SlideShare a Scribd company logo
1 of 7
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 6, December 2020, pp. 3240~3246
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i6.16171  3240
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Using position control to improve the efficiency of wind turbine
Roshen Tariq Ahmedhamdi, Salam Waley Shneen
Energy and Renewable Energies Technology Center, University of Technology, Iraq
Article Info ABSTRACT
Article history:
Received Mar 27, 2020
Revised Jun 5, 2020
Accepted Jul 9, 2020
Wind energy is one of the renewable energies that can be using to generate
electricity. Increasing demand for this type of renewable energy for
sustainability and accessibility. Environmentally as it does not cause any
pollution in addition to the abundance of required equipment and less
maintenance and long operation life of its parts despite the high cost of the
system at its installation but at long term, become cheaper. Wind power
generators depend on their operation on wind speed and direction. Therefore,
it should be installing in places where the wind speed is adequate and sufficient
to rotate its rotor, it knows that wind speed is variable in its speed and direction
they change every hour and every season. In this design, many practical and
theoretical (simulation) experiments have been done which will be mentioned
and explained in details in this research shows that this mechanism raises the
efficiency of wind power generators by 80% when the rotor of the wind turbine
directed towards the wind than if they were fixed direction.
Keywords:
Renewable energy
Turbine rotation speed
Wind energy
wind power generators
This is an open access article under the CC BY-SA license.
Corresponding Author:
Salam Waley Shneen,
Energy and Renewable Energies Technology Center,
University of Technology,
52 Al-Snaa street, Baghdad, Iraq.
Email: salam_waley73@yahoo.com
1. INTRODUCTION
Clean energy that called renewable energy and there is widespread popular support for using
renewable energy, particularly solar and wind energy, which provide electricity without giving rise to any
carbon dioxide emissions [1-3]. Utilization of wind energy has increased spectacularly in recent years, with
annual increases in installed capacity of around 20% in recent years [4-6]. Research into alternate sources of
energy dated back in the late 90s. Electricity can be used onshore and offshore sites to produce from wind with
a distinct difference for example in 2015, onshore wind averaged 30% capacity, and offshore 41% [5-7].
The world is growing energy need, alongside increasing population led to the continual use of fossil fuel-based
energy sources (coal, oil and gas) which became problematic by creating several challenges such as: depletion
of fossil fuel reserves, greenhouse gas emissions and other environmental [7-9]. Wind energy, the emergence
of wind as an important source of the World’s energy has taken a commanding lead among renewable sources.
Wind exists everywhere in the world, in some places with considerable energy density [10-12]. Wind energy
harnesses kinetic energy from moving air. The primary application of the importance to climate change
mitigation is to produce electricity from large turbines located onshore (land) or offshore (in sea or fresh
water) [13-15]. Onshore wind energy technologies are already being manufacture and deployed on large
scale [16-18]. Wind turbines convert the energy of wind into electricity. Meeting the needs of the developing
world with modern energy and other infrastructure technologies is a critical task for improving quality of life
and enhancing human development [19-21]. The wind turbine need the following requirements, previous
studies, for the performance improvement of a vertical axis wind turbine, aerodynamic analysis, control
TELKOMNIKA Telecommun Comput El Control 
Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi)
3241
mechanism design and its realization of 1kw class model are carrying out. The power output is improving about
60% comparing with VAWT using fixed pitch and symmetric airfoil [22-25].
2. SYSTEM ARCHITECTURE
2.1. Operating principle of the system modeling
The purpose of this research is to design a wind turbine fan rotating system (yaw angle) to make it
windward, as shown in red in Figure 1. In order to test the system that has designed in this research and show
the effect of wind direction on the efficiency and speed of rotation of the wind turbine fan. A practical
experiment has conducted at the wind energy laboratory/energy and renewable energy technology center at
the University of Technology/Baghdad. Its purpose is to show how the wind direction affects the rotational
speed of the turbine fan. Where a miniature model of a turbine fan has installed, as in Figure 2. A turbine fan
has installed on a base that has the ability to change its angle as required. In addition to linking the fan outlet
with a rotational speedometer in order to provide the possibility of measuring the fan rotational speed when
changing the angle, as shown by the experiment system in Figure 3.
Figure 1. Yaw position control system Figure 2. Small-scale wind turbine rotor
Figure 3. Experimental test for the air angel of attack on the rotor
2.2. Proposed experimental and results
This simulation had two experiment include; Experiment one: This experiment shows the effect of
changing the angle of wind attack on a wind turbine fan. The test focused on the effect of changing the angle
in terms of rotational speed. The rotational speed is very important for generating electricity from wind turbines
and raising their efficiency. The higher the wind speed, the faster the rotational speed, and thus the efficiency
and the generation of wind turbines are better. Certainly, within the reasonable and permissible limits in terms
of design, otherwise at high speed cause the system to collapse. Note that there are many protection systems
for wind turbines in cases of high speed during storms. There is no room for this in this research. In this
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246
3242
experiment, we considered the zero-degree angle to be the highest wind direction on the turbine fan, while we
considered the 90-degree angle as the lowest wind on the turbine. Three values had selected for wind speed:
4 m/s, 3.3 m/s, and 2.6 m s. Table 1 shows the results obtained.
Figure 4 shows the results of the first experiment in the form of curves, through which we can observe
the effect of changing the direction of wind on the rotational speed of the wind turbine fan and thus affect its
efficiency. From these curves we note that the highest rotational speed when the turbine fan is facing the wind
and therefore the highest efficiency and maximum generation are in this case gradually decreasing whenever
the wind angle changes until all the curves meet and become zero when you are not facing the wind despite
changing the wind speed. Table 2 shows the amount of change of the percentage of the turbine rotation speed
when changing the direction of the wind, and therefore the percentage of change of the efficiency of the turbine
obtained from the results of Table 1 as the maximum wind impact value is considered to be (100% maximum
