SlideShare a Scribd company logo
1 of 49
A Neuron Emulator and Headstage 
Circuit for Patch Clamp Setups
2012/7/30
吳彥徵 (Yen-Chen Wu) 
Advisor: Prof. Robert Rieger
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Introduction
• Membrane Potential
• Hodgkin-Huxley Model
• Voltage Clamp & Patch Clamp Techniques
Cell
type
RP
(mV)
AP
increase
(mV)
AP
duratio
n (ms)
Threshold
potential
(mV)
Neuron axon
hillock
−70 ~ −90 110 0.75 -55
Membrane Potential
AP of neuron axon hillock
Actively Passively
Positive
Negative
Spike
train
Hodgkin-Huxley Model
Voltage Clamp & Patch Clamp Techniques
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Objectives & Features
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Circuit Design and Simulated Results
• Neuron Emulator Specification and Headstage Circuit
Cell Model with AP Generation
Simplified Model for the Neuron Cell
Simplified AP Generator
• Headstage Amplifiers
Neuron Emulator in C_C
Neuron Emulator in V_C
• Comparison with CV-7B Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
Neuron Emulator and Headstage
Circuit Specification
Membrane model AP model Threshold range Voltage sources Electrode Headstage
Rm Cm τm Rap Cap τap Vth fap Vspike Vrest Re Iclamp
5
MΩ
10
pF
0.05
ms
5
KΩ
1
μF
5
ms
-60~-30
mV
1~10
Hz
20
mV
-90
mV
22
MΩ
6~12
nA
Siz
e τap
Speed Vp-p
Cell Model with AP Generation (1)
)()1)(()1)((
1
2
1
2
43
4
1
2
43
4
R
R
V
R
R
RR
R
V
R
R
RR
R
VV KrestNaap −++
+
++
+
= KNarest VVV −+=
Na K
adder
4321 RRRR ===
Na
K
Bigger
Bigger
Simplified Model for the Neuron Cell
Switch phase Time constant Voltage sources
φde φre τNa τK VpK VpNa Vrest
High Low 0.05 ms 0.15 ms
32 mV 72 mV 0 V
Low High 0.25 ms 0.45 ms
linear
nonlinear
φde
φre
slower
Simplified AP Generator(1)
Membrane model AP model Voltage sources Electrode
Rm Cm τm Rap Cap τap Vspike Vrest Re
5 MΩ 10 pF 0.05 ms 5 KΩ 1 μF 5 ms 20 mV -90 mV 22 MΩ
Smaller
Bigger
Simplified AP Generator(2)
ap
t
restspikemclamprestclamp eVVRIVV
τ
−
−++= )(:apφmclamprestclamp RIVV +=:rφ
φap
φr
Iclamp = 8 nA
Iclamp = 0 nA
Pre-charge
Discharge
Bigger
Circuit Design and Simulated Results
• Neuron Emulator Specification and Headstage Circuit
Cell Model with AP Generation
Simplified Model for the Neuron Cell
Simplified AP Generator
• Headstage Amplifiers
Neuron Emulator in C_C
Neuron Emulator in V_C
• Comparison with CV-7B Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
Headstage Amplifiers
Current Clamp
Amplifier
Voltage Clamp
Amplifier
AdderIntegrator
HPF
Neuron Emulator circuit for
current clamp experimentcurrent clamp experiment.
m
restclamp
e
clampe
clamp
R
VV
R
VV
I
−
=
−
=
mclamprestclamp RIVV +=
of
if
I
R
R
A
−
=
Shaded areas will be implemented on a microcontroller
(see Appendix A)
Neuron Emulator parametric analysis
circuit simulation results in C_C
Condition Iclamp = 10 nA, fap = 6.25 Hz, τap = 5 ms
Probe point Vclamp Ve
Vpp
Vm~VM
110 mV
-40~70 mV
110 mV
180~290 mV
Condition Vth = -60 ~ -30 mV → Iclamp = 6 ~12 nA, τap = 5 ms
Iclamp 5 nA 6 nA 12 nA 13 nA
Vclamp
-65 mV
-60 mV -30 mV
-25 mVVrest
Vap / Vm~VM -60~50 mV -30~80 mV
Vpp 0 V 110mV 0 V
fap 0 Hz 1 Hz 10 Hz 0 Hz
1Hz
10Hz
Neuron Emulator for
