SlideShare a Scribd company logo
1 of 8
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 2, April 2020, pp. 579~586
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i2.12731  579
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Outage and throughput performance of cognitive radio based
power domain based multiple access
Dinh-Thuan Do, Chi-Bao Le
Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH), Vietnam
Article Info ABSTRACT
Article history:
Received Mar 24, 2019
Revised Jan 13, 2020
Accepted Feb 8, 2020
This paper considers power domain based multiple access (PDMA)
in cognitive radio network to serve numerous users who intend to multiple
access to core network. In particular, we investigate the effect of signal
combination scheme equipped at PDMA end-users as existence of direct link
and relay link. This system model using relay scheme provides performance
improvement on the outage probability of two PDMA end-users. We first
propose a simple scheme of fixed power allocation to PDMA users who
exhibit performance gap and fairness. Inspired by PDMA strategy, we then
find signal to noise ratio (SNR) to detect separated signal for each user.
In addition, the exact expressions of outage probability are derived in
assumption that receiver can cancel out the interference completely with
successive interference cancellation (SIC). By exploiting theoretical and
simulation results, both considered combination schemes (Maximal Ratio
Combining (MRC) and Selection Combining (SC) can achieve improved
performance of two PDMA users significantly.
Keywords:
MRC
Outage probability
Power domain based multiple
access
SC
This is an open access article under the CC BY-SA license.
Corresponding Author:
Dinh-Thuan Do,
Faculty of Electronics Technology,
Industrial University of Ho Chi Minh City (IUH),
Ho Chi Minh City, Vietnam.
Email: dodinhthuan@iuh.edu.vn
1. INTRODUCTION
Recently, cognitive radio (CR) has been attracted considerable attention due to its ability to
improved spectrum utilization [1]. Achieving advantage of CR to the fifth generation (5G) mobile networks,
the primary network containing base station (BS) and BS-served mobile users and the secondary network
including two kinds of users (mobile users non-served by the BS) can occupy resource in a same licensed
band [2]. Unfortunately, the primary users are under impact of interference from the secondary users located
in such a underlay approach. Therefore, it is required to limit the interference to below a certain level to
guarantee system performance [3]. In overlay CR, the channels can be selected dynamically without
inter-user interference while channel is decided under certain interference constraint in underlay CR.
The other is an attractive solution, power domain based multiple access (PDMA), and it is proposed for 5G
wireless communications. In PDMA, multiple users are permitted to transmit superimposed signals by
employing the same carrier and the same time slot. In real practice, secure issue is challenge in above
technologies to enhance spectral efficiency related to spectrum sharing [4]. Although secondary user (SU)
can access to a spectrum of a primary user (PU), such SU in cognitive radio networks (CRNs) may meet
wiretap legitimate signals due to without appropriate spectrum management policies. Accordingly, secure
transmission quality of primary systems in cognitive radio networks (CRNs) using several models have been
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586
580
investigated [5–7]. Fortunately, relaying network provides extended coverage with reasonable outage
performance [8-13]. Such relay scheme is proposed to combine with PDMA technology to introduce
cooperative PDMA [14, 15]. It is proposed to guarantee the transmit quality of massive users with poor
channel [16] and allow more users to access into one spectrum resource block at the same time.
With regard to higher spectrum efficiency, new trend of PDMA and CR is introduced as
CR-inspired PDMA as in [17]. The authors studied different receiving qualities of two PDMA systems in two
schemes, such as fixed power allocation PDMA and CR-inspired PDMA. To guarantee the channel quality of
a user who meets a poor channel condition, the CR-inspired PDMA is recommended [17]. To evaluate
system performance, the CR-inspired PDMA indicated better fairness in term of spectrum allocation
compared with the fixed-power-allocation PDMA. In other work, the power allocation scheme is developed
for two secondary user (SUs) existing in the PDMA-enabled underlay CR (CR PDMA). Such CR PDMA is
deploy to enhance the spectral efficiency by using interference cancellation [18]. Thus, to greatly improve
the spectrum utilization, PDMA is proposed to integrate into underlay CR with power constraints.
Motivated by [19-25] this paper analyzes the outage and throughput performance by applying
the PDMA protocol in a CR network. In this situation, we considers system performance in a downlink
communication scenario. The network is composed of a pair of PDMA users, a primary network containing
base station (BS) and user while the source in secondary network need a helping relay to forward signal to far
user. We assume that all end-users operate in the PDMA transmission protocol at the same time. The main
contributions are summarized as follows.
- We propose a new underlay CR PDMA-enabled transmission and provide performance gap of two PDMA
users to satisfy the quality of service (QoS) requirements of such CR PDMA system.
- We formulate exact outage probability for two PDMA users while satisfying a given fixed power allocation
factors. Then, we confirm outage performance and corresponding throughput in numerical results.
- We analyze the overall network performance, study the problem of fixed power allocation under
the constraint of the system total power, and indicate numerical method to solve the optimal problem of
throughput performance.
The rest of the paper is organized as follows. Section II presents a PDMA-enabled CR system with
a pair of PDMA end-users are served by both sources in primary network and secondary network, secondary
source using one relay to serve far PDMA user. In Section III, we extend our study to a situation with fixed
power allocation to derive outage probability and corresponding throughput of overall system. Simulation
results are shown in Section IV, and conclusions are presented in Section V.
2. SYSTEM MODEL AND CALCULATIONS OF SNR
In this article, we consider a communication with CR PDMA model as shown in Figure 1.
This model consists primary network containing a base station (BS) and far PDMA user, a secondary
network containing source, relay R and far PDMA user. All entities in the network are equipped with single
antenna and the communication of primary and secondary system operates in using the PDMA transmission
principles. Assuming that both the relay and two PDMA users can estimate the secondary and primary
channels by some learning processes in the actual situation, they can be aware of the channel state
information (CSI) of all the channels perfectly. In addition, all channels are assumed to be quasi-static
Rayleigh fading, where the channel coefficients are constant for each transmission block but vary
independently between different blocks.
Figure 1. System model of joint CR and PDMA
TELKOMNIKA Telecommun Comput El Control 
Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do)
581
For the operation of helping relay in secondary systems, relay may receive the synthetic message
from the primary source S1 and signal from the secondary source S2. We denote noise terms
2 2 2 2 2 2
, 1 , 2 1, 1 2, 2R R U R U S U S U     = = = = = and 1 2
2 2 2
S S RP P P

  
= = = . SNR at relay to detect x2:
2
2,
, 2 2
1,
.
1
S R
R x
S R
h
h



=
+
(1)
We compute SNR at relay to detect x1
2
, 1 1, .R x S Rh = (2)
It can be found SNR at U1 to detect x2
2
2 , 1
1, 2 2
1 , 1
.
1
R U
RU x
R U
a h
a h



=
+
(3)
It need be computed SNR at U1 to detect x1 as
2
1, 1 1 , 1 .RU x R Ua h = (4)
It can be calculated SNR at U2 to detect x2 as
2
2 , 2
2, 2 2
1 , 2
.
1
R U
RU x
R U
a h
a h



