SlideShare a Scribd company logo
1 of 6
Highlights From SU(2)XU(1) Basic Standard Model Construction
Ferdinand Joseph P. Roaa
, Alwielland Q. Bello b
, Engr. Leo Cipriano L. Urbiztondo Jr.c
a
Independent Physics Researcher, 9005 Balingasag, Misamis Oriental
b
Natural Sciences Dept., Bukidnon State University
8700 Malaybalay City, Bukidnon
c
IECEP, Sound Technology Institute of the Philippines
Currently connected as technical consultant/expert for St. Michael College of Caraga (SMCC)
8600 Butuan City, Agusan del Norte
Abstract
In this paper we present some important highlights taken from our study course in the subject of
Standard Model of particle physics although in this current draft we are limited only to discuss the basics of
SU(2)XU(1) construction. The highlights exclude the necessary additional neutrinos aside from the left-
handed ones which are presented here as massless.
Keywords: Standard model, gauge group, Lagrangian, doublet, singlet
1. Introduction
This paper serves as an exposition on an
initial and partial construction of SU(2)XU(1)
model in Quantum Field Theory whose complete
SU(2)XU(1) structure represents the Electro-
Weak Standard model. The discussions center on
Lagrangian that must be invariant or symmetric
under the SU(2)XU(1) gauge group. It must be
noted that the whole of The Standard Model has
the mathematical symmetry of the
SU(3)XSU(2)XU(1) gauge group to include the
Strong interaction that goes by the name of
Chromodynamics. Such is ofcourse beyond the
scope of this present draft.
In its present form, this paper is mainly
based on our group’s study notes that include our
answers to some basic exercises and workouts
required for progression. So we might have used
some notations by our own convenient choice
though as we understand these contain the same
notational significance as that used in our main
references.
The initial and partial SU(2)XU(1)
construction presented here is intended primarily
to illustrate gauge transformation of fields and
how such fields must transform so as to observe
invariance or symmetry of the given Lagrangian.
Concerning neutrinos, the Dirac left-
handed spinor doublet discussed here aside from
the left-handed electron it contains, it also has a
left-handed neutrino that is rendered massless in
the Yukawa coupling terms. In addition to these,
the other Fermion is the right-handed electron. As
there is only one left-handed spinor doublet and
one right-handed spinor singlet no other type of
fermions such as additional neutrinos are present
in this initial and partial SU(2)XU(1)
construction. In a later section, it will be shown
how this left-handed neutrino is made massless in
the mentioned Yukawa coupling terms.
2. Partially Unified Lagrangian
Let us start our highlights say with a
partially unified Lagrangian,
β„’( π‘†π‘ˆ(2) Γ— π‘ˆ(1)) π‘ƒπ‘Žπ‘Ÿπ‘‘ = β„’( πœ“ 𝐿, πœ“2
𝑅
, πœ™ ) +
β„’( π‘Š, 𝐡 )
(1.1)
This is for fields under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) gauge
symmetry group [1]. In this, the necessary
additional fermions in the complete Electro-Weak
theory [2] are not yet included. The basic fermions
present here are contained in the component
Lagrangian
β„’( πœ“ 𝐿,πœ“2
𝑅
, πœ™ ) = π‘–πœ“Μ… 𝐿 𝛾 πœ‡ π·πœ‡(𝐿) πœ“ 𝐿 +
π‘–πœ“Μ…2
𝑅
𝛾 πœ‡ π·πœ‡(𝑅) πœ“2
𝑅
βˆ’
𝑦( πœ“Μ…2
𝑅
πœ™ † πœ“ 𝐿 + πœ“Μ… 𝐿 πœ™πœ“2
𝑅 ) +
1
2
| π·πœ‡ πœ™|
2
βˆ’ 𝑉(πœ™)
(1.2)
This component Lagrangian incorporates a
Left-handed spinor doublet, πœ“ 𝐿, Right-handed
spinor singlet πœ“2
𝑅
and scalar doublet πœ™. The Left-
handed spinor doublet consists of initial Left-
handed Fermions – the left-handed neutrino πœ“1
𝐿
and the left-handed electron, πœ“2
𝐿
. The right-handed
spinor singlet represents for the right-handed
electron, while the scalar doublet represents for the
Higgs field, which consists of a vacuum
expectation value (vev) and a scalar component
called the Higgs Boson, then three Goldstone
bosons.
As a partially unified Lagrangian under
the cited gauge symmetry group, Lagrangian (1.1)
also consists of a component part β„’( π‘Š, 𝐡 ) that
contains the three components of π‘†π‘ˆ(2) vector
gauge boson field π‘Šβƒ—βƒ—βƒ— and one π‘ˆ(1) vector gauge
boson field, π΅πœ‡. Such component Lagrangian is
given by[3, 4]
β„’( π‘Š, 𝐡 ) = β„’ π‘Š + β„’ 𝐡
(1.3)
where one subcomponent goes for the boson field
π‘Šβƒ—βƒ—βƒ—
β„’ π‘Š = βˆ’
1
4
πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ = βˆ’
1
4
βˆ‘πΉπœ‡πœˆ
(𝑖)
𝐹(𝑖)
πœ‡πœˆ
3
𝑖=1
(1.4)
(We note: Greek index as space index, while Latin
index as particle index.)
The anti-symmetric tensor πΉπœ‡πœˆ in (1.4) is
given by
πΉπœ‡πœˆ = πœ•πœ‡ π‘Šβƒ—βƒ—βƒ— 𝜈 βˆ’ πœ•πœˆ π‘Šβƒ—βƒ—βƒ— πœ‡ βˆ’ 2π‘„β€²π‘Šβƒ—βƒ—βƒ— πœ‡ Γ— π‘Šβƒ—βƒ—βƒ— 𝜈
(1.5)
The π‘†π‘ˆ(2) vector gauge boson takes three
components, π‘Šβƒ—βƒ—βƒ— = (π‘Šπœ‡
(1)
, π‘Šπœ‡
(2)
π‘Šπœ‡
(3)
), where
Latin indices take parameter values 1, 2, 3. In
short hand, we write for a component in the cross
product as [5]
𝐴 Γ— 𝐡⃗ | π‘Ž
= πœ€ π‘Žπ‘π‘ 𝐴 𝑏 𝐡 𝑐 (1.6)
This is written in terms of the components πœ€ π‘Žπ‘π‘ of
Levi-Civita symbol.
The remaining subcomponent of (1.3) is
for the solely U(1) gauge boson π΅πœ‡ whose
Lagrangian in turn is given by
β„’ 𝐡 = βˆ’
1
4
( πœ•πœ‡ 𝐡 𝜈 βˆ’ πœ•πœˆ π΅πœ‡)
2
(1.7)
We must also take note the complex linear
combinations that give out the W-plus and W-
minus gauge bosons
π‘Šπœ‡
(Β±)
=
1
√2
(π‘Šπœ‡
(1)
Β± 𝑖 π‘Šπœ‡
(2)
) (1.8)
and the SO(2)-like rotations
𝑍 πœ‡ = π΅πœ‡ 𝑠𝑖𝑛𝛼 βˆ’ π‘Š(3)πœ‡ π‘π‘œπ‘ π›Ό (1.9.1)
𝐴 πœ‡
π‘’π‘š = π΅πœ‡ π‘π‘œπ‘ π›Ό+ π‘Š(3)πœ‡ 𝑠𝑖𝑛𝛼 (1.9.2)
with respect to the mixing angle alpha, which
mixing (rotation-like) gives out one massive Z
field and one massless gauge boson that represents
the electromagnetic field 𝐴 πœ‡
π‘’π‘š.
3. Transformations Under The
SU(2)XU(1) Subgroups
In this section, we highlight the left-
handed spinor doublet as the specific illustration
whose π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 subgroup is characterized
by the hypercharge π‘ŒπΏ, a label we choose by our
own convenient notation. Such subgroup is
represented by the matrix
π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— (2.1)
This is in exponentiated form, where πœŽπ‘– (𝑖 =
1, 2,3) are the Pauli matrices. We must make the
identifications
π‘„β€²πœŽ βˆ™ πœ’ = π‘„β€²βˆ‘ πœŽπ‘– πœ’π‘–
3
𝑖=1
πœ’ π‘ž = π‘„β€²πœ’3
(2.2)
Associated with this particular subgroup is
the covariant derivative operator for the left-