efficiency, it gradually decreases according to the attack angle of the wind on the fan.
Table 1. Output results of experiment 1
Air angle of attack (Degree)
Wind speed = 4 m/s Wind speed = 3.3 m/s Wind speed = 2.6 m/s
Turbine Speed (rpm) Turbine Speed (rpm) Turbine Speed (rpm)
0 Max effect 545.672 450.180 354.687
10 511.568 409.254 327.403
20 477.463 388.791 300.120
30 457.000 300.120 259.194
40 368.329 252.373 177.343
50 263.287 218.269 143.239
0 163.701 184.164 114.591
70 111.862 111.862 83.215
80 13.641 6.820 4.092
90 Min effect 6.820 0.00 0.00
Figure 4. he Wind angle of attack Vs. turbine rotor speed/output results
Table 2. The relation between wind angle and changing of the efficiency according to wind speed
Wind angle of attack
(Degree)
Efficiency (%) wind
speed 4 m/s
Efficiency (%) wind
speed 3.3 m/s
Efficiency (%) wind
speed 2.6 m/s
0 100 100 100
10 94 91 93
20 88 87 85
30 84 68 74
40 68 56 50
50 49 49 41
60 30 41 33
70 21 25 24
80 3 2 2
90 2 0 0
Figure 5 shows the curves of changing the efficiency of the turbine relative to changing the angle of
the wind attack, and we note that whenever the turbines are facing the wind, they give the highest efficiency, i.e.,
a direct relationship between them. Wind direction the system rotates the fan towards the wind to avoid low
generation efficiency. A control system was designing for the angle intended to rotate the turbine fan-fastening tower,
Wind Angle of Attack Vs. Turbine Rotor Speed
0
100
200
300
400
500
600
0 10 20 30 40 50 60 70 80 90
Wind Angle of Attack (Degree)
TurbineRotorSpeed(RPM)
Wind Speed 4m/s
Wind Speed 3.3 m/s
Wind Speed 2.6 m/s
TELKOMNIKA Telecommun Comput El Control 
Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi)
3243
so that it faces winds, Figure 6 showing the box representation of it. This system we note that there are two of
the line. It is possible to work with one of them if the line reveals the angle within it. However, it is better to
use the two because, through the experiments conducted, it has found that when using two lines as a feedback,
the response is better in terms of speed, accuracy, stability and damping of the higher values (damping for
the overshoot).
Figure 5. the relation between wind angle of attack and output efficiency for different wind speed
Figure 6. The designed position block diagram
Experiment two : a practical experiment was conducting in the control laboratory in the control
and systems engineering department at the University of Technology/Baghdad. To link the control system to
the angle, as shown in Figure 7. Where the set value of the system was an electrical signal fed to the system by
means of an input potentiometer, which represents the value of the direction of the wind, which comes from
the wind direction sensor. As for the output of this system, it is an electrical signal that rotates the tower until
the error rate becomes zero between the feed signal and the return signal (set value and feedbacks). Then
the system stops rotating, and this represents that the tower has become windward in order to obtain the highest
speed and working efficiency of the turbines. The idea of this system depends on the use of potentiometers,
which is a resistance of a variable, circular shape that has the ability to rotate by 300 degrees.
Among the characteristics of the rotating resistors that had used in this experiment are the angles
gradations on them in degrees, so that any external voltage can read in voltages or degrees as shown in Figure 8.
Table 3 shows the practical results of the aforementioned experiment, where the wind attack angle is represented by
the value of the output from the input variable (input potentiometer), and the angle of rotation of the tower
(yaw angle) is represented by the output voltage (the output angle) of the output variable resistance (output
potentiometer). Figure 9 shows the results mentioned in Table 3, in the form of curves.
Wind angle of attack Vs. Efficiency
0
20
40
60
80
100
120
0 10 20 30 40 50 60 70 80 90
Wind angle of attack (degree)
Efficiency(%)
Wind speed = 4 m/s
Wind speed = 3.3 m/s
Wind speed = 2.6 m/s
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246
3244
Figure 7. designed position control system experimental work Figure 8. Rotary potentiometers used
Figure 9. Output results for Table 3
Table 3. Output results for the position control system test
I/P Air Angle of Attack (Degree)
O/P Angle of the Nacelle (Degree)
at Gain=1.7 with 1 Feedback at Gain=1.4 with 1 Feedback at Gain=1 with 2 Feedback
0 0 0 0
10 17 14 10
20 33 26 21
30 50 38 33
40 67 51 44
50 84 64 54
60 101 76 66
70 116 90 75
80 133 103 87
90 150 118 98
From these curves, it is clear that the Output angle follows the Input angle, taking into account the gain
value used (gain). Where I used several values of gain (1, 1.4 and 1.7), where when the input signal is entered a
signal is generated that powers the engine. The motor is connecting to a gearbox that rotates the variable resisting
output, which in turn gives an electrical signal that is proportional to its rotation angle. It is feeding to the
comparator circuit to give an error signal that powers the system until the error signal becomes zero, then the
system stops. This response is one of its disadvantages. It is slow for increasing its speed; we either increase the
gain value or tie a second return line from the engine. The movement of the engine is converted to an electrical
signal by (tacho generator) and fed through the second reflex line to the comparator in order to be compared with
the input signal and stop when the error rate becomes zero (the direction of the fan in the direction of the wind).
There is an error rate in these readings due to the accuracy of the reading (readings). Loss of electrical
appliances (losses) and accuracy of the devices used (accuracy). In the case of using a single position feedback
line, we notice that the response is slow and for increasing the response speed. The second feed line (velocity
feedback) has linked, which increases the speed, but we see the status of the overshoot signal in addition to
the frequency in the output signal (oscillation), which has reduced by the first feed line. In other words, the two
lines of feeding are better to get the better response, even in terms of the error rate in the response, as shown in
the attached Table 4 and the curves in Figure 10.
Wind Angle of Attack Vs. Output Angle of Nacelle
0
20
40
60
80
100
120
140
160
0 10 20 30 40 50 60 70 80 90
Wind of Attack (Degree)
O/pAngleofNacelle(Degree)
Gain=1.7
Gain=1.4
Gain=1
TELKOMNIKA Telecommun Comput El Control 
Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi)
3245
Table 4. Error signal between I/P and O/P signals
I/P Air Angle of Attack
Error of O/P Angle of the Nacelle according to input
at G=1.7 with 1 F.B at G=1.4 with 1 F.B at Gain=1 with 2 F.B
0 0 0 0
10 0 0 0
20 1 2 1
30 1 4 3
40 1 5 4
50 1 6 4
60 1 8 6
70 3 8 5
80 3 9 7
90 3 8 8
Figure 10. Shows the amount of error between the input signal and the exit signal, and according to the gain
values used. Where we note the lowest percentage of errors is at the highest value of the gain and when
linking the two feeding lines
3. CONCLUSION
Many studies try to make the turbine rotation speed within the normal limits necessary for its operation