voltage clamp experimentvoltage clamp experiment.
Shaded areas will be implemented on a
microcontroller
apclamp
eap
t
eclamp
e
QQ
dtRIRI
RC
+=
+∫ )(
1
0int
eapeclampclampe RIRIVV +=−
m
e
V
R
R
A
−
=
Neuron Emulator parametric analysis
circuit simulation result in V_C
Iclamp = 10 nA, fap = 6.67 Hz, τap = 5 ms
Qap
110 pC 2.42 mV
∫
T
apdtV
0
Condition τap = 5 ms
Vrest / Vclamp -65 mV -60 mV -30 mV
2.42 mV
Qap 110 pC
Iclamp 5 nA 6 nA 12 nA
fap 0 Hz 1 Hz 10 Hz
∫
T
ap dtV
0
apap
m
t
restspike
ap CR
R
eVV
Q
apτ
−
−
=
)(
∫
T
ap dtV
0
Circuit Design and Simulated Results
• Neuron Emulator Specification and Headstage Circuit
Cell Model with AP Generation
Simplified Model for the Neuron Cell
Simplified AP Generator
• Headstage Amplifiers
Neuron Emulator in C_C
Neuron Emulator in V_C
• Comparison with CV-7B Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
Comparion with CV-7B Headstage
O C
O
C
Ie = If = Vcmd /
Rf.
Vp – Vo = If ·Rf
CV-7B Headstage in C_C
Condition
τap = 5 ms, T = 200 ms
Iclamp = If
1 nA 6 nA
12 nA
Vcomd 50 mV 300 mV 600 mV
Vp = Ve (Vm~VM) -65~45 mV 70~180 mV 235~345 mV
Vclamp -85~25 mV -60~50 mV
-30~80 mV
Vpp 110 mV
CV-7B Headstage in V_C
Condition
τap = 5 ms, Vp = -60 mV, Iclamp = 1.2 nA
Ve = Vp
-60 mV
Vrest = Vclamp
Vpp = 110 mV, spike:-85~25 mV
Iclamp Ipp = 5 nA, 1.1~-3.9 nA
110mV / 22Mohm=5nA
22Mohm
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Hardware Implementation
• Choice of Components
Microprocessor Programming
• Printed Circuit Board Operation
• Experimental Results
Results of Current Clamp Mode
Results of Voltage Clamp Mode
• Results of Neuron Emulator Mode for CV-7B
Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
• Comparison
Choice of Components
Oscilloscope
function
AP
Generator
Headstage
K
AI
1
1−
=VVAv /4.4−=
Microprocessor Programming
Hardware Implementation
• Choice of Components
Microprocessor Programming
• Printed Circuit Board Operation
• Experimental Results
Results of Current Clamp Mode
Results of Voltage Clamp Mode
• Results of Neuron Emulator Mode for CV-7B
Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
• Comparison
Printed Circuit Board Opearation
Mode/Switch
C_C
V_C
Current clamp mode
1
0
Voltage clamp mode 0
1
Neuron emulator mode 0
0
15 x 10 cm2
Hardware Implementation
• Choice of Components
Microprocessor Programming
• Printed Circuit Board Operation
• Experimental Results
Results of Current Clamp Mode
Results of Voltage Clamp Mode
• Results of Neuron Emulator Mode for CV-7B
Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
• Comparison
Results of Current Clamp Mode
Vclamp (CH1), Ve (CH2), φap (CH3)
as the clamp current Iclamp is varied.
Iclamp = 0 nA
-63mV
-30mV
Vpp,Avg=80~90 mV
Vpp,Max=102 mV
Results of Voltage Clamp Mode
dtI
R
VV
R
dtCHCH
ap
t
e
clampe
e
t
)(
)21(
0
0
+
−
=
−
= ∫
∫
t
R
VV
e
clampe −
=
ap
t
ap
e
m QdtV
R
tftf ==−→ ∫0
1
1
)()(
Vpp=330mV / 4.4V/V=75mV
f=2.481Hz
400pC / 5=80pC
Hardware Implementation
• Choice of Components
Microprocessor Programming
• Printed Circuit Board Operation
• Experimental Results
Results of Current Clamp Mode
Results of Voltage Clamp Mode
• Results of Neuron Emulator Mode for CV-7B
Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