handed spinor doublet as characterized also by the
hypercharge, π‘ŒπΏ.
π·πœ‡(𝐿) = πœ•πœ‡ + π‘–π‘„π‘ŒπΏ π΅πœ‡ + 𝑖 π‘„β€²βˆ‘ πœŽπ‘– π‘Š(𝑖)πœ‡
3
𝑖=1
(2.3)
We see in this that the hypercharge goes along
with the U(1) gauge field.
We note in the matrix (2.1) the U(1) part
as given by π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž, while the SU(2) part by the
2X2 matrix π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— . Under this subgroup, the
left-handed spinor doublet transforms as
πœ“ 𝐿 β†’ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 (2.4)
So to first order in 𝑄′ this will result in the
transformation of covariant derivative operation
π·πœ‡(𝐿) π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 =
π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— ( πœ•πœ‡ + π‘–π‘„π‘ŒπΏ( π΅πœ‡ βˆ’
π‘„βˆ’1 πœ•πœ‡ πœ’ π‘ž)+ π‘–π‘„β€²πœŽ βˆ™ ( π‘Šβƒ—βƒ—βƒ— πœ‡ βˆ’ πœ•πœ‡ πœ’ βˆ’ 2𝑄′ πœ’ Γ—
π‘Šβƒ—βƒ—βƒ— πœ‡) ) πœ“ 𝐿
(2.5)
For our present purposes let us take the
invariance of Lagrangian (1.1) with respect to the
transformation of the left-handed spinor doublet
that is given in (2.4) under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿
gauge group. This invariance requires that the
gauge vector bosons must also transform in the
following ways
π΅πœ‡ β†’ π΅πœ‡ + π‘„βˆ’1 πœ•πœ‡ πœ’ π‘ž (2.6.1)
for the U(1) gauge field, while to first order in 𝑄′,
the π‘†π‘ˆ(2) vector boson transforms as
π‘Šβƒ—βƒ—βƒ— πœ‡ β†’ π‘Šβƒ—βƒ—βƒ— πœ‡ + πœ•πœ‡ πœ’ + 2𝑄′ πœ’ Γ— π‘Šβƒ—βƒ—βƒ— πœ‡ (2.6.2)
Such transformations are needed to cancel the
extra terms picked up in (2.5) when the left-
handed spinor doublet transforms under its own
gauge subgroup.
For these results, it is fairly
straightforward exercise to obtain the following
approximated identity
𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ—
βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 β‰ˆ
π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— ( 𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡ + 𝑖𝑄′[( 𝜎 0 βˆ™
πœ’),(𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡)] ) πœ“ 𝐿
(2.7.1)
in which we note of the commutator
[( 𝜎 βˆ™ πœ’),(𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡)] = 𝑖2𝜎 βˆ™ ( πœ’ Γ— π‘Šβƒ—βƒ—βƒ— πœ‡)
(2.7.2)
which is also a straightforward exercise to prove.
Given the SU(2) gauge transformation
(2.6.2), the W-gauge boson Lagrangian β„’ π‘Š also
transforms as
βˆ’4β„’ π‘Š = πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ β†’ πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ +
2(2)π‘„β€²πΉπœ‡πœˆ βˆ™ (πœ’ Γ— 𝐹 πœ‡πœˆ)
(2.8.1)
This is also taken to first order in 𝑄′. By cyclic
permutation we note that
πΉπœ‡πœˆ βˆ™ ( πœ’ Γ— 𝐹 πœ‡πœˆ) = πœ’ βˆ™ ( 𝐹 πœ‡πœˆ Γ— πΉπœ‡πœˆ ) = 0
(2.8.2)
This drops the second major term of (2.8.1) off,
proving the invariance of β„’ π‘Š under gauge
transformation.
We can proceed considering the given
Spinor doublet under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 diagonal
subgroup whose matrix is given by
π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘‘π‘–π‘Žπ‘”( π‘’βˆ’π‘–(1+π‘ŒπΏ )πœ’ π‘ž, 𝑒 𝑖(1βˆ’π‘ŒπΏ )πœ’ π‘ž)
(2.9.1)
This matrix utilizes the 𝜎3 Pauli matrix and the
Spinor doublet transforms as
πœ“ 𝐿 β†’ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ“ 𝐿 (2.9.2)
It is to be noted that as a doublet this Spinor
doublet is a 2X1 column vector wherein each
element in a row is a left-handed Dirac spinor in
itself.
πœ“ 𝐿 = (
πœ“1
𝐿
πœ“2
𝐿
) (2.9.3)
In this draft the authors’ convenient
notation for each of these left-handed Dirac
spinors is given by
πœ“ 𝑖
𝐿
=
1
2
(1 + 𝛾5) πœ“ 𝑖 (2.9.4)
with Hermitian left-handed ad joint spinor given
as
πœ“Μ… 𝑖
𝐿
= (πœ“ 𝑖
𝐿
)† 𝛾0 =
1
2
πœ“Μ… 𝑖(1βˆ’ 𝛾5)
(2.9.5)
In our notations, our fifth Dirac gamma matrix 𝛾5
has the immediate property
𝛾5 = βˆ’π›Ύ5 (2.9.6)
Alternatively, under this diagonal
subgroup and given (1.9.1) and (1.9.2), we can
write the covariant left-handed derivative operator
in terms of the 𝑍 πœ‡ field and the electromagnetic
field, 𝐴 πœ‡
π‘’π‘š.
π·πœ‡(𝐿) = πœ•πœ‡ + 𝑖𝑄′( 𝜎1 π‘Š(1)πœ‡ + 𝜎2 π‘Š(2)πœ‡) +
𝑖𝑄′
π‘π‘œπ‘ π›Ό
( π‘ŒπΏ 𝑠𝑖𝑛2 𝛼 βˆ’ 𝜎3 π‘π‘œπ‘ 2 𝛼) 𝑍 πœ‡ +
𝑖𝑄′( 𝜎3 + π‘ŒπΏ ) 𝐴 πœ‡
π‘’π‘š 𝑠𝑖𝑛𝛼
(2.10)
It is to be noted that π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 is
non-Abelian gauge group whose generators (the
Pauli matrices) do not commute so that we can
have the following results
𝜎1 π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( 𝜎1 π‘π‘œπ‘ 2πœ’ π‘ž βˆ’ 𝜎2 𝑠𝑖𝑛2πœ’ π‘ž)
(2.11.1)
and
𝜎2 π‘’βˆ’π‘– 𝜎3 πœ’ π‘ž = π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( 𝜎1 𝑠𝑖𝑛2πœ’ π‘ž + 𝜎2 π‘π‘œπ‘ 2πœ’ π‘ž)
(2.11.2)
As the Left-handed spinor doublet
transforms under (2.9.2) the covariant
differentiation with (2.10) also takes the
corresponding transformation
π·πœ‡(𝐿) π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ“ 𝐿 = π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( πœ•πœ‡ βˆ’
𝑖( π‘ŒπΏ + 𝜎3 ) πœ•πœ‡ πœ’ π‘ž + π‘–π‘„π‘ŒπΏ π΅πœ‡ +
𝑖 𝑄′( 𝜎1 π‘Šβ€²
(1) πœ‡ + 𝜎2 π‘Šβ€²
(2) πœ‡) +
𝑖 𝑄′ 𝜎3 π‘Š(3)πœ‡ ) πœ“ 𝐿 (2.12)
where we take note of the SO(2) like rotations
π‘Š(1)πœ‡ β†’ π‘Šβ€²
(1) πœ‡ = π‘Š(1)πœ‡ π‘π‘œπ‘ 2πœ’ π‘ž +
π‘Š(2)πœ‡ 𝑠𝑖𝑛2πœ’ π‘ž
π‘Š(2)πœ‡ β†’ π‘Šβ€²
(2) πœ‡ = βˆ’π‘Š(1)πœ‡ 𝑠𝑖𝑛2πœ’ π‘ž +
π‘Š(2)πœ‡ π‘π‘œπ‘ 2πœ’ π‘ž (2.13)
A quick drill would show the invariance
βˆ‘ π‘Šβ€²
( 𝑖) πœ‡ π‘Šβ€²(𝑖)
πœ‡
2
𝑖=1
= βˆ‘ π‘Š( 𝑖) πœ‡ π‘Š(𝑖)
πœ‡
2
𝑖=1
(2.14)
Corresponding to the transformation
(2.12) of covariant differentiation is the U(1) like
gauge transformation of π‘Š(3)πœ‡.
π‘Š(3)πœ‡ β†’ π‘Š(3)πœ‡ + π‘„β€²βˆ’1 πœ•πœ‡ πœ’ π‘ž
(2.15.1)
These transformations consequently lead
to U(1) gauge transformation of 𝐴 πœ‡
π‘’π‘š.
𝐴 πœ‡
π‘’π‘š β†’ 𝐴 πœ‡
π‘’π‘š + 𝛿𝐴 πœ‡
π‘’π‘š
𝛿𝐴 πœ‡
π‘’π‘š = ( π‘„βˆ’1 π‘π‘œπ‘ π›Ό + π‘„β€²βˆ’1
𝑠𝑖𝑛𝛼) πœ•πœ‡ πœ’ π‘ž =
2π‘’βˆ’1 πœ•πœ‡ πœ’ π‘ž
(2.15.2)
where
𝑄′ 𝑠𝑖𝑛𝛼 = 𝑄 π‘π‘œπ‘ π›Ό = 𝑒/2 (2.15.3)
The massive 𝑍 πœ‡ field stays gauge invariant
𝑍 πœ‡ β†’ 𝑍 πœ‡ + 𝛿𝑍 πœ‡ = 𝑍 πœ‡ (2.16.1)
since
𝛿𝑍 πœ‡ = ( π‘„βˆ’1 𝑠𝑖𝑛𝛼 βˆ’ π‘„β€²βˆ’1
π‘π‘œπ‘ π›Ό ) πœ•πœ‡ πœ’ π‘ž = 0
(2.16.2)
In order to conform with conventional or
that is standard notations, we may have to identify
the spacetime-dependent parameter πœ’ π‘ž in terms of
Ξ›(π‘₯ πœ‡).
πœ’ π‘ž =
1
2
𝑒Λ (2.17)
so that the U(1) gauge transformation of the
electromagnetic field can be written as
𝐴 πœ‡
π‘’π‘š β†’ 𝐴 πœ‡
π‘’π‘š + πœ•πœ‡ Ξ› (2.18)
4. The Yukawa Coupling
From (1.2) let us proceed with the
Yukawa coupling.
β„’ 𝑦 = βˆ’π‘¦( πœ“Μ…2
𝑅