and at the same time to protect it from collapse when rotating at high speed due to high wind speed. In this
research, a mechanism has been designed to direct the wind energy rotor of the wind turbine to the wind
direction when the wind change its direction to increase the rotational speed in order to increase the efficiency
of generating electric power and certainly within the limits allowed. The results in this work shows that this
mechanism raises the efficiency of wind power generators by 80% when the rotor of the wind turbine directed
towards the wind than if they had fixed direction.
REFERENCES
[1] K. Jihane and M. Cherkaoui, "Improved backtracking search optimization algorithm for PV/Wind/FC
system," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, no. 1, pp. 456-464, 2020.
[2] Gianto, Rudy, et al., "Two-port network model of fixed-speed wind turbine generator for distribution system load flow
analysis," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 17, no. 3, pp. 1569-1575, 2019.
[3] Lidula N. W. A., et al. "ASEAN towards clean and sustainable energy: Potentials, utilization and
barriers," Renewable Energy, vol. 32, no. 9, pp. 1441-1452, 2007.
[4] Shneen, Salam Waley, "Advanced optimal for power-electronic systems for the grid integration of energy
sources," Indonesian Journal of Electrical Engineering and Computer Science, vol. 1, no. 3, pp. 543-555, 2016.
[5] Wartana I., Ni Putu Agustini, and Jai Govind Singh, "Optimal Integration of the Renewable Energy to the Grid by
Considering Small Signal Stability Constraint," International Journal of Electrical and Computer Engineering,
vol. 7, no. 5, pp. 2329-2337, 2017.
[6] S. S. Waley, C. Mao, and D. Wang, "Advanced optimal PSO, Fuzzy and PI controller with PMSM and WTGS at
5Hz side of generation and 50Hz Side of Grid," International Journal of Power Electronics and Drive Systems,
vol. 7, no. 1, pp. 173-192, 2016.
[7] Sakeen, Bashar, Nasseer K. Bachache, and Shaorong Wang, "Frequency Control of PV-Diesel Hybrid Power System
Using Optimal Fuzzy Logic Controller," 2013 IEEE 11th International Conference on Dependable, Autonomic and
Secure Computing, IEEE, 2013.
[8] Rogers, Jennifer C., et al., "Public perceptions of opportunities for community-based renewable energy
projects," Energy policy, vol. 36, no. 11, pp. 4217-4226, 2008.
[9] S. S. Waley, "Advanced Optimal for Three Phase Rectifier in Power-Electronic Systems," Indonesian Journal of
Electrical Engineering and Computer Science, vol. 11, no. 3, pp. 821-830, 2018.
Error signal between I/P and O/P
0
1
2
3
4
5
6
7
8
9
10
0 10 20 30 40 50 60 70 80 90
Input signal (Degree)
Errorsignalwithoutput
1 FB and G=1.7
1 FB and G=1.4
2 FB and G=1
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246
3246
[10] Liang, Tsorng-Juu, et al., "Ultra-large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative
sources of energy," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, 2012.
[11] Vengadakrishnan, Krishnakumar, et al., "Torque ripple minimization of PMBLDC motor using simple boost
inverter," International Journal of Power Electronics and Drive Systems, vol. 10, no. 4, pp. 1714-1723, 2019.
[12] S. S. Waley, et al., " Application of LFAC {16 2/3Hz} for electrical power transmission system: a comparative simulation
study," TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 2, pp. 1055-1064, 2019.
[13] Manwell, James F., Jon G. McGowan, and Anthony L. Rogers, “Wind energy explained: theory, design and
application,” John Wiley & Sons, 2010.
[14] Owusu, P. Asantewaa, and S. A. Sarkodie, "A review of renewable energy sources, sustainability issues and climate
change mitigation," Cogent Engineering, vol. 3, no. 1, pp. 1-14, 2016.
[15] S. S. Waley, "Advanced Optimal for PV system coupled with PMSM," Indonesian Journal of Electrical Engineering
and Computer Science, vol. 1, no. 3, pp. 556-565, 2016.
[16] A. A. Kadum "Loss minimization DTC electric motor drive system based on adaptive ANN strategy," Elektronika ir
Elektrotechnika, vol. 11, no. 2, pp. 618-624, 2020.
[17] Pillai, Branesh M., and J. Suthakorn, "Motion control applications: observer based DC motor parameters estimation
for novices," International Journal of Power Electronics and Drive Systems, vol. 10, no. 1, pp. 195-201, 2019.
[18] Aderibigbe, I. Adekitan, et al., "Determining the operational status of a Three Phase Induction Motor using a predictive data
mining model," International Journal of Power Electronics and Drive Systems, vol. 10, no. 1, pp. 93-103, 2019.
[19] J. A. Kadhum, et al., "Utilization of DC motor-AC generator system to convert the solar direct current into 220v
alternating current," International Journal of Computation and Applied Sciences, vol. 5, no. 3, pp. 391-396, 2018.
[20] Minka, Issam, et al., "Primary frequency control applied to the wind turbine based on the DFIG controlled by
the ADRC," International Journal of Power Electronics and Drive System, vol. 10, no. 2, pp. 1049-1058, 2019.
[21] Mensou, Sara, et al., "Performance of a vector control for DFIG driven by wind turbine: Real time simulation using DS1104
controller board," International Journal of Power Electronics and Drive Systems, vol. 10, no. 2, pp. 1003-1013, 2019.
[22] Hichem, Hamiani, et al., "A wind turbine sensorless automatic control systems, analysis, modelling and development
of IDA-PBC method," Int J Pow Elec & Dri Syst, vol. 11, no. 1, pp. 45-55, 2020.
[23] El K. Imane, M. Maaroufi, and B. Bossoufi. "Robust power control methods for wind turbines using
DFIG-generator," International Journal of Power Electronics and Drive Systems, vol. 10, no. 4, pp. 2101-17, 2019.
[24] S. Yunus, M. Saini, and A. Abu-Siada, "Dynamic performance comparison of DFIG and FCWECS during grid
faults," TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 2, pp. 1040-46, 2019.
[25] M. A. Abdul-hussain, R. T. Ahmed, "Connect the Wind Farms to the Electrical Grid and Indicate Their Effect on
Improving the Characteristics of the Network," International Research Journal of Advanced Engineering and
Science, vol. 3, no. 1, pp. 45-48, 2018.
BIOGRAPHIES OF AUTHORS
Roshen Tariq Ahmedhamdi is currently lecturer in the Energy and Renewable Energies
Technology Center, University of Technology, Iraq. I received my BSc. degree from University
of Technology, Baghdad, IRAQ (1984) from Control and Systems Engineering Department,
followed by MSc. (2003) in Control Eng. from University of Technology, Baghdad, IRAQ.
His fields of interest are control engineering, Matlab software and Simulink and renewable
energies, E-mail: 11019@uotechnology.edu.iq
Salam Waley Shneen received his BSc. degree in electrical engineering and education from
University of Technology Technical Education Department, Iraq-Baghdad, in 1998. He
received his Msc. degree in electrical engineering and education from University of Technology
Technical Education Department, Iraq-Baghdad, in 2005. Presently, he received his Ph.D in
Electrical and Electronic Engineering from Huazhong University of Science and Technology
(HUST) in 2016. He joined a Lecturer of Energy and Renewable Energies Technology Center,
University of Technology/Baghdad, Iraq. His fields of interest are power electronic, electronic,
control, electric machine and Renewable Energy. E-mail:salam_waley73@yahoo.com.

