SlideShare a Scribd company logo
1 of 10
Download to read offline
TELKOMNIKA, Vol.17, No.2, April 2019, pp.897~906
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i2.9265 ๏ฎ 897
Received March 14, 2018; Revised November 28, 2018; Accepted December 20, 2018
Development of IoT at hydroponic system using
raspberry Pi
Rony Baskoro Lukito*
1
, Cahya Lukito
2
Computer Science Department, School of Computer Science, Bina Nusantara University,
Jakarta, Indonesia
*Corresponding author, e-mail: rbaskoro@binus.edu
1
, cahya.lukito@gmail.com
2
Abstract
Hydroponics is one of the farming technologies using water media to meet the needs of plant
nutrition. Water use in hydroponics systems more efficient compared with the cultivation system using soil
media. Water that has been mixed with mineral nutrients needed by plants streamed continuously to the
plant roots. Another advantage of this method is very suitable to be applied in a limited area such as urban
home environments, the use of the existing space in the house. In the everyday activities of urban
residents spending more time outside the home to work, school, shopping and other activities. Thus the
observation of hydroponic systems remotely be important to be done from anywhere. Availability,
temperature, and pH of the water are some of the factors in hydroponic systems that need to be observed
periodically to determine the appropriate action. This problem can be solved by developing the Internet of
Things technology in the hydroponic system that observations can be done remotely and reported directly
through the Internet.
Keywords: internet of things, paper hydroponic system, raspberry Pi, vertical garden
Copyright ยฉ 2019 Universitas Ahmad Dahlan. All rights reserved.
1. Introduction
Most of the activities of urban residents in the use of their time is spent outside the
home to work in the office, school, shopping and other activities. With the limited time you have,
the application of Internet of Things technology can provide enormous benefits. System control
and monitoring can be done from a long distance and can be accessed at any time. One way to
improve the quality of human life in the food self-sufficiency is to adopt a hydroponic system,
which is one of the technologies of farming using water media to meet the needs of plant
nutrition. Water that has been mixed with mineral nutrients needed by plants streamed
continuously to the plant roots. Temperature, pH and conductivity of water need to always be
observed to determine the necessary actions.
In this study used the Raspberry Pi, a credit card-sized minicomputer and Arduino-
based IOT devices are equipped with multiple sensor modules. The scope of this study will be
limited to the development of hardware and software to monitor the main parameters of all
hydroponic systems using Internet of Thing technology, consisting of:
a. The temperature sensor, pH and conductivity of water
b. An Arduino Internet of Thing module
c. Database and Web Server is built on Raspberry Pi Pocket PC
By developing a support device hydroponics system that can be applied in a residential
neighborhood, this is expected to help increase food security of every family. The next step of
this research is to build a Smart Hydroponic System that is integrated with the Internet network.
2. Research Method
2.1. Internet of Things Technology
Based on one of the existing literature on the www.internetsociety.org [1], the term of
the Internet of Things (IOT) was first used in 1999 by Kevin Ashton to explain a system that can
connect objects who physically looks into an internet network by using sensors. The rapid
growth of technology and the support of technology Automation Systems, Information Systems
๏ฎ ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906
898
and Telecommunication System to create a Smart System that can improve human welfare [2].
IoT consist of Instrument, Interconnect, Intelligently process [3].
According to [4], when the sensor operates, the sensor converts a form of energy into
another energy called transducer. Sensors that operate indirectly will change their properties,
such as resistance, capacitance or inductance, which occurs proportionately. Here are 6 points
of the application of IOT which is a combination of two large groups of Information and Analysis
and Automation and Control according to an analysis from McKinsey and Company [5].
Tracking behavior, enhanced situational awareness and sensor-driven decision analytics are in
group of Information and Analysis. Process optimization, optimized resource consumption and
complex autonomous systems are in group of Automation and Control.
This research will focus on sensor-driven decision analytics for a hydroponics system
that is in a residential setting. This is the first step to fulfill some parts of the above criteria. The
Internet of Things also has been identified as one of the technologies that will emerge in IT
technologies as reported in the IT Gartner Hype Cycle [6]. Buckey said, The Internet of Things
may react autonomously to the real world. This is known as proactive computing [7].
2.2. Raspberry Pi Overview
Raspberry Pi is a minicomputer the size of a credit card which was developed by the
Raspberry Pi Foundation in the United Kingdom. The device was created by a hardware
architect of Broadcom named Eben Upton. The device is made with the initial goal to assist the
introduction of the Fundamentals of Computers in schools and developing countries [8].
Despite having small dimensions, Raspberry Pi can be used to do many things like a
personal computer, such as to send and read e-mail, making spreadsheets and electronic
documents, browse the internet, play multi-media with quality High-Definition Video. In this
study the Raspberry Pi will be used as WEB and Database Server, by connecting the sensor
temperature, pH and conductivity of water in the system hydroponics through the intranet. With
the development of WEB-based application programs that run on the Raspberry Pi, then the
information can be accessed on the Internet via the Ethernet port.
2.3. Raspberry-Pi Architecture
Until 2015, the Raspberry Pi has had 6 versions, namely: Raspberry Pi 1 Model A and
Model A +, Raspberry Pi 1 Model B and Model B +, Raspberry Pi Model B 2, and the Raspberry
Pi 2 Zero [9]. Raspberry-Pi using ARM Central Processing Unit Broadcom BMC2835 and a
GPU that features some of the following connectors as shown in Figure 2 [10]:
1. General Purpose Input and Output (GPIO)
2. Display Serial Interface (DSI) 15 pin flat ribbon cable that can be connected to
communicate with the LCD or OLED display.
3. Camera Serial Interface (CSI) Port for camera connection.
4. This is a Broadcom proprietary header which is useful for Broadcom chip JTAG testing
header and Ethernet-out LAN9512 Networking Chip.
Figure 2. Raspberry-Pi Model-B
TELKOMNIKA ISSN: 1693-6930 ๏ฎ
Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito)
899
Comparison between the Raspberry Pi Model A and Model B can be seen in Table 1.
Both have the same CPU speed is 700MHz, with a larger memory 2x for Model B. The price
difference is not too far away, Model B already include the number of USB ports available are
more and RJ-45 port for networking-based TCP / IP. On the side of the power requirements of
Model B requires a current of 700mA at 5VDC voltage compared to Model A, which only
requires a current of 300mA at the same voltage of 5VDC [11].
Table 1. Comparison Model of Raspberry Pi