• Comparison
CV-7B Headstage in C_C
Voffset=-95.69 mV
Vpp=85 mV→Cp=5 pF
Stop!
Vp=Ve=315.8mV
If=Iclamp=12nA
CV-7B Headstage in V_C
Voffset=-95.69 mV
Ipp=3.6 nA
Ipp X Re=79.2 mV
f=2.5Hz
Close to C_C result, 85mV
Hardware Implementation
• Choice of Components
Microprocessor Programming
• Printed Circuit Board Operation
• Experimental Results
Results of Current Clamp Mode
Results of Voltage Clamp Mode
• Results of Neuron Emulator Mode for CV-7B
Headstage
CV-7B Headstage in C_C
CV-7B Headstage in V_C
• Comparison
Comparison (1)
A Neuron Emulator Headstage Circuit for Patch Clamp Setups A Neuron Emulator for Single-Electrode Settings [21]
Components Power supply voltage (V) Components Power supply voltage (V)
PIC18F4550
0 ~ 3.5
PIC18F2520
-1.5 ~ 1.5
TL082
0 ~ 9 -2.5 ~ 2.5
ADC in PIC
1.55 ~ 3.35 -0.1 ~ 1.5
CD14016BE
0 ~ 3.5 -2.5 ~ 2.5
Battery
0 ~ 9
Hedstage
LF355N 0 ~ 9
LM334 0 ~ V+
LM317 0 ~ 9
Electrode Membrane model Action potential model Low-pass filter
Re Rm Cm τm Rap Cap τap Rlpf Clpf τlpf
A Neuron Emulator
for Single-Electrode Settings [21]
22 MΩ 5 MΩ 10 pF 0.05 ms
5 MΩ 1 nF
5ms
26 KΩ 10 μF 260 ms
A Neuron Emulator Headstage Circuit
for Patch Clamp Setups
5 KΩ 1 μF
Comparison (2)
Priceles
s
Portabl
e
Energ
y
Saving
Functionalit
y
Outline
• Introduction
• Objectives & Features
• Circuit Design and Simulated Results
• Hardware Implementation
• Conclusions and Future Work
Conclusions and Future Work
• Provide the passive and active electrical propertiespassive and active electrical properties of a neuron as seen
from a single electrode.
• Each AP generates a well defined charge 110 mV,110 mV, ττapap=5ms=5ms. The AP firing
rate from 1 Hz to 10 Hz1 Hz to 10 Hz is dependent on the RP level in the threshold
range from -60 mV to -30 mV-60 mV to -30 mV.
• Measured results confirm the circuit design is in agreement with the
simulation results by Cadence software.
• The headstage circuit is implemented for providing the clamp current to
observe the voltage and current properties of the neuron emulator.
 Continue the development of neural oscillator project.
 Make the achievements of the thesis realized in a chip (ASIC).
Appendix A. Equivalent circuits representing the
function provided by the microcontroller
A1. 2nd
- LPF
A2. VCO
A3. Threshold Comparator
2nd
- LPF
21212221
2
2121
22
2
1
)
11
(
1
)
)(
()(
lpflpflpflpflpflpflpflpf
lpflpflpflpf
o
o
o
CCRR
s
RRRR
s
CCRR
s
Q
s
G
sH
+++
=
++
=
ω
ω
ω
)/(062832.0
1
2121
srad
CCRR lpflpflpflpf
o ==ω 31.0
)( 121
2121
=
+
=
lpflpflpf
lpflpflpflpf
CRR
CCRR
QG = 1
0.01
Filter
VCO (1)
Shifting Amplifier VCO
Vrest Vconst. Vf gm Cf Vctrl fap
-60~-30 mV 63.3 mV 3.3~33.3 mV 0.09 μ 100 pF 3 V 1~10 Hz1
Ω−
.constrestf VVV +=
ctrlf
mf
ap
VC
gV
f
×
×
=
VCO (2)
1Hz10Hz 5Hz
Threshold Comparator
Double Comparator
Input
And Gate
Input
Multiplexer
Control Input
Vm
Vrest V≧ thH 01 0 Vrest
VthL < Vrest < VthH 11 1 Vclamp
Vrest V≦ thL 10 0 Vrest
A Neuron Emulator and Headstage Circuit
for Patch Clamp Setups
Yen-Cheng Wu
jared76118@gmail.com
Electrical Engineering Department
National Sun Yat-Sen University
Taiwan
Thank you for your attention!Thank you for your attention!

