periodic sequences
47
How to Compute Circular Convolutions
 Method #1:
48
How to Compute Circular Convolutions
 Method #2:
 Compute the linear convolution and then alias it:
49
How to Compute Circular Convolutions
 Method #3:
 Compute 4-point DFTs, multiply, compute 4-point inverse DFT:
50
Using Cyclic Convs and DFTs to Compute Linear Convs:
51
52

More Related Content

What's hot

DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignAmr E. Mohamed
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filtersop205
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxImranHasan760046
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transformMOHAMMAD AKRAM
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesAmr E. Mohamed
 
Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04Rediet Moges
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal ProcessingSandip Ladi
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1op205
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsAttaporn Ninsuwan
 
Adaptive filter
Adaptive filterAdaptive filter
Adaptive filterA. Shamel
 

What's hot (20)

DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptx
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transform
 
Digital signal processing part2
Digital signal processing part2Digital signal processing part2
Digital signal processing part2
 
Digital signal processing part1
Digital signal processing part1Digital signal processing part1
Digital signal processing part1
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 
Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04
 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
Digital filter structures
Digital filter structuresDigital filter structures
Digital filter structures
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
Adaptive filter
Adaptive filterAdaptive filter
Adaptive filter
 
Multirate DSP
Multirate DSPMultirate DSP
Multirate DSP
 

Similar to DSP_FOEHU - Lec 08 - The Discrete Fourier Transform

Circular conv_7767038.ppt
Circular conv_7767038.pptCircular conv_7767038.ppt
Circular conv_7767038.pptASMZahidKausar
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSProykousik2020
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)TANVIRAHMED611926
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.pptshailaja68
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
Module1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptxModule1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptxrealme6igamerr
 
An Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionAn Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionIDES Editor
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformationsJohn Williams
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFTChenghao Jin
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisAmr E. Mohamed
 
DSP_FOEHU - Lec 09 - Fast Fourier Transform
DSP_FOEHU - Lec 09 - Fast Fourier TransformDSP_FOEHU - Lec 09 - Fast Fourier Transform
DSP_FOEHU - Lec 09 - Fast Fourier TransformAmr E. Mohamed
 
signal homework
signal homeworksignal homework
signal homeworksokok22867
 

Similar to DSP_FOEHU - Lec 08 - The Discrete Fourier Transform (20)

lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
 
Dft
DftDft
Dft
 
Circular conv_7767038.ppt
Circular conv_7767038.pptCircular conv_7767038.ppt
Circular conv_7767038.ppt
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
ch3-2
ch3-2ch3-2
ch3-2
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.ppt
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Module1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptxModule1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptx
 
An Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionAn Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal Compression
 
lecture_16.ppt
lecture_16.pptlecture_16.ppt
lecture_16.ppt
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformations
 
Unit ii
Unit iiUnit ii
Unit ii
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFT
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
 
DSP_FOEHU - Lec 09 - Fast Fourier Transform
DSP_FOEHU - Lec 09 - Fast Fourier TransformDSP_FOEHU - Lec 09 - Fast Fourier Transform
DSP_FOEHU - Lec 09 - Fast Fourier Transform
 
signal homework
signal homeworksignal homework
signal homework
 

More from Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systemsAmr E. Mohamed
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsAmr E. Mohamed
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsAmr E. Mohamed
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)Amr E. Mohamed
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsAmr E. Mohamed
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - IntroductionAmr E. Mohamed
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)Amr E. Mohamed
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsAmr E. Mohamed
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingAmr E. Mohamed
 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxAmr E. Mohamed
 
SE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningSE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningAmr E. Mohamed
 
SE18_SE_Lec 12_ Project Management 1
SE18_SE_Lec 12_ Project Management 1SE18_SE_Lec 12_ Project Management 1
SE18_SE_Lec 12_ Project Management 1Amr E. Mohamed
 
SE18_Lec 10_ UML Behaviour and Interaction Diagrams
SE18_Lec 10_ UML Behaviour and Interaction DiagramsSE18_Lec 10_ UML Behaviour and Interaction Diagrams
SE18_Lec 10_ UML Behaviour and Interaction DiagramsAmr E. Mohamed
 

More from Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
 
SE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningSE18_Lec 13_ Project Planning
SE18_Lec 13_ Project Planning
 
SE18_SE_Lec 12_ Project Management 1
SE18_SE_Lec 12_ Project Management 1SE18_SE_Lec 12_ Project Management 1
SE18_SE_Lec 12_ Project Management 1
 
SE18_Lec 10_ UML Behaviour and Interaction Diagrams
SE18_Lec 10_ UML Behaviour and Interaction DiagramsSE18_Lec 10_ UML Behaviour and Interaction Diagrams
SE18_Lec 10_ UML Behaviour and Interaction Diagrams
 

Recently uploaded

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 

Recently uploaded (20)