Raspberry Pi Model A Model B
Release Date Q1 2013 Q4 2012
CPU ARM11 700 MHz ARM11 700 MHz
GPU Broadcom VideoCore IV Broadcom VideoCore IV
RAM 256 MB 512 MB
SoC Broadcom BCM2835 Broadcom BCM2835
Power Rating 300 mA at 5V 700 mA at 5V
USB 1x USB 2.0 1x USB 2.0
Video Output Composite RCA; HDMI 1.3/1.4 Composite RCA; HDMI 1.3/1.4
Audio Output 3.5 mm analogue; HDMI 3.5 mm analogue; HDMI
Networking None None
Open Source Linux Operating System is the most widely used. By making adjustments
to the Raspberry Pi Hardware Architecture, Raspbian is a Free Operating System is based on
Debian suitable for general use. Raspbian currently has 35000 software packages that are easy
to install, and the support of an active community to improve the stability and performance of
each package [12].
2.4. Arduino Minimum System
In accordance with the general explanation, Arduino system is defined as a minimum
that is Open Source for easy-to-use Hardware or Software [13]. Arduino Board has the ability to
read input from the sensors installed, keystrokes until a short message via a computer network
which is then processed into an output that is supported by the microprocessor on board.
Arduino also provides supporting software to allow users to create Application Software by
providing the Arduino programming language and Arduino IDE Software. In this study, using
Wido is an Arduino Compatible Board designed for the purposes of Internet of Thing. Here are
the specifications of the module Wido v1.0 as can be seen in Figure 3 [14]. Reach resources or
7-12v (VIN)/5v (Micro USB), Leonardo Arduino Compatible, Integrated with WG1300 WIFI
module Chip for 2.4GHz IEEE 802.11 b/g, On board PCB Antenna 2.4G, Microcontroller
ATMEL ATmega32U4.
Figure 3. WiDo v1.0 Pin Out [7]
๏ฎ ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906
900
2.5. Research Methods
The research methodology is the stages of research must be defined before carrying
out the research, so that research can be done with focused, clear, efficient and effective. As
shown in Figure 4, it starts with identifying problems how to use the internet of things for
hydroponic systems. Then proceed with research on system architecture and algorithms, this
relates to the current technology. Next is the development of hardware and software, which
includes architectural design, creating of hardware modules and software module design.
Followed by testing and evaluation. If it is not as intended, it will repeat the design of hardware
and software. If appropriate, a pilot project, testing and report will be made.
Figure 4. Methodology
Yes
Start
Identification of problems:
Development of the Internet of
Things on Hydroponic Systems
Using Raspberry Pi
End
Research on System Architecture
and Algorithms that already exists
Application Evaluation
No
Technology
Development
Pilot Project Testing
Report
According to
Purpose
Application Testing
Application Development
System
Architecture
Design
Hardware
Module
Making
Module Software
Design
Hardware and Software
Development
TELKOMNIKA ISSN: 1693-6930 ๏ฎ
Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito)
901
3. Results and Analysis
3.1. Hardware specifications
In the designing of Home Lighting System Automation project will use Raspberry Pi
Model B 1 as shown in Figure 5 that has a user interface Mini Power, SD Card, USB, HDMI,
LAN, RCA Composite Video Output, Analog Audio output Stereo Mini jack and GPIO header.
With a complete interface which is owned and embed application program in the Raspberry Pi,
the making of an electronic project to become more efficient and effective.
Figure 5. Raspberry Pi 1 Model B
Here are some of the enhancements needed to install the Operating System on a
Raspberry Pi to be used optimally: Casing, Minimum 4GB Class-4 SD Card, Monitor with HDMI
input, HDMI cable, Keyboard and Mouse with USB interface, 5VDC 700mA Power Supply with
Micro USB interface, Access the Internet to do the Software Update. Necessary also a 5VDC
power supply with 700mA minimum and at least 4GB SD Card Class 4 [15]. If you want to
connect to the Monitor, it is necessary to HDMI Cable. Keyboard and mouse can be connected
via the USB port. Connection to the network can use the RJ-45 Ethernet or Wireless LAN using
the Wi-Fi Dongle USB port. And a casing for Raspberry-Pi, because the module is not
equipped with Casing.
3.2. Architectural Design Internet of Things on Hydroponics Systems
3.2.1. Hydroponic IOT Hardware System Architecture
Here is a Hardware Architecture of the application of Internet of Things Hydroponic
System using the Raspberry Pi as a Web Server and Wido Arduino base module as the main
controller for the sensor module temperature, pH and conductivity of water that can be grouped
into the following sections:
1. Input
The measurement results from the sensors connected to the module Wido be input data
that will be sent to the Raspberry Pi to be stored in the database. The lighting system has three
sensors, namely: temperature, pH and conductivity.
2. Output
The output of this system in the form of a statistical report WEB base that displays the
value of the temperature measurement, pH and conductivity of water from Hydroponics System.
3. Module Raspberry Pi
Application development on Raspberry Pi module using the programming language
PHP, Java Script and HTML Script. All measurement data is stored using MySQL. Wido lines of
communication with the module is connected via Wireless LAN.
4. Wireless LAN Router
UTP CAT-5 cable is used to connect the Raspberry Pi into a Wireless router that has an
RJ-45 port, while the interface is used as a Wireless LAN Access Point.
๏ฎ ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906
902
5. Computer and Smart Phone
Computer and Smart phone connected via Wireless LAN Router can serve as a
monitoring tool of the hydroponic system as shown in Figure 6.
Figure 6. Hydroponic IoT Hardware System Architecture
Hardware System Architecture with the above is possible for us to reach easily from
anywhere in the home environment as long as the range of your wireless LAN. Monitoring can
be done by accessing the Web address of the Raspberry Pi using a Web browser application.
3.2.2. Hydroponic IOT Software System Architecture
Here is a Software Architecture of the application of Internet of Things on Hydroponic
System using the Raspberry Pi as shown in Figure 7:
1. Rasbian Raspberry Pi Operating System
Rasbian Operating System is a software system that is responsible for managing and
aligning work of Raspberry Pi hardware in order to work properly to support system monitoring
applications Hydroponics are working on it.
2. Web Server
Raspberry Pi serves as Web servers that store, process and transmit Web pages to the
Web client. Communication between Server and Client is to use the Hypertext Transfer Protocol
(HTTP). GUI created using HTML script in which there is some JavaScript to interact with the
applications used to read data from a database created using PHP.
3. Web Client
Application Software that is used on the client side is a standard Web browser
application that always exist on a computer or Smart Phone. Communication between the Web
server and Web Client via Wireless LAN network will be formed at the time of the Web address
Hydroponics system incorporated into the Web browser.
4. Hydroponics Database
MySQL is a database used to store data obtained from the sensor module. The writing
and reading of data to MySQL Database using applications built using PHP
5. Application Sensor