πœ™ † πœ“ 𝐿 + πœ“Μ… 𝐿 πœ™πœ“2
𝑅 )
(3.1.1)
Under all (diagonal) subgroups of
SU(2)XU(1), the transformations lead to the
following end result
πœ“Μ… 𝐿 πœ™πœ“2
𝑅
β†’ πœ“Μ… 𝐿 πœ™πœ“2
𝑅
π‘’βˆ’π‘–(1βˆ’ π‘ŒπΏ )πœ’ π‘ž π‘’βˆ’π‘– π‘Œπ‘… πœ’ π‘ž
(3.1.2)
or
πœ“Μ…2
𝑅
πœ™ † πœ“ 𝐿 β†’ πœ“Μ…2
𝑅
πœ™ † πœ“ 𝐿 𝑒 π‘–π‘Œπ‘… πœ’ π‘ž 𝑒 𝑖(1βˆ’ π‘ŒπΏ )πœ’ π‘ž
(3.1.3)
We take note in here that to the right-
handed spinor singlet we attribute the hypercharge
π‘Œπ‘…. SU(2)XU(1) symmetry also requires the
Yukawa term to remain invariant under
SU(2)XU(1) gauge transformations. This
invariance requires a relation between
hypercharges that is given by
π‘Œπ‘… = π‘ŒπΏ βˆ’ 1 (3.2)
Under U(1) gauge subgroup the right-
handed spinor singlet transforms as
πœ“2
𝑅
β†’ π‘’βˆ’π‘–π‘Œ 𝑅 πœ’ π‘ž πœ“2
𝑅
(3.3.1)
while under the SU(2)XU(1) the scalar doublet
transforms as
πœ™ β†’ π‘’βˆ’π‘–πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ™ (3.3.2)
The values of the mentioned hypercharges
play important roles in the coupling or decoupling
of the fields involved in the Yukawa terms. For the
left-handed spinor doublet its hypercharge has the
value π‘ŒπΏ = βˆ’ 1. This value decouples the left-
handed neutrino from the electromagnetic field so
that only the left-handed electron interacts with the
electromagnetic field. This can be seen in the
matrix
( 𝜎3 + π‘ŒπΏ) πœ“ 𝐿 = (
0
βˆ’2πœ“2
𝐿) (3.4.1)
(As noted.)
( 𝜎3 βˆ’ 1 ) πœ“ 𝐿 𝐴 πœ‡
π‘’π‘š = (
0
βˆ’2πœ“2
𝐿) 𝐴 πœ‡
π‘’π‘š
(3.4.2)
In (3.2) we consider 1 as the hypercharge
given to the scalar doublet and with this value we
see in the following matrix
(1 + 𝜎3 ) πœ™0 𝐴 πœ‡
π‘’π‘š = (
0
0
) 𝐴 πœ‡
π‘’π‘š (3.4.3)
that the electromagnetic field decouples from the
vacuum expectation value (vev) πœ™0 of the Higgs
field thus, rendering this electromagnetic field
massless.
Conveniently, we can re-group the terms
in (3.1.1) so as to separate out a mass term and an
interaction term.
β„’ 𝑦 = β„’ 𝑦(π‘šπ‘Žπ‘ π‘ ) + β„’ 𝑦(𝑖𝑛𝑑) (3.5)
The mass term gives masses to the
electrons and the interaction term gives the
interaction of the Higgs boson with fermions that
have mass. This mass term basically gives the
interactions of the left-handed and right-handed
electrons with the constant real component 𝛽 of
the scalar doublet. (This constant real component
is the vacuum expectation value (vev) of the Higgs
field.) In these said interactions the mentioned
fermions acquire their masses in the process.
β„’ 𝑦(π‘šπ‘Žπ‘ π‘ ) = βˆ’π‘¦π›½( πœ“Μ…2
𝑅
πœ“2
𝐿
+ πœ“Μ…2
𝐿
πœ“2
𝑅 ) = βˆ’π‘¦π›½πœ“Μ…2 πœ“2
(3.6.1)
(Noted)
πœ“Μ…2
𝑅
πœ“2
𝐿
=
1
2
πœ“Μ…2(1 + 𝛾5) πœ“2 (3.6.2)
πœ“Μ…2
𝐿
πœ“2
𝑅
=
1
2
πœ“Μ…2(1 βˆ’ 𝛾5) πœ“2 (3.6.3)
The left-handed neutrino is ultimately not
included in the mass term and the absence of this
fermion in this term signifies that the said fermion
does not interact with the constant real component
of the scalar doublet so it does not acquire mass.
The masses of the other fermions that do interact
with the constant real component of the scalar
doublet are directly proportional to that vev,
π‘š πœ“ ∝ 𝛽 with y as the constant of proportionality.
In the other Yukawa interaction term, the
real scalar component (the Higgs boson πœ‚) of the
scalar doublet can be seen to interact with both the
left-handed and right-handed electrons.
β„’ 𝑦( 𝑖𝑛𝑑) = βˆ’π‘¦πœ‚( πœ“Μ…2
𝑅
πœ“2
𝐿
+ πœ“Μ…2
𝐿
πœ“2
𝑅 ) βˆ’ 𝑦( πœ‘1 πœ“Μ…1
𝐿
+
π‘–πœ€ πœ“Μ…2
𝐿 ) πœ“2
𝑅
βˆ’ π‘¦πœ“Μ…2
𝑅( πœ‘1
βˆ—
πœ“1
𝐿
βˆ’ π‘–πœ€πœ“2
𝐿)
(3.7)
Although in (3.7) we see that the massless
left-handed neutrino seems to interact with the
right-handed electron any such interaction will just
be removed by a gauge choice
𝑅𝑒[ πœ‘1] = πΌπ‘š[ πœ‘1] = πΌπ‘š[ πœ‘2] = 0 (3.8.1)
πœ‘2 = πœ‚ + π‘–πœ€
𝑅𝑒[ πœ‘2] = πœ‚
that sets the Goldstone bosons to vanish. After this
gauge choice is imposed, the interaction term (3.7)
will just contain the interaction of the Higgs boson
with those fermions that gain masses, the
electrons.
β„’ 𝑦( 𝑖𝑛𝑑) = βˆ’π‘¦πœ‚πœ“Μ…2 πœ“2 (3.8.2)
While the first generation fermions (with
the exception of the massless left-handed neutrino)
such as the left-handed and right-handed electrons
acquire their masses from the Yukawa coupling,
the massive vector gauge bosons such as the W
plus/minus and Z fields gain their masses from the
constant part of the kinetic term of the scalar
doublet.
1
2
| π·πœ‡ πœ™0|
2
= 𝑄′2 𝛽2 π‘Šπœ‡
(+)
π‘Š(βˆ’)
πœ‡
+
𝑄′2 𝛽2
2π‘π‘œπ‘ 2 𝛼
𝑍 πœ‡ 𝑍 πœ‡
(3.9.1)
This part contains the couplings of π‘Šπœ‡
(Β±)
vector
gauge boson and 𝑍 πœ‡ fields with the real non-zero
constant value πœ™0 of the scalar doublet. It is in
these interactions that the named vector gauge
bosons and Z field acquire their masses. From
(3.9.1) we read off the mentioned masses
(squared)
1
2
𝑀 π‘Š
2
= 𝑄′2 𝛽2, 𝑀 𝑍
2
=
1
2π‘π‘œπ‘ 2 𝛼
𝑀 π‘Š
2
(3.9.2)
For the case of the scalar doublet, we have
the diagonal subgroup from (3.3.2), which we
write explicitly in matrix form
π‘’βˆ’π‘–πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘‘π‘–π‘Žπ‘”( π‘’βˆ’π‘–2πœ’ π‘ž, 1)
(3.10.1)
This considering the hypercharge of the scalar
doublet as π‘Œ = 1.
Given the transformation (3.3.2) for the
scalar doublet, under the diagonal subgroup
(3.10.1), the covariant derivative operator can be
expressed as
π·πœ‡ = πœ•πœ‡ + 𝑖𝑄′( 𝜎1 π‘Š(1)πœ‡ + 𝜎2 π‘Š(2)πœ‡) +
𝑖𝑄′
π‘π‘œπ‘ π›Ό
( 𝑠𝑖𝑛2 𝛼 βˆ’ 𝜎3 π‘π‘œπ‘ 2 𝛼 ) 𝑍 πœ‡ +
𝑖𝑄′( 𝜎3 + 1 ) 𝐴 πœ‡
π‘’π‘š 𝑠𝑖𝑛𝛼
(3.10.2)
πœ™ = πœ™0 + πœ‘ = (
0
𝛽
) + (
πœ‘1
πœ‘2
) (3.10.3)
πœ‘2 = πœ‚ + π‘–πœ€
𝑅𝑒[ πœ‘2] = πœ‚ (Higgs boson)
Goldstone bosons:
𝑅𝑒[ πœ‘1], πΌπ‘š[ πœ‘1], πΌπ‘š[ πœ‘2]
(3.10.4)
As already mentioned earlier in (3.8.1), these
Goldstone bosons must vanish.
Under the diagonal subgroup (3.10.1) as
the scalar doublet transforms as (3.3.2), the real
constant part πœ™0 stays invariant and the Higgs
boson remains invariant as well since πœ‘2 is
invariant, while πœ‘1 transforms under a U(1) phase
transformation.
πœ‘1 β†’ πœ‘β€²1 = π‘’βˆ’π‘–2πœ’ π‘ž πœ‘1 (3.10.5)
In this initial construction, there remains
the Higgs boson to give mass to.
5. References
[1]Baal, P., A COURSE IN FIELD THEORY,
http://www.lorentz.leidenuniv.nl/~vanbaal/FTcour
se.html
[2] W. Hollik, Quantum field theory and the
Standard Model, arXiv:1012.3883v1 [hep-ph]
[3]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
[4]Griffiths, D. J., Introduction To Elementary
Particles, John Wiley & Sons, Inc., USA, 1987
[5]Arfken, G. B., Weber, H. J., Mathematical
Methods For Physicists, Academic Press, Inc., U.
K., 1995