More Related Content

What's hot

PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)Tsuyoshi Horigome
 
SPICE MODEL of 2SC3329 in SPICE PARK
SPICE MODEL of 2SC3329 in SPICE PARKSPICE MODEL of 2SC3329 in SPICE PARK
SPICE MODEL of 2SC3329 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC4054 in SPICE PARK
SPICE MODEL of 2SC4054 in SPICE PARKSPICE MODEL of 2SC4054 in SPICE PARK
SPICE MODEL of 2SC4054 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3359S in SPICE PARK
SPICE MODEL of 2SC3359S in SPICE PARKSPICE MODEL of 2SC3359S in SPICE PARK
SPICE MODEL of 2SC3359S in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1202(Y) in SPICE PARK
SPICE MODEL of 2SA1202(Y) in SPICE PARKSPICE MODEL of 2SA1202(Y) in SPICE PARK
SPICE MODEL of 2SA1202(Y) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC2240 in SPICE PARK
SPICE MODEL of 2SC2240 in SPICE PARKSPICE MODEL of 2SC2240 in SPICE PARK
SPICE MODEL of 2SC2240 in SPICE PARKTsuyoshi Horigome
 
Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020  Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020 Javed G S, PhD
 
SPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKSPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKTsuyoshi Horigome
 
Introduction to Adaptive Signal Processing (II)
Introduction to Adaptive Signal Processing (II)Introduction to Adaptive Signal Processing (II)
Introduction to Adaptive Signal Processing (II)Peerapol Yuvapoositanon
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)John Turner
 
SPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKSPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKTsuyoshi Horigome
 
Introduction to adaptive signal processing
Introduction  to adaptive signal processingIntroduction  to adaptive signal processing
Introduction to adaptive signal processingPeerapol Yuvapoositanon
 
SPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKSPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKTsuyoshi Horigome
 
USB 3.1 Gen 2 Compliance Testing and Debug Webinar
USB 3.1 Gen 2 Compliance Testing and Debug WebinarUSB 3.1 Gen 2 Compliance Testing and Debug Webinar
USB 3.1 Gen 2 Compliance Testing and Debug Webinarteledynelecroy
 
Operational Amplifier
Operational AmplifierOperational Amplifier
Operational AmplifierYong Heui Cho
 
SPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKSPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5201 in SPICE PARK
SPICE MODEL of 2SC5201 in SPICE PARKSPICE MODEL of 2SC5201 in SPICE PARK
SPICE MODEL of 2SC5201 in SPICE PARKTsuyoshi Horigome
 
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpice
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpiceElectric Double-Layer Capacitor(EDLC) of Simple Model using PSpice
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpiceTsuyoshi Horigome
 
isscc2017 28_7
isscc2017 28_7isscc2017 28_7
isscc2017 28_7adcfan
 

What's hot (20)

PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)
 
SPICE MODEL of 2SC3329 in SPICE PARK
SPICE MODEL of 2SC3329 in SPICE PARKSPICE MODEL of 2SC3329 in SPICE PARK
SPICE MODEL of 2SC3329 in SPICE PARK
 
SPICE MODEL of 2SC4054 in SPICE PARK
SPICE MODEL of 2SC4054 in SPICE PARKSPICE MODEL of 2SC4054 in SPICE PARK
SPICE MODEL of 2SC4054 in SPICE PARK
 
SPICE MODEL of 2SC3359S in SPICE PARK
SPICE MODEL of 2SC3359S in SPICE PARKSPICE MODEL of 2SC3359S in SPICE PARK
SPICE MODEL of 2SC3359S in SPICE PARK
 
SPICE MODEL of 2SA1202(Y) in SPICE PARK
SPICE MODEL of 2SA1202(Y) in SPICE PARKSPICE MODEL of 2SA1202(Y) in SPICE PARK
SPICE MODEL of 2SA1202(Y) in SPICE PARK
 
SPICE MODEL of 2SC2240 in SPICE PARK
SPICE MODEL of 2SC2240 in SPICE PARKSPICE MODEL of 2SC2240 in SPICE PARK
SPICE MODEL of 2SC2240 in SPICE PARK
 
Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020  Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020
 
SPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKSPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARK
 