Applications created using Arduino as a programming language. Digital Temperature
Sensor is connected to the input pin, while the pH and conductivity sensors connected to analog
pin of the module Wido. Applications that are embedded in the module Wido serves to capture
data generated by sensors and sends it to the Raspberry Pi.
WirelessLAN Router
WEB Server:
Temperature-pH-ECdashboard
MainController
MySQL:
Temperature-pH-ECDatabase
WEB Client
Sensor Input:
DigitalTemperature
AnalogpH and EC
IoT Module
TELKOMNIKA ISSN: 1693-6930 ๏ฎ
Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito)
903
Figure 7. Hydroponic IoT Software System Architecture
By using the Client Server Architecture Model, then most of the process will be
performed by the Raspberry Pi as a server so that the resources required on client devices is
small. Another thing is the advantage of this model is the Client can easily fit into any monitoring
system for Hydroponics from Client devices connected to wireless LANs are equipped with
WEP or WPA Wireless Security.
3.3. Hardware Implementation
Raspberry Pi is placed on a box next to the wireless router, while IOT sensor box is
placed close to a hydroponic plant cultivation. Connection to the Wireless Router using a Cat-5
Ethernet cable with bandwidth of 100Mbps. As shown in the Figure 9 below, there are three
sensors connected to Wido IOT module through each interface. The temperature sensor is
connected to a digital pin while the pH and conductivity sensor is connected to the analog pin of
Wido. Wireless Ethernet module is already available on Wido IOT module, so that the
measurement results of the sensors can be sent over the network to the Raspberry
Pi Wireless LAN.
Figure 9. Sensors
3.4. Software Implementation
As in the plans for the IOT Hydroponic System Software Architecture, there are two
major applications that run on the Raspberry Pi is: MySQL as the database server and Apache
APACE WEB Server:
Temperature-pH-ECDashboard
MySQL:
Temperature-pH-ECDatabase
Operating System:
RaspbianRaspberry Pi
Physical:
Raspberry Pi โ€“ Ethernet
WirelessRAN Router
Client Browser:
IE, Firefox, Google Chrome
Communication:
HTTP
Physical:
WiFi of Laptop / UE
Operating System:
Windows / Android
Sensor Input:
Temperature-pH-ECSensor
Sensor Application:
Temperature-pH-ECmonitoring
Minimum System:
WiDo IoT Arduinocompatible
Physical:
WiFi of WiDo IOT Module
pH sensor
EC sensor
Temperature
sensor
Sensor
Interface
WiDo IoT
๏ฎ ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906
904
Web Server. To display the data stored in MySQL database used Java Script and HTML Script.
The process of data reading and writing of data to the MySQL database used two simple
applications created using PHP programming language. Applications on the sensor module
Adafruit_CC3000 Wido use programming library for Wireless LAN communication and OneWire
library for programming temperature sensor. As for debugging purposes SPI library used for
serial communication.
3.5. Test Results
Tests performed on a hydroponic system that serves as a real model of the application
of the Internet of Things. Here is the view of the sensor measurement results stored in a MySQL
database on the Raspberry Pi which serves as WEB Server. The following Figure 10 is a
temperature measurement experiment. Seen in this image when the temperature sensor is
brought close to the heat source, the graph will rise. When kept away from the heat source, the
temperature graph returns to room temperature.
Figure 10. Temperature measurement results with Wido IoT Sensor Module
The following Figure 11 is an experiment for measuring pH. When the pH sensor is
inserted into the ground, the graph shows an approximate value of 7. It proves that the pH
sensor works. The third sensor used is measurement of conductivity. Experiments on these
sensors also show that the conductivity sensor works well as shown in Figure 12.
Figure 11. pH measurement results with Wido IoT Sensor Module
TELKOMNIKA ISSN: 1693-6930 ๏ฎ
Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito)
905
Figure 12. Conductivity measurement results with Wido IoT Sensor Module
The process of developing, testing and evaluation of the design of the hardware for the
sensor module and the application program still needs to be refined. As shown in Figure 13 that
the pH value be interrupted at any time when the conductivity sensor is activated.
Figure 13. pH Sensor problems running concurrently with conductivity sensor
4. Conclusion
Conclusions derived from the development of the Internet of Things in the hydroponic
system using the Raspberry Pi is as follows:
๏ฎ ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906
906
At the time of the conductivity sensor is activated, the water pH measurement results
become inaccurate because the electrical current coming out of one of the electrodes of the
sensor module conductivity. Placement WiDo as IOT module should be ensured to have the
level of the Wi-Fi signal strength is strong enough so that the data from measurements by
sensors can be sent to the Raspberry Pi (Database Server) as well. Raspberry Pi can work well
as a Web Server and Database Server.
The suggestions and inputs for the development of this system are: Need a control
circuit to make pH sensor and conductivity can work simultaneously. Development of monitoring
connected to the internet, so that monitoring can be accessed from anywhere and anytime.
Development of the system towards the Smart Hydroponics System
References
[1] K Rose, S Eldridge, L Chapin. The Internet of Things (IoT): An Overview. The Internet Society
(ISOC). Reston. Virginia. 2015.
[2] M Chui, M Lรถffler, R Roberts. The Internet of Things. McKinsey Quarterly. 2010: 5.
[3] R Jain. Introduction to Introduction to Internet of Things Internet of Things. Washington University,
Saint Louis. 2015.
[4] EMF d Jesus, MCM Neto. LibsensorPy: A Library to Improve the Development of Ubiquitous
Applications on Raspberry Pi. in WebMedia '15 Proceedings of the 21st Brazilian Symposium on
Multimedia and the Web, Manaus, Brazil. 2015.
[5] A McEwen, H Cassimally, Designing the internet of things, Chichester: Wiley. 2014.
[6] S Madakam, R Ramaswamy, S Tripathi. Internet of Things (IoT): A Literature. Journal of Computer
and Communications. 2015; 3: 164-173.
[7] J Buckley. From Rfid to the Internet of Things-Pervasive networked systems. Auerbach Publications,
New York. 2006.
[8] JPN Vicuรฑa, FFR Castillo FLE, Urgilรฉs, JRM Rรญos. Raspberry Analysis in the Teaching of Computer
Sciences. International Journal of Applied Engineering Research. 2017; 12(7): 1182-1189,
[9] D Briere, P Hurley. Wireless Home Networking for Dummies, 4th Edition, John Wiley & Sons. 2010.
[10] M Richardson, S Wallace. Getting Started with Raspberry Pi, Sebastopol: Oโ€™Reilly Media, Inc. 2012.
[11] P Sachdeva, S Katchi. A Review Paper on Raspberry Pi. International Journal of Current
Engineering and Technology. 2014; 04(06): 3818-3819.
[12] WW Gay, Experimenting with Raspberry Pi, Apress, 2014.
[13] N Urkude, M Gaur, B Gujar. A Study on Arduino Microcontroller & Its Applications. International
Journal of Research in Science & Engineering. 2016; 2(6): 197-202.
[14] A Mulyana, Y Wiradinata, R. Sutriadi. Internet of Things (IoT) for Urban Detailed Spatial Plan with
Zoning Map in IOP Conference Series: Materials Science and Engineering, 2018.
[15] A M Haris, S Shaikh. Raspberry PI. International Journal of Research in Engineering Research &
Technology (IRPERT). 2016; 1(1): 1-4.