=
+
(5)
In direct link of primary network in such CR PDMA, SNR at U1 to detect x1 is given by;
2
1 1, 1 1, 1 .S U x S Uh = (6)
Also, in direct link of secondary network in such CR PDMA, SNR at U1 to detect x2 is computed by
2
2 2, 2 2, 2 .S U x S Uh = (7)
3. OUTAGE PROBABILITY AND THROUGHPUT ANALYSIS
In this section, we investigated the outage behavior for the CR PDMA downlink cooperative
network with perfect CSI. To this end, exact expressions for the outage probability is studied first. In order to
best throughput and better understand the behavior of the network, a numerical method is applied to show
throughput, while fairness among PDMA users satisfied, regime. We use Maximal Ratio Combining (MRC)
to further process signal at U1, U2 as existences of direct link and relay link between the BS and PDMA
end-users.
3.1. Scheme I: maximal ratio combining (MRC)
At each destination, two links are combined and hence SNR in such MRC case can be expressed at
U1, U2 respectively as;
2 2
1 1, 1 1 , 1 ,MRC
U S U R Uh a h  = + (8)
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586
582
and
2
2 2 , 2
2 2, 2 2
1 , 2
.
1
R UMRC
U S U
R U
a h
h
a h

 

= +
+
(9)
we set new variable
( )
2
2 2 1a a


 
=
−
then, the outage probability at user U1 can be given by;
( ) ( ) ( )
2 31
1 1 1 , 1 1 , 1 1 1 1, 1 1Pr Pr Pr , .MRC
U U R x R x S U x
A AA
P        =   +   (10)
proposition 1: the closed-form expression of outage probability at user U1 can be given by
1 1 1
1 1 1 1
1 U1 1 1 ,
m m m
S R S R S Ud d d
UP e e e
  
  

− − −
− − −
  
  = + − −
  
  
(11)
where
1 11 1
1 1 1 11 1 1 1
1
1 1
U1
1 1 1 1
1 1
m mm m
RU S URU S U
a
m
a d dd a dS U
m m
S U RU
d
e e e
d d a
 
 

− −− −
 −− −−  −
 
 
− −
 
 = − − −
 −
 
Proof:
We have following equation
( )1 1 1
2 2 2
1 1
1, 1 1 , 1 , 1
1
Pr
Pr , .
MRC
U
S U R U R U
A
h a h h
a
 
 
 
= 
 
=  −  
 
(12)
Then, it can be further expressed as
( )
1
1
2 2
1, 1 , 1
1 11 1
1 1 1 11 1 1 1
1
1 1
0
1
1 1
1 1 1 1
1 1 .
S U R U
m mm m
RU S URU S U
a
h h
a
m
a d dd a dS U
m m
S U RU
A F a x f x dx
d
e e e
d d a


 
 


− −− −
 
−  − −− −  
 
− −
 
= − 
 
 
 = − − −
 −
 

(13)
Then, two remaining component can be obtained as
( )
1
1
2 , 1 1Pr
,
m
S R
R x
d
A
e


 
−
−
= 
=
(14)
and
( )
1 1
1 1 1
3 , 1 1 1 1, 1 1Pr ,
1 1 .
m m
S R S U
R x S U x
d d
A
e e
 
 
   
− −
− −
=  
  
  = − −
  
  
(15)
This is end of the proof.
Similarly, outage probability at user U2 can be computed by
TELKOMNIKA Telecommun Comput El Control 
Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do)
583
( ) ( ) ( )
2 31
2 2 2 , 2 2 , 2 2 2 2, 2 2Pr Pr Pr , .MRC
U U R x R x S U x
B BB
P        =   +   (16)
Proposition 2: The closed-form expression of outage probability at user U2 can be given by:
( )
( )
2 2
2 2 2 22
2 2
02 2 2 12 1
1
1 1 ,
!
m m m
RU S R S U
n m
d d dS R
U n m mm
n S R S RRU
de
P e e e
d dn d a
  
 

− − −
−−− −
− −−
=
 − = − −  + − − 
  +
 
 (17)
where
( )
( )
( ) ( )( )
( )
( ) ( )
1
2 1 11
1 1 1
2 1
0
1 1
Ei Ei
1 ! 1 1
n nn k kn
k
e a e
n n n n k

 

+ + +
=
−  + − 
 = −  +
+ + + −
 , 2 1 2
m
RUa d −
 = ,
2
1
1 2 2 2
1
m m
RU S Ua d d


 − −
= − −  , 2
1
1 2 2
m
S U
a
a d −
 = − and
2
2
2 2 22
1 1
2
2 1 2
m mm
S U S RS R
m
d ddS R
m m
S R S R
d
e e
d d


 

− −−
 
−  − +−  
 
− −
 
  = −
 +
 
Proof: see in appendix
3.2. Scheme II: selection combining (SC)
We consider outage performance of each destination by using Selection Combining (SC) as;
( ) ( )1 1 1, 1 1 , 1 1 1, 1 1
2 2 2
1 1 1
1, 1 1, , 1
1
Pr 1 Pr ,
Pr 1 Pr , .
U S U x R x RU x
S U S R R U
OP
h h h
a
     
  
  
 =  −   
   
=  −     
     
(18)
Then, it is rewritten as;
( ) ( ) ( )
1
2 2 2
1, 1 1, , 1
1 1
1
1 11
1 1 1 1 1 1 1 11 1
1
0
1 1 1 1 1
1
1 .
S U S R R U
m m m m mm
S R RU S R RU S US U
U h h h
a
d d a d d a dd
OP f x dx f x f y dxdy
e e e


 
 
 
  − − − − −−
 
   
   − + − + +−    
   
 
 
= − 
 
 
= − − +
  
(19)
Consider signal at the second destination, outage performance of U2 is;
( ) ( )
( ) ( )
2 2, 2 2 , 2 2 2, 2 2
2 2 2 2
2 2 2
2, 2 2, 1, , 2
2 2 1
Pr 1 Pr ,
Pr 1 Pr 1 , .
U S U R x RU x
S U S R S R R U
OP
h h h h
a a
     
  

   
 =  −   
   
=  −  +      −    
(20)
Next, it can be rewritten as;
( ) ( ) ( )
( )
( )
( )
( ) ( )
2
2 2 2 2
2, 2 1, 2, , 2
2 2
2 2 1
2 22
2 2 2 2 1 2 2 2 2 1 2 22 2
2
0 0
1
1 1 1 1 1
2
2 1 2
1
1
S U S R S R R U
m m m m mm
S R RU S R RU S US U
U h h h h
x
a a
m
d d a a d d a a dd S R
m m
S R S R
OP f x dx f x f x dxdy f z dz
d
e e e
d d


 

  
 
  

− − − − −−
  
+
−
  
  − − + − + +−   − −  
− −
 
 
= − 
 
 
= − − −
+
   
.