More Related Content

What's hot

IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...
IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...
IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...IRJET Journal
 
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIAIAEME Publication
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINESuchit Moon
 
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...IOSR Journals
 
Design and Analysis of Turbine Blades in a Micro Gas Turbine Engine
Design and Analysis of Turbine Blades in a Micro Gas Turbine EngineDesign and Analysis of Turbine Blades in a Micro Gas Turbine Engine
Design and Analysis of Turbine Blades in a Micro Gas Turbine EngineIJTET Journal
 
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerThesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerMd Anzar Aman
 
Utilization of Exhaust Gas of Vehicle for Electricity Generation
Utilization of Exhaust Gas of Vehicle for Electricity GenerationUtilization of Exhaust Gas of Vehicle for Electricity Generation
Utilization of Exhaust Gas of Vehicle for Electricity GenerationIRJET Journal
 
Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine GeneratorsJasjot Singh
 
NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015Lucas Skoufa
 
Design and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbineDesign and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbineIAEME Publication
 
Modelling of solar micro gas turbine for parabolic dish based controller appl...
Modelling of solar micro gas turbine for parabolic dish based controller appl...Modelling of solar micro gas turbine for parabolic dish based controller appl...
Modelling of solar micro gas turbine for parabolic dish based controller appl...TELKOMNIKA JOURNAL
 
Design and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air ConditionerDesign and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air ConditionerIRJET Journal
 
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...Dimuthu Darshana
 
Analysis and Comparisons of Different Type of WCES- A Literature Review
Analysis and Comparisons of Different Type of WCES- A Literature ReviewAnalysis and Comparisons of Different Type of WCES- A Literature Review
Analysis and Comparisons of Different Type of WCES- A Literature Reviewpaperpublications3
 
Wind turbine project presentation
Wind turbine project presentationWind turbine project presentation
Wind turbine project presentationImmanuel alexander
 

What's hot (20)

T2 free energy-converted
T2 free energy-convertedT2 free energy-converted
T2 free energy-converted
 
IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...
IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...
IRJET- Design and Analysis of Highway Wind Power Generation using Vertical Ax...
 
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINE
 
Wind energy
Wind energyWind energy
Wind energy
 
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
Enhancing Power Coefficient of a Wind turbine Using Diffuser Augmentation in ...
 
Design and Analysis of Turbine Blades in a Micro Gas Turbine Engine
Design and Analysis of Turbine Blades in a Micro Gas Turbine EngineDesign and Analysis of Turbine Blades in a Micro Gas Turbine Engine
Design and Analysis of Turbine Blades in a Micro Gas Turbine Engine
 
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerThesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
 
Utilization of Exhaust Gas of Vehicle for Electricity Generation
Utilization of Exhaust Gas of Vehicle for Electricity GenerationUtilization of Exhaust Gas of Vehicle for Electricity Generation
Utilization of Exhaust Gas of Vehicle for Electricity Generation
 
Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine Generators
 
NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015
 
Comparative study of two control strategies proportional integral and fuzzy l...
Comparative study of two control strategies proportional integral and fuzzy l...Comparative study of two control strategies proportional integral and fuzzy l...
Comparative study of two control strategies proportional integral and fuzzy l...
 