More Related Content

What's hot

A Reference Architecture for IoT
A Reference Architecture for IoT A Reference Architecture for IoT
A Reference Architecture for IoT
WSO2
ย 
Io t enabled plant soil moisture monitoring system using wireless sensor netw...
Io t enabled plant soil moisture monitoring system using wireless sensor netw...Io t enabled plant soil moisture monitoring system using wireless sensor netw...
Io t enabled plant soil moisture monitoring system using wireless sensor netw...
Ezhilazhahi AM
ย 
Iot ppt
Iot pptIot ppt
Iot ppt
piyuu7
ย 

What's hot (20)

Internet of things (iot) based weather
Internet of things (iot) based weatherInternet of things (iot) based weather
Internet of things (iot) based weather
ย 
Automatic Irrigation System using IoT.ใ€€
Automatic Irrigation System using IoT.ใ€€Automatic Irrigation System using IoT.ใ€€
Automatic Irrigation System using IoT.ใ€€
ย 
Modern agriculture with Internet Of Things
Modern agriculture with Internet Of ThingsModern agriculture with Internet Of Things
Modern agriculture with Internet Of Things
ย 
Iot based smart farming
Iot based smart farmingIot based smart farming
Iot based smart farming
ย 
Agriculture iot
Agriculture iotAgriculture iot
Agriculture iot
ย 
Plant Disease Detection Using I.T.
Plant Disease Detection Using I.T.Plant Disease Detection Using I.T.
Plant Disease Detection Using I.T.
ย 
IoT Application in Agriculture
IoT Application in AgricultureIoT Application in Agriculture
IoT Application in Agriculture
ย 
Environmental wireless sensors networks
Environmental wireless sensors networksEnvironmental wireless sensors networks
Environmental wireless sensors networks
ย 
A Reference Architecture for IoT
A Reference Architecture for IoT A Reference Architecture for IoT
A Reference Architecture for IoT
ย 
Iot based smart irrigation system
Iot based smart irrigation systemIot based smart irrigation system
Iot based smart irrigation system
ย 
IOT PPT
IOT PPTIOT PPT
IOT PPT
ย 
Iot transforming the future of agriculture
Iot transforming the future of agricultureIot transforming the future of agriculture
Iot transforming the future of agriculture
ย 
IoT Control Units and Communication Models
IoT Control Units and Communication ModelsIoT Control Units and Communication Models
IoT Control Units and Communication Models
ย 
IoT Based Smart Irrigation System
IoT Based Smart Irrigation SystemIoT Based Smart Irrigation System
IoT Based Smart Irrigation System
ย 
Smart Irrigation System
Smart Irrigation SystemSmart Irrigation System
Smart Irrigation System
ย 
Io t enabled plant soil moisture monitoring system using wireless sensor netw...
Io t enabled plant soil moisture monitoring system using wireless sensor netw...Io t enabled plant soil moisture monitoring system using wireless sensor netw...
Io t enabled plant soil moisture monitoring system using wireless sensor netw...
ย 
Iot ppt
Iot pptIot ppt
Iot ppt
ย 
Smart agriculture system
Smart agriculture systemSmart agriculture system
Smart agriculture system
ย 
iot based agriculture
 iot based agriculture iot based agriculture
iot based agriculture
ย 
Smart irrigation system using internet of things
Smart irrigation system using internet of thingsSmart irrigation system using internet of things
Smart irrigation system using internet of things
ย 

Similar to Development of IoT at hydroponic system using raspberry Pi

An improved electricity efficiency method based on microcontroller and IoT wi...
An improved electricity efficiency method based on microcontroller and IoT wi...An improved electricity efficiency method based on microcontroller and IoT wi...
An improved electricity efficiency method based on microcontroller and IoT wi...
TELKOMNIKA JOURNAL
ย 
Android Operated Application Based Smart Eye for Home Automation System Using...
Android Operated Application Based Smart Eye for Home Automation System Using...Android Operated Application Based Smart Eye for Home Automation System Using...
Android Operated Application Based Smart Eye for Home Automation System Using...
IJMTST Journal
ย 

Similar to Development of IoT at hydroponic system using raspberry Pi (20)