 
 
 
  
(21)
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586
584
Then, we further examine optimal throughput in case of fixed data rates are known. Such system throughput
can be given by
( ) ( )1 1 2 21 1U UP R P R = − + − (22)
4. NUMERICAL RESULTS
In this section, our parameters are shown to simulate, i.e. power allocation factors 1 2
0.2, 0.8a a= = ,
target rates 1
2R = , 2
0.5R = , distances 1 1mS Rd = , 2 1mS Rd = , 1 2mRUd = , 2 4mRUd = , 1 1 1 1S U S R RUd d d= +
and 2 2 2 2S U S R RUd d d= + , path-loss exponent 2m = . Figure 2 shows impact of target rates on outage
performance. In addition, higher transmit SNR at the source node S1, S2 results in better outage performance.
To comparison, outage performance of U1 for scheme I is better than that of scheme II. While performance
of U2 is similar for two considered schemes.
Figure 3 illustrates that increasing target rates make our system meet outage event. This figure
confirms that higher transmit SNR at source leads to better performance. It can be seen slight performance
gap for user U2 as comparing two schemes. It can be found highest throughput at optimal target rate as in
Figure 4. This result confirms that optimal throughput can be achieved by numerical method. It can be seen
slight performance gap as comparing two schemes.
Figure 2. Outage performance versus transmit SNR
in CR PDMA
Figure 3. Outage performance versus target rates of
CR PDMA
Figure 4. Throughput performance of CR PDMA versus target rates
TELKOMNIKA Telecommun Comput El Control 
Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do)
585
5. CONCLUSION
In this paper, we studied the fixed power allocation scheme design for robust and guarantee fairness
in communication of CR PDMA systems. Each source in each network of CR can serve its own signal
forwarding to relay and then the superimposed signal can be received at the PDMA end users. Such model
was employed for serving multiple access in downlink. Simulation results revealed that the considered CR
PDMA system employing the proposed fixed power allocation scheme can guarantee fairness in PDMA
significantly. With respect to specific data rate, it can be achieved highest throughput. Furthermore, our
results confirmed the outage small performance gap among two PDMA users of the proposed scheme with
respect to varying transmit SNR and revealed the impact of various system parameters on performance.
REFERENCES
[1] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios:
An information theoretic perspective,” in Proceedings of the IEEE, vol. 97, no. 5, pp. 894-914, May 2009.
[2] L. Lv, J. Chen, and Q. Ni, “Cooperative non-orthogonal multiple access in cognitive radio,” in IEEE
Communications Letters, vol. 20, no. 10, pp. 2059-2062, Oct. 2016.
[3] X. Kang, Y. C. Liang, A. Nallanathan, H. K. Garg, and R. Zhang, “Optimal power allocation for fading channels in
cognitive radio networks: Ergodic capacity and outage capacity,” in IEEE Transactions on Wireless
Communications, vol. 8, no. 2, pp. 940-950, Feb. 2009.
[4] Y. Pei, Y. C. Liang, K. C. Teh, and K. H. Li, “Secure communication in multi-antenna cognitive radio networks
with imperfect channel state information,” in IEEE Transactions on Signal Processing, vol. 59, no. 4,
pp. 1683-1693, April 2011.
[5] Z. Li, T. Jing, X. Cheng, Y. Huo, W. Zhou, and D. Chen, “Cooperative jamming for secure communications in
MIMO cooperative cognitive radio networks,” in 2015 IEEE International Conference on Communications (ICC),
London, pp. 7609-7614, 2015.
[6] P. H. Lin, F. Gabry, R. Thobaben, E. A. Jorswieck, and M. Skoglund, “Multi-phase smart relaying and cooperative
jamming in secure cognitive radio networks,” in IEEE Transactions on Cognitive Communications and
Networking, vol. 2, no. 1, pp. 38-52, March 2016.
[7] Y. Y. He, J. Evans, and S. Dey, “Secrecy rate maximization for cooperative overlay cognitive radio networks
with artificial noise,” 2014 IEEE International Conference on Communications (ICC), Sydney, NSW,
pp. 1663-1668, 2014.
[8] Dinh-Thuan Do, "Power Switching Protocol for Two-way Relaying Network under Hardware Impairments,"
Radioengineering, Vol. 24, No. 3, pp. 765-771, 2015.
[9] Dinh-Thuan Do, H. -S. Nguyen, M. Voznak and T. -S. Nguyen,” Wireless powered relaying networks under
imperfect channel state information: system performance and optimal policy for instantaneous rate,”
Radioengineering, vol. 26, no. 3, pp. 869-877, September 2017.
[10] X. Nguyen and Dinh-Thuan Do, “Optimal power allocation and throughput performance of full-duplex DF relaying
networks with wireless power transfer-aware channel,” in EURASIP Journal on Wireless Communications and
Networking, vol. 2017, no. 1, pp. 152, September 2017.
[11] Dinh-Thuan Do, "Energy-Aware Two-Way Relaying Networks under Imperfect Hardware: Optimal Throughput
Design and Analysis", Telecommunication Systems (Springer), Vol. 62, No. 2, pp. 449-459, 2015.
[12] T.-L. Nguyen and Dinh-Thuan Do, “A new look at AF two-way relaying networks: energy harvesting architecture
and impact of co-channel interference,” in Annals of Telecommunications, vol. 72, no. 1, pp. 669-678, June 2017.
[13] Dinh-Thuan Do and C.-B. Le, “Application of NOMA in Wireless System with Wireless Power Transfer Scheme:
Outage and Ergodic Capacity Performance Analysis,” Sensors, vol. 18, no. 10, October 2018.
[14] T.-L. Nguyen, Dinh-Thuan Do, “Exploiting Impacts of Intercell Interference on SWIPT-assisted Non-orthogonal
Multiple Access,” Wireless Communications and Mobile Computing, vol. 2018, no. 17, pp. 1-12, November 2018.
[15] Dinh-Thuan Do, M.-S. Van Nguyen, T.-A. Hoang and M Voznak, “NOMA-Assisted Multiple Access Scheme
for IoT Deployment: Relay Selection Model and Secrecy Performance Improvement,” Sensors, vol. 19, no. 3,
pp. 736, 2019.
[16] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G non-orthogonal multiple-access downlink
transmissions,” in IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010-6023, Aug. 2016.
[17] N. Zabetian, M. Baghani, and A. Mohammadi, “Rate optimization in NOMA cognitive radio networks,” 2016 8th
International Symposium on Telecommunications (IST), Tehran, pp. 62-65, 2016.
[18] Dinh-Thuan Do and Minh-Sang Van Nguyen, "Device-to-device transmission modes in NOMA network with and
without Wireless Power Transfer," Computer Communications, vol. 139, pp. 67-77, May 2019.
[19] D. Do, M. Vaezi and T.-L. Nguyen, “Wireless Powered Cooperative Relaying using NOMA with Imperfect CSI,”
2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp. 1-6, 2018.
[20] D.-T. Do and A.-T. Le, “NOMA based cognitive relaying: Transceiver hardware impairments, relay selection
policies and outage performance comparison,” Computer Communications, vol. 146, pp. 144-154, October 2019.
[21] D.-T. Do, A.-T. Le, C.-B. Le and B. M. Lee, “On Exact Outage and Throughput Performance of Cognitive Radio
based Non-Orthogonal Multiple Access Networks With and Without D2D Link,” Sensors, vol. 19, no. 15, pp. 3314,
July 2019.
[22] D.-T. Do, A.-T. Le and B.-M. Lee, “On Performance Analysis of Underlay Cognitive Radio-Aware Hybrid
OMA/NOMA Networks with Imperfect CSI,” Electronics, vol. 8, no. 7, pp. 819, July 2019.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586
586
[23] Dinh-Thuan Do and T.-T. Thi Nguyen, "Exact Outage Performance Analysis of Amplify-and Forward-Aware
Cooperative NOMA," Telkomnika, vol. 16, no. 5, pp. 1966-1973, 2018.
[24] D.-T. Do, M.-S. Van Nguyen, T.-A. Hoang, B.-M. Lee, “ Exploiting Joint Base Station Equipped Multiple Antenna
and Full-Duplex D2D Users in Power Domain Division Based Multiple Access Networks,” Sensors (Basel),
vol. 19, no. 11, pp. 2475, May 2019.
[25] D-T. Do et al. “Wireless power transfer enabled NOMA relay systems: two SIC modes and performance
evaluation,” Telkomnika, vol. 17, no.6, pp. 2697-2703, December 2019.
APPENDIX
It can be computed each component in such outage of U2 as
2 2
12 2 2 2
1
2
2 22 , 22
1 2, 2 , 22
1 , 2
1
1
20
Pr ,
1
1
1
m m m
RU RU S U
R U
S U R U
R U
a xx
a xd d d
m
RU
a h
B h h
a h
e e e dx
d
 