Design and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbineDesign and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbine
 
Modelling of solar micro gas turbine for parabolic dish based controller appl...
Modelling of solar micro gas turbine for parabolic dish based controller appl...Modelling of solar micro gas turbine for parabolic dish based controller appl...
Modelling of solar micro gas turbine for parabolic dish based controller appl...
 
E1304023341
E1304023341E1304023341
E1304023341
 
Wind Power Feasible
Wind Power FeasibleWind Power Feasible
Wind Power Feasible
 
Design and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air ConditionerDesign and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air Conditioner
 
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...
Design of wind turbine controllers in simulation x jagath_ireshika_bernad_dim...
 
Analysis and Comparisons of Different Type of WCES- A Literature Review
Analysis and Comparisons of Different Type of WCES- A Literature ReviewAnalysis and Comparisons of Different Type of WCES- A Literature Review
Analysis and Comparisons of Different Type of WCES- A Literature Review
 
Wind turbine project presentation
Wind turbine project presentationWind turbine project presentation
Wind turbine project presentation
 

Similar to Using position control to improve the efficiency of wind turbine

IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET Journal
 
Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SiteIJERA Editor
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET Journal
 
Performance analysis of wind turbine as a distributed generation unit in dist...
Performance analysis of wind turbine as a distributed generation unit in dist...Performance analysis of wind turbine as a distributed generation unit in dist...
Performance analysis of wind turbine as a distributed generation unit in dist...ijcsit
 
Micro Wind Turbine paper
Micro Wind Turbine paperMicro Wind Turbine paper
Micro Wind Turbine paperAlex Glass
 
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...IJERA Editor
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineIRJET Journal
 
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...IJPEDS-IAES
 
Electricity from wind energy
Electricity from wind energyElectricity from wind energy
Electricity from wind energyH Janardan Prabhu
 
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its Designs
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its DesignsWind Turbine Generator Tied To Grid Using Inverter Techniques and Its Designs
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its DesignsIJSRD
 
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachAirfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachijmech
 
Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...IAEME Publication
 

Similar to Using position control to improve the efficiency of wind turbine (20)

IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
 
Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud Site
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
 
Performance analysis of wind turbine as a distributed generation unit in dist...
Performance analysis of wind turbine as a distributed generation unit in dist...Performance analysis of wind turbine as a distributed generation unit in dist...
Performance analysis of wind turbine as a distributed generation unit in dist...
 
Maglev windmill
Maglev windmillMaglev windmill
Maglev windmill
 
Robust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generatorRobust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generator
 
Micro Wind Turbine paper
Micro Wind Turbine paperMicro Wind Turbine paper
Micro Wind Turbine paper
 
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
 
Implementation of Variable Frequency Drive on Underground Main Fans for Energ...
Implementation of Variable Frequency Drive on Underground Main Fans for Energ...Implementation of Variable Frequency Drive on Underground Main Fans for Energ...
Implementation of Variable Frequency Drive on Underground Main Fans for Energ...
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
 
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...
Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Gen...
 
Using Y-source network as a connector between turbine and network in the stru...
Using Y-source network as a connector between turbine and network in the stru...Using Y-source network as a connector between turbine and network in the stru...
Using Y-source network as a connector between turbine and network in the stru...
 
Modeling, simulation and control of a doubly-fed induction generator for wind...
Modeling, simulation and control of a doubly-fed induction generator for wind...Modeling, simulation and control of a doubly-fed induction generator for wind...
Modeling, simulation and control of a doubly-fed induction generator for wind...
 
R36100108
R36100108R36100108
R36100108
 
synapsis of maglev windmill
synapsis  of maglev windmillsynapsis  of maglev windmill
synapsis of maglev windmill
 
Electricity from wind energy
Electricity from wind energyElectricity from wind energy
Electricity from wind energy
 
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its Designs
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its DesignsWind Turbine Generator Tied To Grid Using Inverter Techniques and Its Designs
Wind Turbine Generator Tied To Grid Using Inverter Techniques and Its Designs
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachAirfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
 
Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 

Using position control to improve the efficiency of wind turbine

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 6, December 2020, pp. 3240~3246 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i6.16171  3240 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Using position control to improve the efficiency of wind turbine Roshen Tariq Ahmedhamdi, Salam Waley Shneen Energy and Renewable Energies Technology Center, University of Technology, Iraq Article Info ABSTRACT Article history: Received Mar 27, 2020 Revised Jun 5, 2020 Accepted Jul 9, 2020 Wind energy is one of the renewable energies that can be using to generate electricity. Increasing demand for this type of renewable energy for sustainability and accessibility. Environmentally as it does not cause any pollution in addition to the abundance of required equipment and less maintenance and long operation life of its parts despite the high cost of the system at its installation but at long term, become cheaper. Wind power generators depend on their operation on wind speed and direction. Therefore, it should be installing in places where the wind speed is adequate and sufficient to rotate its rotor, it knows that wind speed is variable in its speed and direction they change every hour and every season. In this design, many practical and theoretical (simulation) experiments have been done which will be mentioned and explained in details in this research shows that this mechanism raises the efficiency of wind power generators by 80% when the rotor of the wind turbine directed towards the wind than if they were fixed direction. Keywords: Renewable energy Turbine rotation speed Wind energy wind power generators This is an open access article under the CC BY-SA license. Corresponding Author: Salam Waley Shneen, Energy and Renewable Energies Technology Center, University of Technology, 52 Al-Snaa street, Baghdad, Iraq. Email: salam_waley73@yahoo.com 1. INTRODUCTION Clean energy that called renewable energy and there is widespread popular support for using renewable energy, particularly solar and wind energy, which provide electricity without giving rise to any carbon dioxide emissions [1-3]. Utilization of wind energy has increased spectacularly in recent years, with annual increases in installed capacity of around 20% in recent years [4-6]. Research into alternate sources of energy dated back in the late 90s. Electricity can be used onshore and offshore sites to produce from wind with a distinct difference for example in 2015, onshore wind averaged 30% capacity, and offshore 41% [5-7]. The world is growing energy need, alongside increasing population led to the continual use of fossil fuel-based energy sources (coal, oil and gas) which became problematic by creating several challenges such as: depletion of fossil fuel reserves, greenhouse gas emissions and other environmental [7-9]. Wind energy, the emergence of wind as an important source of the World’s energy has taken a commanding lead among renewable sources. Wind exists everywhere in the world, in some places with considerable energy density [10-12]. Wind energy harnesses kinetic energy from moving air. The primary application of the importance to climate change mitigation is to produce electricity from large turbines located onshore (land) or offshore (in sea or fresh water) [13-15]. Onshore wind energy technologies are already being manufacture and deployed on large scale [16-18]. Wind turbines convert the energy of wind into electricity. Meeting the needs of the developing world with modern energy and other infrastructure technologies is a critical task for improving quality of life and enhancing human development [19-21]. The wind turbine need the following requirements, previous studies, for the performance improvement of a vertical axis wind turbine, aerodynamic analysis, control
  • 2. TELKOMNIKA Telecommun Comput El Control  Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi) 3241 mechanism design and its realization of 1kw class model are carrying out. The power output is improving about 60% comparing with VAWT using fixed pitch and symmetric airfoil [22-25]. 2. SYSTEM ARCHITECTURE 2.1. Operating principle of the system modeling The purpose of this research is to design a wind turbine fan rotating system (yaw angle) to make it windward, as shown in red in Figure 1. In order to test the system that has designed in this research and show the effect of wind direction on the efficiency and speed of rotation of the wind turbine fan. A practical experiment has conducted at the wind energy laboratory/energy and renewable energy technology center at the University of Technology/Baghdad. Its purpose is to show how the wind direction affects the rotational speed of the turbine fan. Where a miniature model of a turbine fan has installed, as in Figure 2. A turbine fan has installed on a base that has the ability to change its angle as required. In addition to linking the fan outlet with a rotational speedometer in order to provide the possibility of measuring the fan rotational speed when changing the angle, as shown by the experiment system in Figure 3. Figure 1. Yaw position control system Figure 2. Small-scale wind turbine rotor Figure 3. Experimental test for the air angel of attack on the rotor 2.2. Proposed experimental and results This simulation had two experiment include; Experiment one: This experiment shows the effect of changing the angle of wind attack on a wind turbine fan. The test focused on the effect of changing the angle in terms of rotational speed. The rotational speed is very important for generating electricity from wind turbines and raising their efficiency. The higher the wind speed, the faster the rotational speed, and thus the efficiency and the generation of wind turbines are better. Certainly, within the reasonable and permissible limits in terms of design, otherwise at high speed cause the system to collapse. Note that there are many protection systems for wind turbines in cases of high speed during storms. There is no room for this in this research. In this
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246 3242 experiment, we considered the zero-degree angle to be the highest wind direction on the turbine fan, while we considered the 90-degree angle as the lowest wind on the turbine. Three values had selected for wind speed: 4 m/s, 3.3 m/s, and 2.6 m s. Table 1 shows the results obtained. Figure 4 shows the results of the first experiment in the form of curves, through which we can observe the effect of changing the direction of wind on the rotational speed of the wind turbine fan and thus affect its efficiency. From these curves we note that the highest rotational speed when the turbine fan is facing the wind and therefore the highest efficiency and maximum generation are in this case gradually decreasing whenever the wind angle changes until all the curves meet and become zero when you are not facing the wind despite changing the wind speed. Table 2 shows the amount of change of the percentage of the turbine rotation speed when changing the direction of the wind, and therefore the percentage of change of the efficiency of the turbine obtained from the results of Table 1 as the maximum wind impact