More Related Content

What's hot

Structural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringStructural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringBharat Khadka
Β 
HashiamKadhimFNLHD
HashiamKadhimFNLHDHashiamKadhimFNLHD
HashiamKadhimFNLHDHashiam Kadhim
Β 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
Β 
Entanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum ModelsEntanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum ModelsShu Tanaka
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18foxtrot jp R
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromfoxtrot jp R
Β 
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Shu Tanaka
Β 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEMmezkurra
Β 
Advanced vibrations
Advanced vibrationsAdvanced vibrations
Advanced vibrationsSpringer
Β 
Buckling analysis
Buckling analysisBuckling analysis
Buckling analysisEmmagnio Desir
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
Β 
Weighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsWeighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsPremier Publishers
Β 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom systemYash Patel
Β 
Propagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumPropagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumMidoOoz
Β 

What's hot (19)

Structural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringStructural dynamics and earthquake engineering
Structural dynamics and earthquake engineering
Β 
HashiamKadhimFNLHD
HashiamKadhimFNLHDHashiamKadhimFNLHD
HashiamKadhimFNLHD
Β 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
Β 
Chapter 2
Chapter 2Chapter 2
Chapter 2
Β 
Entanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum ModelsEntanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum Models
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Β 
en_qu_sch
en_qu_schen_qu_sch
en_qu_sch
Β 
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Β 
FGRessay
FGRessayFGRessay
FGRessay
Β 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEM
Β 
Advanced vibrations
Advanced vibrationsAdvanced vibrations
Advanced vibrations
Β 
Buckling analysis
Buckling analysisBuckling analysis
Buckling analysis
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
Β 
Weighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsWeighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with Applications
Β 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom system
Β 
Propagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumPropagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medum
Β 

Similar to Su(2)xu(1) try spvmformat_dec2018

Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedfoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
Β 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015foxtrot jp R
Β 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgsfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setab 24102020verdisplay
Fieldtheoryhighlights2015 setab 24102020verdisplayFieldtheoryhighlights2015 setab 24102020verdisplay
Fieldtheoryhighlights2015 setab 24102020verdisplayfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setab 22092020verdsply
Fieldtheoryhighlights2015 setab 22092020verdsplyFieldtheoryhighlights2015 setab 22092020verdsply
Fieldtheoryhighlights2015 setab 22092020verdsplyfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setab display_07092020
Fieldtheoryhighlights2015 setab display_07092020Fieldtheoryhighlights2015 setab display_07092020
Fieldtheoryhighlights2015 setab display_07092020foxtrot jp R
Β 
Fieldtheoryhighlights2015 setabdisplay 18092020
Fieldtheoryhighlights2015 setabdisplay 18092020Fieldtheoryhighlights2015 setabdisplay 18092020
Fieldtheoryhighlights2015 setabdisplay 18092020foxtrot jp R
Β 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyfoxtrot jp R
Β 
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...IJMER
Β 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Qiang LI
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdfoxtrot jp R
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cwSagar Chawla
Β 