 


 
− − −
 
− − − −  + 
−

 
 =  − 
 + 
= − − 
(A.1)
new variable is set as 1 1y a x= + then it can be rewritten as
( )
( )
( )
22 1 1
2 2 1 2 2 2 1 2 2 1
2
111 1
1
022 1 12 1
11
!
m m m m
S U RU S U S U
a yy yna a
d a d d a y d a yn
m nm
nRU RU
e
e e e dy y e dy
d n d a
    
   

− − − −
−−+ +− − −
− −
=

−
 = =

  (A.2)
where 2
1
1 2 2 2
1
m m
RU S Ua d d


 − −
= − −  , 2
1
1 2 2
m
S U
a
a d −
 = − and 2 1 2
m
RUa d −
 = . Note that it can be further
calculated new equation by using Binomial theorem. We set
1
z
y
= and it can be obtained that
( )
( )
( ) ( )( )
( )
( ) ( )
2
2 2 1
1
1
1
2 2
1
1
2 1 11
1 1 1
1
0
1
1 1
Ei Ei
1 ! 1 1
m
S U
a z
d a
n
a
n nn k kn
k
e dz
z
e a e
n n n n k

 

 

−
−
+
+
+ + +
=
 =
−  + − 
= −  +
+ + + −


(A.3)
where (A.3) can be obtained. Substituting (A.2) and (A.3) into (A.1), is written as
( ) ( )
( )
( ) ( )( )
( )
( ) ( )
1
2
2 1 11
1 1 1
1 11
0 02
1 1 1
1 Ei Ei
1 ! 1 1!
m
RU
n n nn k kn
d
n
n k
e a e
B e e
n n n n kn
 
  

−
+ + +−
+
= =
 − −  + − 
= − − −  + 
+ + + −   
  (A.4)
Next, it can be obtained
( )
( ) ( )
( )
2
2
2 2
1, 2,
2
2 , 2 2
2
2 2 10
1
Pr
m
S R
S R S R
R x
m
dS R
m mh h
S R S R
x
B
d
f x f y dxdy e
d d





 

−
  − −
− −
+
= 
= =
+ 
(A.5)
and
𝐵3 = (|ℎ 𝑠2,𝑅|
2
<
𝛾2
𝜌
(𝜌|ℎ 𝑆1,𝑅|
2
+ 1) , |ℎ 𝑠2,𝑈2|
2
<
𝛾2
𝜌
)
= 1 − 𝑒
−
𝛾2
𝑑 𝑆2𝑈2𝜌
−𝑚
−
𝑑 𝑆2𝑅
−𝑚
𝑑 𝑆2𝑅
−𝑚 + 𝑑 𝑆1𝑅
−𝑚 𝛾2
(𝑒
𝛾2
𝑑 𝑆2𝑅
−𝑚 𝜌
− 𝑒
−𝛾
2(
1
𝑑 𝑆2𝑈2
−𝑚 𝜌
+
1
𝑑 𝑆2𝑅
−𝑚 𝜌
)
) (A.6)

More Related Content

What's hot

PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELPERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELIJCSES Journal
 
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...Cemal Ardil
 
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS pijans
 
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...IRJET Journal
 
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nA bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nijwmn
 
Performance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationPerformance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationTamilarasan N
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...eSAT Publishing House
 
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...Amitesh Raikwar
 
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...IRJET Journal
 
Csit77402
Csit77402Csit77402
Csit77402csandit
 
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...pijans
 
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...Eiko Seidel
 
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATION
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATIONPERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATION
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATIONTamilarasan N
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...IJCNCJournal
 
Iterative network channel decoding with cooperative space-time transmission
Iterative network channel decoding with cooperative space-time transmissionIterative network channel decoding with cooperative space-time transmission
Iterative network channel decoding with cooperative space-time transmissionijasuc
 

What's hot (20)

PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELPERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
 
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...
An investigation-on-efficient-spreading-codes-for-transmitter-based-technique...
 
B25004007
B25004007B25004007
B25004007
 
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS
DESIGN OF A COMPACT CIRCULAR MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS
 
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...
Improving of Energy Efficiency in LTE based MIMO-OFDM systems with Multiuser ...
 
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nA bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
 
Performance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationPerformance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE Equalization
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
 
L010326978
L010326978L010326978
L010326978
 
72 129-135
72 129-13572 129-135
72 129-135
 
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...
Performance Improvement Interfering High-Bit-Rate W-CDMA Third-Generation Sma...
 
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...
BER Performance Improvement for 4 X 4 MIMO Single Carrier FDMA System Using M...
 
Csit77402
Csit77402Csit77402
Csit77402
 
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
 
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...
Relay Enhanced LTE-Advanced Networks – Resource Allocation and QoS provisioni...
 
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATION
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATIONPERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATION
PERFORMANCE OF MIMO MC-CDMA SYSTEM WITH CHANNEL ESTIMATION AND MMSE EQUALIZATION
 
Ijetcas14 357
Ijetcas14 357Ijetcas14 357
Ijetcas14 357
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...
 
Iterative network channel decoding with cooperative space-time transmission
Iterative network channel decoding with cooperative space-time transmissionIterative network channel decoding with cooperative space-time transmission
Iterative network channel decoding with cooperative space-time transmission
 

Similar to Outage and throughput performance of cognitive radio based power domain based multiple access

Enabling relay selection in non-orthogonal multiple access networks: direct a...
Enabling relay selection in non-orthogonal multiple access networks: direct a...Enabling relay selection in non-orthogonal multiple access networks: direct a...
Enabling relay selection in non-orthogonal multiple access networks: direct a...TELKOMNIKA JOURNAL
 
Performance of cluster-based cognitive multihop networks under joint impact o...
Performance of cluster-based cognitive multihop networks under joint impact o...Performance of cluster-based cognitive multihop networks under joint impact o...
Performance of cluster-based cognitive multihop networks under joint impact o...TELKOMNIKA JOURNAL
 
Study on outage performance gap of two destinations on CR-NOMA network
Study on outage performance gap of two destinations on CR-NOMA networkStudy on outage performance gap of two destinations on CR-NOMA network
Study on outage performance gap of two destinations on CR-NOMA networkTELKOMNIKA JOURNAL
 
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...TELKOMNIKA JOURNAL
 
Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...TELKOMNIKA JOURNAL
 
Tractable computation in outage performance analysis of relay selection NOMA
Tractable computation in outage performance analysis of relay selection NOMATractable computation in outage performance analysis of relay selection NOMA
Tractable computation in outage performance analysis of relay selection NOMATELKOMNIKA JOURNAL
 
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...TELKOMNIKA JOURNAL
 
Exploiting Outage Performance of Wireless Powered NOMA
Exploiting Outage Performance of Wireless Powered NOMAExploiting Outage Performance of Wireless Powered NOMA
Exploiting Outage Performance of Wireless Powered NOMATELKOMNIKA JOURNAL
 