value is considered to be (100% maximum efficiency, it gradually decreases according to the attack angle of the wind on the fan. Table 1. Output results of experiment 1 Air angle of attack (Degree) Wind speed = 4 m/s Wind speed = 3.3 m/s Wind speed = 2.6 m/s Turbine Speed (rpm) Turbine Speed (rpm) Turbine Speed (rpm) 0 Max effect 545.672 450.180 354.687 10 511.568 409.254 327.403 20 477.463 388.791 300.120 30 457.000 300.120 259.194 40 368.329 252.373 177.343 50 263.287 218.269 143.239 0 163.701 184.164 114.591 70 111.862 111.862 83.215 80 13.641 6.820 4.092 90 Min effect 6.820 0.00 0.00 Figure 4. he Wind angle of attack Vs. turbine rotor speed/output results Table 2. The relation between wind angle and changing of the efficiency according to wind speed Wind angle of attack (Degree) Efficiency (%) wind speed 4 m/s Efficiency (%) wind speed 3.3 m/s Efficiency (%) wind speed 2.6 m/s 0 100 100 100 10 94 91 93 20 88 87 85 30 84 68 74 40 68 56 50 50 49 49 41 60 30 41 33 70 21 25 24 80 3 2 2 90 2 0 0 Figure 5 shows the curves of changing the efficiency of the turbine relative to changing the angle of the wind attack, and we note that whenever the turbines are facing the wind, they give the highest efficiency, i.e., a direct relationship between them. Wind direction the system rotates the fan towards the wind to avoid low generation efficiency. A control system was designing for the angle intended to rotate the turbine fan-fastening tower, Wind Angle of Attack Vs. Turbine Rotor Speed 0 100 200 300 400 500 600 0 10 20 30 40 50 60 70 80 90 Wind Angle of Attack (Degree) TurbineRotorSpeed(RPM) Wind Speed 4m/s Wind Speed 3.3 m/s Wind Speed 2.6 m/s
  • 4. TELKOMNIKA Telecommun Comput El Control  Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi) 3243 so that it faces winds, Figure 6 showing the box representation of it. This system we note that there are two of the line. It is possible to work with one of them if the line reveals the angle within it. However, it is better to use the two because, through the experiments conducted, it has found that when using two lines as a feedback, the response is better in terms of speed, accuracy, stability and damping of the higher values (damping for the overshoot). Figure 5. the relation between wind angle of attack and output efficiency for different wind speed Figure 6. The designed position block diagram Experiment two : a practical experiment was conducting in the control laboratory in the control and systems engineering department at the University of Technology/Baghdad. To link the control system to the angle, as shown in Figure 7. Where the set value of the system was an electrical signal fed to the system by means of an input potentiometer, which represents the value of the direction of the wind, which comes from the wind direction sensor. As for the output of this system, it is an electrical signal that rotates the tower until the error rate becomes zero between the feed signal and the return signal (set value and feedbacks). Then the system stops rotating, and this represents that the tower has become windward in order to obtain the highest speed and working efficiency of the turbines. The idea of this system depends on the use of potentiometers, which is a resistance of a variable, circular shape that has the ability to rotate by 300 degrees. Among the characteristics of the rotating resistors that had used in this experiment are the angles gradations on them in degrees, so that any external voltage can read in voltages or degrees as shown in Figure 8. Table 3 shows the practical results of the aforementioned experiment, where the wind attack angle is represented by the value of the output from the input variable (input potentiometer), and the angle of rotation of the tower (yaw angle) is represented by the output voltage (the output angle) of the output variable resistance (output potentiometer). Figure 9 shows the results mentioned in Table 3, in the form of curves. Wind angle of attack Vs. Efficiency 0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 90 Wind angle of attack (degree) Efficiency(%) Wind speed = 4 m/s Wind speed = 3.3 m/s Wind speed = 2.6 m/s
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246 3244 Figure 7. designed position control system experimental work Figure 8. Rotary potentiometers used Figure 9. Output results for Table 3 Table 3. Output results for the position control system test I/P Air Angle of Attack (Degree) O/P Angle of the Nacelle (Degree) at Gain=1.7 with 1 Feedback at Gain=1.4 with 1 Feedback at Gain=1 with 2 Feedback 0 0 0 0 10 17 14 10 20 33 26 21 30 50 38 33 40 67 51 44 50 84 64 54 60 101 76 66 70 116 90 75 80 133 103 87 90 150 118 98 From these curves, it is clear that the Output angle follows the Input angle, taking into account the gain value used (gain). Where I used several values of gain (1, 1.4 and 1.7), where when the input signal is entered a signal is generated that powers the engine. The motor is connecting to a gearbox that rotates the variable resisting output, which in turn gives an electrical signal that is proportional to its rotation angle. It is feeding to the comparator circuit to give an error signal that powers the system until the error signal becomes zero, then the system stops. This response is one of its disadvantages. It is slow for increasing its speed; we either increase the gain value or tie a second return line from the engine. The movement of the engine is converted to an electrical signal by (tacho generator) and fed through the second reflex line to the comparator in order to be compared with the input signal and stop when the error rate becomes zero (the direction of the fan in the direction of the wind). There is an error rate in these readings due to the accuracy of the reading (readings). Loss of electrical appliances (losses) and accuracy of the devices used (accuracy). In the case of using a single position feedback line, we notice that the response is slow and for increasing the response speed. The second feed line (velocity feedback) has linked, which increases the speed, but we see the status of the overshoot signal in addition to the frequency in the output signal (oscillation), which has reduced by the first feed line. In other words, the two lines of feeding are better to get the better response, even in terms of the error rate in the response, as shown in the attached Table 4 and the curves in Figure 10. Wind Angle of Attack Vs. Output Angle of Nacelle 0 20 40 60 80 100 120 140 160 0 10 20 30 40 50 60 70 80 90 Wind of Attack (Degree) O/pAngleofNacelle(Degree) Gain=1.7 Gain=1.4 Gain=1