An improved electricity efficiency method based on microcontroller and IoT wi...
An improved electricity efficiency method based on microcontroller and IoT wi...An improved electricity efficiency method based on microcontroller and IoT wi...
An improved electricity efficiency method based on microcontroller and IoT wi...
ย 
Automated smart hydroponics system using internet of things
Automated smart hydroponics system using internet of things Automated smart hydroponics system using internet of things
Automated smart hydroponics system using internet of things
ย 
Smart Garage Implementation and Design Using Whatsapp Communication Media
Smart Garage Implementation and Design Using Whatsapp Communication MediaSmart Garage Implementation and Design Using Whatsapp Communication Media
Smart Garage Implementation and Design Using Whatsapp Communication Media
ย 
Design and implementation home security system and monitoring by using wirele...
Design and implementation home security system and monitoring by using wirele...Design and implementation home security system and monitoring by using wirele...
Design and implementation home security system and monitoring by using wirele...
ย 
Integration of IoT and chatbot for aquaculture with natural language processing
Integration of IoT and chatbot for aquaculture with natural language processingIntegration of IoT and chatbot for aquaculture with natural language processing
Integration of IoT and chatbot for aquaculture with natural language processing
ย 
IoT-based intelligent irrigation management and monitoring system using arduino
IoT-based intelligent irrigation management and monitoring system using arduinoIoT-based intelligent irrigation management and monitoring system using arduino
IoT-based intelligent irrigation management and monitoring system using arduino
ย 
IRJET- Smart Irrigation System using IoT and Raspberry PI
IRJET- Smart Irrigation System using IoT and Raspberry PIIRJET- Smart Irrigation System using IoT and Raspberry PI
IRJET- Smart Irrigation System using IoT and Raspberry PI
ย 
Project Report on Smart Dustbin
Project Report on Smart Dustbin Project Report on Smart Dustbin
Project Report on Smart Dustbin
ย 
IRJET - Hand Gesture Recognition and Voice Conversion System using IoT
IRJET -  	  Hand Gesture Recognition and Voice Conversion System using IoTIRJET -  	  Hand Gesture Recognition and Voice Conversion System using IoT
IRJET - Hand Gesture Recognition and Voice Conversion System using IoT
ย 
INTENSIFICATION OF HOME AUTOMATION USING IOT
INTENSIFICATION OF HOME AUTOMATION USING IOTINTENSIFICATION OF HOME AUTOMATION USING IOT
INTENSIFICATION OF HOME AUTOMATION USING IOT
ย 
IRJET- Agricultural Parameters Monitoring System using IoT
IRJET- Agricultural Parameters Monitoring System using IoTIRJET- Agricultural Parameters Monitoring System using IoT
IRJET- Agricultural Parameters Monitoring System using IoT
ย 
Aquarius_IJARCCE
Aquarius_IJARCCEAquarius_IJARCCE
Aquarius_IJARCCE
ย 
Smart Farming: A Machine Learning and IoT Approach
Smart Farming: A Machine Learning and IoT ApproachSmart Farming: A Machine Learning and IoT Approach
Smart Farming: A Machine Learning and IoT Approach
ย 
UBIQUITOUS SMART HOME SYSTEM USING ANDROID APPLICATION
UBIQUITOUS SMART HOME SYSTEM USING ANDROID APPLICATIONUBIQUITOUS SMART HOME SYSTEM USING ANDROID APPLICATION
UBIQUITOUS SMART HOME SYSTEM USING ANDROID APPLICATION
ย 
IRJET - Web Controlled Smart Notice Board using Raspberry Pi: A Review
IRJET - Web Controlled Smart Notice Board using Raspberry Pi: A ReviewIRJET - Web Controlled Smart Notice Board using Raspberry Pi: A Review
IRJET - Web Controlled Smart Notice Board using Raspberry Pi: A Review
ย 
IRJET- IoT based Real Time Greenhouse Monitoring System using Raspberry Pi
IRJET-  	  IoT based Real Time Greenhouse Monitoring System using Raspberry PiIRJET-  	  IoT based Real Time Greenhouse Monitoring System using Raspberry Pi
IRJET- IoT based Real Time Greenhouse Monitoring System using Raspberry Pi
ย 
IRJET- Raspberry Pi and NodeMCU based Home Automation System
IRJET- Raspberry Pi and NodeMCU based Home Automation SystemIRJET- Raspberry Pi and NodeMCU based Home Automation System
IRJET- Raspberry Pi and NodeMCU based Home Automation System
ย 
Design and implementation of a smart home system with two levels of security ...
Design and implementation of a smart home system with two levels of security ...Design and implementation of a smart home system with two levels of security ...
Design and implementation of a smart home system with two levels of security ...
ย 
IRJET- IoT Based Digital Notice Board Using Raspberry Pi with Audio Alert System
IRJET- IoT Based Digital Notice Board Using Raspberry Pi with Audio Alert SystemIRJET- IoT Based Digital Notice Board Using Raspberry Pi with Audio Alert System
IRJET- IoT Based Digital Notice Board Using Raspberry Pi with Audio Alert System
ย 
Android Operated Application Based Smart Eye for Home Automation System Using...
Android Operated Application Based Smart Eye for Home Automation System Using...Android Operated Application Based Smart Eye for Home Automation System Using...
Android Operated Application Based Smart Eye for Home Automation System Using...
ย 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
TELKOMNIKA JOURNAL
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
TELKOMNIKA JOURNAL
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
TELKOMNIKA JOURNAL
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
TELKOMNIKA JOURNAL
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
TELKOMNIKA JOURNAL
ย 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
ย 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
ย 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
ย 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
ย 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
ย 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
ย 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
ย 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
ย 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
ย 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
ย 
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
ย 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
ย 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
ย 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
ย 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
ย 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
ย 

Recently uploaded

Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night StandCall Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
amitlee9823
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
ย 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
KreezheaRecto
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
ย 

Recently uploaded (20)

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
ย 
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night StandCall Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
ย 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
ย 
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
ย 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ย 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
ย 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
ย 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 