Security performance analysis for power domain NOMA employing in cognitive ra...
Security performance analysis for power domain NOMA employing in cognitive ra...Security performance analysis for power domain NOMA employing in cognitive ra...
Security performance analysis for power domain NOMA employing in cognitive ra...journalBEEI
 
Comparison study on secrecy probability of AF-NOMA and AF-OMA networks
Comparison study on secrecy probability of AF-NOMA and AF-OMA networksComparison study on secrecy probability of AF-NOMA and AF-OMA networks
Comparison study on secrecy probability of AF-NOMA and AF-OMA networksTELKOMNIKA JOURNAL
 
Joint impacts of relaying scheme and wireless power transfer in multiple acce...
Joint impacts of relaying scheme and wireless power transfer in multiple acce...Joint impacts of relaying scheme and wireless power transfer in multiple acce...
Joint impacts of relaying scheme and wireless power transfer in multiple acce...journalBEEI
 
Performance enhancement of wireless sensor network by using non-orthogonal mu...
Performance enhancement of wireless sensor network by using non-orthogonal mu...Performance enhancement of wireless sensor network by using non-orthogonal mu...
Performance enhancement of wireless sensor network by using non-orthogonal mu...nooriasukmaningtyas
 
Performance Analysis for Parallel MRA in Heterogeneous Wireless Networks
Performance Analysis for Parallel MRA in Heterogeneous Wireless NetworksPerformance Analysis for Parallel MRA in Heterogeneous Wireless Networks
Performance Analysis for Parallel MRA in Heterogeneous Wireless NetworksEditor IJCATR
 
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...ijaceeejournal
 
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...acijjournal
 
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...acijjournal
 
VFDM for single user
VFDM for single userVFDM for single user
VFDM for single userGaspard Ggas
 
Multi user-MIMO Broadcast Channel techniques
Multi user-MIMO Broadcast Channel techniquesMulti user-MIMO Broadcast Channel techniques
Multi user-MIMO Broadcast Channel techniquesIRJET Journal
 
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMAExact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMATELKOMNIKA JOURNAL
 
Distributed Spatial Modulation based Cooperative Diversity Scheme
Distributed Spatial Modulation based Cooperative Diversity SchemeDistributed Spatial Modulation based Cooperative Diversity Scheme
Distributed Spatial Modulation based Cooperative Diversity Schemeijwmn
 

Similar to Outage and throughput performance of cognitive radio based power domain based multiple access (20)

Enabling relay selection in non-orthogonal multiple access networks: direct a...
Enabling relay selection in non-orthogonal multiple access networks: direct a...Enabling relay selection in non-orthogonal multiple access networks: direct a...
Enabling relay selection in non-orthogonal multiple access networks: direct a...
 
Performance of cluster-based cognitive multihop networks under joint impact o...
Performance of cluster-based cognitive multihop networks under joint impact o...Performance of cluster-based cognitive multihop networks under joint impact o...
Performance of cluster-based cognitive multihop networks under joint impact o...
 
Study on outage performance gap of two destinations on CR-NOMA network
Study on outage performance gap of two destinations on CR-NOMA networkStudy on outage performance gap of two destinations on CR-NOMA network
Study on outage performance gap of two destinations on CR-NOMA network
 
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...
Joint Fixed Power Allocation and Partial Relay Selection Schemes for Cooperat...
 
Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...
 
Tractable computation in outage performance analysis of relay selection NOMA
Tractable computation in outage performance analysis of relay selection NOMATractable computation in outage performance analysis of relay selection NOMA
Tractable computation in outage performance analysis of relay selection NOMA
 
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...
Wireless power transfer enabled NOMA relay systems: two SIC modes and perform...
 
Exploiting Outage Performance of Wireless Powered NOMA
Exploiting Outage Performance of Wireless Powered NOMAExploiting Outage Performance of Wireless Powered NOMA
Exploiting Outage Performance of Wireless Powered NOMA
 
Security performance analysis for power domain NOMA employing in cognitive ra...
Security performance analysis for power domain NOMA employing in cognitive ra...Security performance analysis for power domain NOMA employing in cognitive ra...
Security performance analysis for power domain NOMA employing in cognitive ra...
 
Comparison study on secrecy probability of AF-NOMA and AF-OMA networks
Comparison study on secrecy probability of AF-NOMA and AF-OMA networksComparison study on secrecy probability of AF-NOMA and AF-OMA networks
Comparison study on secrecy probability of AF-NOMA and AF-OMA networks
 
Joint impacts of relaying scheme and wireless power transfer in multiple acce...
Joint impacts of relaying scheme and wireless power transfer in multiple acce...Joint impacts of relaying scheme and wireless power transfer in multiple acce...
Joint impacts of relaying scheme and wireless power transfer in multiple acce...
 
Performance enhancement of wireless sensor network by using non-orthogonal mu...
Performance enhancement of wireless sensor network by using non-orthogonal mu...Performance enhancement of wireless sensor network by using non-orthogonal mu...
Performance enhancement of wireless sensor network by using non-orthogonal mu...
 
Performance Analysis for Parallel MRA in Heterogeneous Wireless Networks
Performance Analysis for Parallel MRA in Heterogeneous Wireless NetworksPerformance Analysis for Parallel MRA in Heterogeneous Wireless Networks
Performance Analysis for Parallel MRA in Heterogeneous Wireless Networks
 
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...
COOPERATIVE COMMUNICATIONS COMBINATION DIVERSITY TECHNIQUES AND OPTIMAL POWER...
 
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
 
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...Downlink beamforming and admissin control for spectrum sharing cognitive radi...
Downlink beamforming and admissin control for spectrum sharing cognitive radi...
 
VFDM for single user
VFDM for single userVFDM for single user
VFDM for single user
 
Multi user-MIMO Broadcast Channel techniques
Multi user-MIMO Broadcast Channel techniquesMulti user-MIMO Broadcast Channel techniques
Multi user-MIMO Broadcast Channel techniques
 
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMAExact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA
Exact Outage Performance Analysis of Amplify-and-forward-aware Cooperative NOMA
 
Distributed Spatial Modulation based Cooperative Diversity Scheme
Distributed Spatial Modulation based Cooperative Diversity SchemeDistributed Spatial Modulation based Cooperative Diversity Scheme
Distributed Spatial Modulation based Cooperative Diversity Scheme
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 

Outage and throughput performance of cognitive radio based power domain based multiple access