Similar to Su(2)xu(1) try spvmformat_dec2018 (20)

Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
Β 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
Β 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
Β 
Fieldtheoryhighlights2015 setab 24102020verdisplay
Fieldtheoryhighlights2015 setab 24102020verdisplayFieldtheoryhighlights2015 setab 24102020verdisplay
Fieldtheoryhighlights2015 setab 24102020verdisplay
Β 
Fieldtheoryhighlights2015 setab 22092020verdsply
Fieldtheoryhighlights2015 setab 22092020verdsplyFieldtheoryhighlights2015 setab 22092020verdsply
Fieldtheoryhighlights2015 setab 22092020verdsply
Β 
Fieldtheoryhighlights2015 setab display_07092020
Fieldtheoryhighlights2015 setab display_07092020Fieldtheoryhighlights2015 setab display_07092020
Fieldtheoryhighlights2015 setab display_07092020
Β 
Fieldtheoryhighlights2015 setabdisplay 18092020
Fieldtheoryhighlights2015 setabdisplay 18092020Fieldtheoryhighlights2015 setabdisplay 18092020
Fieldtheoryhighlights2015 setabdisplay 18092020
Β 
M.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum MechanicsM.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum Mechanics
Β 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Β 
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Β 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
Β 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 
Problem 1 i ph o 36
Problem 1 i ph o 36Problem 1 i ph o 36
Problem 1 i ph o 36
Β 
Problem 1 i ph o 36
Problem 1 i ph o 36Problem 1 i ph o 36
Problem 1 i ph o 36
Β 

Recently uploaded

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
Β 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
Β 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”soniya singh
Β 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
Β 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
Β 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
Β 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
Β 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
Β 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSΓ©rgio Sacani
Β 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
Β 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSΓ©rgio Sacani
Β 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
Β 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSΓ©rgio Sacani
Β 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...SΓ©rgio Sacani
Β 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
Β 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
Β 

Recently uploaded (20)

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
Β 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Β 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Β 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
Β 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
Β 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
Β 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
Β 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Β 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
Β 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Β 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
Β 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
Β 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
Β 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
Β 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Β 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
Β 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Β 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
Β 