Development of IoT at hydroponic system using raspberry Pi

  • 1. TELKOMNIKA, Vol.17, No.2, April 2019, pp.897~906 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v17i2.9265 ๏ฎ 897 Received March 14, 2018; Revised November 28, 2018; Accepted December 20, 2018 Development of IoT at hydroponic system using raspberry Pi Rony Baskoro Lukito* 1 , Cahya Lukito 2 Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia *Corresponding author, e-mail: rbaskoro@binus.edu 1 , cahya.lukito@gmail.com 2 Abstract Hydroponics is one of the farming technologies using water media to meet the needs of plant nutrition. Water use in hydroponics systems more efficient compared with the cultivation system using soil media. Water that has been mixed with mineral nutrients needed by plants streamed continuously to the plant roots. Another advantage of this method is very suitable to be applied in a limited area such as urban home environments, the use of the existing space in the house. In the everyday activities of urban residents spending more time outside the home to work, school, shopping and other activities. Thus the observation of hydroponic systems remotely be important to be done from anywhere. Availability, temperature, and pH of the water are some of the factors in hydroponic systems that need to be observed periodically to determine the appropriate action. This problem can be solved by developing the Internet of Things technology in the hydroponic system that observations can be done remotely and reported directly through the Internet. Keywords: internet of things, paper hydroponic system, raspberry Pi, vertical garden Copyright ยฉ 2019 Universitas Ahmad Dahlan. All rights reserved. 1. Introduction Most of the activities of urban residents in the use of their time is spent outside the home to work in the office, school, shopping and other activities. With the limited time you have, the application of Internet of Things technology can provide enormous benefits. System control and monitoring can be done from a long distance and can be accessed at any time. One way to improve the quality of human life in the food self-sufficiency is to adopt a hydroponic system, which is one of the technologies of farming using water media to meet the needs of plant nutrition. Water that has been mixed with mineral nutrients needed by plants streamed continuously to the plant roots. Temperature, pH and conductivity of water need to always be observed to determine the necessary actions. In this study used the Raspberry Pi, a credit card-sized minicomputer and Arduino- based IOT devices are equipped with multiple sensor modules. The scope of this study will be limited to the development of hardware and software to monitor the main parameters of all hydroponic systems using Internet of Thing technology, consisting of: a. The temperature sensor, pH and conductivity of water b. An Arduino Internet of Thing module c. Database and Web Server is built on Raspberry Pi Pocket PC By developing a support device hydroponics system that can be applied in a residential neighborhood, this is expected to help increase food security of every family. The next step of this research is to build a Smart Hydroponic System that is integrated with the Internet network. 2. Research Method 2.1. Internet of Things Technology Based on one of the existing literature on the www.internetsociety.org [1], the term of the Internet of Things (IOT) was first used in 1999 by Kevin Ashton to explain a system that can connect objects who physically looks into an internet network by using sensors. The rapid growth of technology and the support of technology Automation Systems, Information Systems
  • 2. ๏ฎ ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906 898 and Telecommunication System to create a Smart System that can improve human welfare [2]. IoT consist of Instrument, Interconnect, Intelligently process [3]. According to [4], when the sensor operates, the sensor converts a form of energy into another energy called transducer. Sensors that operate indirectly will change their properties, such as resistance, capacitance or inductance, which occurs proportionately. Here are 6 points of the application of IOT which is a combination of two large groups of Information and Analysis and Automation and Control according to an analysis from McKinsey and Company [5]. Tracking behavior, enhanced situational awareness and sensor-driven decision analytics are in group of Information and Analysis. Process optimization, optimized resource consumption and complex autonomous systems are in group of Automation and Control. This research will focus on sensor-driven decision analytics for a hydroponics system that is in a residential setting. This is the first step to fulfill some parts of the above criteria. The Internet of Things also has been identified as one of the technologies that will emerge in IT technologies as reported in the IT Gartner Hype Cycle [6]. Buckey said, The Internet of Things may react autonomously to the real world. This is known as proactive computing [7]. 2.2. Raspberry Pi Overview Raspberry Pi is a minicomputer the size of a credit card which was developed by the Raspberry Pi Foundation in the United Kingdom. The device was created by a hardware architect of Broadcom named Eben Upton. The device is made with the initial goal to assist the introduction of the Fundamentals of Computers in schools and developing countries [8]. Despite having small dimensions, Raspberry Pi can be used to do many things like a personal computer, such as to send and read e-mail, making spreadsheets and electronic documents, browse the internet, play multi-media with quality High-Definition Video. In this study the Raspberry Pi will be used as WEB and Database Server, by connecting the sensor temperature, pH and conductivity of water in the system hydroponics through the intranet. With the development of WEB-based application programs that run on the Raspberry Pi, then the information can be accessed on the Internet via the Ethernet port. 2.3. Raspberry-Pi Architecture Until 2015, the Raspberry Pi has had 6 versions, namely: Raspberry Pi 1 Model A and Model A +, Raspberry Pi 1 Model B and Model B +, Raspberry Pi Model B 2, and the Raspberry Pi 2 Zero [9]. Raspberry-Pi using ARM Central Processing Unit Broadcom BMC2835 and a GPU that features some of the following connectors as shown in Figure 2 [10]: 1. General Purpose Input and Output (GPIO) 2. Display Serial Interface (DSI) 15 pin flat ribbon cable that can be connected to communicate with the LCD or OLED display. 3. Camera Serial Interface (CSI) Port for camera connection. 4. This is a Broadcom proprietary header which is useful for Broadcom chip JTAG testing header and Ethernet-out LAN9512 Networking Chip. Figure 2. Raspberry-Pi Model-B