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 2, April 2020, pp. 579~586 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i2.12731  579 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Outage and throughput performance of cognitive radio based power domain based multiple access Dinh-Thuan Do, Chi-Bao Le Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH), Vietnam Article Info ABSTRACT Article history: Received Mar 24, 2019 Revised Jan 13, 2020 Accepted Feb 8, 2020 This paper considers power domain based multiple access (PDMA) in cognitive radio network to serve numerous users who intend to multiple access to core network. In particular, we investigate the effect of signal combination scheme equipped at PDMA end-users as existence of direct link and relay link. This system model using relay scheme provides performance improvement on the outage probability of two PDMA end-users. We first propose a simple scheme of fixed power allocation to PDMA users who exhibit performance gap and fairness. Inspired by PDMA strategy, we then find signal to noise ratio (SNR) to detect separated signal for each user. In addition, the exact expressions of outage probability are derived in assumption that receiver can cancel out the interference completely with successive interference cancellation (SIC). By exploiting theoretical and simulation results, both considered combination schemes (Maximal Ratio Combining (MRC) and Selection Combining (SC) can achieve improved performance of two PDMA users significantly. Keywords: MRC Outage probability Power domain based multiple access SC This is an open access article under the CC BY-SA license. Corresponding Author: Dinh-Thuan Do, Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City, Vietnam. Email: dodinhthuan@iuh.edu.vn 1. INTRODUCTION Recently, cognitive radio (CR) has been attracted considerable attention due to its ability to improved spectrum utilization [1]. Achieving advantage of CR to the fifth generation (5G) mobile networks, the primary network containing base station (BS) and BS-served mobile users and the secondary network including two kinds of users (mobile users non-served by the BS) can occupy resource in a same licensed band [2]. Unfortunately, the primary users are under impact of interference from the secondary users located in such a underlay approach. Therefore, it is required to limit the interference to below a certain level to guarantee system performance [3]. In overlay CR, the channels can be selected dynamically without inter-user interference while channel is decided under certain interference constraint in underlay CR. The other is an attractive solution, power domain based multiple access (PDMA), and it is proposed for 5G wireless communications. In PDMA, multiple users are permitted to transmit superimposed signals by employing the same carrier and the same time slot. In real practice, secure issue is challenge in above technologies to enhance spectral efficiency related to spectrum sharing [4]. Although secondary user (SU) can access to a spectrum of a primary user (PU), such SU in cognitive radio networks (CRNs) may meet wiretap legitimate signals due to without appropriate spectrum management policies. Accordingly, secure transmission quality of primary systems in cognitive radio networks (CRNs) using several models have been
  • 2.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586 580 investigated [5–7]. Fortunately, relaying network provides extended coverage with reasonable outage performance [8-13]. Such relay scheme is proposed to combine with PDMA technology to introduce cooperative PDMA [14, 15]. It is proposed to guarantee the transmit quality of massive users with poor channel [16] and allow more users to access into one spectrum resource block at the same time. With regard to higher spectrum efficiency, new trend of PDMA and CR is introduced as CR-inspired PDMA as in [17]. The authors studied different receiving qualities of two PDMA systems in two schemes, such as fixed power allocation PDMA and CR-inspired PDMA. To guarantee the channel quality of a user who meets a poor channel condition, the CR-inspired PDMA is recommended [17]. To evaluate system performance, the CR-inspired PDMA indicated better fairness in term of spectrum allocation compared with the fixed-power-allocation PDMA. In other work, the power allocation scheme is developed for two secondary user (SUs) existing in the PDMA-enabled underlay CR (CR PDMA). Such CR PDMA is deploy to enhance the spectral efficiency by using interference cancellation [18]. Thus, to greatly improve the spectrum utilization, PDMA is proposed to integrate into underlay CR with power constraints. Motivated by [19-25] this paper analyzes the outage and throughput performance by applying the PDMA protocol in a CR network. In this situation, we considers system performance in a downlink communication scenario. The network is composed of a pair of PDMA users, a primary network containing base station (BS) and user while the source in secondary network need a helping relay to forward signal to far user. We assume that all end-users operate in the PDMA transmission protocol at the same time. The main contributions are summarized as follows. - We propose a new underlay CR PDMA-enabled transmission and provide performance gap of two PDMA users to satisfy the quality of service (QoS) requirements of such CR PDMA system. - We formulate exact outage probability for two PDMA users while satisfying a given fixed power allocation factors. Then, we confirm outage performance and corresponding throughput in numerical results. - We analyze the overall network performance, study the problem of fixed power allocation under the constraint of the system total power, and indicate numerical method to solve the optimal problem of throughput performance. The rest of the paper is organized as follows. Section II presents a PDMA-enabled CR system with a pair of PDMA end-users are served by both sources in primary network and secondary network, secondary source using one relay to serve far PDMA user. In Section III, we extend our study to a situation with fixed power allocation to derive outage probability and corresponding throughput of overall system. Simulation results are shown in Section IV, and conclusions are presented in Section V. 2. SYSTEM MODEL AND CALCULATIONS OF SNR In this article, we consider a communication with CR PDMA model as shown in Figure 1. This model consists primary network containing a base station (BS) and far PDMA user, a secondary network containing source, relay R and far PDMA user. All entities in the network are equipped with single antenna and the communication of primary and secondary system operates in using the PDMA transmission principles. Assuming that both the relay and two PDMA users can estimate the secondary and primary channels by some learning processes in the actual situation, they can be aware of the channel state information (CSI) of all the channels perfectly. In addition, all channels are assumed to be quasi-static Rayleigh fading, where the channel coefficients are constant for each transmission block but vary independently between different blocks. Figure 1. System model of joint CR and PDMA