Introduction to Adaptive Signal Processing (II)
Introduction to Adaptive Signal Processing (II)Introduction to Adaptive Signal Processing (II)
Introduction to Adaptive Signal Processing (II)
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)
 
SPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKSPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARK
 
Introduction to adaptive signal processing
Introduction  to adaptive signal processingIntroduction  to adaptive signal processing
Introduction to adaptive signal processing
 
SPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKSPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARK
 
USB 3.1 Gen 2 Compliance Testing and Debug Webinar
USB 3.1 Gen 2 Compliance Testing and Debug WebinarUSB 3.1 Gen 2 Compliance Testing and Debug Webinar
USB 3.1 Gen 2 Compliance Testing and Debug Webinar
 
Operational Amplifier
Operational AmplifierOperational Amplifier
Operational Amplifier
 
SPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKSPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARK
 
SPICE MODEL of 2SC5201 in SPICE PARK
SPICE MODEL of 2SC5201 in SPICE PARKSPICE MODEL of 2SC5201 in SPICE PARK
SPICE MODEL of 2SC5201 in SPICE PARK
 
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpice
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpiceElectric Double-Layer Capacitor(EDLC) of Simple Model using PSpice
Electric Double-Layer Capacitor(EDLC) of Simple Model using PSpice
 
isscc2017 28_7
isscc2017 28_7isscc2017 28_7
isscc2017 28_7
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 

Viewers also liked

Viewers also liked (17)

1500UF - 67m2
1500UF - 67m21500UF - 67m2
1500UF - 67m2
 
21.09.11 - Sanihelp
21.09.11 - Sanihelp21.09.11 - Sanihelp
21.09.11 - Sanihelp
 
Postal de nadal 2011
Postal de nadal 2011Postal de nadal 2011
Postal de nadal 2011
 
13PC_Harper_Power of Branding v2 313
13PC_Harper_Power of Branding v2 31313PC_Harper_Power of Branding v2 313
13PC_Harper_Power of Branding v2 313
 
Tom daly-book-design-09
Tom daly-book-design-09Tom daly-book-design-09
Tom daly-book-design-09
 
Navidad1
Navidad1Navidad1
Navidad1
 
Bahama1
Bahama1Bahama1
Bahama1
 
04 signos de alarma u.a 2013
04 signos de alarma u.a   201304 signos de alarma u.a   2013
04 signos de alarma u.a 2013
 
TP seis
TP seisTP seis
TP seis
 
Mind Lab Method English
Mind Lab Method EnglishMind Lab Method English
Mind Lab Method English
 
Moodle & Teleduc
Moodle & TeleducMoodle & Teleduc
Moodle & Teleduc
 
Powerpoint bogado selva
Powerpoint bogado selvaPowerpoint bogado selva
Powerpoint bogado selva
 
Introduction to inbound content marketing
Introduction to inbound content marketingIntroduction to inbound content marketing
Introduction to inbound content marketing
 
Look jeans &co
Look jeans &coLook jeans &co
Look jeans &co
 
Introduction to Content Marketing Strategy for Drupal
Introduction to Content Marketing Strategy for Drupal Introduction to Content Marketing Strategy for Drupal
Introduction to Content Marketing Strategy for Drupal
 
‏‏‏‏417 BRAND PRESENTATION - BEAUTY STORES.PDF
‏‏‏‏417 BRAND PRESENTATION - BEAUTY STORES.PDF‏‏‏‏417 BRAND PRESENTATION - BEAUTY STORES.PDF
‏‏‏‏417 BRAND PRESENTATION - BEAUTY STORES.PDF
 
la Facturation
la Facturationla Facturation
la Facturation
 

Similar to oral defense ppt

Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniYasha Parvini
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxjoellemurphey
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
Assignment 1 Description Marks out of Wtg() Due date .docx
Assignment 1  Description Marks out of Wtg() Due date .docxAssignment 1  Description Marks out of Wtg() Due date .docx
Assignment 1 Description Marks out of Wtg() Due date .docxfredharris32
 
Op ampdesignfinalproject
Op ampdesignfinalprojectOp ampdesignfinalproject
Op ampdesignfinalprojectJeff Webb
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroDavid Cripe
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IRParviz Parto
 
Resume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalResume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalArizona State University
 
Resume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalResume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalArizona State University
 