  • 6. TELKOMNIKA Telecommun Comput El Control  Using position control to improve the efficiency of wind turbine (Roshen Tariq Ahmedhamdi) 3245 Table 4. Error signal between I/P and O/P signals I/P Air Angle of Attack Error of O/P Angle of the Nacelle according to input at G=1.7 with 1 F.B at G=1.4 with 1 F.B at Gain=1 with 2 F.B 0 0 0 0 10 0 0 0 20 1 2 1 30 1 4 3 40 1 5 4 50 1 6 4 60 1 8 6 70 3 8 5 80 3 9 7 90 3 8 8 Figure 10. Shows the amount of error between the input signal and the exit signal, and according to the gain values used. Where we note the lowest percentage of errors is at the highest value of the gain and when linking the two feeding lines 3. CONCLUSION Many studies try to make the turbine rotation speed within the normal limits necessary for its operation and at the same time to protect it from collapse when rotating at high speed due to high wind speed. In this research, a mechanism has been designed to direct the wind energy rotor of the wind turbine to the wind direction when the wind change its direction to increase the rotational speed in order to increase the efficiency of generating electric power and certainly within the limits allowed. The results in this work shows that this mechanism raises the efficiency of wind power generators by 80% when the rotor of the wind turbine directed towards the wind than if they had fixed direction. REFERENCES [1] K. Jihane and M. Cherkaoui, "Improved backtracking search optimization algorithm for PV/Wind/FC system," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, no. 1, pp. 456-464, 2020. [2] Gianto, Rudy, et al., "Two-port network model of fixed-speed wind turbine generator for distribution system load flow analysis," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 17, no. 3, pp. 1569-1575, 2019. [3] Lidula N. W. A., et al. "ASEAN towards clean and sustainable energy: Potentials, utilization and barriers," Renewable Energy, vol. 32, no. 9, pp. 1441-1452, 2007. [4] Shneen, Salam Waley, "Advanced optimal for power-electronic systems for the grid integration of energy sources," Indonesian Journal of Electrical Engineering and Computer Science, vol. 1, no. 3, pp. 543-555, 2016. [5] Wartana I., Ni Putu Agustini, and Jai Govind Singh, "Optimal Integration of the Renewable Energy to the Grid by Considering Small Signal Stability Constraint," International Journal of Electrical and Computer Engineering, vol. 7, no. 5, pp. 2329-2337, 2017. [6] S. S. Waley, C. Mao, and D. Wang, "Advanced optimal PSO, Fuzzy and PI controller with PMSM and WTGS at 5Hz side of generation and 50Hz Side of Grid," International Journal of Power Electronics and Drive Systems, vol. 7, no. 1, pp. 173-192, 2016. [7] Sakeen, Bashar, Nasseer K. Bachache, and Shaorong Wang, "Frequency Control of PV-Diesel Hybrid Power System Using Optimal Fuzzy Logic Controller," 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, IEEE, 2013. [8] Rogers, Jennifer C., et al., "Public perceptions of opportunities for community-based renewable energy projects," Energy policy, vol. 36, no. 11, pp. 4217-4226, 2008. [9] S. S. Waley, "Advanced Optimal for Three Phase Rectifier in Power-Electronic Systems," Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, no. 3, pp. 821-830, 2018. Error signal between I/P and O/P 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 70 80 90 Input signal (Degree) Errorsignalwithoutput 1 FB and G=1.7 1 FB and G=1.4 2 FB and G=1
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3240 - 3246 3246 [10] Liang, Tsorng-Juu, et al., "Ultra-large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative sources of energy," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, 2012. [11] Vengadakrishnan, Krishnakumar, et al., "Torque ripple minimization of PMBLDC motor using simple boost inverter," International Journal of Power Electronics and Drive Systems, vol. 10, no. 4, pp. 1714-1723, 2019. [12] S. S. Waley, et al., " Application of LFAC {16 2/3Hz} for electrical power transmission system: a comparative simulation study," TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 2, pp. 1055-1064, 2019. [13] Manwell, James F., Jon G. McGowan, and Anthony L. Rogers, “Wind energy explained: theory, design and application,” John Wiley & Sons, 2010. [14] Owusu, P. Asantewaa, and S. A. Sarkodie, "A review of renewable energy sources, sustainability issues and climate change mitigation," Cogent Engineering, vol. 3, no. 1, pp. 1-14, 2016. [15] S. S. Waley, "Advanced Optimal for PV system coupled with PMSM," Indonesian Journal of Electrical Engineering and Computer Science, vol. 1, no. 3, pp. 556-565, 2016. [16] A. A. Kadum "Loss minimization DTC electric motor drive system based on adaptive ANN strategy," Elektronika ir Elektrotechnika, vol. 11, no. 2, pp. 618-624, 2020. [17] Pillai, Branesh M., and J. Suthakorn, "Motion control applications: observer based DC motor parameters estimation for novices," International Journal of Power Electronics and Drive Systems, vol. 10, no. 1, pp. 195-201, 2019. [18] Aderibigbe, I. Adekitan, et al., "Determining the operational status of a Three Phase Induction Motor using a predictive data mining model," International Journal of Power Electronics and Drive Systems, vol. 10, no. 1, pp. 93-103, 2019. [19] J. A. Kadhum, et al., "Utilization of DC motor-AC generator system to convert the solar direct current into 220v alternating current," International Journal of Computation and Applied Sciences, vol. 5, no. 3, pp. 391-396, 2018. [20] Minka, Issam, et al., "Primary frequency control applied to the wind turbine based on the DFIG controlled by the ADRC," International Journal of Power Electronics and Drive System, vol. 10, no. 2, pp. 1049-1058, 2019. [21] Mensou, Sara, et al., "Performance of a vector control for DFIG driven by wind turbine: Real time simulation using DS1104 controller board," International Journal of Power Electronics and Drive Systems, vol. 10, no. 2, pp. 1003-1013, 2019. [22] Hichem, Hamiani, et al., "A wind turbine sensorless automatic control systems, analysis, modelling and development of IDA-PBC method," Int J Pow Elec & Dri Syst, vol. 11, no. 1, pp. 45-55, 2020. [23] El K. Imane, M. Maaroufi, and B. Bossoufi. "Robust power control methods for wind turbines using DFIG-generator," International Journal of Power Electronics and Drive Systems, vol. 10, no. 4, pp. 2101-17, 2019. [24] S. Yunus, M. Saini, and A. Abu-Siada, "Dynamic performance comparison of DFIG and FCWECS during grid faults," TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 2, pp. 1040-46, 2019. [25] M. A. Abdul-hussain, R. T. Ahmed, "Connect the Wind Farms to the Electrical Grid and Indicate Their Effect on Improving the Characteristics of the Network," International Research Journal of Advanced Engineering and Science, vol. 3, no. 1, pp. 45-48, 2018. BIOGRAPHIES OF AUTHORS Roshen Tariq Ahmedhamdi is currently lecturer in the Energy and Renewable Energies Technology Center, University of Technology, Iraq. I received my BSc. degree from University of Technology, Baghdad, IRAQ (1984) from Control and Systems Engineering Department, followed by MSc. (2003) in Control Eng. from University of Technology, Baghdad, IRAQ. His fields of interest are control engineering, Matlab software and Simulink and renewable energies, E-mail: 11019@uotechnology.edu.iq Salam Waley Shneen received his BSc. degree in electrical engineering and education from University of Technology Technical Education Department, Iraq-Baghdad, in 1998. He received his Msc. degree in electrical engineering and education from University of Technology Technical Education Department, Iraq-Baghdad, in 2005. Presently, he received his Ph.D in Electrical and Electronic Engineering from Huazhong University of Science and Technology (HUST) in 2016. He joined a Lecturer of Energy and Renewable Energies Technology Center, University of Technology/Baghdad, Iraq. His fields of interest are power electronic, electronic, control, electric machine and Renewable Energy. E-mail:salam_waley73@yahoo.com.