  • 3. TELKOMNIKA ISSN: 1693-6930 ๏ฎ Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito) 899 Comparison between the Raspberry Pi Model A and Model B can be seen in Table 1. Both have the same CPU speed is 700MHz, with a larger memory 2x for Model B. The price difference is not too far away, Model B already include the number of USB ports available are more and RJ-45 port for networking-based TCP / IP. On the side of the power requirements of Model B requires a current of 700mA at 5VDC voltage compared to Model A, which only requires a current of 300mA at the same voltage of 5VDC [11]. Table 1. Comparison Model of Raspberry Pi Raspberry Pi Model A Model B Release Date Q1 2013 Q4 2012 CPU ARM11 700 MHz ARM11 700 MHz GPU Broadcom VideoCore IV Broadcom VideoCore IV RAM 256 MB 512 MB SoC Broadcom BCM2835 Broadcom BCM2835 Power Rating 300 mA at 5V 700 mA at 5V USB 1x USB 2.0 1x USB 2.0 Video Output Composite RCA; HDMI 1.3/1.4 Composite RCA; HDMI 1.3/1.4 Audio Output 3.5 mm analogue; HDMI 3.5 mm analogue; HDMI Networking None None Open Source Linux Operating System is the most widely used. By making adjustments to the Raspberry Pi Hardware Architecture, Raspbian is a Free Operating System is based on Debian suitable for general use. Raspbian currently has 35000 software packages that are easy to install, and the support of an active community to improve the stability and performance of each package [12]. 2.4. Arduino Minimum System In accordance with the general explanation, Arduino system is defined as a minimum that is Open Source for easy-to-use Hardware or Software [13]. Arduino Board has the ability to read input from the sensors installed, keystrokes until a short message via a computer network which is then processed into an output that is supported by the microprocessor on board. Arduino also provides supporting software to allow users to create Application Software by providing the Arduino programming language and Arduino IDE Software. In this study, using Wido is an Arduino Compatible Board designed for the purposes of Internet of Thing. Here are the specifications of the module Wido v1.0 as can be seen in Figure 3 [14]. Reach resources or 7-12v (VIN)/5v (Micro USB), Leonardo Arduino Compatible, Integrated with WG1300 WIFI module Chip for 2.4GHz IEEE 802.11 b/g, On board PCB Antenna 2.4G, Microcontroller ATMEL ATmega32U4. Figure 3. WiDo v1.0 Pin Out [7]
  • 4. ๏ฎ ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906 900 2.5. Research Methods The research methodology is the stages of research must be defined before carrying out the research, so that research can be done with focused, clear, efficient and effective. As shown in Figure 4, it starts with identifying problems how to use the internet of things for hydroponic systems. Then proceed with research on system architecture and algorithms, this relates to the current technology. Next is the development of hardware and software, which includes architectural design, creating of hardware modules and software module design. Followed by testing and evaluation. If it is not as intended, it will repeat the design of hardware and software. If appropriate, a pilot project, testing and report will be made. Figure 4. Methodology Yes Start Identification of problems: Development of the Internet of Things on Hydroponic Systems Using Raspberry Pi End Research on System Architecture and Algorithms that already exists Application Evaluation No Technology Development Pilot Project Testing Report According to Purpose Application Testing Application Development System Architecture Design Hardware Module Making Module Software Design Hardware and Software Development
  • 5. TELKOMNIKA ISSN: 1693-6930 ๏ฎ Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito) 901 3. Results and Analysis 3.1. Hardware specifications In the designing of Home Lighting System Automation project will use Raspberry Pi Model B 1 as shown in Figure 5 that has a user interface Mini Power, SD Card, USB, HDMI, LAN, RCA Composite Video Output, Analog Audio output Stereo Mini jack and GPIO header. With a complete interface which is owned and embed application program in the Raspberry Pi, the making of an electronic project to become more efficient and effective. Figure 5. Raspberry Pi 1 Model B Here are some of the enhancements needed to install the Operating System on a Raspberry Pi to be used optimally: Casing, Minimum 4GB Class-4 SD Card, Monitor with HDMI input, HDMI cable, Keyboard and Mouse with USB interface, 5VDC 700mA Power Supply with Micro USB interface, Access the Internet to do the Software Update. Necessary also a 5VDC power supply with 700mA minimum and at least 4GB SD Card Class 4 [15]. If you want to connect to the Monitor, it is necessary to HDMI Cable. Keyboard and mouse can be connected via the USB port. Connection to the network can use the RJ-45 Ethernet or Wireless LAN using the Wi-Fi Dongle USB port. And a casing for Raspberry-Pi, because the module is not equipped with Casing. 3.2. Architectural Design Internet of Things on Hydroponics Systems 3.2.1. Hydroponic IOT Hardware System Architecture Here is a Hardware Architecture of the application of Internet of Things Hydroponic System using the Raspberry Pi as a Web Server and Wido Arduino base module as the main controller for the sensor module temperature, pH and conductivity of water that can be grouped into the following sections: 1. Input The measurement results from the sensors connected to the module Wido be input data that will be sent to the Raspberry Pi to be stored in the database. The lighting system has three sensors, namely: temperature, pH and conductivity. 2. Output The output of this system in the form of a statistical report WEB base that displays the value of the temperature measurement, pH and conductivity of water from Hydroponics System. 3. Module Raspberry Pi Application development on Raspberry Pi module using the programming language PHP, Java Script and HTML Script. All measurement data is stored using MySQL. Wido lines of communication with the module is connected via Wireless LAN. 4. Wireless LAN Router UTP CAT-5 cable is used to connect the Raspberry Pi into a Wireless router that has an RJ-45 port, while the interface is used as a Wireless LAN Access Point.
  • 6. ๏ฎ ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906 902 5. Computer and Smart Phone Computer and Smart phone connected via Wireless LAN Router can serve as a monitoring tool of the hydroponic system as shown in Figure 6. Figure 6. Hydroponic IoT Hardware System Architecture Hardware System Architecture with the above is possible for us to reach easily from anywhere in the home environment as long as the range of your wireless LAN. Monitoring can be done by accessing the Web address of the Raspberry Pi using a Web browser application. 3.2.2. Hydroponic IOT Software System Architecture Here is a Software Architecture of the application of Internet of Things on Hydroponic System using the Raspberry Pi as shown in Figure 7: 1. Rasbian Raspberry Pi Operating System Rasbian Operating System is a software system that is responsible for managing and aligning work of Raspberry Pi hardware in order to work properly to support system monitoring applications Hydroponics are working on it. 2. Web Server Raspberry Pi serves as Web servers that store, process and transmit Web pages to the Web client. Communication between Server and Client is to use the Hypertext Transfer Protocol (HTTP). GUI created using HTML script in which there is some JavaScript to interact with the applications used to read data from a database created using PHP. 3. Web Client Application Software that is used on the client side is a standard Web browser application that always exist on a computer or Smart Phone. Communication between the Web server and Web Client via Wireless LAN network will be formed at the time of the Web address Hydroponics system incorporated into the Web browser. 4. Hydroponics Database MySQL is a database used to store data obtained from the sensor module. The writing and reading of data to MySQL Database using applications built using PHP 5. Application Sensor Applications created using Arduino as a programming language. Digital Temperature Sensor is connected to the input pin, while the pH and conductivity sensors connected to analog pin of the module Wido. Applications that are embedded in the module Wido serves to capture data generated by sensors and sends it to the Raspberry Pi. WirelessLAN Router WEB Server: Temperature-pH-ECdashboard MainController MySQL: Temperature-pH-ECDatabase WEB Client Sensor Input: DigitalTemperature AnalogpH and EC IoT Module