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...IJEEE
 
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-CouplingGate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-CouplingNusrat Mary
 
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iA
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iAHC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iA
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iASaurabh Dighe
 
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWDsuresh386785
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Scientific Review
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...Scientific Review SR
 

Similar to oral defense ppt (20)

Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_Parvini
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Assignment 1 Description Marks out of Wtg() Due date .docx
Assignment 1  Description Marks out of Wtg() Due date .docxAssignment 1  Description Marks out of Wtg() Due date .docx
Assignment 1 Description Marks out of Wtg() Due date .docx
 
Digital design chap 6
Digital design  chap 6Digital design  chap 6
Digital design chap 6
 
Op ampdesignfinalproject
Op ampdesignfinalprojectOp ampdesignfinalproject
Op ampdesignfinalproject
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qro
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
 
Resume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalResume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed Signal
 
Resume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed SignalResume_Karthik_Koneru_Analog_and_Mixed Signal
Resume_Karthik_Koneru_Analog_and_Mixed Signal
 
077 c211
077 c211077 c211
077 c211
 
525 192-198
525 192-198525 192-198
525 192-198
 
Matrix based AC-DC converter
Matrix based AC-DC converterMatrix based AC-DC converter
Matrix based AC-DC converter
 
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...
Efficient Design of Differential Trans- Conductance Amplifier with Sub-Thresh...
 
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-CouplingGate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
 
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iA
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iAHC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iA
HC24.29.625-IA-23-Wide-Ruhl-Intel_2012_NTV_iA
 