Su(2)xu(1) try spvmformat_dec2018

  • 1. Highlights From SU(2)XU(1) Basic Standard Model Construction Ferdinand Joseph P. Roaa , Alwielland Q. Bello b , Engr. Leo Cipriano L. Urbiztondo Jr.c a Independent Physics Researcher, 9005 Balingasag, Misamis Oriental b Natural Sciences Dept., Bukidnon State University 8700 Malaybalay City, Bukidnon c IECEP, Sound Technology Institute of the Philippines Currently connected as technical consultant/expert for St. Michael College of Caraga (SMCC) 8600 Butuan City, Agusan del Norte Abstract In this paper we present some important highlights taken from our study course in the subject of Standard Model of particle physics although in this current draft we are limited only to discuss the basics of SU(2)XU(1) construction. The highlights exclude the necessary additional neutrinos aside from the left- handed ones which are presented here as massless. Keywords: Standard model, gauge group, Lagrangian, doublet, singlet 1. Introduction This paper serves as an exposition on an initial and partial construction of SU(2)XU(1) model in Quantum Field Theory whose complete SU(2)XU(1) structure represents the Electro- Weak Standard model. The discussions center on Lagrangian that must be invariant or symmetric under the SU(2)XU(1) gauge group. It must be noted that the whole of The Standard Model has the mathematical symmetry of the SU(3)XSU(2)XU(1) gauge group to include the Strong interaction that goes by the name of Chromodynamics. Such is ofcourse beyond the scope of this present draft. In its present form, this paper is mainly based on our group’s study notes that include our answers to some basic exercises and workouts required for progression. So we might have used some notations by our own convenient choice though as we understand these contain the same notational significance as that used in our main references. The initial and partial SU(2)XU(1) construction presented here is intended primarily to illustrate gauge transformation of fields and how such fields must transform so as to observe invariance or symmetry of the given Lagrangian. Concerning neutrinos, the Dirac left- handed spinor doublet discussed here aside from the left-handed electron it contains, it also has a left-handed neutrino that is rendered massless in the Yukawa coupling terms. In addition to these, the other Fermion is the right-handed electron. As there is only one left-handed spinor doublet and one right-handed spinor singlet no other type of fermions such as additional neutrinos are present in this initial and partial SU(2)XU(1) construction. In a later section, it will be shown how this left-handed neutrino is made massless in the mentioned Yukawa coupling terms. 2. Partially Unified Lagrangian
  • 2. Let us start our highlights say with a partially unified Lagrangian, β„’( π‘†π‘ˆ(2) Γ— π‘ˆ(1)) π‘ƒπ‘Žπ‘Ÿπ‘‘ = β„’( πœ“ 𝐿, πœ“2 𝑅 , πœ™ ) + β„’( π‘Š, 𝐡 ) (1.1) This is for fields under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) gauge symmetry group [1]. In this, the necessary additional fermions in the complete Electro-Weak theory [2] are not yet included. The basic fermions present here are contained in the component Lagrangian β„’( πœ“ 𝐿,πœ“2 𝑅 , πœ™ ) = π‘–πœ“Μ… 𝐿 𝛾 πœ‡ π·πœ‡(𝐿) πœ“ 𝐿 + π‘–πœ“Μ…2 𝑅 𝛾 πœ‡ π·πœ‡(𝑅) πœ“2 𝑅 βˆ’ 𝑦( πœ“Μ…2 𝑅 πœ™ † πœ“ 𝐿 + πœ“Μ… 𝐿 πœ™πœ“2 𝑅 ) + 1 2 | π·πœ‡ πœ™| 2 βˆ’ 𝑉(πœ™) (1.2) This component Lagrangian incorporates a Left-handed spinor doublet, πœ“ 𝐿, Right-handed spinor singlet πœ“2 𝑅 and scalar doublet πœ™. The Left- handed spinor doublet consists of initial Left- handed Fermions – the left-handed neutrino πœ“1 𝐿 and the left-handed electron, πœ“2 𝐿 . The right-handed spinor singlet represents for the right-handed electron, while the scalar doublet represents for the Higgs field, which consists of a vacuum expectation value (vev) and a scalar component called the Higgs Boson, then three Goldstone bosons. As a partially unified Lagrangian under the cited gauge symmetry group, Lagrangian (1.1) also consists of a component part β„’( π‘Š, 𝐡 ) that contains the three components of π‘†π‘ˆ(2) vector gauge boson field π‘Šβƒ—βƒ—βƒ— and one π‘ˆ(1) vector gauge boson field, π΅πœ‡. Such component Lagrangian is given by[3, 4] β„’( π‘Š, 𝐡 ) = β„’ π‘Š + β„’ 𝐡 (1.3) where one subcomponent goes for the boson field π‘Šβƒ—βƒ—βƒ— β„’ π‘Š = βˆ’ 1 4 πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ = βˆ’ 1 4 βˆ‘πΉπœ‡πœˆ (𝑖) 𝐹(𝑖) πœ‡πœˆ 3 𝑖=1 (1.4) (We note: Greek index as space index, while Latin index as particle index.) The anti-symmetric tensor πΉπœ‡πœˆ in (1.4) is given by πΉπœ‡πœˆ = πœ•πœ‡ π‘Šβƒ—βƒ—βƒ— 𝜈 βˆ’ πœ•πœˆ π‘Šβƒ—βƒ—βƒ— πœ‡ βˆ’ 2π‘„β€²π‘Šβƒ—βƒ—βƒ— πœ‡ Γ— π‘Šβƒ—βƒ—βƒ— 𝜈 (1.5) The π‘†π‘ˆ(2) vector gauge boson takes three components, π‘Šβƒ—βƒ—βƒ— = (π‘Šπœ‡ (1) , π‘Šπœ‡ (2) π‘Šπœ‡ (3) ), where Latin indices take parameter values 1, 2, 3. In short hand, we write for a component in the cross product as [5] 𝐴 Γ— 𝐡⃗ | π‘Ž = πœ€ π‘Žπ‘π‘ 𝐴 𝑏 𝐡 𝑐 (1.6) This is written in terms of the components πœ€ π‘Žπ‘π‘ of Levi-Civita symbol. The remaining subcomponent of (1.3) is for the solely U(1) gauge boson π΅πœ‡ whose Lagrangian in turn is given by β„’ 𝐡 = βˆ’ 1 4 ( πœ•πœ‡ 𝐡 𝜈 βˆ’ πœ•πœˆ π΅πœ‡) 2 (1.7) We must also take note the complex linear combinations that give out the W-plus and W- minus gauge bosons π‘Šπœ‡ (Β±) = 1 √2 (π‘Šπœ‡ (1) Β± 𝑖 π‘Šπœ‡ (2) ) (1.8) and the SO(2)-like rotations 𝑍 πœ‡ = π΅πœ‡ 𝑠𝑖𝑛𝛼 βˆ’ π‘Š(3)πœ‡ π‘π‘œπ‘ π›Ό (1.9.1) 𝐴 πœ‡ π‘’π‘š = π΅πœ‡ π‘π‘œπ‘ π›Ό+ π‘Š(3)πœ‡ 𝑠𝑖𝑛𝛼 (1.9.2) with respect to the mixing angle alpha, which mixing (rotation-like) gives out one massive Z field and one massless gauge boson that represents the electromagnetic field 𝐴 πœ‡ π‘’π‘š. 3. Transformations Under The SU(2)XU(1) Subgroups In this section, we highlight the left- handed spinor doublet as the specific illustration whose π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 subgroup is characterized by the hypercharge π‘ŒπΏ, a label we choose by our own convenient notation. Such subgroup is represented by the matrix π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— (2.1) This is in exponentiated form, where πœŽπ‘– (𝑖 = 1, 2,3) are the Pauli matrices. We must make the identifications