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 

DSP_FOEHU - Lec 08 - The Discrete Fourier Transform

  • 2. Introduction  The discrete-time Fourier transform (DTFT) provided the frequency- domain (ω) representation for absolutely summable sequences.  The z-transform provided a generalized frequency-domain (z) representation for arbitrary sequences.  These transforms have two features in common.  First, the transforms are defined for infinite-length sequences.  Second, and the most important, they are functions of continuous variables (ω or z).  In other words, the discrete-time Fourier transform and the z-transform are not numerically computable transforms.  The Discrete Fourier Transform (DFT) avoids the two problems mentioned and is a numerically computable transform that is suitable for computer implementation. 2
  • 4. Periodic Sequences  Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental period of the sequence).  Notation: a sequence with period N is satisfying the condition  where r is any integer. 4    ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx x(n) x(n) )(~)(~ rNnxnx 
  • 5. Periodic Sequences  From Fourier analysis we know that the periodic functions can be synthesized as a linear combination of complex exponentials whose frequencies are multiples (or harmonics) of the fundamental frequency (which in our case is 2π/N).  The discrete version of the Fourier Series can be written as  where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series coefficients.  Note That, for integer values of m, we have (it is called Twiddle Factor) 5    k kn N k N kn j k kn N j k WkX N ekX N eXnx )( ~1 )( ~1 )(~ 2 2   nmNk N N nmNk j N kn j kn N WeeW )( )( 22     
  • 6. Periodic Sequences  As a result, the summation in the Discrete Fourier Series (DFS) should contain only N terms:  The Harmonics are 6      1 0 )( ~1 )(~ N k kn NWkX N nx knNj k ene )/2( )(   ,2,1,0 k
  • 7. Inverse DFS  The DFS coefficients are given by  Proof 7        1 0 1 0 2 )(~)(~)( ~ N k kn N N k N kn j WnxenxkX  DFSInverse )( ~ )()( ~ )(~ 1 )( ~ )(~ )( ~1 )(~ 1 0 1 0 2 1 0 1 0 )( 21 0 2 1 0 21 0 21 0 2 kXkpPXenx e N PXenx eePX N enx N P N k N kn j N P N k N nkP jN k N kn j N k N kn jN P N Pn jN k N kn j                                           
  • 8. Synthesis and Analysis (DFS-Pairs) 8 Notation )/2( Nj N eW   Synthesis      1 0 )( ~1 )(~ N k kn NWkX N nx Analysis )( ~ )(~ kXnx  DFS Both have Period N     1 0 )(~)( ~ N k kn NWnxKX
  • 9. Example 9 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 10. Example 10 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 11. Example 11 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 12. DFS vs. FT 12 )(~ nx 0 N nN 0 n )(nx      0 )()( n njj enxeX      1 0 )( N n nj enx      1 0 )/2( )(~)( ~ N n knNj enxkX Nk j eXkX /2 )()( ~   
  • 13. Example 13 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 14. Example 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX 14 )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 15. 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx Example 15 )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 16. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  16      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 17. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 17 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 18.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 18 Relation To The DTFT
  • 20. Recall of DTFT  DTFT is not suitable for DSP applications because  In DSP, we are able to compute the spectrum only at specific discrete values of ω  Any signal in any DSP application can be measured only in a finite number of points.  A finite signal measures at N-points:  Where y(n) are the measurements taken at N-points 20          Nn Nnny n nx ,0 )1(0),( 00 )(
  • 21. Computation of DFT  Recall of DTFT  The DFT can be computed by:  Truncate the summation so that it ranges over finite limits x[n] is a finite-length sequence.  Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.  For an N-point sequence, only N values of frequency samples of X(ejw) at N distinct frequency points, are sufficient to determine x[n] and X(ejw) uniquely.  So, by sampling the spectrum X(ω) in frequency domain 21 DFTenxX N X N n N kn j      1 0 2 )(k)( 2 ),X(kk)(    10,  Nkk
  • 22. Computation of DFT  The inverse DFT is given by:  Proof 22 IDFTekX N x N k N kn j     1 0 2 )( 1 n)(                                   1 0 1 0 1 0 )( 2 1 0 21 0 2 )()()(n)( 1 )(n)( )( 1 n)( N m N m N n N nmk j N k N kn jN m N mk j nxnmmxx e N mxx eemx N x   
  • 24. Example  Find the discrete Fourier Transform of the following N-points discrete time signal  Solution:  On the board 24    )1(,...),1(),0()(  Nxxxnx
  • 25. Nth Root of Unity 252 1 2 1 10) 19) 2 1 2 1 8) 7) 2 1 2 1 6) 15) 2 1 2 1 4) 3) 2 1 2 1 2) 11) 9 8 2 9 8 8 8 2 8 8 7 8 2 7 8 6 8 2 6 8 5 8 2 5 8 4 8 2 4 8 3 8 2 3 8 2 8 2 2 8 1 8 2 1 8 0 8 2 0 8 jeW eW jeW jeW jeW eW jeW jeW jeW eW j j j j j j j j j j                               1* 2/ 2 )2/(        NN k N k N k N Nk N k N Nk N WW WW WW WW N j N eW 2  