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
 

oral defense ppt

  • 2. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 3. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 4. Introduction • Membrane Potential • Hodgkin-Huxley Model • Voltage Clamp & Patch Clamp Techniques
  • 5. Cell type RP (mV) AP increase (mV) AP duratio n (ms) Threshold potential (mV) Neuron axon hillock −70 ~ −90 110 0.75 -55 Membrane Potential AP of neuron axon hillock Actively Passively Positive Negative Spike train
  • 7. Voltage Clamp & Patch Clamp Techniques
  • 8. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 10. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 11. Circuit Design and Simulated Results • Neuron Emulator Specification and Headstage Circuit Cell Model with AP Generation Simplified Model for the Neuron Cell Simplified AP Generator • Headstage Amplifiers Neuron Emulator in C_C Neuron Emulator in V_C • Comparison with CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C
  • 12. Neuron Emulator and Headstage Circuit Specification Membrane model AP model Threshold range Voltage sources Electrode Headstage Rm Cm τm Rap Cap τap Vth fap Vspike Vrest Re Iclamp 5 MΩ 10 pF 0.05 ms 5 KΩ 1 μF 5 ms -60~-30 mV 1~10 Hz 20 mV -90 mV 22 MΩ 6~12 nA Siz e τap Speed Vp-p
  • 13. Cell Model with AP Generation (1) )()1)(()1)(( 1 2 1 2 43 4 1 2 43 4 R R V R R RR R V R R RR R VV KrestNaap −++ + ++ + = KNarest VVV −+= Na K adder 4321 RRRR === Na K Bigger Bigger
  • 14. Simplified Model for the Neuron Cell Switch phase Time constant Voltage sources φde φre τNa τK VpK VpNa Vrest High Low 0.05 ms 0.15 ms 32 mV 72 mV 0 V Low High 0.25 ms 0.45 ms linear nonlinear φde φre slower
  • 15. Simplified AP Generator(1) Membrane model AP model Voltage sources Electrode Rm Cm τm Rap Cap τap Vspike Vrest Re 5 MΩ 10 pF 0.05 ms 5 KΩ 1 μF 5 ms 20 mV -90 mV 22 MΩ Smaller Bigger
  • 16. Simplified AP Generator(2) ap t restspikemclamprestclamp eVVRIVV τ − −++= )(:apφmclamprestclamp RIVV +=:rφ φap φr Iclamp = 8 nA Iclamp = 0 nA Pre-charge Discharge Bigger
  • 17. Circuit Design and Simulated Results • Neuron Emulator Specification and Headstage Circuit Cell Model with AP Generation Simplified Model for the Neuron Cell Simplified AP Generator • Headstage Amplifiers Neuron Emulator in C_C Neuron Emulator in V_C • Comparison with CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C
  • 18. Headstage Amplifiers Current Clamp Amplifier Voltage Clamp Amplifier AdderIntegrator HPF
  • 19. Neuron Emulator circuit for current clamp experimentcurrent clamp experiment. m restclamp e clampe clamp R VV R VV I − = − = mclamprestclamp RIVV += of if I R R A − = Shaded areas will be implemented on a microcontroller (see Appendix A)
  • 20. Neuron Emulator parametric analysis circuit simulation results in C_C Condition Iclamp = 10 nA, fap = 6.25 Hz, τap = 5 ms Probe point Vclamp Ve Vpp Vm~VM 110 mV -40~70 mV 110 mV 180~290 mV Condition Vth = -60 ~ -30 mV → Iclamp = 6 ~12 nA, τap = 5 ms Iclamp 5 nA 6 nA 12 nA 13 nA Vclamp -65 mV -60 mV -30 mV -25 mVVrest Vap / Vm~VM -60~50 mV -30~80 mV Vpp 0 V 110mV 0 V fap 0 Hz 1 Hz 10 Hz 0 Hz 1Hz 10Hz
  • 21. Neuron Emulator for voltage clamp experimentvoltage clamp experiment. Shaded areas will be implemented on a microcontroller apclamp eap t eclamp e QQ dtRIRI RC += +∫ )( 1 0int eapeclampclampe RIRIVV +=− m e V R R A − =
  • 22. Neuron Emulator parametric analysis circuit simulation result in V_C Iclamp = 10 nA, fap = 6.67 Hz, τap = 5 ms Qap 110 pC 2.42 mV ∫ T apdtV 0 Condition τap = 5 ms Vrest / Vclamp -65 mV -60 mV -30 mV 2.42 mV Qap 110 pC Iclamp 5 nA 6 nA 12 nA fap 0 Hz 1 Hz 10 Hz ∫ T ap dtV 0 apap m t restspike ap CR R eVV Q apτ − − = )( ∫ T ap dtV 0
  • 23. Circuit Design and Simulated Results • Neuron Emulator Specification and Headstage Circuit Cell Model with AP Generation Simplified Model for the Neuron Cell Simplified AP Generator • Headstage Amplifiers Neuron Emulator in C_C Neuron Emulator in V_C • Comparison with CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C
  • 24. Comparion with CV-7B Headstage O C O C Ie = If = Vcmd / Rf. Vp – Vo = If ·Rf
  • 25. CV-7B Headstage in C_C Condition τap = 5 ms, T = 200 ms Iclamp = If 1 nA 6 nA 12 nA Vcomd 50 mV 300 mV 600 mV Vp = Ve (Vm~VM) -65~45 mV 70~180 mV 235~345 mV Vclamp -85~25 mV -60~50 mV -30~80 mV Vpp 110 mV
  • 26. CV-7B Headstage in V_C Condition τap = 5 ms, Vp = -60 mV, Iclamp = 1.2 nA Ve = Vp -60 mV Vrest = Vclamp Vpp = 110 mV, spike:-85~25 mV Iclamp Ipp = 5 nA, 1.1~-3.9 nA 110mV / 22Mohm=5nA 22Mohm