  • 3. π‘„β€²πœŽ βˆ™ πœ’ = π‘„β€²βˆ‘ πœŽπ‘– πœ’π‘– 3 𝑖=1 πœ’ π‘ž = π‘„β€²πœ’3 (2.2) Associated with this particular subgroup is the covariant derivative operator for the left- handed spinor doublet as characterized also by the hypercharge, π‘ŒπΏ. π·πœ‡(𝐿) = πœ•πœ‡ + π‘–π‘„π‘ŒπΏ π΅πœ‡ + 𝑖 π‘„β€²βˆ‘ πœŽπ‘– π‘Š(𝑖)πœ‡ 3 𝑖=1 (2.3) We see in this that the hypercharge goes along with the U(1) gauge field. We note in the matrix (2.1) the U(1) part as given by π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž, while the SU(2) part by the 2X2 matrix π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— . Under this subgroup, the left-handed spinor doublet transforms as πœ“ 𝐿 β†’ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 (2.4) So to first order in 𝑄′ this will result in the transformation of covariant derivative operation π·πœ‡(𝐿) π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 = π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— ( πœ•πœ‡ + π‘–π‘„π‘ŒπΏ( π΅πœ‡ βˆ’ π‘„βˆ’1 πœ•πœ‡ πœ’ π‘ž)+ π‘–π‘„β€²πœŽ βˆ™ ( π‘Šβƒ—βƒ—βƒ— πœ‡ βˆ’ πœ•πœ‡ πœ’ βˆ’ 2𝑄′ πœ’ Γ— π‘Šβƒ—βƒ—βƒ— πœ‡) ) πœ“ 𝐿 (2.5) For our present purposes let us take the invariance of Lagrangian (1.1) with respect to the transformation of the left-handed spinor doublet that is given in (2.4) under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 gauge group. This invariance requires that the gauge vector bosons must also transform in the following ways π΅πœ‡ β†’ π΅πœ‡ + π‘„βˆ’1 πœ•πœ‡ πœ’ π‘ž (2.6.1) for the U(1) gauge field, while to first order in 𝑄′, the π‘†π‘ˆ(2) vector boson transforms as π‘Šβƒ—βƒ—βƒ— πœ‡ β†’ π‘Šβƒ—βƒ—βƒ— πœ‡ + πœ•πœ‡ πœ’ + 2𝑄′ πœ’ Γ— π‘Šβƒ—βƒ—βƒ— πœ‡ (2.6.2) Such transformations are needed to cancel the extra terms picked up in (2.5) when the left- handed spinor doublet transforms under its own gauge subgroup. For these results, it is fairly straightforward exercise to obtain the following approximated identity 𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— πœ“ 𝐿 β‰ˆ π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–π‘„β€²πœŽβƒ—βƒ— βˆ™ πœ’βƒ—βƒ— ( 𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡ + 𝑖𝑄′[( 𝜎 0 βˆ™ πœ’),(𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡)] ) πœ“ 𝐿 (2.7.1) in which we note of the commutator [( 𝜎 βˆ™ πœ’),(𝜎 βˆ™ π‘Šβƒ—βƒ—βƒ— πœ‡)] = 𝑖2𝜎 βˆ™ ( πœ’ Γ— π‘Šβƒ—βƒ—βƒ— πœ‡) (2.7.2) which is also a straightforward exercise to prove. Given the SU(2) gauge transformation (2.6.2), the W-gauge boson Lagrangian β„’ π‘Š also transforms as βˆ’4β„’ π‘Š = πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ β†’ πΉπœ‡πœˆ βˆ™ 𝐹 πœ‡πœˆ + 2(2)π‘„β€²πΉπœ‡πœˆ βˆ™ (πœ’ Γ— 𝐹 πœ‡πœˆ) (2.8.1) This is also taken to first order in 𝑄′. By cyclic permutation we note that πΉπœ‡πœˆ βˆ™ ( πœ’ Γ— 𝐹 πœ‡πœˆ) = πœ’ βˆ™ ( 𝐹 πœ‡πœˆ Γ— πΉπœ‡πœˆ ) = 0 (2.8.2) This drops the second major term of (2.8.1) off, proving the invariance of β„’ π‘Š under gauge transformation. We can proceed considering the given Spinor doublet under the π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 diagonal subgroup whose matrix is given by π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘‘π‘–π‘Žπ‘”( π‘’βˆ’π‘–(1+π‘ŒπΏ )πœ’ π‘ž, 𝑒 𝑖(1βˆ’π‘ŒπΏ )πœ’ π‘ž) (2.9.1) This matrix utilizes the 𝜎3 Pauli matrix and the Spinor doublet transforms as πœ“ 𝐿 β†’ π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ“ 𝐿 (2.9.2) It is to be noted that as a doublet this Spinor doublet is a 2X1 column vector wherein each element in a row is a left-handed Dirac spinor in itself. πœ“ 𝐿 = ( πœ“1 𝐿 πœ“2 𝐿 ) (2.9.3) In this draft the authors’ convenient notation for each of these left-handed Dirac spinors is given by
  • 4. πœ“ 𝑖 𝐿 = 1 2 (1 + 𝛾5) πœ“ 𝑖 (2.9.4) with Hermitian left-handed ad joint spinor given as πœ“Μ… 𝑖 𝐿 = (πœ“ 𝑖 𝐿 )† 𝛾0 = 1 2 πœ“Μ… 𝑖(1βˆ’ 𝛾5) (2.9.5) In our notations, our fifth Dirac gamma matrix 𝛾5 has the immediate property 𝛾5 = βˆ’π›Ύ5 (2.9.6) Alternatively, under this diagonal subgroup and given (1.9.1) and (1.9.2), we can write the covariant left-handed derivative operator in terms of the 𝑍 πœ‡ field and the electromagnetic field, 𝐴 πœ‡ π‘’π‘š. π·πœ‡(𝐿) = πœ•πœ‡ + 𝑖𝑄′( 𝜎1 π‘Š(1)πœ‡ + 𝜎2 π‘Š(2)πœ‡) + 𝑖𝑄′ π‘π‘œπ‘ π›Ό ( π‘ŒπΏ 𝑠𝑖𝑛2 𝛼 βˆ’ 𝜎3 π‘π‘œπ‘ 2 𝛼) 𝑍 πœ‡ + 𝑖𝑄′( 𝜎3 + π‘ŒπΏ ) 𝐴 πœ‡ π‘’π‘š 𝑠𝑖𝑛𝛼 (2.10) It is to be noted that π‘†π‘ˆ(2) Γ— π‘ˆ(1) 𝐿 is non-Abelian gauge group whose generators (the Pauli matrices) do not commute so that we can have the following results 𝜎1 π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( 𝜎1 π‘π‘œπ‘ 2πœ’ π‘ž βˆ’ 𝜎2 𝑠𝑖𝑛2πœ’ π‘ž) (2.11.1) and 𝜎2 π‘’βˆ’π‘– 𝜎3 πœ’ π‘ž = π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( 𝜎1 𝑠𝑖𝑛2πœ’ π‘ž + 𝜎2 π‘π‘œπ‘ 2πœ’ π‘ž) (2.11.2) As the Left-handed spinor doublet transforms under (2.9.2) the covariant differentiation with (2.10) also takes the corresponding transformation π·πœ‡(𝐿) π‘’βˆ’π‘–π‘ŒπΏ πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ“ 𝐿 = π‘’βˆ’π‘–π‘Œ 𝐿 πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž( πœ•πœ‡ βˆ’ 𝑖( π‘ŒπΏ + 𝜎3 ) πœ•πœ‡ πœ’ π‘ž + π‘–π‘„π‘ŒπΏ π΅πœ‡ + 𝑖 𝑄′( 𝜎1 π‘Šβ€² (1) πœ‡ + 𝜎2 π‘Šβ€² (2) πœ‡) + 𝑖 𝑄′ 𝜎3 π‘Š(3)πœ‡ ) πœ“ 𝐿 (2.12) where we take note of the SO(2) like rotations π‘Š(1)πœ‡ β†’ π‘Šβ€² (1) πœ‡ = π‘Š(1)πœ‡ π‘π‘œπ‘ 2πœ’ π‘ž + π‘Š(2)πœ‡ 𝑠𝑖𝑛2πœ’ π‘ž π‘Š(2)πœ‡ β†’ π‘Šβ€² (2) πœ‡ = βˆ’π‘Š(1)πœ‡ 𝑠𝑖𝑛2πœ’ π‘ž + π‘Š(2)πœ‡ π‘π‘œπ‘ 2πœ’ π‘ž (2.13) A quick drill would show the invariance βˆ‘ π‘Šβ€² ( 𝑖) πœ‡ π‘Šβ€²(𝑖) πœ‡ 2 𝑖=1 = βˆ‘ π‘Š( 𝑖) πœ‡ π‘Š(𝑖) πœ‡ 2 𝑖=1 (2.14) Corresponding to the transformation (2.12) of covariant differentiation is the U(1) like gauge transformation of π‘Š(3)πœ‡. π‘Š(3)πœ‡ β†’ π‘Š(3)πœ‡ + π‘„β€²βˆ’1 πœ•πœ‡ πœ’ π‘ž (2.15.1) These transformations consequently lead to U(1) gauge transformation of 𝐴 πœ‡ π‘’π‘š. 𝐴 πœ‡ π‘’π‘š β†’ 𝐴 πœ‡ π‘’π‘š + 𝛿𝐴 πœ‡ π‘’π‘š 𝛿𝐴 πœ‡ π‘’π‘š = ( π‘„βˆ’1 π‘π‘œπ‘ π›Ό + π‘„β€²βˆ’1 𝑠𝑖𝑛𝛼) πœ•πœ‡ πœ’ π‘ž = 2π‘’βˆ’1 πœ•πœ‡ πœ’ π‘ž (2.15.2) where 𝑄′ 𝑠𝑖𝑛𝛼 = 𝑄 π‘π‘œπ‘ π›Ό = 𝑒/2 (2.15.3) The massive 𝑍 πœ‡ field stays gauge invariant 𝑍 πœ‡ β†’ 𝑍 πœ‡ + 𝛿𝑍 πœ‡ = 𝑍 πœ‡ (2.16.1) since 𝛿𝑍 πœ‡ = ( π‘„βˆ’1 𝑠𝑖𝑛𝛼 βˆ’ π‘„β€²βˆ’1 π‘π‘œπ‘ π›Ό ) πœ•πœ‡ πœ’ π‘ž = 0 (2.16.2) In order to conform with conventional or that is standard notations, we may have to identify the spacetime-dependent parameter πœ’ π‘ž in terms of Ξ›(π‘₯ πœ‡). πœ’ π‘ž = 1 2 𝑒Λ (2.17) so that the U(1) gauge transformation of the electromagnetic field can be written as 𝐴 πœ‡ π‘’π‘š β†’ 𝐴 πœ‡ π‘’π‘š + πœ•πœ‡ Ξ› (2.18) 4. The Yukawa Coupling From (1.2) let us proceed with the Yukawa coupling. β„’ 𝑦 = βˆ’π‘¦( πœ“Μ…2 𝑅 πœ™ † πœ“ 𝐿 + πœ“Μ… 𝐿 πœ™πœ“2 𝑅 ) (3.1.1) Under all (diagonal) subgroups of SU(2)XU(1), the transformations lead to the following end result πœ“Μ… 𝐿 πœ™πœ“2 𝑅 β†’ πœ“Μ… 𝐿 πœ™πœ“2 𝑅 π‘’βˆ’π‘–(1βˆ’ π‘ŒπΏ )πœ’ π‘ž π‘’βˆ’π‘– π‘Œπ‘… πœ’ π‘ž (3.1.2) or