  • 3. TELKOMNIKA Telecommun Comput El Control  Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do) 581 For the operation of helping relay in secondary systems, relay may receive the synthetic message from the primary source S1 and signal from the secondary source S2. We denote noise terms 2 2 2 2 2 2 , 1 , 2 1, 1 2, 2R R U R U S U S U     = = = = = and 1 2 2 2 2 S S RP P P     = = = . SNR at relay to detect x2: 2 2, , 2 2 1, . 1 S R R x S R h h    = + (1) We compute SNR at relay to detect x1 2 , 1 1, .R x S Rh = (2) It can be found SNR at U1 to detect x2 2 2 , 1 1, 2 2 1 , 1 . 1 R U RU x R U a h a h    = + (3) It need be computed SNR at U1 to detect x1 as 2 1, 1 1 , 1 .RU x R Ua h = (4) It can be calculated SNR at U2 to detect x2 as 2 2 , 2 2, 2 2 1 , 2 . 1 R U RU x R U a h a h    = + (5) In direct link of primary network in such CR PDMA, SNR at U1 to detect x1 is given by; 2 1 1, 1 1, 1 .S U x S Uh = (6) Also, in direct link of secondary network in such CR PDMA, SNR at U1 to detect x2 is computed by 2 2 2, 2 2, 2 .S U x S Uh = (7) 3. OUTAGE PROBABILITY AND THROUGHPUT ANALYSIS In this section, we investigated the outage behavior for the CR PDMA downlink cooperative network with perfect CSI. To this end, exact expressions for the outage probability is studied first. In order to best throughput and better understand the behavior of the network, a numerical method is applied to show throughput, while fairness among PDMA users satisfied, regime. We use Maximal Ratio Combining (MRC) to further process signal at U1, U2 as existences of direct link and relay link between the BS and PDMA end-users. 3.1. Scheme I: maximal ratio combining (MRC) At each destination, two links are combined and hence SNR in such MRC case can be expressed at U1, U2 respectively as; 2 2 1 1, 1 1 , 1 ,MRC U S U R Uh a h  = + (8)
  • 4.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586 582 and 2 2 2 , 2 2 2, 2 2 1 , 2 . 1 R UMRC U S U R U a h h a h     = + + (9) we set new variable ( ) 2 2 2 1a a     = − then, the outage probability at user U1 can be given by; ( ) ( ) ( ) 2 31 1 1 1 , 1 1 , 1 1 1 1, 1 1Pr Pr Pr , .MRC U U R x R x S U x A AA P        =   +   (10) proposition 1: the closed-form expression of outage probability at user U1 can be given by 1 1 1 1 1 1 1 1 U1 1 1 , m m m S R S R S Ud d d UP e e e        − − − − − −      = + − −       (11) where 1 11 1 1 1 1 11 1 1 1 1 1 1 U1 1 1 1 1 1 1 m mm m RU S URU S U a m a d dd a dS U m m S U RU d e e e d d a      − −− −  −− −−  −     − −    = − − −  −   Proof: We have following equation ( )1 1 1 2 2 2 1 1 1, 1 1 , 1 , 1 1 Pr Pr , . MRC U S U R U R U A h a h h a       =    =  −     (12) Then, it can be further expressed as ( ) 1 1 2 2 1, 1 , 1 1 11 1 1 1 1 11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 . S U R U m mm m RU S URU S U a h h a m a d dd a dS U m m S U RU A F a x f x dx d e e e d d a         − −− −   −  − −− −     − −   = −       = − − −  −    (13) Then, two remaining component can be obtained as ( ) 1 1 2 , 1 1Pr , m S R R x d A e     − − =  = (14) and ( ) 1 1 1 1 1 3 , 1 1 1 1, 1 1Pr , 1 1 . m m S R S U R x S U x d d A e e         − − − − =        = − −       (15) This is end of the proof. Similarly, outage probability at user U2 can be computed by
  • 5. TELKOMNIKA Telecommun Comput El Control  Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do) 583 ( ) ( ) ( ) 2 31 2 2 2 , 2 2 , 2 2 2 2, 2 2Pr Pr Pr , .MRC U U R x R x S U x B BB P        =   +   (16) Proposition 2: The closed-form expression of outage probability at user U2 can be given by: ( ) ( ) 2 2 2 2 2 22 2 2 02 2 2 12 1 1 1 1 , ! m m m RU S R S U n m d d dS R U n m mm n S R S RRU de P e e e d dn d a       − − − −−− − − −− =  − = − −  + − −    +    (17) where ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1 2 1 11 1 1 1 2 1 0 1 1 Ei Ei 1 ! 1 1 n nn k kn k e a e n n n n k     + + + = −  + −   = −  + + + + −  , 2 1 2 m RUa d −  = , 2 1 1 2 2 2 1 m m RU S Ua d d    − − = − −  , 2 1 1 2 2 m S U a a d −  = − and 2 2 2 2 22 1 1 2 2 1 2 m mm S U S RS R m d ddS R m m S R S R d e e d d      − −−   −  − +−     − −     = −  +   Proof: see in appendix 3.2. Scheme II: selection combining (SC) We consider outage performance of each destination by using Selection Combining (SC) as; ( ) ( )1 1 1, 1 1 , 1 1 1, 1 1 2 2 2 1 1 1 1, 1 1, , 1 1 Pr 1 Pr , Pr 1 Pr , . U S U x R x RU x S U S R R U OP h h h a              =  −        =  −            (18) Then, it is rewritten as; ( ) ( ) ( ) 1 2 2 2 1, 1 1, , 1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 0 1 1 1 1 1 1 1 . S U S R R U m m m m mm S R RU S R RU S US U U h h h a d d a d d a dd OP f x dx f x f y dxdy e e e           − − − − −−          − + − + +−             = −      = − − +    (19) Consider signal at the second destination, outage performance of U2 is; ( ) ( ) ( ) ( ) 2 2, 2 2 , 2 2 2, 2 2 2 2 2 2 2 2 2 2, 2 2, 1, , 2 2 2 1 Pr 1 Pr , Pr 1 Pr 1 , . U S U R x RU x S U S R S R R U OP h h h h a a                =  −        =  −  +      −     (20) Next, it can be rewritten as; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2, 2 1, 2, , 2 2 2 2 2 1 2 22 2 2 2 2 1 2 2 2 2 1 2 22 2 2 0 0 1 1 1 1 1 1 2 2 1 2 1 1 S U S R S R R U m m m m mm S R RU S R RU S US U U h h h h x a a m d d a a d d a a dd S R m m S R S R OP f x dx f x f x dxdy f z dz d e e e d d               − − − − −−    + −      − − + − + +−   − −   − −     = −      = − − − +     .              (21)
  • 6.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586 584 Then, we further examine optimal throughput in case of fixed data rates are known. Such system throughput can be given by ( ) ( )1 1 2 21 1U UP R P R = − + − (22) 4. NUMERICAL RESULTS In this section, our parameters are shown to simulate, i.e. power allocation factors 1 2 0.2, 0.8a a= = , target rates 1 2R = , 2 0.5R = , distances 1 1mS Rd = , 2 1mS Rd = , 1 2mRUd = , 2 4mRUd = , 1 1 1 1S U S R RUd d d= + and 2 2 2 2S U S R RUd d d= + , path-loss exponent 2m = . Figure 2 shows impact of target rates on outage performance. In addition, higher transmit SNR at the source node S1, S2 results in better outage performance. To comparison, outage performance of U1 for scheme I is better than that of scheme II. While performance of U2 is similar for two considered schemes. Figure 3 illustrates that increasing target rates make our system meet outage event. This figure confirms that higher transmit SNR at source leads to better performance. It can be seen slight performance gap for user U2 as comparing two schemes. It can be found highest throughput at optimal target rate as in Figure 4. This result confirms that optimal throughput can be achieved by numerical method. It can be seen slight performance gap as comparing two schemes. Figure 2. Outage performance versus transmit SNR in CR PDMA Figure 3. Outage performance versus target rates of CR PDMA Figure 4. Throughput performance of CR PDMA versus target rates