  • 27. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 28. Hardware Implementation • Choice of Components Microprocessor Programming • Printed Circuit Board Operation • Experimental Results Results of Current Clamp Mode Results of Voltage Clamp Mode • Results of Neuron Emulator Mode for CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C • Comparison
  • 31. Hardware Implementation • Choice of Components Microprocessor Programming • Printed Circuit Board Operation • Experimental Results Results of Current Clamp Mode Results of Voltage Clamp Mode • Results of Neuron Emulator Mode for CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C • Comparison
  • 32. Printed Circuit Board Opearation Mode/Switch C_C V_C Current clamp mode 1 0 Voltage clamp mode 0 1 Neuron emulator mode 0 0 15 x 10 cm2
  • 33. Hardware Implementation • Choice of Components Microprocessor Programming • Printed Circuit Board Operation • Experimental Results Results of Current Clamp Mode Results of Voltage Clamp Mode • Results of Neuron Emulator Mode for CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C • Comparison
  • 34. Results of Current Clamp Mode Vclamp (CH1), Ve (CH2), φap (CH3) as the clamp current Iclamp is varied. Iclamp = 0 nA -63mV -30mV Vpp,Avg=80~90 mV Vpp,Max=102 mV
  • 35. Results of Voltage Clamp Mode dtI R VV R dtCHCH ap t e clampe e t )( )21( 0 0 + − = − = ∫ ∫ t R VV e clampe − = ap t ap e m QdtV R tftf ==−→ ∫0 1 1 )()( Vpp=330mV / 4.4V/V=75mV f=2.481Hz 400pC / 5=80pC
  • 36. Hardware Implementation • Choice of Components Microprocessor Programming • Printed Circuit Board Operation • Experimental Results Results of Current Clamp Mode Results of Voltage Clamp Mode • Results of Neuron Emulator Mode for CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C • Comparison
  • 37. CV-7B Headstage in C_C Voffset=-95.69 mV Vpp=85 mV→Cp=5 pF Stop! Vp=Ve=315.8mV If=Iclamp=12nA
  • 38. CV-7B Headstage in V_C Voffset=-95.69 mV Ipp=3.6 nA Ipp X Re=79.2 mV f=2.5Hz Close to C_C result, 85mV
  • 39. Hardware Implementation • Choice of Components Microprocessor Programming • Printed Circuit Board Operation • Experimental Results Results of Current Clamp Mode Results of Voltage Clamp Mode • Results of Neuron Emulator Mode for CV-7B Headstage CV-7B Headstage in C_C CV-7B Headstage in V_C • Comparison
  • 40. Comparison (1) A Neuron Emulator Headstage Circuit for Patch Clamp Setups A Neuron Emulator for Single-Electrode Settings [21] Components Power supply voltage (V) Components Power supply voltage (V) PIC18F4550 0 ~ 3.5 PIC18F2520 -1.5 ~ 1.5 TL082 0 ~ 9 -2.5 ~ 2.5 ADC in PIC 1.55 ~ 3.35 -0.1 ~ 1.5 CD14016BE 0 ~ 3.5 -2.5 ~ 2.5 Battery 0 ~ 9 Hedstage LF355N 0 ~ 9 LM334 0 ~ V+ LM317 0 ~ 9 Electrode Membrane model Action potential model Low-pass filter Re Rm Cm τm Rap Cap τap Rlpf Clpf τlpf A Neuron Emulator for Single-Electrode Settings [21] 22 MΩ 5 MΩ 10 pF 0.05 ms 5 MΩ 1 nF 5ms 26 KΩ 10 μF 260 ms A Neuron Emulator Headstage Circuit for Patch Clamp Setups 5 KΩ 1 μF
  • 42. Outline • Introduction • Objectives & Features • Circuit Design and Simulated Results • Hardware Implementation • Conclusions and Future Work
  • 43. Conclusions and Future Work • Provide the passive and active electrical propertiespassive and active electrical properties of a neuron as seen from a single electrode. • Each AP generates a well defined charge 110 mV,110 mV, ττapap=5ms=5ms. The AP firing rate from 1 Hz to 10 Hz1 Hz to 10 Hz is dependent on the RP level in the threshold range from -60 mV to -30 mV-60 mV to -30 mV. • Measured results confirm the circuit design is in agreement with the simulation results by Cadence software. • The headstage circuit is implemented for providing the clamp current to observe the voltage and current properties of the neuron emulator.  Continue the development of neural oscillator project.  Make the achievements of the thesis realized in a chip (ASIC).
  • 44. Appendix A. Equivalent circuits representing the function provided by the microcontroller A1. 2nd - LPF A2. VCO A3. Threshold Comparator
  • 46. VCO (1) Shifting Amplifier VCO Vrest Vconst. Vf gm Cf Vctrl fap -60~-30 mV 63.3 mV 3.3~33.3 mV 0.09 μ 100 pF 3 V 1~10 Hz1 Ω− .constrestf VVV += ctrlf mf ap VC gV f × × =
  • 48. Threshold Comparator Double Comparator Input And Gate Input Multiplexer Control Input Vm Vrest V≧ thH 01 0 Vrest VthL < Vrest < VthH 11 1 Vclamp Vrest V≦ thL 10 0 Vrest
  • 49. A Neuron Emulator and Headstage Circuit for Patch Clamp Setups Yen-Cheng Wu jared76118@gmail.com Electrical Engineering Department National Sun Yat-Sen University Taiwan Thank you for your attention!Thank you for your attention!