  • 5. πœ“Μ…2 𝑅 πœ™ † πœ“ 𝐿 β†’ πœ“Μ…2 𝑅 πœ™ † πœ“ 𝐿 𝑒 π‘–π‘Œπ‘… πœ’ π‘ž 𝑒 𝑖(1βˆ’ π‘ŒπΏ )πœ’ π‘ž (3.1.3) We take note in here that to the right- handed spinor singlet we attribute the hypercharge π‘Œπ‘…. SU(2)XU(1) symmetry also requires the Yukawa term to remain invariant under SU(2)XU(1) gauge transformations. This invariance requires a relation between hypercharges that is given by π‘Œπ‘… = π‘ŒπΏ βˆ’ 1 (3.2) Under U(1) gauge subgroup the right- handed spinor singlet transforms as πœ“2 𝑅 β†’ π‘’βˆ’π‘–π‘Œ 𝑅 πœ’ π‘ž πœ“2 𝑅 (3.3.1) while under the SU(2)XU(1) the scalar doublet transforms as πœ™ β†’ π‘’βˆ’π‘–πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž πœ™ (3.3.2) The values of the mentioned hypercharges play important roles in the coupling or decoupling of the fields involved in the Yukawa terms. For the left-handed spinor doublet its hypercharge has the value π‘ŒπΏ = βˆ’ 1. This value decouples the left- handed neutrino from the electromagnetic field so that only the left-handed electron interacts with the electromagnetic field. This can be seen in the matrix ( 𝜎3 + π‘ŒπΏ) πœ“ 𝐿 = ( 0 βˆ’2πœ“2 𝐿) (3.4.1) (As noted.) ( 𝜎3 βˆ’ 1 ) πœ“ 𝐿 𝐴 πœ‡ π‘’π‘š = ( 0 βˆ’2πœ“2 𝐿) 𝐴 πœ‡ π‘’π‘š (3.4.2) In (3.2) we consider 1 as the hypercharge given to the scalar doublet and with this value we see in the following matrix (1 + 𝜎3 ) πœ™0 𝐴 πœ‡ π‘’π‘š = ( 0 0 ) 𝐴 πœ‡ π‘’π‘š (3.4.3) that the electromagnetic field decouples from the vacuum expectation value (vev) πœ™0 of the Higgs field thus, rendering this electromagnetic field massless. Conveniently, we can re-group the terms in (3.1.1) so as to separate out a mass term and an interaction term. β„’ 𝑦 = β„’ 𝑦(π‘šπ‘Žπ‘ π‘ ) + β„’ 𝑦(𝑖𝑛𝑑) (3.5) The mass term gives masses to the electrons and the interaction term gives the interaction of the Higgs boson with fermions that have mass. This mass term basically gives the interactions of the left-handed and right-handed electrons with the constant real component 𝛽 of the scalar doublet. (This constant real component is the vacuum expectation value (vev) of the Higgs field.) In these said interactions the mentioned fermions acquire their masses in the process. β„’ 𝑦(π‘šπ‘Žπ‘ π‘ ) = βˆ’π‘¦π›½( πœ“Μ…2 𝑅 πœ“2 𝐿 + πœ“Μ…2 𝐿 πœ“2 𝑅 ) = βˆ’π‘¦π›½πœ“Μ…2 πœ“2 (3.6.1) (Noted) πœ“Μ…2 𝑅 πœ“2 𝐿 = 1 2 πœ“Μ…2(1 + 𝛾5) πœ“2 (3.6.2) πœ“Μ…2 𝐿 πœ“2 𝑅 = 1 2 πœ“Μ…2(1 βˆ’ 𝛾5) πœ“2 (3.6.3) The left-handed neutrino is ultimately not included in the mass term and the absence of this fermion in this term signifies that the said fermion does not interact with the constant real component of the scalar doublet so it does not acquire mass. The masses of the other fermions that do interact with the constant real component of the scalar doublet are directly proportional to that vev, π‘š πœ“ ∝ 𝛽 with y as the constant of proportionality. In the other Yukawa interaction term, the real scalar component (the Higgs boson πœ‚) of the scalar doublet can be seen to interact with both the left-handed and right-handed electrons. β„’ 𝑦( 𝑖𝑛𝑑) = βˆ’π‘¦πœ‚( πœ“Μ…2 𝑅 πœ“2 𝐿 + πœ“Μ…2 𝐿 πœ“2 𝑅 ) βˆ’ 𝑦( πœ‘1 πœ“Μ…1 𝐿 + π‘–πœ€ πœ“Μ…2 𝐿 ) πœ“2 𝑅 βˆ’ π‘¦πœ“Μ…2 𝑅( πœ‘1 βˆ— πœ“1 𝐿 βˆ’ π‘–πœ€πœ“2 𝐿) (3.7) Although in (3.7) we see that the massless left-handed neutrino seems to interact with the right-handed electron any such interaction will just be removed by a gauge choice 𝑅𝑒[ πœ‘1] = πΌπ‘š[ πœ‘1] = πΌπ‘š[ πœ‘2] = 0 (3.8.1) πœ‘2 = πœ‚ + π‘–πœ€ 𝑅𝑒[ πœ‘2] = πœ‚ that sets the Goldstone bosons to vanish. After this gauge choice is imposed, the interaction term (3.7) will just contain the interaction of the Higgs boson
  • 6. with those fermions that gain masses, the electrons. β„’ 𝑦( 𝑖𝑛𝑑) = βˆ’π‘¦πœ‚πœ“Μ…2 πœ“2 (3.8.2) While the first generation fermions (with the exception of the massless left-handed neutrino) such as the left-handed and right-handed electrons acquire their masses from the Yukawa coupling, the massive vector gauge bosons such as the W plus/minus and Z fields gain their masses from the constant part of the kinetic term of the scalar doublet. 1 2 | π·πœ‡ πœ™0| 2 = 𝑄′2 𝛽2 π‘Šπœ‡ (+) π‘Š(βˆ’) πœ‡ + 𝑄′2 𝛽2 2π‘π‘œπ‘ 2 𝛼 𝑍 πœ‡ 𝑍 πœ‡ (3.9.1) This part contains the couplings of π‘Šπœ‡ (Β±) vector gauge boson and 𝑍 πœ‡ fields with the real non-zero constant value πœ™0 of the scalar doublet. It is in these interactions that the named vector gauge bosons and Z field acquire their masses. From (3.9.1) we read off the mentioned masses (squared) 1 2 𝑀 π‘Š 2 = 𝑄′2 𝛽2, 𝑀 𝑍 2 = 1 2π‘π‘œπ‘ 2 𝛼 𝑀 π‘Š 2 (3.9.2) For the case of the scalar doublet, we have the diagonal subgroup from (3.3.2), which we write explicitly in matrix form π‘’βˆ’π‘–πœ’ π‘ž π‘’βˆ’π‘–πœŽ3 πœ’ π‘ž = π‘‘π‘–π‘Žπ‘”( π‘’βˆ’π‘–2πœ’ π‘ž, 1) (3.10.1) This considering the hypercharge of the scalar doublet as π‘Œ = 1. Given the transformation (3.3.2) for the scalar doublet, under the diagonal subgroup (3.10.1), the covariant derivative operator can be expressed as π·πœ‡ = πœ•πœ‡ + 𝑖𝑄′( 𝜎1 π‘Š(1)πœ‡ + 𝜎2 π‘Š(2)πœ‡) + 𝑖𝑄′ π‘π‘œπ‘ π›Ό ( 𝑠𝑖𝑛2 𝛼 βˆ’ 𝜎3 π‘π‘œπ‘ 2 𝛼 ) 𝑍 πœ‡ + 𝑖𝑄′( 𝜎3 + 1 ) 𝐴 πœ‡ π‘’π‘š 𝑠𝑖𝑛𝛼 (3.10.2) πœ™ = πœ™0 + πœ‘ = ( 0 𝛽 ) + ( πœ‘1 πœ‘2 ) (3.10.3) πœ‘2 = πœ‚ + π‘–πœ€ 𝑅𝑒[ πœ‘2] = πœ‚ (Higgs boson) Goldstone bosons: 𝑅𝑒[ πœ‘1], πΌπ‘š[ πœ‘1], πΌπ‘š[ πœ‘2] (3.10.4) As already mentioned earlier in (3.8.1), these Goldstone bosons must vanish. Under the diagonal subgroup (3.10.1) as the scalar doublet transforms as (3.3.2), the real constant part πœ™0 stays invariant and the Higgs boson remains invariant as well since πœ‘2 is invariant, while πœ‘1 transforms under a U(1) phase transformation. πœ‘1 β†’ πœ‘β€²1 = π‘’βˆ’π‘–2πœ’ π‘ž πœ‘1 (3.10.5) In this initial construction, there remains the Higgs boson to give mass to. 5. References [1]Baal, P., A COURSE IN FIELD THEORY, http://www.lorentz.leidenuniv.nl/~vanbaal/FTcour se.html [2] W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph] [3]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2 [4]Griffiths, D. J., Introduction To Elementary Particles, John Wiley & Sons, Inc., USA, 1987 [5]Arfken, G. B., Weber, H. J., Mathematical Methods For Physicists, Academic Press, Inc., U. K., 1995