  • 7. TELKOMNIKA Telecommun Comput El Control  Outage and throughput performance of cognitive radio based power domain based … (Dinh-Thuan Do) 585 5. CONCLUSION In this paper, we studied the fixed power allocation scheme design for robust and guarantee fairness in communication of CR PDMA systems. Each source in each network of CR can serve its own signal forwarding to relay and then the superimposed signal can be received at the PDMA end users. Such model was employed for serving multiple access in downlink. Simulation results revealed that the considered CR PDMA system employing the proposed fixed power allocation scheme can guarantee fairness in PDMA significantly. With respect to specific data rate, it can be achieved highest throughput. Furthermore, our results confirmed the outage small performance gap among two PDMA users of the proposed scheme with respect to varying transmit SNR and revealed the impact of various system parameters on performance. REFERENCES [1] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” in Proceedings of the IEEE, vol. 97, no. 5, pp. 894-914, May 2009. [2] L. Lv, J. Chen, and Q. Ni, “Cooperative non-orthogonal multiple access in cognitive radio,” in IEEE Communications Letters, vol. 20, no. 10, pp. 2059-2062, Oct. 2016. [3] X. Kang, Y. C. Liang, A. Nallanathan, H. K. Garg, and R. Zhang, “Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity,” in IEEE Transactions on Wireless Communications, vol. 8, no. 2, pp. 940-950, Feb. 2009. [4] Y. Pei, Y. C. Liang, K. C. Teh, and K. H. Li, “Secure communication in multi-antenna cognitive radio networks with imperfect channel state information,” in IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1683-1693, April 2011. [5] Z. Li, T. Jing, X. Cheng, Y. Huo, W. Zhou, and D. Chen, “Cooperative jamming for secure communications in MIMO cooperative cognitive radio networks,” in 2015 IEEE International Conference on Communications (ICC), London, pp. 7609-7614, 2015. [6] P. H. Lin, F. Gabry, R. Thobaben, E. A. Jorswieck, and M. Skoglund, “Multi-phase smart relaying and cooperative jamming in secure cognitive radio networks,” in IEEE Transactions on Cognitive Communications and Networking, vol. 2, no. 1, pp. 38-52, March 2016. [7] Y. Y. He, J. Evans, and S. Dey, “Secrecy rate maximization for cooperative overlay cognitive radio networks with artificial noise,” 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, pp. 1663-1668, 2014. [8] Dinh-Thuan Do, "Power Switching Protocol for Two-way Relaying Network under Hardware Impairments," Radioengineering, Vol. 24, No. 3, pp. 765-771, 2015. [9] Dinh-Thuan Do, H. -S. Nguyen, M. Voznak and T. -S. Nguyen,” Wireless powered relaying networks under imperfect channel state information: system performance and optimal policy for instantaneous rate,” Radioengineering, vol. 26, no. 3, pp. 869-877, September 2017. [10] X. Nguyen and Dinh-Thuan Do, “Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel,” in EURASIP Journal on Wireless Communications and Networking, vol. 2017, no. 1, pp. 152, September 2017. [11] Dinh-Thuan Do, "Energy-Aware Two-Way Relaying Networks under Imperfect Hardware: Optimal Throughput Design and Analysis", Telecommunication Systems (Springer), Vol. 62, No. 2, pp. 449-459, 2015. [12] T.-L. Nguyen and Dinh-Thuan Do, “A new look at AF two-way relaying networks: energy harvesting architecture and impact of co-channel interference,” in Annals of Telecommunications, vol. 72, no. 1, pp. 669-678, June 2017. [13] Dinh-Thuan Do and C.-B. Le, “Application of NOMA in Wireless System with Wireless Power Transfer Scheme: Outage and Ergodic Capacity Performance Analysis,” Sensors, vol. 18, no. 10, October 2018. [14] T.-L. Nguyen, Dinh-Thuan Do, “Exploiting Impacts of Intercell Interference on SWIPT-assisted Non-orthogonal Multiple Access,” Wireless Communications and Mobile Computing, vol. 2018, no. 17, pp. 1-12, November 2018. [15] Dinh-Thuan Do, M.-S. Van Nguyen, T.-A. Hoang and M Voznak, “NOMA-Assisted Multiple Access Scheme for IoT Deployment: Relay Selection Model and Secrecy Performance Improvement,” Sensors, vol. 19, no. 3, pp. 736, 2019. [16] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G non-orthogonal multiple-access downlink transmissions,” in IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010-6023, Aug. 2016. [17] N. Zabetian, M. Baghani, and A. Mohammadi, “Rate optimization in NOMA cognitive radio networks,” 2016 8th International Symposium on Telecommunications (IST), Tehran, pp. 62-65, 2016. [18] Dinh-Thuan Do and Minh-Sang Van Nguyen, "Device-to-device transmission modes in NOMA network with and without Wireless Power Transfer," Computer Communications, vol. 139, pp. 67-77, May 2019. [19] D. Do, M. Vaezi and T.-L. Nguyen, “Wireless Powered Cooperative Relaying using NOMA with Imperfect CSI,” 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp. 1-6, 2018. [20] D.-T. Do and A.-T. Le, “NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison,” Computer Communications, vol. 146, pp. 144-154, October 2019. [21] D.-T. Do, A.-T. Le, C.-B. Le and B. M. Lee, “On Exact Outage and Throughput Performance of Cognitive Radio based Non-Orthogonal Multiple Access Networks With and Without D2D Link,” Sensors, vol. 19, no. 15, pp. 3314, July 2019. [22] D.-T. Do, A.-T. Le and B.-M. Lee, “On Performance Analysis of Underlay Cognitive Radio-Aware Hybrid OMA/NOMA Networks with Imperfect CSI,” Electronics, vol. 8, no. 7, pp. 819, July 2019.
  • 8.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 579 - 586 586 [23] Dinh-Thuan Do and T.-T. Thi Nguyen, "Exact Outage Performance Analysis of Amplify-and Forward-Aware Cooperative NOMA," Telkomnika, vol. 16, no. 5, pp. 1966-1973, 2018. [24] D.-T. Do, M.-S. Van Nguyen, T.-A. Hoang, B.-M. Lee, “ Exploiting Joint Base Station Equipped Multiple Antenna and Full-Duplex D2D Users in Power Domain Division Based Multiple Access Networks,” Sensors (Basel), vol. 19, no. 11, pp. 2475, May 2019. [25] D-T. Do et al. “Wireless power transfer enabled NOMA relay systems: two SIC modes and performance evaluation,” Telkomnika, vol. 17, no.6, pp. 2697-2703, December 2019. APPENDIX It can be computed each component in such outage of U2 as 2 2 12 2 2 2 1 2 2 22 , 22 1 2, 2 , 22 1 , 2 1 1 20 Pr , 1 1 1 m m m RU RU S U R U S U R U R U a xx a xd d d m RU a h B h h a h e e e dx d         − − −   − − − −  +  −     =  −   +  = − −  (A.1) new variable is set as 1 1y a x= + then it can be rewritten as ( ) ( ) ( ) 22 1 1 2 2 1 2 2 2 1 2 2 1 2 111 1 1 022 1 12 1 11 ! m m m m S U RU S U S U a yy yna a d a d d a y d a yn m nm nRU RU e e e e dy y e dy d n d a           − − − − −−+ +− − − − − =  −  = =    (A.2) where 2 1 1 2 2 2 1 m m RU S Ua d d    − − = − −  , 2 1 1 2 2 m S U a a d −  = − and 2 1 2 m RUa d −  = . Note that it can be further calculated new equation by using Binomial theorem. We set 1 z y = and it can be obtained that ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 2 2 2 1 1 1 1 2 2 1 1 2 1 11 1 1 1 1 0 1 1 1 Ei Ei 1 ! 1 1 m S U a z d a n a n nn k kn k e dz z e a e n n n n k        − − + + + + + =  = −  + −  = −  + + + + −   (A.3) where (A.3) can be obtained. Substituting (A.2) and (A.3) into (A.1), is written as ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1 2 2 1 11 1 1 1 1 11 0 02 1 1 1 1 Ei Ei 1 ! 1 1! m RU n n nn k kn d n n k e a e B e e n n n n kn       − + + +− + = =  − −  + −  = − − −  +  + + + −      (A.4) Next, it can be obtained ( ) ( ) ( ) ( ) 2 2 2 2 1, 2, 2 2 , 2 2 2 2 2 10 1 Pr m S R S R S R R x m dS R m mh h S R S R x B d f x f y dxdy e d d         −   − − − − + =  = = +  (A.5) and 𝐵3 = (|ℎ 𝑠2,𝑅| 2 < 𝛾2 𝜌 (𝜌|ℎ 𝑆1,𝑅| 2 + 1) , |ℎ 𝑠2,𝑈2| 2 < 𝛾2 𝜌 ) = 1 − 𝑒 − 𝛾2 𝑑 𝑆2𝑈2𝜌 −𝑚 − 𝑑 𝑆2𝑅 −𝑚 𝑑 𝑆2𝑅 −𝑚 + 𝑑 𝑆1𝑅 −𝑚 𝛾2 (𝑒 𝛾2 𝑑 𝑆2𝑅 −𝑚 𝜌 − 𝑒 −𝛾 2( 1 𝑑 𝑆2𝑈2 −𝑚 𝜌 + 1 𝑑 𝑆2𝑅 −𝑚 𝜌 ) ) (A.6)