  • 26. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  26      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 27. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 27 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 28.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 28 Relation To The DTFT
  • 29. DFT - Matrix Formulation xWX Nx x x x WWW WWW WWW NX X X X NN N N N N N N NNN N NNN                                                       ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 )1( )2( )1( )0( )1)(1()1(21 )1(242 121        29
  • 30. Computation Complexity  To calculate the DFT of N-Points discrete time signal, we need:  (N-1)2 Complex Multiplications  N(N-1) Complex Additions. 30
  • 31. IDFT - Matrix Formulation XW N x XWx NX X X X WWW WWW WWW N Nx x x x NN N N N N N N NNN N NNN * 1 )1)(1()1(2)1( )1(242 )1(21 1 ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 1 )1( )2( )1( )0(                                                                31
  • 32. Matrix Formulation  Result: Inverse DFT is given by  which follows easily by checking WHW = WWH = NI, where I denotes the identity matrix. Hermitian transpose:  Also, “*” denotes complex conjugation. 32
  • 33. DFT Interpretation  DFT sample X(k) specifies the magnitude and phase angle of the kth spectral component of x[n].  The amount of power that x[n] contains at a normalized frequency, fk, can be determined from the power density spectrum defined as 33 )(spectrumPhase |)(|spectrumMagnitude kX kX   10, |)(| )( 2  Nk N kX kSN
  • 34. Periodicity of DFT Spectrum  The DFT spectrum is periodic with period N (which is expected, since the DTFT spectrum is periodic as well, but with period 2π). 34 )()(N)k( )(N)k( )(N)k( 2 2 1 0 2 1 0 )( 2 kXekXX eenxX enxX nj nj N n N nk j N n N nNk j                      
  • 35. Example  Example: DFT of a rectangular pulse:  the rectangular pulse is “interpreted” by the DFT as a spectral line at frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5) 35
  • 36. Zero Padding  What happens with the DFT of this rectangular pulse if we increase N by zero padding:  where x(0) = · · · = x(M − 1) = 1. Hence, DFT is 36    0,...,0,0,0),1(,...),1(),0()(  Mxxxnx (N-M) Positions
  • 37. Zero Padding  DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5) 37
  • 38. Zero Padding  Zero padding of analyzed sequence results in “approximating” its DTFT better,  Zero padding cannot improve the resolution of spectral components, because the resolution is “proportional” to 1/M rather than 1/N,  Zero padding is very important for fast DFT implementation (FFT). 38
  • 39. Frequency Interval/Resolution  Frequency Interval/Resolution: DFT’s frequency resolution  and covered frequency interval  Frequency resolution is determined only by the length of the observation interval, whereas the frequency interval is determined by the length of sampling interval. Thus  Increase sampling rate =) expand frequency interval,  Increase observation time =) improve frequency resolution.  Question: Does zero padding alter the frequency resolution?  Answer: No, because resolution is determined by the length of observation interval, and zero padding does not increase this length. 39
  • 40. Example (DFT Resolution)  Example (DFT Resolution): Two complex exponentials with two close frequencies F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds. Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.  DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz. 40
  • 41. Example (DFT Resolution)  DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz. 41
  • 42. Example (DFT Resolution)  DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz. 42
  • 43. DSF VS DFT  DFS and DFT pairs are identical, except that  DFT is applied to finite sequence x(n),  DFS is applied to periodic sequence .  Conventional (continuous-time) FS vs. DFS  CFS represents a continuous periodic signal using an infinite number of complex exponentials, whereas  DFS represents a discrete periodic signal using a finite number of complex exponentials. 43 )(~ nx
  • 44. Linear & Circular Convolution 44
  • 45. Linear Convolution  By Discrete Time Fourier Transform (DTFT) 45          -k -k x(k)k)-h(ny(n) k)-x(nh(k)y(n) x(n)*h(n)y(n) )()()(  jjj eXeHeY   )()( j eYIDTFTny 
  • 46. Circular Convolution  Circular convolution of length N is  By DFT 46                           1 0k C 1 0k C NC kxk-nhny k-nxkhny nxnhny N N N N )()()( kXkHkY   )()( kYIDFTnyC 
  • 47. Convolution of two periodic sequences 47
  • 48. How to Compute Circular Convolutions  Method #1: 48
  • 49. How to Compute Circular Convolutions  Method #2:  Compute the linear convolution and then alias it: 49
  • 50. How to Compute Circular Convolutions  Method #3:  Compute 4-point DFTs, multiply, compute 4-point inverse DFT: 50
  • 51. Using Cyclic Convs and DFTs to Compute Linear Convs: 51
  • 52. 52