  • 7. TELKOMNIKA ISSN: 1693-6930 ๏ฎ Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito) 903 Figure 7. Hydroponic IoT Software System Architecture By using the Client Server Architecture Model, then most of the process will be performed by the Raspberry Pi as a server so that the resources required on client devices is small. Another thing is the advantage of this model is the Client can easily fit into any monitoring system for Hydroponics from Client devices connected to wireless LANs are equipped with WEP or WPA Wireless Security. 3.3. Hardware Implementation Raspberry Pi is placed on a box next to the wireless router, while IOT sensor box is placed close to a hydroponic plant cultivation. Connection to the Wireless Router using a Cat-5 Ethernet cable with bandwidth of 100Mbps. As shown in the Figure 9 below, there are three sensors connected to Wido IOT module through each interface. The temperature sensor is connected to a digital pin while the pH and conductivity sensor is connected to the analog pin of Wido. Wireless Ethernet module is already available on Wido IOT module, so that the measurement results of the sensors can be sent over the network to the Raspberry Pi Wireless LAN. Figure 9. Sensors 3.4. Software Implementation As in the plans for the IOT Hydroponic System Software Architecture, there are two major applications that run on the Raspberry Pi is: MySQL as the database server and Apache APACE WEB Server: Temperature-pH-ECDashboard MySQL: Temperature-pH-ECDatabase Operating System: RaspbianRaspberry Pi Physical: Raspberry Pi โ€“ Ethernet WirelessRAN Router Client Browser: IE, Firefox, Google Chrome Communication: HTTP Physical: WiFi of Laptop / UE Operating System: Windows / Android Sensor Input: Temperature-pH-ECSensor Sensor Application: Temperature-pH-ECmonitoring Minimum System: WiDo IoT Arduinocompatible Physical: WiFi of WiDo IOT Module pH sensor EC sensor Temperature sensor Sensor Interface WiDo IoT
  • 8. ๏ฎ ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906 904 Web Server. To display the data stored in MySQL database used Java Script and HTML Script. The process of data reading and writing of data to the MySQL database used two simple applications created using PHP programming language. Applications on the sensor module Adafruit_CC3000 Wido use programming library for Wireless LAN communication and OneWire library for programming temperature sensor. As for debugging purposes SPI library used for serial communication. 3.5. Test Results Tests performed on a hydroponic system that serves as a real model of the application of the Internet of Things. Here is the view of the sensor measurement results stored in a MySQL database on the Raspberry Pi which serves as WEB Server. The following Figure 10 is a temperature measurement experiment. Seen in this image when the temperature sensor is brought close to the heat source, the graph will rise. When kept away from the heat source, the temperature graph returns to room temperature. Figure 10. Temperature measurement results with Wido IoT Sensor Module The following Figure 11 is an experiment for measuring pH. When the pH sensor is inserted into the ground, the graph shows an approximate value of 7. It proves that the pH sensor works. The third sensor used is measurement of conductivity. Experiments on these sensors also show that the conductivity sensor works well as shown in Figure 12. Figure 11. pH measurement results with Wido IoT Sensor Module
  • 9. TELKOMNIKA ISSN: 1693-6930 ๏ฎ Development of IoT at hydroponic system using raspberry Pi... (Rony Baskoro Lukito) 905 Figure 12. Conductivity measurement results with Wido IoT Sensor Module The process of developing, testing and evaluation of the design of the hardware for the sensor module and the application program still needs to be refined. As shown in Figure 13 that the pH value be interrupted at any time when the conductivity sensor is activated. Figure 13. pH Sensor problems running concurrently with conductivity sensor 4. Conclusion Conclusions derived from the development of the Internet of Things in the hydroponic system using the Raspberry Pi is as follows:
  • 10. ๏ฎ ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 2, April 2019: 897-906 906 At the time of the conductivity sensor is activated, the water pH measurement results become inaccurate because the electrical current coming out of one of the electrodes of the sensor module conductivity. Placement WiDo as IOT module should be ensured to have the level of the Wi-Fi signal strength is strong enough so that the data from measurements by sensors can be sent to the Raspberry Pi (Database Server) as well. Raspberry Pi can work well as a Web Server and Database Server. The suggestions and inputs for the development of this system are: Need a control circuit to make pH sensor and conductivity can work simultaneously. Development of monitoring connected to the internet, so that monitoring can be accessed from anywhere and anytime. Development of the system towards the Smart Hydroponics System References [1] K Rose, S Eldridge, L Chapin. The Internet of Things (IoT): An Overview. The Internet Society (ISOC). Reston. Virginia. 2015. [2] M Chui, M Lรถffler, R Roberts. The Internet of Things. McKinsey Quarterly. 2010: 5. [3] R Jain. Introduction to Introduction to Internet of Things Internet of Things. Washington University, Saint Louis. 2015. [4] EMF d Jesus, MCM Neto. LibsensorPy: A Library to Improve the Development of Ubiquitous Applications on Raspberry Pi. in WebMedia '15 Proceedings of the 21st Brazilian Symposium on Multimedia and the Web, Manaus, Brazil. 2015. [5] A McEwen, H Cassimally, Designing the internet of things, Chichester: Wiley. 2014. [6] S Madakam, R Ramaswamy, S Tripathi. Internet of Things (IoT): A Literature. Journal of Computer and Communications. 2015; 3: 164-173. [7] J Buckley. From Rfid to the Internet of Things-Pervasive networked systems. Auerbach Publications, New York. 2006. [8] JPN Vicuรฑa, FFR Castillo FLE, Urgilรฉs, JRM Rรญos. Raspberry Analysis in the Teaching of Computer Sciences. International Journal of Applied Engineering Research. 2017; 12(7): 1182-1189, [9] D Briere, P Hurley. Wireless Home Networking for Dummies, 4th Edition, John Wiley & Sons. 2010. [10] M Richardson, S Wallace. Getting Started with Raspberry Pi, Sebastopol: Oโ€™Reilly Media, Inc. 2012. [11] P Sachdeva, S Katchi. A Review Paper on Raspberry Pi. International Journal of Current Engineering and Technology. 2014; 04(06): 3818-3819. [12] WW Gay, Experimenting with Raspberry Pi, Apress, 2014. [13] N Urkude, M Gaur, B Gujar. A Study on Arduino Microcontroller & Its Applications. International Journal of Research in Science & Engineering. 2016; 2(6): 197-202. [14] A Mulyana, Y Wiradinata, R. Sutriadi. Internet of Things (IoT) for Urban Detailed Spatial Plan with Zoning Map in IOP Conference Series: Materials Science and Engineering, 2018. [15] A M Haris, S Shaikh. Raspberry PI. International Journal of Research in Engineering Research & Technology (IRPERT). 2016; 1(1): 1-4.